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Abstract 

Urbanisation is currently increasing worldwide, and there is now ample evidence of 

phenotypic changes in wild organisms in response to this novel environment, but the extent to 

which this adaptation is due to genetic changes is poorly understood. Current evidence for 

evolution is based on localised studies, and thus lacking replicability. Here, we genotyped great 

tits (Parus major) from nine cities across Europe, each paired with a rural site, and provide 

evidence of repeated polygenic responses to urban habitats. In addition, we show that selective 

sweeps occurred in response to urbanisation within the same genes across multiple cities. These 

genetic responses were mostly associated with genes related to neural function and development, 

demonstrating that genetic adaptation to urbanisation occurred around the same pathways in 

wildlife populations across a large geographical scale. 
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Main 

Urban development is rapidly expanding across the globe, and although urbanisation is 

regarded a major threat for wildlife (Hendry, Gotanda, and Svensson 2017), its potential role as 

an evolutionary driver of adaptation has not been explored until recently (Johnson and Munshi-

South 2017; J. C. Mueller et al. 2013; Harris and Munshi-South 2017; Rivkin et al. 2019). Some 

species have phenotypically adapted to the many urban challenges, such as higher levels of 

noise, artificial light at night, air pollution, altered food sources and habitat fragmentation 

(Alberti et al. 2017). Indeed, there is now evidence that some of these adaptations may have a 

genetic basis (Campbell-Staton et al. 2020), in line with the finding that such micro-evolutionary 

adaptations can occur within short timescales, particularly in response to human activities (Bosse 

et al. 2017; Hendry, Farrugia, and Kinnison 2008). However, the short evolutionary timescale, 

the dependence of evolution on local factors, and the polygenic nature of many phenotypic traits, 

make detecting evolutionary signals difficult (Hendry, Farrugia, and Kinnison 2008; Pritchard, 

Pickrell, and Coop 2010). Thus, we still lack important knowledge on the signals of adaptation, 

and thereby of the actual magnitude of the evolutionary change induced by urbanisation on 

wildlife populations.  

The majority of available studies on the genetic bases of urban adaptation have either 

focused on a limited number of markers and genes (J. C. Mueller et al. 2013) or focused on a 

narrow geographical scale (Harris and Munshi-South 2017; Campbell-Staton et al. 2020; Perrier 

et al. 2018). As a result, an important gap remains in the understanding of the prevalence of 

convergent evolution among cities (Rivkin et al. 2019), limiting the inferences that can be made 

on the genomic response to urbanisation. A robust approach to address this gap is the use of 

paired urban and rural sites at a large spatial scale in combination with high throughput genomic 

tools. Such a strong replicated approach can help to simultaneously detect subtle allele frequency 

shifts and identify genomic regions repeatedly involved in parallel evolutionary adaptation or 

under divergent selection across distant urban habitats. This approach provides a powerful 

framework to test the repeatability of the genomic adaptation to urbanisation. 

In this study, we present a multiple location analysis of the evolutionary response to 

urbanisation, using the great tit (Parus major). This widely-distributed passerine bird is a model 

species in urban, evolutionary and ecological research (e.g. Boyce and Perrins 1987; 
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Charmantier et al. 2008; 2017; Pettifor, Perrins, and McCleery 1988; Bouwhuis et al. 2009; 

Krebs 1971; Salmón et al. 2017; Sprau, Mouchet, and Dingemanse 2017; Senar et al. 2017; 

Isaksson et al. 2009) , with demonstrated phenotypic changes in response to urban environments 

in several populations (Charmantier et al. 2017; Sprau, Mouchet, and Dingemanse 2017; Senar et 

al. 2017; Caizergues, Grégoire, and Charmantier 2018). Additionally, genomic resources are well 

developed for this species (Kim et al. 2018) and it is known that across its European range, the 

species presents low genetic differentiation (Perrier et al. 2018; Laine et al. 2016; Lemoine et al. 

2016; Spurgin et al. 2019). In order to examine and test the repeatability in the genomic 

responses to urbanisation in a broad geographical scale we analysed nine paired urban and rural 

great tit populations across Europe (Figs. 1a and 1b; Table S1). All urban sites used in the study 

were located in built-up areas or parks within the city boundaries, while rural sites were always 

natural or semi-natural forests containing only a few isolated houses. Additionally, we quantified 

the relative degree of urbanisation for each site (urbanisation score: PCurb, from principal 

component analysis, PCA; see Methods and Materials, Table S1; Fig. 1b). We combine two 

complementary approaches, the detection in urban habitats of parallel allele frequency shifts 

across many loci and the search for independent and repeated selective sweeps (i.e. a strong 

increase in haplotype frequency at one or few loci). Furthermore, we use functional enrichment 

analyses of genes putatively under selection to infer which particular phenotypes, known and 

unknown, are associated with genes under selection in urban great tits, providing an outline of 

genes to target in future ecological and functional studies. 

 

Results and Discussion 

Genetic diversity and population structure across European urban and rural populations 

A total of 192 individuals were genotyped at 526,528 filtered SNPs, with 10-16 

individuals per site (Table S1). The genetic diversity between each urban-rural pairing was 

relatively low, with genome-wide differentiation (FST) ranging between 0.004 to 0.050 (Fig. S1c; 

Table S1). This is in line with previous studies of the species (Perrier et al. 2018; Laine et al. 

2016; Lemoine et al. 2016; Spurgin et al. 2019). In addition, the levels of heterozygosity were 

similar between urban and rural populations, although slightly lower in some of the urban 

populations (see Table S1 for details; Wilcoxon test: W=30, P = 0.377). This indicates that the 

colonisation of urban environments is likely not a result of strong bottlenecks and its associated 
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loss of genetic diversity. Despite the low population structure (Laine et al. 2016), two 

populations at the edge of the species distribution range (Lisbon and Glasgow) separated from all 

other populations along PC1Gen and PC2Gen (Fig. 1c; Figs. S1a and S2b). This pattern is possibly 

a consequence of the slightly reduced heterozygosity in these two populations (Figs. 1d and S3; 

Table S1). However, overall the population structure analyses suggest that urban-rural 

population pairs from the different localities have colonised each urban habitat independently, as 

urban-rural pairs split separately along PCGen (Fig. S2a), though still certain number of the urban 

populations cluster together.  

 

Fig. 1. Urbanisation and population structure. a, Map of Europe, showing the targeted cities where the 
sampling of great tits (Parus major) was carried out. Red area indicates main dense urban areas. 
Shapefiles obtained from Natural Earth (https://www.naturalearthdata.com ). b, Urbanisation scores 
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(principal component, PCurb) for all nine urban-rural pairings. c, d, Principal component (PCGen) plot 
showing the main axes of population structure for European great tits; dots represent individual birds. d, 
Zoomed view into the population cluster highlighted by the grey-shaded area. e, Maximum-likelihood 
tree showing the relationship between tits across sampling localities. BCN: Barcelona; GLA: Glasgow; 
GOT: Gothenburg; LIS: Lisbon; MAD: Madrid; MAL: Malmö; MIL: Milan; MUC: Munich; PAR: Paris. 
 

Identification of key SNPs associated with urbanisation 

Despite the overall lack of genome-wide differentiation between urban-rural pairings, the 

selective pressures associated with urbanisation might have led to detectable genomic signatures 

of local adaptation. We used two complementary approaches, LFMM (Latent Factor Mixed 

Models) and an additional Bayesian approach (using BayPass), to narrow down genomic regions 

with consistent and strong allele frequency shifts associated with urbanisation. Testing for 

genotype-environment associations with LFMM (using PCurb as a continuous habitat descriptor, 

Fig. 1b) revealed 2,758 SNPs associated with urbanisation (0.52% of the full SNP dataset, false-

discovery rate (FDR) < 1%; Fig. 2a). These SNPs were widely distributed across the genome and 

did not cluster in specific regions. Larger chromosomes contained more urbanisation-associated 

SNPs (R2 = 0.97; Fig. 2c), highlighting the polygenic nature of urban adaptation. A PCA based 

on these SNPs clearly separated urban and rural populations along PC1LFMM (Proportion of 

variance explained (PVE) by PC1 = 1.98%; Fig. S4a), showing highly parallel allele frequency 

changes in those loci across European cities. BayPass identified 70 urbanisation-associated SNPs 

(Bayes factor ≥ 20; Fig.  2b), of which 34 were shared with the LFMM analysis. These shared 

SNPs, which we term “core urbanisation SNPs” (Fig. 2d; Table S2), are likely involved in the 

local adaptation of great tits to urban habitats, and indeed, they strongly discriminated urban and 

rural individuals across Europe (PVE by PC1GWAS= 11.7%; Figs. 2e and S4b).  

The importance of habitat (i.e. urban versus rural) was further underpinned by a 

univariate linear model. Using the first principal component axis of urbanisation-associated 

SNPs (PC1GWAS), habitat explained 73% of the total associated variance in allele-frequency 

divergence (h2PC1 GWAS, Habitat = 0.73, P < 0.001). In comparison, both the effect of locality, which 

corresponds to the distinct evolutionary history of local populations (h2PC1 GWAS, Locality = 0.20, P 

< 0.001), and the interaction of locality and habitat, which describes differences in the direction 

of allele-frequency change across cities (h2PC1 GWAS, Habitat × Locality = 0.13, P = 0.001), explained 

much lower proportions of the variance than the habitat term on itself. Interestingly, the 
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trajectories of minor allele frequency changes for the individual “core urbanisation SNPs” were 

highly repeatable across populations (Fig. S5). Thus, the directionality and/or magnitude in allele 

frequency of the 34 identified SNPs showed a highly parallel pattern across all urban populations 

(Fig. 2f), suggesting that in this species, local adaptation to urban habitats has occurred through 

repeated shifts in allele frequency of the same loci. This finding implies an important role of 

standing genetic variation in urban adaptation of great tits, as putatively adaptive alleles were 

shared across large parts of Europe (Spurgin et al. 2019). 

 

Fig. 2. Genome-wide association with urbanisation. a and b, Manhattan plots showing signals of 
genome-wide association with urbanisation across all populations for the a, LFMM and b, BayPass 
analyses, respectively (see in methods “Environment-associated SNPs”). The red dotted line and the blue 
line in the LFMM Manhattan-plot show the 0.1 and 1% FDR significance thresholds. The red dotted line 
in the BayPass plot shows the significance threshold for a Bayes factor of 20 deciban (dB); alternating 
colors denote chromosomes. c, Correlation between the number of SNPs associated with urbanisation per 
chromosome in the LFMM analyses and the respective chromosome length. The strong correlation 
indicates a polygenic basis of urban adaptation. d, Correlation between association signals in LFMM and 
BayPass. The red dotted lines show the respective significance thresholds (BayPass: 20db; LFMM: 1% 
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FDR). SNPs associated with urbanisation in both analyses are highlighted in yellow (“core urbanisation 
SNPs”, N=34). e, Main axis of variation in a PCAGWAS based on “core urbanisation SNPs”. Grey circles 
show individuals and yellow dots and lines, show the mean ± s.d. for urban and rural populations. f, 
Reaction norm plot showing the difference in the mean minor allele frequency for “core urbanisation 
SNPs” between all urban and rural populations combined. See Fig. S5 for allele frequency trajectories by 
locality and SNP. 

 

Signatures of selection in urban populations 

Next, we performed a genome-wide scan of differentiation and selective sweep analyses 

to identify putative signatures of divergent selection between urban and rural populations. We 

first estimated genetic differentiation (FST) in 200 kb sliding windows and 50 kb steps across the 

genome. While the genome-wide level of differentiation was low in all populations, we detected 

highly variable landscapes of genetic differentiation between adjacent urban and rural 

populations, with multiple genomic peaks of increased genetic differentiation (FST > 99th 

percentile) spread across the genome (Fig. S6). 85 genomic windows were significantly 

differentiated in at least three urban-rural pairs.  

Genetic differentiation can be driven by a myriad of processes, including background 

selection (selection against deleterious variants) or divergent selection (e.g. associated with local 

adaptation) in urban and/or rural populations (Burri 2017). To narrow down these processes, we 

determined whether the outlier windows were putatively under selection in urban populations by 

estimating population branch statistics (PBS) for each urban population in the same genome-

wide windows. In this study, positive PBS values show an extended genetic distance of the urban 

population compared to the adjacent rural population and outgroup in a specific genomic 

window, indicative of positive selection in the urban population at that site (Yi et al. 2010). We 

used the rural population from Lisbon as the outgroup for estimating PBS, except for Lisbon, for 

which we used the rural population from Glasgow. We tested the effect of outgroup on PBS 

values but found that these were generally significantly correlated for each city (average 

spearman’s r = 0.525 ± 0.087 s.d., Fig S7 and S8). Between 25% and 50% of differentiated 

genomic regions (FST) showed signs of selection based on PBS (top 1% of empirical PBS 

distribution) in urban populations (Fig. 3). Taking into consideration the nature of the 

urbanisation phenomenon, we might expect that the distinct genomic backgrounds would give 

rise to independent selective sweeps across localities, i.e. the result of locality-specific selection 

pressures. Yet, the shared genetic variation in this species across Europe(Spurgin et al. 2019) 
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might lead to the re-use of shared adaptive variants across geographically distant populations. 

PBS values were highly variable across locations and showed generally low correlations among 

each other (|r| < 0.28) suggesting that putative selective sweeps are geographically limited, i.e. 

locality-specific. Nonetheless, 75 genomic windows with elevated PBS values were shared 

across more than three urban populations (maximum of five localities, Fig 3). At the gene-level, 

we detected multiple genes in or close to windows putatively under selection (within ≤ 100kb) 

across urban populations, of which five genes showed signs of selection in five out of nine urban 

populations (Table S3). 

Fig. 3. Shared signals of selection across European urban great tit populations. Population branch 
statistics (PBS) across the genome for each population in 200 kb sliding windows with 50 kb steps. 
Windows above the 99th percentile of the empirical PBS distribution (red dashed line) were selected as 
putatively under selection in urban populations. Only positive values were plotted here for visualisation 
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purposes. Full distributions can be found in Fig. S7 and S8. BCN: Barcelona; GLA: Glasgow; GOT: 
Gothenburg; LIS: Lisbon; MAD: Madrid; MAL: Malmö; MIL: Milan; MUC: Munich; PAR: Paris. 

 

To complement the above analyses and to strengthen the inference of urban selective 

sweeps under divergent selection, we also used haplotype-based statistics, which are more robust 

to the effect of low recombination and linked selection (Tang, Thornton, and Stoneking 2007). 

We compared haplotype-homozygosity between each urban and its respective rural population 

(Rsb score) but only focused on absolute values as the ancestral states of haplotypes were not 

known (Meier et al. 2018). Weak Spearman pairwise-correlations of the haplotype-based Rsb 

scores for each SNP (Fig. S9 and S10) across localities indicate that selective sweeps are mostly 

locality-specific, as suggested by the weak correlations of PBS.   

Nonetheless, we identified several genes with recurrent signals of selection across a 

broad geographical scale (> 3 urban populations). The Rsb statistics revealed signatures of 

selective sweeps in or close to 568 genes in more than three localities (4-8 urban populations), 

many of which were also detected using the PBS statistic (“candidate genes under selection”; 

Fig. 3d; Table S3). Comparing genes associated with signatures of selection by PBS and Rsb 

statistics, we identified 79 genes that showed signs of selection in at least three populations for 

both summary statistic (Table S3). Of these, 4 genes were putatively under selection in more 

than half of all urban populations (> 5 populations, maximum of 6) based on PBS scores, and 

also showed signs of selection in 5 to 8 populations (median = 5 ± 1.69 s.d.) based on Rsb scores 

(Table S3). The recurrent signals of selection on these genes suggest the existence of genetic 

parallelism in the underlying response to urbanisation at the gene level and indicate that these 

genes might potentially be strong candidates in the adaptation to urban habitats.  

 

Evolutionary drivers of genetic divergence and signatures f selection 

To test if signatures of selection were caused by divergent selection, or alternatively by 

background selection in low recombination regions (Burri 2017), we evaluated the correlation of 

signatures of selection with patterns of linkage disequilibrium (LD). First, we tested the 

correlation between genetic diversity (LD measured as r2 and summarized in 200 kb sliding 

windows with 50 kb steps per population and summarised as PC1 across all urban populations) 

with measures of selection (PBS and Rsb summarised as PC1 across populations). Overall, the 
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correlation between genetic differentiation (PBS-PC1) and genetic diversity in urban populations 

(LD-PC1) was relatively weak but significant (R2 = -0.002; P = 9.7 x 10-11), with low diversity 

regions (high LD) showing weaker signatures of selection, i.e. low PBS scores (Fig. 4a-c). This 

suggests that broad signatures of selection in urban habitats, positive PBS-PC1, are likely not 

caused by background selection in low recombination regions but rather divergent selection 

(Burri et al. 2015). We detected similar correlation patterns in most populations when we 

assessed the correlation of urban genetic diversity (LD-PC1) with PBS scores by locality, i.e. 

each independent city, rather than across all populations together (Fig. S11). However, in some 

localities, such as in Malmö (MAL) and Gothenburg (GOT), we detected a positive correlation 

between selection and genetic diversity (PBS ~ LD-PC1), suggesting the existence of spatially 

varying impacts of background selection on the genomic landscape of differentiation in great tits 

(Fig. S11). Similarly, the correlation between haplotype-homozygosity (Rsb-PC1) and genetic 

diversity (LD-PC1) was very weak but significant (all chromosomes: R2 = 0.0115; P < 2.2 x 10-

16, without Z chromosome: R2 = 0.0021; P = 6.9 x 10-10), with outlier windows not being strongly 

associated with low diversity regions (high LD) (Fig. 4d). This is expected, as the comparative 

nature of the haplotype-based Rsb score accounts for overall reduced diversity in shared low-

recombination regions. Nonetheless, detailed recombination rate analyses and whole-genome 

data will be needed in the future to thoroughly understand the effect of recombination, linked 

selection and divergent selection on the landscape of divergence in European great tits.  

Furthermore, we assessed patterns of linkage disequilibrium around individual 

“candidate genes under selection” by locality (Figs. 4a and b). Low recombination regions or 

shared selective sweeps in urban and rural individuals would result in reduced genetic diversity 

in all populations (i.e. both urban and rural), as the recombination landscape in songbirds is 

generally highly conserved (Burri et al. 2015; Delmore et al. 2018). Yet, LD patterns around 

candidate genes differed strongly between chromosomes, suggesting effects of different 

evolutionary drivers (Fig. 4a and b), with most candidate regions not being located inside 

conserved low diversity regions (strongly correlated LD peaks) that might be indicative of a low 

recombination region. However, we found that one shared candidate gene (CDH18) that showed 

signatures of selection in five populations based on Rsb and PBS, was located inside a highly 

conserved LD peak on chromosome 2 (Fig. 4a, Table S3). This location potentially represents 

the centromere, and thus we cannot fully exclude the impact of background selection on the 
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repeated signature of selection. However, the fact that CDH18 only seems to show signatures of 

selection in urban populations but not rural populations suggests a role of divergent selection and 

adaptation to urban habitats.  
 

Fig. 4. Signatures of selection and LD. a, b Patterns of LD and PBS around candidate genes associated 
with urbanisation on chromosome 2 and the Z chromosome. The positions of candidate genes are 
highlighted by red dashed lines. Patterns of LD for urban populations are shown in black and those for 
rural populations in grey. c, Correlation between PBS-PC1 and LD-PC1 (for urban populations) based on 
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200 kb sliding windows. d, Correlation between Rsb-PC1 and LD-PC1 (urban) based on the same 200 kb 
sliding windows. Note that windows with high Rsb values but low values of LD-PC1 are located on the Z 
chromosome. See text for details. BCN: Barcelona; GLA: Glasgow; GOT: Gothenburg; LIS: Lisbon; 
MAD: Madrid; MAL: Malmö; MIL: Milan; MUC: Munich; PAR: Paris.  

 

Furthermore, LD was increased chromosome-wide in some urban populations compared 

to rural populations (e.g. chromosome Z, Fig. 4b), potentially suggesting an overall reduced 

genetic diversity and increased drift on those chromosomes. Nonetheless, local LD-peaks were 

still present around the “candidate genes under selection” in urban populations compared to 

rural populations (e.g. genes PTPRD and VPS13A in chromosome Z in Glasgow and Barcelona; 

Fig 4b, Fig. S12). The same genes also showed signs of selective sweeps in urban populations 

from localities without differences in baseline LD (e.g. chromosome Z in Milan; Figs. 4b), 

further supporting a scenario of divergent selection rather than increased drift due to locally 

reduced effective population size. Indeed, in birds, patterns of genetic differentiation at early 

stages of divergence, as presumably during colonisation of urban areas, have been found to be 

driven by selection rather than recombination (Burri 2017; Delmore et al. 2018). Thus, it is most 

likely that divergent selection rather than linked selection or drift explains the observed recurrent 

signals of selection in shared genes.  

Interestingly, many of the SNPs putatively under selection were located on the Z-

chromosome, which in birds is the sex-chromosome in the homogametic sex (males) (Figs. 3 and 

4b). The strong urban association and selection signatures on this chromosome are in line with 

the “Fast-Z” evolution (Dean et al. 2015) , which could be, at least partially, explained by a 

reduced recombination and effective population size on this particular chromosome. However, 

because many of these variants show similar allele frequency shifts between habitats across 

localities (Fig. 2f) and show signatures of selection in urban but not rural populations, 

recombination differences on their own cannot be the main driving factor of divergence in this 

particular chromosome.  

 

Convergent evolution of gene functions in response to urbanisation 

While the majority of genes showing signs of selection were unique to one or two cities, 

supporting the scenario of independent selective events, a significant proportion of genes were 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 7, 2020. . https://doi.org/10.1101/2020.05.05.078568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.078568
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

putatively under selection in multiple cities. Indeed, permutation analyses indicated that one 

would not expect, by chance, the same gene under selection in three or more cities (c21 =77.947, 

P < 2.2 x 10-16). However, 11 individual genes showed signs of selective sweeps in more than 

half of the studied urban populations (five to six) based on PBS, and also in more than three 

populations (three to eight) based on the Rsb statistic (Fig 5a, Table S3). Additionally, 107 genes 

were putatively under selection in three or four urban populations based on PBS and also showed 

signs of selection based on Rsb in more than three populations (three to seven) (Table S3). These 

results corroborate and reinforce evidence for repeatability at the genomic level in the response 

to urbanisation between distant urban populations. Furthermore, 14 of these 79 genes putatively 

under selection were also associated with urbanisation-associated SNPs (see LFMM analyses). 

Many of the genes associated with urbanisation and under recurrent selective sweeps in 

urban populations have previously been linked with behavioural divergence, suggesting adaptive 

phenotypic shifts related to behaviour. For instance, the PTPRD gene (chr. Z), which showed 

signs of selection in seven urban populations and was associated with urbanisation (Figs. 5b,  Fig 

S12), encodes for the receptor-type tyrosine-protein phosphatase delta, an enzyme suggested to 

be involved in neural development of the hippocampus (Uetani et al. 2000), a brain region linked 

to spatial memory, bird navigation and flight performance (Mehlhorn, Haastert, and Rehkämper 

2010; Gazda et al. 2018). The CDH18 gene (chr. 2) is part of a superfamily of membrane 

proteins involved in synaptic adhesion and was revealed as a candidate gene in phonological 

alterations in humans (Peter et al. 2016). Furthermore, VPS13A (chr. Z) gene variants in humans 

are linked to chorea-acanthocytosis (Ishida et al. 2009), a neurodegenerative disorder that affects 

movement and, this gene has recently shown to be associated with migratory behaviour in a 

songbird (Toews et al. 2019).  
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Fig. 5. Candidate genes and biological pathways associated with urbanisation. a, Map showing the 
spatial distribution of some top shared candidate genes putatively under selection in urban populations 
across Europe. b, Enrichment of associated genes in significantly enriched gene ontology (GO) groups by 
GO category in the LFMM and BayPass analysis (see Table S4 for a detailed list). The colour of bars 
represents the false-discovery rate (FDR) from the gene ontology overrepresentation analyses. BCN: 
Barcelona; GLA: Glasgow; GOT: Gothenburg; LIS: Lisbon; MAD: Madrid; MAL: Malmö; MIL: Milan; 
MUC: Munich; PAR: Paris.  

 

Thus, our selection analyses suggest that natural selection repeatedly acts on behavioural 

traits and sensory and cognitive performance, all previously shown to be among the most 

widespread differences between urban and rural wildlife populations (Sih and Del Giudice 2012; 

Sol, Lapiedra, and González-Lagos 2013). These findings were furthermore supported by the GO 

terms analysis of the 2,758 urbanisation-associated SNPs (LFMM analysis), linked to 984 genes 

(1,501 SNPs in genic regions). Accordingly, most of the GO terms were related to neural 

functioning and development (e.g., GO:0016358, FDR = 4.30 x 10-6), cell-adhesion (e.g., 

GO:0098742, FDR = 3.43 x 10-6) and sensory perception (e.g., GO:0050954, FDR = 3.42 x 10-3; 

Fig. 4, Table S4). These GO terms were mainly clustered into two interacting networks, one 

related to sensory recognition and the other to neural development and cell adhesion (Fig. S13). 

These findings reinforce the previous idea on the importance of cognitive and behavioural 

changes as key responses to urbanisation in birds and in particular in great tits. Indeed, song 

structure and escape or distress behaviour have been previously shown to differ between urban 

35

40

45

50

55

60

-10 0 10 20 30
Longitude

BCN
MAD

LIS

GLA

GOT

MAL

MUCPAR

MILLa
tit

ud
e

PTPRD
CDH18
GNAQ
FOCAD
GLIS3
MLLT3
VPS13A
HACD4

PTPRD
CDH18
GNAQ
GLIS3

PTPRD
GNAQ
VPS13A

PTPRD
CDH18

PTPRD
CDH18
GNAQ
FOCAD
HACD4

PTPRD
FOCAD
MLLT3
HACD4

GLIS3
GNAQ
FOCAD
MLLT3
VPS13A
HACD4

PTPRD
CDH18
GNAQ
FOCAD
GLIS3
MLLT3

VPS13A
HACD4

a b

Pr
oc

es
se

s
Fu

nc
tio

ns
C

om
po

ne
nt

s

Enrichment

0.02
0.06

FDR

0 1 2 3 4

cell-cell adhesion via plasma-membrane adhesion molecules
synapse organization

regulation of synapse structure or activity
dendrite development

regulation of membrane potential
sensory perception of mechanical stimulus

second-messenger-mediated signalling
positive regulation of cell projection organization

regulation of neuron projection development
regulation of cell morphogenesis

dynein light chain binding
spectrin binding

cell adhesion molecule binding
extracellular matrix structural constituent

transmembrane receptor protein kinase activity
growth factor binding

collagen binding
dynein light intermediate chain binding

glutamate receptor activity
dynein intermediate chain binding

synaptic membrane
neuron to neuron synapse

postsynaptic specialization
glutamatergic synapse

neuron spine
axon part

sarcolemma
presynapse

neuromuscular junction
receptor complex

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 7, 2020. . https://doi.org/10.1101/2020.05.05.078568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.078568
http://creativecommons.org/licenses/by-nd/4.0/


16 
 

and rural great tit populations across Europe (Senar et al. 2017; Slabbekoorn and den Boer-

Visser 2006; Møller and Ibáñez-Álamo 2012). Nonetheless, whether this is the result of a genetic 

response to selection or phenotypic plasticity is to a large extent still unknown. Only a few 

studies have previously explored the genetic patterns underlying urban adaptation in birds, 

finding evidence of divergence in behaviour-related genes at multiple European populations 

using either a candidate gene approach (J. C. Mueller et al. 2013) or a low-density SNP along 

transects within a city (Perrier et al. 2018). Furthermore, similar pathways showed divergence 

across three neighboring urban areas in a recently established urban-dwelling avian species in 

South America (Jakob C. Mueller et al. n.d.). Overall, our study supports these earlier 

observations regarding adaptive genetic changes in behavioural and neural development, 

suggesting that these processes play an important role in urban adaptation. Detailed functional 

genomic and phenotypic analyses are now needed to understand the role of these genes in the 

adaptive divergence of urban and rural great tits and other songbirds. 

 

Conclusions 

Our study demonstrates genetic signals of repeated local adaptation to urban habitats in a 

common songbird across multiple European cities. We found that a combination of parallel 

polygenic allele frequency shifts and recurrent but independent selective sweeps are associated 

with adaptation to urban environments. Our results strongly suggest that a few genes with known 

neural developmental and behavioural functions experienced recurrent but independent selective 

sweeps only in the urban populations. This suggests a strong consistency in the processes 

associated with urbanisation, despite the fact that underlying haplotypes are not shared. Thus, our 

study exemplifies repeated evolutionary adaptation to urban environments on a continental scale 

and highlights behavioural and neurosensory adjustments as important phenotypic adaptations in 

urban habitats.  
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Methods 

Sample collection and DNA extraction 

During the years 2013-2015, 20 or more individual great tits were sampled at paired urban-

rural sites from nine European cities (Figure 1a; Table S1). We sampled a total of 192 

individuals (aged > 1 year old) with 10-16 individuals per site (Table S1). Sexes were balanced 

between pairs (urban-rural) in the dataset (GLMM; pair: c21 = 0.505, P= 0.477). Each of the 

paired sampling sites (urban or rural, hereinafter populations) was sampled within the same 

season. Barcelona and Munich were sampled during winter period, however, in both cases only 

known birds (recaptures) were included in the study, thus, all birds can be considered resident. 

All urban populations were located within the city boundaries, the areas are characterized with 

significant proportion of human-built structures such as houses and roads with managed parks as 

the only green space. Rural populations were chosen to contrast the urban locations, regarding 

degree of urbanisation and were always natural/semi-natural forests and contained only a few 

isolated houses. Each  urban and rural population were separated with a distance above the mean 

adult and natal dispersal distance of this species (i.e. see Table S1) (Paradis et al. 1998). 

Blood samples (approx. 25 µl) were obtained either from the jugular or brachial vein and 

stored at 4 ºC in ethanol or SET buffer and subsequently frozen at -20 ºC. In each case, 

procedures were identical for the paired rural and urban populations. DNA was extracted from 

approximately 5 µl samples of red blood cells in 195 µl of phosphate-buffered saline using 

Macherey-Nagel NucleoSpin Blood Kits (Bethlehem, PA, USA) and following the 

manufacturer’s instructions or manual salt extraction (ammonium acetate). The quantity and 

purity of the extracted genomic DNA was high and measured using a Nanodrop 2000 

Spectrophotometer (Thermo Fisher Scientific) and Qubit 2.0 Fluorometer (Thermo Fisher 

Scientific). 

 

Urbanisation score 

To quantify the degree of urbanisation at each site we used the UrbanizationScore image-

analysis software, based on aerial images from Google Maps (Google Maps 2017) and following 

the methods previously described in different studies assessing the effect of urbanisation on wild 

bird populations (Seress et al. 2014). Briefly, each sampling site was represented by a 1 km x 1 
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km rectangular area around the capture locations. The content in each rectangle was evaluated 

dividing the image in 100 m x 100 m cells and considering three land-cover characteristics in 

each: proportion of buildings, vegetation (including cultivated fields) and paved surfaces. The 

different land-cover measures obtained per site were used in a principal component analysis to 

estimate an urbanisation score variable (PCurb) for each of the urban or rural populations per 

locality, see Supplementary Table S1. The PCurb values were transformed to obtain negative 

values in the less urbanized and positive in the more urbanized sites. We used the average of the 

urbanisation estimates if birds were captured in more than one location within each site (>2 km 

apart, mean ± s.d.: 931.22 ± 1,005.26 m). All quantifications were done in triplicates by the same 

person (P.S.) and the estimates were highly repeatable, (intra class correlation coefficient, ICC = 

0.993, 95% CI = 0.997-0.987, P < 0.001).  

 

SNP genotyping 

All 192 individuals were successfully genotyped using a custom made AffymetrixÓ great 

tit 650K SNP chip   at Edinburgh Genomics (Edinburgh, United Kingdom). SNP calling was 

done following the “Best Practices Workflow” in the software Axiom Analysis Suite 1.1.0.616 

(AffymetrixÓ) and all the individuals passed the default quality control steps provided by the 

manufacturer (dish quality control values > 0.95) and previous studies using the same SNP chip 

(6, 17). A total of 544,610 SNPs were then exported to a variant-calling format (VCF) and Plink 

and furthered filter and assigned to chromosomes using the great tit reference genome 

(GCA_001522545.2 Parus major v1.1; NCBI Annotation Release 101). 155 SNPs were not 

found in the new assembly and 17,927 SNPs were not in chromosomic regions; thus, these SNPs 

were removed from further analysis leaving a total of 526,528 SNPs. 

 

Genetic diversity and Population Structure 

We calculated the genome-wide genetic diversity as expected heterozygosity (He) for each 

population using Plink 1.9 (Purcell et al. 2007), and tested if genetic diversity significantly 

differed between urban-rural populations from the same location using t-tests in R and overall 

across urban-rural pairings using a Wilcoxon rank sum test in R (R Core Team 2018). 

Furthermore, we estimated pairwise FST between all population-pairs (urban-rural per locality) 
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using SNPRelate (Zheng et al. 2012). Mean average FST was computed across all comparisons 

after setting negative values to zero (Zheng et al. 2012). 

 For analyses of population structure, we pruned the SNP dataset based on linkage 

disequilibrium (LD) in Plink 1.9 using a variance inflation factor threshold of 2 (“-indep 50 5 

2”), retaining 358,149 SNPs. Using this pruned and filtered dataset (314,350 SNPs), we 

performed a principal component analysis using SNPRelate (Zheng et al. 2012). Genetic ancestry 

analysis was done using the software package Admixture v.1.3 (Pickrell and Pritchard 2012) with 

K ranging from 2 to 18 and ten-fold cross-validation.  

 Additionally, we inferred a population tree based on allele-frequency co-variances using 

Treemix v.1.3 (Pickrell and Pritchard 2012), with blocks of 500 SNPs. In order to test for the 

potential of secondary gene flow across populations (cities) we fitted up to five migration edges 

and determined the best fitting tree based on the increase in maximum likelihood, variation 

explained, and on the significance of migration edges (Jacobs et al. 2020). 

 

Environment-associated SNPs 

 We used two different approaches to identify SNPs associated with the degree of 

urbanisation. The degree of urbanisation was coded based on the “urbanisation score” to 

maintain gradual differences between rural and urban environments across the studied 

populations (see above). First, we used a univariate latent-factor linear mixed model 

implemented in LFMM for examining allele frequency – environment associations (Frichot et al. 

2013). Based on the number of ancestry clusters (K) inferred with Admixture and the distribution 

of explained variation in the PCA (Fig. S2b), we ran LFMM with two and four latent factors, 

respectively. Each model was run 5 times for 10,000 iterations with a 5,000-iteration burn-in. We 

calculated the median z-score for each locus across all 10 runs and selected SNPs with a false-

discovery rate (FDR) below 1% to be associated with urbanisation. The results with two or four 

latent factors were highly concordant and the same candidate loci were recovered; thus, we only 

used the results obtained with four latent factors for further analyses.  

 Second, we analysed associations with urbanisation using the auxiliary covariate model 

implemented in BayPass v.2.1. (Gautier 2015). We estimated the allele-frequency – environment 

association for each SNP with the urbanisation score for each population accounting for 

population structure using a covariance matrix. We estimated the covariance matrix using the LD 
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pruned SNP dataset in the core model using default parameters: 20 pilot runs of 1,000 iterations, 

a run length of 50,000 iterations, sampling every 25th iteration, and a burn-in of 5,000 iterations. 

The resulting covariance matrix was used as input for five replicated runs of the auxiliary 

covariate model using the above settings. The strength of association is given in the test by 

estimated Bayes factor (measured in deciban; dB). We calculated the median Bayes Factor 

across all five replicated runs and considered all SNPs with a deciban unit (dB) > 20 as 

urbanisation associated. This is the strictest criterion and is considered as “decisive evidence” for 

the association (Gautier 2015).  

 

Patterns of genetic differentiation (FST, PBS) 

To identify genomic regions distinguishing adjacent urban and rural great tits, we 

estimated the genetic differentiation (Weir & Cockerham’s FST (Weir and Cockerham 1984)) for 

each urban and rural pair for each SNP using vcftools. We subsequently summarised and plotted 

FST values in 200 kb sliding windows with 50 kb steps using the windowscanr R-package. To 

identify genomic regions putatively under selection in urban but not rural populations, we also 

calculated the population branch statistic (PBS) for each urban pair. We used the rural LIS 

(Lisbon) population as the outgroup as it is the genetically most distinct rural population, except 

for the PBS estimation for the urban LIS population, for which we used the rural GLA (Glasgow) 

population as the outgroup. We used the following formula from Zhang et al. (Zhang et al. 

2020): PBSurb = (Turb-rur + Turb-out – Trur-out) / 2, where T = -log(1- FST ). Turb-rur is derived from FST 

between adjacent rural and urban populations, Turb-out from FST between the focal urban and 

outgroup population, and Trur-out from FST between the rural and outgroup population. For 

visualisation purposes, only positive PBS values, those showing putative signs of selection in the 

focal urban population, were plotted along the genome.  

 

Haplotype-based selection analysis 

To identify genomic regions showing signs of (incomplete) selective sweeps in urban-rural 

population pairs, we scanned the genome for regions of extended haplotype homozygosity 

(EHHS) in urban compared to rural populations. We firstly used fastPHASE (Scheet and 

Stephens 2006) to reconstruct haplotypes and impute missing data independently for each 

chromosome using the default parameters, except that each individual was classified by its 
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population (“-u” option). We used 10 random starts of the EM algorithm (“-T” option) and 100 

haplotypes (“-H” option). The fastPHASE output files were analysed using rehh 2.0 (Gautier, 

Klassmann, and Vitalis 2017). In addition, we used “rehh” to calculate Rsb statistics per focal 

SNP. The Rsb score is the standardized ratio of integrated EHHS (iES, which is a site-specific 

extended haplotype homozygosity) between two populations, is calculated using the following 

formula in rehh (Tang, Thornton, and Stoneking 2007; Gautier, Klassmann, and Vitalis 2017): 

 

!"# = 	&!'()
!"#$ −+,-%&'()!"#$
.%&'()!"#$

 

 

, with LRiESTang representing the unstandardized log ratio of the iESTang (urban) and iESTang 

(rural) computed in the urban and rural populations (Gautier, Klassmann, and Vitalis 2017), and 

medLRiES,Tang and .LRiES,Tang representing the median and standard deviation of LRiESTang, 

respectively. This statistic measures the extent of haplotype homozygosity between two 

populations and follows the rationale that if a SNP is under selection in one population compared 

to the other, the region around this locus will show an unusually high level of haplotype 

homozygosity compared to the neutral distribution. As the we don’t know the ancestral and 

derived state of each SNP, we focused on the absolute Rsb values. In accordance to Gautier and 

colleagues (Gautier, Klassmann, and Vitalis 2017), significant genomic regions were selected 

based on a threshold of |Rsb| ≥ 4. Because recombination rates can be assumed to be conserved 

between closely-related urban and rural populations, the cross-population comparative nature of 

the Rsb statistic provides an internal control that cancels out the effect of heterogeneous 

recombination across the genome (Tang, Thornton, and Stoneking 2007). 

To determine the repeatability of selection across urban-centres, we implemented a 

resampling approach to assess the likelihood of genes showing signs of selection in two, three, 

four or more populations. We resampled with replacement n genes (n = number of genes with 

signatures of selection in each urban population) for each population from the list of all SNP-

linked genes using the resample function in R, assessed the amount of overlap between 

populations (from two to 8 populations) and repeated the sampling 100,000 times for each 

comparison. We then calculated the mean and 95% confidence interval (CI) for each comparison 

and compared the number of observed shared candidate genes to the expected number of 
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candidate genes. The expected number of genes showing signs of selection in three or more 

populations was zero, thus we focused on genes showing signs of selection (Rsb, PBS) in three or 

more populations. This highlights the fact that it is unlikely that genes repeatedly show signs of 

selection in three or more urban populations by chance alone. 

 

Parallelism analyses of urbanisation-associated SNPs  

 To determine the explanatory power of urbanisation associated SNPs and parallelism in 

allele frequency changes across populations, we performed a principal component analysis based 

on different candidate subsets, i) all LFMM candidate SNPs (PCLFMM and ii) those overlapping 

between the LFMM and BayPass analyses (“Core urbanisation SNPs”, PCGWAS, see above), 

using SNPrelate. Furthermore, we ran a univariate linear model for each of the first three 

principal components (i.e. “PC (PC1) ∼ Habitat + Locality + Habitat × Locality”) to quantitatively 

test the effect of parallel (significant “Habitat” effect, urban-rural) and non-parallel (significant 

“Habitat × Locality”) on allele-frequency changes across populations. We used the “EtaSq” 

function implemented in BaylorEdPsych (Beaujean and Beaujean, n.d.) to extract the effect sizes 

(partial h2) for the model terms in each linear model.  

 

Patterns of linkage disequilibrium (LD) across the genome 

 To estimate the impact of variation in recombination rate and linked selection in low-

recombination regions on patterns of divergence (i.e. regions showing signs of selective sweeps), 

we estimated patterns of LD (r2) across the genome using Plink 1.9 (Purcell et al. 2007). We 

focused on long-distance LD by calculating LD for pairs of SNPs within 2,000 to 200,000bp of 

each other for each population (each rural and urban population per locality). To reduce the 

computational load, we randomly sampled 5% of the dataset for each locality and plotted them 

for chromosomes containing candidate genes showing signs of selective sweeps in four or more 

cities (chromosome 2, chromosome Z). Furthermore, to investigate more large-scale patterns of 

correlation between selection and LD, we estimated a PCA based on LD scores in 200 kb sliding 

windows (50 kb steps) and used PC1 (LD-PC1) as a proxy for the distribution-wide LD pattern 

across the genome. We then estimated the PCA for PBS and estimated the correlation between 
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LD-PC1 and PBS-PC1. We also estimated the correlation between LD-PC1 and PBS by locality 

to investigate local differences. We performed the same analyses for sliding window Rsb scores.  

 

Functional characterization of candidate SNP 

 We obtained the gene annotations for all candidate SNPs from the great tit reference 

genome annotation (GCA_001522545.2 Parus_major1.1; NCBI Annotation Release 101). We 

used all genes containing SNPs associated with urbanisation (LFMM and BayPass) (N = 1,501 

SNPs within genes). To analyse the enrichment of functional classes, we identified 

overrepresented gene ontologies (biological processes, molecular functions and cellular 

components) using the WebGestalt software tool (Wang et al. 2017). The gene background was 

set using annotated great tit genes (Annotation release 101) containing SNPs from the SNP chip 

and with H. sapiens orthologues. H. sapiens genes were used as a reference set as human genes 

are better annotated with GO terms than those of any avian system (e.g. chicken) (Bosse et al. 

2017; Laine et al. 2016). We focused on non-redundant gene ontology (GO) terms to account for 

correlations across the GO graph topology and GO terms as implemented in WebGestalt (Wang 

et al. 2017). A FDR < 0.05 was used as a threshold for significantly enriched GO terms. 

Furthermore, we searched the public record for functions of individual candidate genes. We also 

used GOrilla (Eden et al. 2009) to visualize the connections of GO terms associated with LFMM 

candidate genes and Cytoscape v.3.6.1 (Shannon et al. 2003) to visualize the GO network and 

identify all enriched GO terms (biological processes, P < 0.001), including redundant terms. 

Candidate genes associated with signatures of selection were those that were either 

overlapping with PBS outlier windows or within 100 kb up- or down-stream of a SNP with an 

absolute Rsb score above 4. Overlap between genomic regions/SNPs and genes was assessed 

using bedtools.  
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Fig. S1. Genetic ancestry in urban and rural European great tits. a, Genetic ancestry inferred with 
Admixture for K=2 (CV-error = 0.615) and K=3 (CV-error = 0.618), showing two main genetic clusters 
across Europe. b, Genetic correlation matrix showing genome-wide genetic similarities among all studied 
populations inferred using BayPass. The colour gradient indicates the strength of the correlation. c, 
Heatmap of pairwise FST values between populations. BCN: Barcelona; GLA: Glasgow; GOT: Gothenburg; 
LIS: Lisbon; MAD: Madrid; MAL: Malmö; MIL: Milan; MUC: Munich; PAR: Paris.  
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Fig. S2. Population structure of European great tits. a, Principal component plots displaying the 
divergence of great tit populations along eigenvectors 3–12 (PCGen). b, Percentage of total variance 
explained by the first 12 principal components. The dashed grey line indicates the number of eigenvectors 
used for population structure correction in LFMM based on the flattening of the distribution (K=2-4). 
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Fig. S3. Treemix maximum-likelihood trees. a, Allele frequency based unrooted maximum-likelihood 
Treemix trees including one, two, three, four and five migration edges. The colour of the arrows shows the 
migration weight for gene flow events between branches. b, Proportion of variance explained by models 
with zero to five migration edges. Note the reduced rate of increase after adding one migration event. 
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Fig. S4. PCA based on LFMM and “Core urbanisation SNPs”. The first two principal component axis 
are shown (Percentage of total variance explained), based on a, LFMM candidate SNPs (N=2,758) and b, 
shared “core urbanisation SNPs” between LFMM and BayPass (N=34). 
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Fig. S5. Differences in allele frequency between urban and rural populations in the “core 
urbanisation SNPs”. Minor allele frequency (MAF) trajectories between urban and rural populations for 
all “core urbanisation SNPs” (N = 34). The Affx-number in the header shows the name for each SNP on 
the Affymetrix SNP-chip used for the genotyping of all individuals in this study.   
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Fig. S6. FST Manhattan plots. Manhattan plots showing the FST values (200 kb sliding windows with 50 
kb steps) between urban and rural individuals across the genome for each population pair (urban-centre). 
The red dashed line shows the 99th percentile of the FST distribution for each population pair.  
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Fig. S7. PBS Manhattan plots with LIS rural as outgroup. Manhattan plots showing the window-based 
PBS score (200 kb windows with 50 kb steps) between urban and rural individuals across the genome for 
each population pair (urban-centre). PBS scores were calculated using the rural population from Lisbon as 
an outgroup., PBS for Lisbon was calculated using GLA rural as the outgroup. The dashed lines show the 
99th percentile of the PBS distribution. 
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Fig. S8. PBS Manhattan plots with GLA rural as outgroup. Manhattan plots showing the window-based 
PBS score (200 kb windows with 50 kb steps) between urban and rural individuals across the genome for 
each population pair (urban-centre). PBS scores were calculated using the rural population from Glasgow 
as an outgroup. PBS scores are shown for all population pairs except Glasgow and Lisbon. The dashed lines 
show the 99th percentile of the PBS distribution. 
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Fig. S9. Rsb Manhattan plots. Manhattan plots showing the absolute haplotype-based selection scores 
(Rsb value in 200 kb windows with 50 kb steps) between urban and rural individuals across the genome for 
each population pair (urban-centre). The dashed lines show the 99th percentile of the Rsb distribution for all 
chromosomes (black), only autosomes (red) and only the Z chromosome (blue). We selected outlier SNPs 
as those with SNP-based Rsb values above 4.  
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Fig. S10. Correlation plot of absolute Rsb values across populations. Shown are spearman correlations 
between absolute SNP-based Rsb values across all population pairs. Spearman correlations were uniformly 
low across populations, ranging from 0.08 to 0.013.  
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Fig. S11. Correlation of PBS and LDurb-PC1 for each population. LD was calculated and summarised 
across all urban populations.  
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Fig. S12. Signatures of selection around the PTPRD gene. Rsb scores for each SNP around and within 
the PTPRD gene (grey box) on the Z chromosome by locality, including loess smoothed values (span = 
0.2). The upper and lower dashed lines show significance thresholds for signs of selection, respectively. 
BCN: Barcelona; GLA: Glasgow; GOT: Gothenburg; LIS: Lisbon; MAD: Madrid; MAL: Malmö; MIL: 
Milan; MUC: Munich; PAR: Paris.   
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Fig. S13. Network of urbanisation associated (LFMM) gene ontology (GO) terms (biological 
processes). The network shows the relationship of GO terms associated with urban-associated genes based 
on the number of shared genes between GO terms. The number of shared genes is given by the thickness 
of the grey lines. The colour intensity shows the degree of enrichment based on the p-value, with the highest 
intensity showing the lowest p-value. 28 GO terms were enriched at a false discovery rate (FDR) < 0.05 
and 36 GO terms had an FDR > 0.05 after correction for multiple testing with FDR values ranging from 
1.87 x 10-7 to 2.23 x 10-1.
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Table S1. Locality (city name), year of sampling, season, centred geographical coordinates per site (urban/rural populations), urbanisation degree 
(PCUrb, positive values indicate higher urbanisation intensity), number of genotyped individuals (n), expected heterozygosity (He), pairwise genetic 
differentiation (FST) and distance between the urban and rural populations for each of the studied localities. Cities are sorted in alphabetical order. 

   Urban Rural   

City Year Season Coordinates PCUrb n He Coordinates PCUrb n He FST Distance 
(km) 

Barcelona 2015 Winter 
41°23'24.0"N 
2°11'24.0"E 2.00 10 0.341 

41°42'00.0"N 
2°21'36.0"E -2.29 10 0.348 0.012 5 

Glasgow 2015 Breeding 
55°52'48.0"N 
4°15'36.0"W 2.96 10 0.337 

56°07'12.0"N 
4°35'24.0"W -1.71 10 0.344 0.013 33 

Gothenburg 2015 Breeding 
57°41'24.0"N 
11°56'24.0"E 2.13 10 0.342 

57°30'00.0"N 
12°00'36.0"E -2.39 10 0.350 0.016 25 

Lisbon 2014 Post-
Breeding 

38°44'24.0"N 
9°10'48.0"W 0.65 10 0.321 

38°51'36.0"N 
8°49'48.0"W -1.86 10 0.333 0.050 33 

Madrid 2014 Breeding 
40°26'24.0"N 
3°43'48.0"W 1.60 10 0.344 

40°34'12.0"N 
4°09'36.0"W -2.05 10 0.348 0.013 39 

Malmö 2013 Breeding 
55°36'00.0"N 
12°59'24.0"E 2.32 16 0.356 

55°39'00.0"N 
13°34'12.0"E -2.44 16 0.355 0.009 37 

Milan 2014 Post-
Breeding 

45°31'48.0"N 
9°12'36.0"E 1.49 10 0.342 45°49'12.0"N 

9°17'24.0"E -2.24 10 0.343 0.026 34 

Munich 2015 Winter 48°07'48.0"N 
1°34'12.0"E 

3.39 10 0.350 47°58'12.0"N 
11°14'24.0"E 

-1.36 10 0.351 0.004 30 

Paris 2014 Breeding 48°52'12.0"N 
2°10'48.0"E 2.36 10 0.351 

48°18'00.0"N 
2°39'36.0"E -2.58 10 0.351 0.004 70 

 
Notes: Expected heterozygosity is significantly lower in urban compared to rural great tits in Glasgow, Gothenburg Barcelona, Madrid and Lisbon based on t-tests (P < 0.05).  
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Table S2. Genes associated with “core urbanisation SNPs”. 

Gene symbol Gene name/ Description 
Selection 

(N. localities) 

FARP1 FERM, ARH/RhoGEF and pleckstrin domain protein 1 1 

CELF2 CUGBP Elav-like family member 2 0 

IQGAP2 IQ motif containing GTPase activating protein 2 1 

RNF38 ring finger protein 38 2 

DACH1 dachshund family transcription factor 1 0 

DHCR24 24-dehydrocholesterol reductase 0 

SV2C synaptic vesicle glycoprotein 2C 1 

AVL9 AVL9 cell migration associated 0 

CADM2 cell adhesion molecule 2 0 

GABRG3 gamma-aminobutyric acid type A receptor gamma3 subunit 0 

DNAI1 dynein axonemal intermediate chain 1 2 

NTRK2 neurotrophic receptor tyrosine kinase 2 4 

ABCB1 ATP binding cassette subfamily B member 1 0 

ELP6 elongator acetyltransferase complex subunit 6 0 

ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif 12 3 
Notes: Selection (N.localities) – Number of urban populations (localities) a particular gene is under selection in based on the haplotype-
based selection analysis (Rsb value) 
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Table S3. Genes putatively under selection in at least four cities based on PBS and/or Rsb. The number 
gives the number of cities in which a gene was detected to be under selection based on the given summary 
statistic. 

Gene symbol Gene name/Description PBS Rsb 
PTPRD Protein Tyrosine Phosphatase, Receptor Type D 6 8 

GNAQ G protein subunit alpha q 6 5 

FOCAD Focadhesin 5 8 

CDH18 Cadherin 18 5 5 

HACD4 3-hydroxyacyl-CoA dehydratase 4 5 4 

GLIS3 GLIS family zinc finger 3 4 7 

MLLT3 MLLT3 super elongation complex subunit 4 6 

PIP5K1B Phosphatidylinositol-4-phosphate 5-kinase type 1 
beta 

4 6 

PRUNE2 Prune homolog 2 with BCH domain 4 5 

VPS13A Vacuolar protein sorting 13 homolog A 4 5 

ARID3C AT-rich interaction domain 3C 4 4 

DCTN3 Dynactin subunit 3 4 4 

DNAI1 Dynein axonemal intermediate chain 1 4 4 

ENHO Energy homeostasis associated  4 4 

FXN Frataxin 4 4 

GALT Galactose-1-phosphate uridylyltransferase 4 4 

LOC107215801 Uncharacterized 4 4 

LOC107215987 Uncharacterized 4 4 

RPP25L Ribonuclease P/MRP subunit p25 like 4 4 

SIGMAR1 Sigma non-opioid intracellular receptor 1 4 4 

TJP2 Tight junction protein 2 4 4 

CEP78 Centrosomal protein 78  4 3 

FOXB2 Forkhead box B2 4 3 

FREM1 FRAS1 related extracellular matrix 1  4 3 

ITGA2 Integrin subunit alpha 2 4 3 

LOC107198290 Uncharacterized 4 3 

LOC107216175 Uncharacterized 4 3 

LOC107216192 Molybdopterin synthase sulfur carrier subunit-like 4 3 

LOC107216193 Molybdopterin synthase catalytic subunit 4 3 

LOC107216195 Uncharacterized 4 3 

LOC107216233 Uncharacterized 4 3 

LOC107216234 Uncharacterized 4 3 

LOC107216235 Uncharacterized 4 3 

SNAPC3 Small nuclear RNA activating complex 
polypeptide 3  

4 3 

LOC107198252 Killer cell lectin-like receptor subfamily B member 
1B allele B 

3 7 
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LOC107198253 Butyrophilin subfamily 1 member A1-like 3 7 

LOC107198254 C-type lectin domain family 2 member B-like 3 7 

LOC107198255 E3 ubiquitin-protein ligase TRIM7-like 3 7 

LOC107215749 Uncharacterized 3 7 

LOC107215825 Glutamine-rich protein 2-like 3 7 

PRR16 Proline rich 16 3 7 

SLC1A1 SLC1A1 3 7 

AP3B1 AP3B1 3 6 

LOC107198413 Uncharacterized 3 5 

LOC107216267 Uncharacterized 3 5 

AKT3 AKT serine/threonine kinase 3 3 4 

CCDC171 Coiled-coil domain containing 171 3 4 

COL4A6 COL4A6 3 4 

KDM4C Lysine demethylase 4C 3 4 

LOC107198356 Uncharacterized 3 4 

LOC107215808 Interferon kappa-like 3 4 

LOC107216174 Phosphodiesterase 4D 3 4 

NFIB Nuclear factor I B 3 4 

PSIP1 PC4 and SFRS1 interacting protein 1 3 4 
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Table S4. Overrepresented GO terms for genes associated with urbanisation in the LFMM and BayPass 
analysis. 

GO 
category 

GO.ID Description Obs. Fold 
enriched 

p-value FDR 

Processes GO:0098742 cell-cell adhesion via plasma-membrane 
adhesion molecules 

38 2.920 8.27E-10 7.03E-07 

Processes GO:0050808 synapse organization 55 2.078 1.04E-07 4.43E-05 

Processes GO:0050803 regulation of synapse structure or activity 35 2.312 1.86E-06 4.36E-04 

Processes GO:0016358 dendrite development 36 2.272 2.05E-06 4.36E-04 

Processes GO:0042391 regulation of membrane potential 52 1.907 3.50E-06 5.95E-04 

Processes GO:0050954 sensory perception of mechanical stimulus 24 2.399 4.06E-05 5.03E-03 

Processes GO:0019932 second messenger-mediated signalling 46 1.823 4.14E-05 5.03E-03 

Processes GO:0031346 positive regulation of cell projection organization 46 1.811 4.94E-05 5.25E-03 

Processes GO:0010975 regulation of neuron projection development 56 1.691 5.63E-05 5.32E-03 

Processes GO:0022604 regulation of cell morphogenesis 52 1.650 1.96E-04 1.63E-02 

Functions GO:0045503 dynein light chain binding 8 4.440 1.98E-04 3.08E-02 

Functions GO:0030507 spectrin binding 8 4.230 2.95E-04 3.08E-02 

Functions GO:0050839 cell adhesion molecule binding 52 1.610 3.34E-04 3.08E-02 

Functions GO:0005201 extracellular matrix structural constituent 23 2.090 4.86E-04 3.36E-02 

Functions GO:0019199 transmembrane receptor protein kinase activity 15 2.520 6.22E-04 3.44E-02 

Functions GO:0019838 growth factor binding 19 2.200 7.95E-04 3.67E-02 

Functions GO:0005518 collagen binding 12 2.560 1.85E-03 7.33E-02 

Functions GO:0051959 dynein light intermediate chain binding 7 3.530 2.40E-03 8.07E-02 

Functions GO:0008066 glutamate receptor activity 7 3.380 3.18E-03 8.07E-02 

Functions GO:0045505 dynein intermediate chain binding 7 3.380 3.18E-03 8.07E-02 

Component GO:0097060 synaptic membrane 67 2.272 5.21E-11 8.86E-09 

Component GO:0098984 neuron to neuron synapse 52 2.208 2.45E-08 2.08E-06 

Component GO:0099572 postsynaptic specialization 48 2.061 7.54E-07 4.27E-05 

Component GO:0098978 glutamatergic synapse 48 1.924 5.68E-06 2.00E-04 

Component GO:0044309 neuron spine 28 2.450 5.89E-06 2.00E-04 

Component GO:0033267 axon part 47 1.839 2.43E-05 6.89E-04 

Component GO:0042383 sarcolemma 22 2.473 5.06E-05 1.23E-03 

Component GO:0098793 presynapse 53 1.692 7.69E-05 1.64E-03 

Component GO:0031594 neuromuscular junction 15 2.915 1.14E-04 2.16E-03 

Component GO:0043235 receptor complex 43 1.712 2.87E-04 4.88E-03 

Notes: Obs. (Total) – observed number of genes associated with gene ontology term. 
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