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A B S T R A C T

Treatment of testicular cancer (TC) has an exceptionally high success rate compared to other cancer types; even
in case of metastasized disease, 80–90 % of TC patients can be cured. Consequently, attention has been drawn to
a potential downside of this treatment success: late adverse treatment effects such as the accelerated develop-
ment of otherwise age-associated features like cardiovascular disease and second malignancies. Underlying
mechanisms are poorly understood. Emerging data suggest that cytotoxic treatment induces cellular senescence,
resulting in secretion of inflammatory factors contributing to this early ageing phenotype. Molecular and cellular
characterization of this early ageing will enhance understanding the pathogenesis of TC treatment-induced
morbidity and contribute to better recognition and prevention of late effects.

In this review, we describe clinical manifestations of the early ageing phenotype among TC survivors, and
subsequently focus on potential underlying mechanisms. We discuss the clinical implications and describe
perspectives for future research and intervention strategies.

1. Introduction

Treatment of germ cell testicular cancer (TC) has an exceptional
success rate compared to other cancer types; even in case of metasta-
sized disease, 80–90 % of TC patients can be cured (Hanna and Einhorn,
2014). Consequently, attention has been drawn to a potential downside
of this treatment success: late adverse treatment effects in long-term
survivors of testicular cancer. Examples of these are the accelerated
development of otherwise age-associated features such as cardiovas-
cular risk factors and cardiovascular disease, chronic fatigue, cognitive
impairment and secondary cancers (Haugnes et al., 2012). Currently,
the mechanisms underlying late effects are poorly understood. Emer-
ging data suggest that cytotoxic treatment induces cellular senescence
via genomic instability and telomere shortening, and may be involved
in the early ageing phenotype (Ness et al., 2018). Whereas ageing is
defined as the time-dependent functional decline that affects most
living organisms and is characterized by a number of loss-of-function
diseases. Molecular and cellular characterization of this early ageing
phenotype will enhance understanding of the pathogenesis of TC
treatment-induced morbidity, contribute to better recognition and

prevention of late effects, and might offer a novel target for combina-
torial treatments aimed at reducing secondary morbidities.

In this review, we describe clinical manifestations of the early
ageing phenotype among TC survivors, and subsequently focus on po-
tential underlying molecular mechanisms. Finally, we discuss the clin-
ical implications and describe perspectives for future research and in-
tervention strategies.

2. testicular cancer treatments

Testicular cancer (TC) is the most common solid malignancy in men
aged between 18 and 35 years (Bray et al., 2006). Since the introduc-
tion of platinum-based chemotherapy in the late 70 s, cure rates for
metastatic TC have become exceptionally high: up to 80–90 % (Hanna
and Einhorn, 2014). In combination with worldwide increasing in-
cidences, the number of TC survivors is growing rapidly (Bray et al.,
2006). In the US in 2016 there were 266.000 testicular cancer survi-
vors, it is estimated that this number will increase to 335.000 in 2026
(Miller et al., 2016). According to estimates, in Europe over 430.000
males with a past diagnosis of TC are alive, and more than 220.000
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have survived longer than 15 years after diagnosis (Trama et al., 2012).
Due to these high and increasing number of long-term survivors, TC is a
good model to study the late effects of cancer treatment.

Treatment of TC usually starts with an orchidectomy of the affected
testicle, which leads to cure in most patients with clinical stage I dis-
ease. These patients receive no follow-up treatment, but only active
surveillance. However, patients with metastatic disease or at high risk
of metastasis do undergo additional treatment. Stage I seminomas with
elevated risk to develop metastatic disease in the past often were
treated with 20 Gy radiotherapy on ipsilateral lymph nodes or one cycle
of carboplatin chemotherapy. However currently surveillance is the
most preferred option according to NCCN and EAU guidelines (NCCN,
2019; Albers et al., 2015). Stage I non-seminoma with vascular invasion
can be treated with one cycle of BEP chemotherapy (Bleomycin, Eto-
poside and cisPlatin). For metastatic (≥stage II) seminoma or non-
seminoma, the standard treatment consists of three or four cycles of
BEP chemotherapy.

Radiotherapy is an alternative but not preferred over chemotherapy
in low-volume stage II seminoma and can involve 30−36 Gy radiation
to the para-aortic lymph nodes (NCCN, 2019; Albers et al., 2015;
Oldenburg et al., 2013).

3. Ageing phenotype in testicular cancer survivors

After successful treatment, TC survivors are at risk of developing a
spectrum of late adverse effects. Most published studies in this field
have focused on cardiovascular risk factors or cardiovascular disease,
secondary malignant neoplasms, infertility and sexuality, hypogo-
nadism, neurotoxity and otoxicity, psychological aspects, quality of life
and socioeconomic consequences (Travis et al., 2010). Fewer studies
have focused on cognitive dysfunction, long-term renal toxicity, pul-
monary dysfunction and skeletal health (Fung et al., 2018). Based on
the type of late effects and the relatively young age at which these late
effects occur, suggests that the cancer treatment – at least in some TC
patients – leads to a phenotype resembling early ageing.

3.1. Vascular ageing

TC survivors have an increased risk of developing cardiovascular
disease, a well-known age-associated phenomenon (Paneni et al.,
2017). Four studies have investigated development of cardiovascular
disease after TC treatment consisting of either chemotherapy, radiation
therapy of both (Meinardi et al., 2000; Huddart et al., 2003; van den
Belt-Dusebout et al., 2006; Haugnes et al., 2010) (Table 1). Van den
Belt-Dusebout et al. found an approximately two-fold increased risk of
myocardial infarction in TC survivors younger than 45 years compared
to the general population (van den Belt-Dusebout et al., 2006). Fur-
thermore, Haugnes et al. reported that BEP chemotherapy was sig-
nificantly associated with a 5·7-fold higher risk for coronary heart
disease (CHD) in age-adjusted analyses (Haugnes et al., 2010). Besides
their increased risk of developing CHD at median 10–19 years after
treatment, TC survivors are diagnosed with CHD at a remarkably young
age. Median age at CHD diagnosis in the TC survivor population is
between 39 and 60 years (Meinardi et al., 2000; van den Belt-Dusebout
et al., 2006). The median age of first myocardial infarction in the
general male population is 67 years (Canto et al., 2011). Together,
these data suggest that in a portion of patients, TC treatment leads to
CHD at a younger age than expected. Comparative data on the male
background population are important but scarce.

Vascular toxicity after TC treatment is ascribed to the activation of
endothelial cells in response to circulating cisplatin and/or bleomycin.
The adverse effects of cisplatin and bleomycin on endothelial cells have
been investigated in preclinical studies, which showed that both agents
induce endothelial injury in vitro (Yu et al., 2008; Nuver et al., 2010).
Several years after chemotherapy, TC survivors show signs of en-
dothelial dysfunction, such as microalbuminuria and an unbalance in

plasma levels of tissue-type plasminogen activator (tPA) and plasmi-
nogen activator inhibitor type 1 (PAI-1) (Nuver et al., 2004). En-
dothelial activation leads to increased adhesiveness and permeability of
the endothelial wall for leucocytes and platelets, which can progress
into atherosclerosis (Davignon and Ganz, 2004).

Another consequence of vascular ageing is microalbuminuria, which
may be the result of vascular damage in the kidney. Nephrotoxicity is
an important acute and long-term effect of both radiotherapy and
chemotherapy for TC (Fosså et al., 2002; Lauritsen et al., 2015)
(Table 1).

Besides direct endothelial damage from cisplatin and bleomycin
administration, several studies have shown that TC survivors have an
increased frequency of cardiovascular risk factors. Prevalent risk factors
include overweight, insulin resistance, hypertension and dyslipidemia,
which are collectively part of the metabolic syndrome (Willemse et al.,
2013). This syndrome has been characterized as a proinflammatory and
prothrombotic state, with elevated levels of interleukin-6 (IL-6), C-re-
active protein (CRP) and PAI-1 and accumulation of senescent cells
adipose tissue contributing to systemic metabolic alterations (Koh et al.,
2005; Postmus et al., 2019). Approximately 25 % of TC survivors after
chemotherapy have metabolic syndrome at a median age of 40 years
(Nuver et al., 2005; de Haas et al., 2013; Haugnes et al., 2007)
(Table 1). So both direct damage of the cardiovascular system as well as
indirect metabolic changes are originating from the cytotoxic cancer
therapy and influencing the ageing phenotype.

3.2. Secondary malignancies

The risk of developing a secondary non-TC malignancy is increased
after TC treatment. Secondary solid tumor incidences are increased in
TC survivors treated with chemotherapy and radiotherapy, but not in
patients treated with surgery only (Fung et al., 2013). Development of
secondary solid tumors can be partially explained as a direct treatment
effect as most radiation-induced malignancies are located within or
close to the initial radiation fields (bladder, pancreatic and gastric/
duodenal cancers) (Albers et al., 2015; Horwich et al., 2014; Travis
et al., 2005; van den Belt-Dusebout et al., 2007; Groot et al., 2018).
Platinum residuals may induce damage to excreting organs: the renal
clearance of the residuals may cause the increase in urinary tract can-
cers (bladder, urinary tract and kidney cancer) (Fung et al., 2013;
Travis et al., 2005, 2005; van den Belt-Dusebout et al., 2007; Groot
et al., 2018). The risk of secondary leukemia is associated with pla-
tinum-based chemotherapy, higher etoposide dose and with radiation
dose to active bone marrow (Howard et al., 2008; Kollmannsberger
et al., 1998; Travis et al., 2000). The increased risk for secondary cancer
can also be related to malignant transformation in residual teratoma
(Nettersheim and Schorle, 2017), of which soft tissue sarcoma and
adenocarcinoma are the most frequent forms (Motzer et al., 1998).
However, the increased risk for some solid tumor types, including lung
cancer, prostate cancer, thyroid cancer and malignant melanoma has
not been directly related to TC treatment (Fung et al., 2013; Travis
et al., 2005). In the general population, however, increasing age also
contributes to the risk of developing a malignancy (Siegel et al., 2015).
We therefore hypothesize that some of the secondary malignancies re-
lated to healthy tissue damage are associated with the early ageing
phenotype after TC treatment (Fung et al., 2013; Groot et al., 2018).

3.3. Other manifestations resembling an ageing phenotype

Subclinical hypogonadism after orchidectomy followed by che-
motherapy is associated with the occurrence of metabolic syndrome
(Table 1).

Even though most TC survivors do not have clinically significant
chronic disease, around a quarter of them report from persisting mild to
profound fatigue, which interferes with their ability to participate fully
in normal life at home, at work or in the community (Orre et al., 2008;
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Sprauten et al., 2015).
Cognitive complaints have been reported after in TC patients both

before and after treatment (Schagen et al., 2008; Skoogh et al., 2012).
Several studies indicate that TC survivors treated with cisplatin based-
chemotherapy had a lower cognitive performance during neu-
ropsychological tests compared to normative data, although results
were contradicted by others (Schagen et al., 2008; Stouten-Kemperman
et al., 2015; Amidi et al., 2015; Wefel et al., 2014; Pedersen et al., 2009;
Amidi et al., 2017) (Table 1).

3.4. Survival

The ultimate feature of ageing in humans is an increased tendency
to die. Three studies have investigated long-term survival after TC
treatment. The first study reported that TC survivors who survived at
least one year after diagnosis had a 6 % higher risk of dying from non-
cancer causes than the general population. Causes of death were in-
fectious, digestive and circulatory diseases. However, the median
follow-up duration was only 10 years (Fosså et al., 2007). Another
study showed a non-cancer related mortality rate of 3·2 % after a
median follow-up of 15 years, but did not perform a comparison to the
general population (Gandaglia et al., 2014). In Norwegian long-term TC
survivors, an accelerated survival decline beyond 15–30 years of
follow-up was evident. Even after 30 years of follow-up the relative
survival of TC survivors continued to decline (Wefel et al., 2014;
Kvammen et al., 2016). These data point to reduced lifespan as a
consequence of the treatment of TC (Table 1).

4. Early Ageing pathophysiology: Induction of Cellular
Senescence

The clinical manifestations described above suggest that treatment
for TC leads to an early ageing phenotype with features of a time-

dependent functional decline. A general cause of ageing is the accu-
mulation of excessive molecular and cellular damage (López-Otín et al.,
2013). Importantly, much of this damage is directly promoted by in-
terventions such as cytotoxic treatment for TC, indicating a possible
association between cancer treatment and early ageing. In the following
subsections we describe how cancer treatment administered to TC pa-
tients induces genomic instability and telomere shortening, eventually
leading to apoptosis and cellular senescence in healthy tissue. Ulti-
mately, this chain of events can lead to the ageing phenotype seen in TC
survivors (Fig. 1).

4.1. TC treatment induces genomic instability and telomere shortening
leading to senescence

4.1.1. Cellular senescence
Accumulation of unrepaired DNA damage, and telomere shortening

are both potent inducers of cellular senescence a cellular state of stable
growth arrest. The stable arrest of unstable cells represents an im-
portant tumor suppressor mechanism and guarantees tissue home-
ostasis (Campisi and d’Adda di Fagagna, 2007). Similarly, the growth
arrest of the senescence program is a desired outcome of anti-cancer
treatments, as it prevents tumor cell proliferation (Ewald et al., 2010).
However, the number of senescent cells increases and accumulates with
age in different organisms, including humans and mice. The presence of
an excessive number of senescent cells has been associated with age-
related diseases like atherosclerosis, COPD and Alzheimer’s disease
(Noureddine et al., 2011; Fyhrquist et al., 2013; Chinta et al., 2015).
More recently, several studies in mice have reported that elimination of
senescent cells alleviates a wide range of age-related symptoms, in-
cluding cardiovascular and renal dysfunction, sarcopenia, osteoporosis,
frailty, hypercholesterolemia and neurodegeneration (Baker et al.,
2016; Roos et al., 2016; Baar et al., 2017; Xu et al., 2015a; Bussian
et al., 2018; Xu et al., 2018).

Table 1
Ageing phenotype in testicular cancer (TC) survivors.

Late adverse effect Specification of adverse effect Association with ageing References

Cardiovascular disease Myocardial infarction Age-adjusted analyses showed an 2.0−5.7 fold
higher risk than the general population.

(Meinardi et al., 2000); (Huddart et al., 2003); van den
Belt-Dusebout et al., 2006); (Haugnes et al., 2010)

Coronary artery disease Atherosclerotic
disease

Median age coronary heart disease ranging from
39−60 years in the TC population

Secondary malignant
neoplasms

Bladder cancer Partly direct treatment effects (radiation field,
platinum residuals in excreting organs), however
not all tumor types can be explained this way.

(Kollmannsberger et al., 1998); (Travis et al., 2000);
(Travis et al., 2005); (van den Belt-Dusebout et al.,
2007); (Howard et al., 2008); (Fung et al., 2013);
(Horwich et al., 2014); (Siegel et al., 2015); (Groot
et al., 2018)

Kidney cancer
Pancreatic cancer
Upper and lower Gastro
Intestinal cancer
Leukemia Ageing is in general population contributing to

cancer risk. Transformation in teratoma residuals
harbor another mechanism not ageing related.

Lung cancer
Prostate cancer
Thyroid cancer
Melanoma

Renal function decline Decrease of renal function Faster decline than expected when compared to
physiological renal function decline in general
population.

(Fosså et al., 2002); (Lauritsen et al., 2015)

Metabolic syndrome Metabolic syndrome and its components:
- Overweight
- Insulin resistance
- Hypertension
- Dyslipidemia

- Compared to male reference population TC
survivors treated with chemotherapy are 10
years younger at development of metabolic
syndrome.

- Associated with lower levels of testosterone
and its decline with age.

(Nuver et al., 2005); (Haugnes et al., 2007); (de Haas
et al., 2013); (Postmus et al., 2019)

Fatigue Mild to profound fatigue, interfering with
normal life

Fatigue is a marker of reduced physiologic
capacity, fitting an ageing phenotype.

(Orre et al., 2008); (Sprauten et al., 2015)

Cognitive complaints Lower cognitive performance in function
tests, however not in every study
corresponding with patient-reported
complaints.

Mild cognitive impairment is also common
among elderly.

(Schagen et al., 2008); (Pedersen et al., 2009); (Skoogh
et al., 2012); (Wefel et al., 2014); (Amidi et al., 2015);
(Stouten-Kemperman et al., 2015)

Decreased survival Accelerated survival decline after 15 -
> 30 years of follow up.

Ultimate feature of ageing is increased tendency
to die.

(Fosså et al., 2007) Gandaglia et al. (2014), (Kvammen
et al., 2016)

Higher risk of dying from non-cancer
causes than general population.
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Senescent cells are thought to drive ageing pathology by means of
cell and non-cell autonomous mechanisms. In a cell autonomous
fashion, the senescence-associated growth arrest can lead to the de-
pletion of important pools and niches of cells, such as stem cells. In a
non-cell autonomous fashion, the senescence-associated secretory
phenotype (SASP), a suite of several cytokines, chemokines, growth
factors and proteases, has the ability to drive low-grade inflammation,
which plays a key role in several age-related diseases (Davignon and
Ganz, 2004; Campisi and d’Adda di Fagagna, 2007). Genotoxic agents
used for TC treatment – ionizing radiation, bleomycin, etoposide and
cisplatin – are well-known inducers of cellular senescence in vitro and
in vivo (Aoshiba et al., 2003; Demaria et al., 2017). The increased
burden of senescent cells causes upregulation of the SASP, resulting in
loss of tissue homeostasis, functional decline and onset of pathology. It
has been shown that TC treatment induces low-grade inflammation
contributing to presence of the SASP (Nuver et al., 2004). Several
chemotherapeutic drugs (doxorubicin, paclitaxel) induce cellular se-
nescence in primary murine and human cells, and the genetic or
pharmacological elimination of chemotherapy-induced senescent cells
reduces several short-term and long-term adverse drug effects, in-
cluding bone marrow suppression, kidney and cardiac dysfunctions,
physical activity and strength in mice (Baar et al., 2017; Demaria et al.,
2017).

4.1.2. Genomic instability leading to cellular senescence
Genetic damage accumulates throughout life, and can be caused by

either endogenous or exogenous sources such as DNA replication errors,
reactive oxygen species (ROS), UV radiation, X-rays or other radiation
sources, or chemical agents like tobacco smoke (Hoeijmakers, 2009).
DNA repair mechanisms are able to deal with most of the genetic da-
mage resulting from these different threats, but repair deficiencies arise
during ageing, leading to accumulation of DNA damage (López-Otín
et al., 2013). Excessive accumulation of DNA damage leads to an in-
creased rate of mutations, chromosomal aneuploidy or copy number
variations and eventually results in cell death or senescence (Vijg and
Suh, 2013).

TC treatment with radiotherapy and/or BEP-chemotherapy induces
collateral damage to healthy tissue cells, being both an endogenous
(induction of ROS) and exogenous (radiation, chemicals) source of DNA
damage. For example, bleomycin acts through oxidation of deoxyribose
of thymidylate and other nucleotides, eventually leading to ROS pro-
duction (Froudarakis et al., 2013). Cisplatin also has DNA as its primary
target and induces covalent bonds of purine bases, thus causing the
formation of both intra- and inter-strand crosslinks (Wang and Lippard,
2005). Importantly, platinum levels remain detectable even 20 years
after TC treatment, and are thereby a constant source of DNA damage
(Gietema et al., 2000; Brouwers et al., 2008).

Various DNA repair mechanisms that modulate cisplatin and bleo-
mycin cytotoxicity have been described (Wang and Lippard, 2005;
Gietema et al., 2000; Brouwers et al., 2008; Sanz et al., 2002), but if the
damage exceeds the repair capacity cells activate mechanisms asso-
ciated to apoptosis or senescence. The amount of unresolved damage

Fig. 1. Cytotoxic treatment for testicular cancer leads to both telomere shortening and DNA damage. DNA damage is accompanied by release of reactive oxygen
species (ROS), leading to additional DNA damage. Both telomere shortening and DNA damage lead to activation of DNA damage signaling pathways, resulting in
cellular apoptosis or cellular senescence. Senescent cells activate a ‘senescence-associated secretory phenotype’ (SASP), leading to a state of systemic low-grade
inflammation, which has been associated with a phenotype of early ageing after testicular cancer treatment.
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seems to be a key determinant in the choice between these two states.
For example, treatment with cisplatin induces cellular senescence at
low doses and apoptosis at high doses (Demaria et al., 2017; Seluanov
et al., 2001). Pre-clinical models show that upon treatment with cis-
platin and other DNA damaging drugs, both senescence and apoptotic
rates are increased (Demaria et al., 2017; Seluanov et al., 2001). This
effect might be due to cell type-dependent differences in coping with
stress and to the variable drug concentration that can reach different
tissues. TC treatment may therefore induce an increased mutational
load in early adult life, which can result into the generation of apoptotic
and senescent cells.

However, while apoptotic cells will be only transiently present, se-
nescent cells might persist in tissues for long periods and promote
premature ageing phenotypes via SASP-mediated chronic inflammation
and tissue dysfunction (Calcinotto et al., 2019).

4.1.3. Telomere shortening leading to cellular senescence
Each chromosome is ‘capped’ with at least a few hundred nucleo-

tides of telomere repeats. The telomere loops protect DNA from being
recognized as damaged and stabilizes the DNA complex. Progressive
loss of telomere length is observed during serial replication as a con-
sequence of DNA polymerases not able to replicate the full length and of
loss of telomerase activity, the only enzyme able to add new telomere
repeat sequences to chromosomes. Progressive loss of telomeres leads to
chromosome instability and eventually to cellular apoptosis or senes-
cence (Artandi, 2006). Chemotherapy and radiotherapy-induced cel-
lular injury, followed by repair processes, leads to an increased amount
of cellular replication and therefore shortening of the telomere (Li et al.,
2012; Schröder et al., 2001; Gallicchio et al., 2018). Treatment with
BEP chemotherapy shortened the telomere length of epididymal sper-
matozoa (germ cells) in rats (Liu et al., 2015). Until now, few patient
studies have been performed regarding telomere shortening and the
specific cancer treatment components (Scuric et al., 2017).

Decreased length of the telomere in peripheral blood cells is asso-
ciated with poor survival, cardiovascular disease and cardiovascular
risk factors (metabolic syndrome, diabetes mellitus), and higher cancer
incidence and cancer mortality rate (Cawthon et al., 2003; Boonekamp
et al., 2013; Samani et al., 2001; Weischer et al., 2012; Sampson et al.,
2006; Huzen et al., 2014; Willeit et al., 2010).

In a case-control study involving childhood cancer survivors treated
with different chemotherapy regimens and radiation fields, an inverse
relationship was found between telomere length and development of
secondary malignancies, especially thyroid cancer (Gramatges et al.,
2014). In adult survivors of childhood ALL, telomere attrition, together
with a cytokine profile of chronic inflammation, was shown to be
consistently associated with the onset of accelerated ageing (Ariffin
et al., 2017).

5. Time to act

Taken together, TC survivorship appears to be associated with early
ageing. Successful treatment apparently comes at the cost of a shorter
lifespan accompanied with age-related diseases and adverse health
outcomes, at least in some young TC survivors. One of the most po-
tentially life-threatening early ageing symptoms is cardiovascular dis-
ease development. Prevention measures, such as life style improvement
with supporting physical activity, may play a key role in healthy cancer
survivorship (Irwin, 2009; Westerink et al., 2016). After TC patients are
discharged from regular oncological follow-up, general practitioners
can have a role in monitoring risk factors like hypertension, dyslipi-
demia and impaired fasting glucose levels. However, in current Eur-
opean guidelines cardiovascular risk is calculated using the SCORE
model, which predicts the risk to develop cardiovascular disease within
the next 10 years (Perk et al., 2012). Since age is an important de-
nominator for 10-year risk of cardiovascular disease, most TC survivors
are placed in the lowest risk category (< 10 % risk) and therefore often

have no indication for intervention regarding symptoms such as dysli-
pidemia or hypertension. To tackle this issue, practitioners could add a
number of years, e.g. 15 years, to the chronological age of TC survivors
when applying cardiovascular risk management, similar to patients
with diabetes mellitus or rheumatoid arthritis. This roughly estimated
‘additional age’ could eventually be optimized with data on the biolo-
gical and vascular age of TC survivors in updated results of landmark
TC studies (such as the ongoing trials: clinicaltrials.gov no.
NCT02276430 and NCT02572934).

TC mostly affects young men, and treatment successfully achieves
long-term survival, making these patients an important model for the
study of cancer survivorship. Accordingly, the early ageing phenotype
observed after TC treatment could also be applicable to survivors of
other tumor types, especially for patients treated with genotoxic
therapies at young age such as Hodgkin’s disease.

The current literature regarding adverse health outcomes late after
TC treatment is mainly descriptive. Signs of treatment-induced en-
dothelial damage are observed and it is known that circulating pla-
tinum residuals may cause damage even for years after treatment. How
treatment causes endothelial damage and how platinum residuals stay
present in the circulation are questions which remain to be answered.
The time has come to look in depth into underlying mechanisms.
Induction of senescent cells by cytotoxic treatment may be an important
mechanism behind the development of late effects and an early ageing
phenotype. Prospective studies should be performed to investigate
markers such as presence of senescent cells, the SASP and telomere
length before, during and after treatment for TC and compare them
with healthy age-matched peers. Participants in these studies should be
followed for many years to determine whether we are looking at a
phenomenon in which ageing processes are accelerating after cancer
treatment or whether cancer treatment causes the biological age to
advance (Fig. 2).

In the future, therapies that can selectively target senescent cells
(senolytics) and/or the SASP (senomorphics) might provide new op-
portunities to reduce late side effects (Soto-Gamez and Demaria, 2017)
(Table 2). The senolytic agents ABT-263 and Foxo-DRI efficiently
eliminated senescent cells via apoptosis and attenuated chemotoxicity
in mice (Baar et al., 2017; Chang et al., 2016; Xu et al., 2015b). More
recently, the combination of dasatinib and quercetin - was also shown
to be a strong senolytic, effective in decelerating ageing phenotypes in
mice, and safe for treatment of patients with idiopathic pulmonary

Fig. 2. Early ageing after testicular cancer treatment: are we looking at a
phenomenon in which ageing processes are accelerated (red line) or does tes-
ticular cancer treatment causes biological age to make a step forward (orange
line)? (For interpretation of the references to colour in the Figure, the reader is
referred to the web version of this article).
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fibrosis (Xu et al., 2018; Justice et al., 2019). Nonetheless, pharmaco-
logical removal of senescent cells could be a promising approach in
preventing and treating early ageing in cancer survivors, even if ben-
eficial effects of senescent cells should be carefully considered (van
Vliet et al., 2019). A more attainable intervention with clinical re-
levance for now is preventing additional cellular senescence by
avoiding lifestyle-related stress like smoking and increase physical ac-
tivity and a healthy diet. For example, in rodents caloric restriction
extends lifespan, reduces oxidative stress and mitigates low-grade in-
flammation (Soto-Gamez and Demaria, 2017; Fontana et al., 2018a). In
mice and humans, caloric restriction restrains the accumulation of se-
nescent cells in the colon mucosa (Fontana et al., 2018b). Moreover, it
is known that restricted caloric intake increases lifespan by activating
the mTOR pathway (Inoki et al., 2012) (Table 2). Metformin, a well-
known and widely used drug with minimal side effects has been shown
to prevent the increase of senescent cells after irradiation and prevents
the increase of the SASP (Noren Hooten et al., 2016). It is known that
rapamycin protects cells against mTOR-induced cellular senescence
(Zhuo et al., 2009).

Current indications suggest that, although the majority of testicular
cancer patients who are cured with cytotoxic therapy, the long-term
treatment effects cause patients to age earlier than chronologically
expected. Presence of the first ageing signs, like development of hy-
pertension or vascular damage, should not be disregarded in these
young men. Research into cancer-treatment-induced ageing should be
intensified in order to understand the underlying mechanisms and to
identify intervention strategies for early ageing in young cancer survi-
vors. TC survivors are an important model for this research. The time to
act is now!
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