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a b s t r a c t

Increasing penetration of solar and wind energy can reduce the reliability of power generation systems.
This can be mitigated by e.g.; low-carbon dispatchable hydropower and baseload biomass power plants.
However, long-term supply potential for those sources is often uncertain, and biomass can also be used
for biofuel production. The purpose of this study is to assess the interplay between uncertain supply
potential of biomass and hydropower, intersectoral competition and reliability on a low carbon power
system for 2050, with Brazil as case study, using a soft-link between an energy model and a power
system model. Hydropower acts as a balancing agent for solar and wind energy, even under lower hy-
dropower supply potential. When less biomass is available, low carbon transportation is met more with
electric cars instead of ethanol cars, leading to an increase in electric load for charging their batteries. The
charging strategy determines whether peak load increases substantially; after commuting, or lowers; in
off-peak hours. This shows the importance of using a soft-link between the high temporal resolution
power system model to assess the reliability, and a least cost-optimization model to assess the interplay
between resource availability and intersectoral competition of low-carbon power systems.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

To limit global warming to less than 2 �C, many countries have
pledged to reduce carbon dioxide emissions in accordance with the
Paris Agreement [1]. A key challenge is to provide electricity with a
low carbon intensity, in a reliable and cost-effective way. The
largest share of the new electricity generation capacity with a low
carbon intensity is expected to come from solar and wind energy
[2]. However, these sources are all variable renewable energy (VRE)
sources that can cause problems related to the reliability of the
power grid because of intermittency. Biomass [3] is seen as low-
carbon alternatives that can provide dispatchable power genera-
tion that can balance power systems with high shares of VRE.
Furthermore, hydropower can be used to match electricity supply
and demand due to its fast ramp rate [4]. However, there are con-
cerns related to the supply potential for hydropower and biomass.
r Ltd. This is an open access articl
Hydropower relies on rainfall and in the future, climate change is
expected to have a negative impact on the amount of rainfall [5].
For biomass, it is recognized that there is large uncertainty in the
future supply potential due to land use change emissions [6].
Furthermore, impacts on biodiversity and soil quality can also
result in lower biomass supply potential [7].

A reliable and affordable power system, which is capable of
matching supply and demand, is seen as very important for modern
economies as stable supply of electricity is one of the back-bones of
their development [8]. In power systems with high shares of VRE, it
becomes more difficult to match the supply and demand for elec-
tricity, which can lead to more blackouts [9]. In low-carbon power
systems with high shares of VRE it is therefore required to balance
between the intermittent supply of VRE and the demand. Biomass,
hydropower, or storage options like e.g. batteries in electric vehicles
(EVs) [10] are seen as promising cost-effective options to provide
more balance to the grid in low-carbon power systems. However,
the interplay between VRE, hydropower and biomass in low-
carbon power systems is rarely studied [11].

Biomass can be used in various sectors of the energy and
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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electricity generation system, either directly as a solid fuel or
converted to liquid fuel. In the case when there is limited supply of
biomass to fulfil demand for energy in a low carbon energy system,
the question rises in what sector biomass should be utilized best.
This depends on the competition (on costs, greenhouse gas emis-
sions (GHGs) and conversion efficiency) among low carbon energy
alternatives per sector [12]. The demand for low-carbon trans-
portation can for instance, be met with different energy carriers.
Biofuels and low-carbon electricity are seen as two feasible energy
carriers for low carbon transportation [13]. Lower supply potential
for biomass can result in a decreasing production of liquid biofuels.
On the long term, lower supply of biofuels can increase the demand
for alternative low-carbon transportation, e.g., electric cars. EVs can
play an important role in balancing demand and supply of elec-
tricity [14]. Contrary, the growth in the demand for electricity due
to a growing EV fleet can result in higher peak load for electricity
when commuters start to recharge their batteries after commuting,
as shown by Bobmann and Staffell for Germany and the UK [15].

There is a clear interplay between 1) uncertainty in availability
of hydropower and biomass and 2) intersectoral competition be-
tween sources of low-carbon energy, which affects the reliability of
low-carbon power systems. While the influence of single elements
on the reliability of a power system is well studied, no specific
scientific literature is found focusing on the interplay of the com-
bined effect on the electricity mix, and its costs. Therefore,
assessing low-carbon power systems requires an integrated
approach. Least-cost optimization models have the ability to assess
intersectoral competition and resource variability, but they are not
specifically designed to operate with high temporal resolution that
is required to assess the reliability of a power system [16]. Dedi-
cated power system models are specifically designed to assess
power systems at a high-temporal resolution [17]. A soft-link be-
tween both models enables the assessment of the abovementioned
interplay.

The aim of this research is to assess how the interplay between
uncertain supply of biomass and hydropower, intersectoral
competition for low-carbon energy sources, and reliability affects a
mix of low carbon electricity sources, and its costs for 2050. Brazil is
chosen as a case study because it has high supply potential for
hydropower and biomass [18]. The least-cost optimization model
TIMBRA (The Integrated Market allocation Energy flow optimiza-
tion System-BRAzil) is used to calculate the lowest cost energy
system. The PowerPlan model is linked to TIMBRA and uses
installed capacity to analyze the match between hourly supply and
demand for electricity, and quantifies the reliability as it sums up
the number of hours when there is a loss of load. Eight scenarios are
created to assess the reliability and the additional costs of the po-
wer system influenced by lower supply of biomass and hydro-
power, and the impact of charging patterns of EVs.

The study intends not to show transition pathways towards low-
carbon power systems that are influenced by near term political
and socio-economic changes. Instead, the focus of this study is on
the long-term, to understand the performance of low-carbon po-
wer systems in the future.

2. Methods

The methodological framework consists of two main models:
TIMBRA and PowerPlan. The models are described in Section 2.1
and the research steps are detailed in Section 2.3. Fig. 1 gives the
main points of each model and shows how they are linked to
provide the various results. In step 1 of Fig. 1, the TIMBRA model
applies least-cost linear optimization to calculate the lowest cost
solution for meeting the energy demand in 2050. Both models
include operational and capital costs of power plants as well as the
costs for primary energy sources. A carbon budget is applied (in
TIMBRA) to assess GHG emissions. In step 2, PowerPlan analyzes
thematch between hourly electricity supply and demand, using the
electricity capacity mix of TIMBRA as input. PowerPlan quantifies
the loss-of-load by the number of hours of power failure per year,
and compares it with a reliability target.When the target is notmet,
additional capacity is added until the target is fulfilled in step 3. The
same reliability target is set for research step 4. The impact of
electricity demand for EVs (an output from the TIMBRA model) on
the reliability of the power system is assessed in PowerPlan
(research step 4).

2.1. Models

The linear optimization model TIMBRA is used to calculate the
lowest-cost energy system under a set of user-defined restrictions
for the period 2010e2050 [19]. Themodel is adjusted specifically to
the Brazilian energy system. This model is used to assess the dy-
namic interaction between primary energy sources, a list of pre-
defined conversion technologies and end-use demand in the
main sectors (industry, transportation, residential & commercial,
agriculture and non-energy). Hence, TIMBRA is used to calculate
the capacity mix of the Brazilian power system for 2050, which is
the main input for the PowerPlan model. The cost assessment is
based on capital costs (CAPEX) and operational costs (OPEX) of
energy conversion technologies, and on fuel costs [20]. TIMBRA
distinguishes three regions.

The GHG emissions are included in TIMBRA by applying a car-
bon budget. The carbon budget is the volume of GHG emissions that
Brazil may emit (for the period: 2010e2050) to limit global
warming to two-degree Celsius [36]. The supply of solar, wind and
hydropower are allocated to the regions. Therefore location specific
characteristics of power plants are included (see Nogueira de Oli-
veira [21] for more information). The regions interconnecting
transmission lines represent the exchange capacity for electricity
between these regions (see Appendix E). In TIMBRA time slices are
used to represent electricity supply and demand, and represent a
user-defined aggregation of a certain time period.

In TIMBRA the model can consider a wide range of different
transport modes supplied with different fuels e.g.: fossil fuels,
biofuels, electricity and hydrogen [37]. Transformations in the car
fleet is endogenous to TIMBRA, and depend on investment costs,
resource competition, fuel consumption per kilometer and GHG
emissions. Additional demand for electricity from EVs is used as
input for analyzing the charging patterns in PowerPlan (research
step 4).

PowerPlan is a bottom-up simulation model, which is used to
assess the dispatched electricity production and reliability of
electricity systems [22]. The model simulates the hourly amount of
generated electricity of user-defined power plants andmatches this
production with the hourly demand for electricity based on the
merit-order approach (see Section 2.3.2 for further detail). The
model properties of TIMBRA and PowerPlan are further described
in Appendix A. The power plants included in this study are listed in
Table B2 (Appendix B).

2.1.1. Flexibility measures
In TIMBRA, hydropower and concentrated solar power (CSP) are

modelled as static power plants with fixed load factors per time
slice. Furthermore, TIMBRA is not designed to deal with demand
side management (DSM). PowerPlan is a simulation model that is
specifically designed to assess the match between supply and de-
mand of electricity systems. Therefore, the operational perfor-
mance of dispatch power plants like hydropower and CSP can be
modelled with PowerPlan as such. Further, there is the option to



Fig. 1. Schematic overview of the methodological framework.
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assess the impact of DSM on the reliability of the power system
[10]. PowerPlan can also assess the impact of storage technologies
(e.g. pumped hydro storage [PHS], compressed air energy storage
[CAES], and batteries) on the reliability of power system. However,
due to the large capacity of reservoir based hydropower in Brazil
and it’s fast ramp rate (the ramp rate is the ability of power plants to
increase or decrease the electricity production over a certain unit of
time), there is no direct need for additional storage technologies
next to reservoir hydropower (as shown in Section 3).
2.2. Scenarios

Eight different scenarios are used in this study: one base sce-
nario, three supply constraint scenarios and four demand
constraint scenarios (Table 1). The base scenario is based on the
SSP1 scenario from Lap et al. [12]. All scenarios aim to fulfill the
total energy demand with the lowest possible costs, while being
constrained to emit 16 Gt CO2-equivalents over the period
2010e2050. The difference in the final electricity demand can
fluctuate between the scenarios due to switches in fuel (e.g. bio-
fuels) and transport mode. All economic values are harmonized to
US$2010.

The supply constraint scenarios are run with low hydropower
and biomass supplies. The low hydropower (LH) scenario is adop-
ted in this study because there are several concerns that due to
climate change the amount of precipitation in the northern part of
Brazil is expected to decrease [23]. As Brazil is highly dependent on
hydropower and the majority of the unexploited hydropower ca-
pacity is situated in the north of Brazil [24], a decrease in precipi-
tation is expected to decrease the reliability of the Brazilian power
system [25]. The low biomass scenarios (LB and LHB) are runwith a
lower supply potential than the base scenario, because there is still
large variability on howmuch sustainable biomass is expected to be
available for energy [26]. The availability of biomass in this study
relates not to the annual supply potential due to fluctuating cli-
matic conditions, but rather to the long-term supply potential, as a



Table 1
Overview of the scenarios used in this study.

Scenario

Parametersa Base Supply constraint Scenarios Electric Vehicle demand scenarios

Acronymb B LH LB LHB EV-HB EV-SB EV-HL EV-SL

Costsa Annual costs of supply of energye for the entire energy system (2050) þ Electricity price ($/MWh)

GHG emissions Carbon budget: 16 Gt CO2-eq. emissions in the period 2010e2050

Hydropower supply potential (TWh) 765 715 765 715 765 765 715 715

Biomass supply potential (EJ)c,d 15.9 15.9 12.7 12.7 15.9 15.9 12.7 12.7

Electric vehicles charging patternf e Home charge Smart charge Home charge Smart charge

Models TIMBRA þ Powerplan Powerplan

a The costs of the entire energy system is the unit to be optimized (the mathematical optimization) and is therefore the only parameter that is flexible. The other parameters
are modelled as a constraint (either in TIMBRA and/or PowerPlan).

b B: base; LH: low hydro; LB: low biomass; LHB: low hydro and biomass; EV-HB: Electric Vehicles, Home charging, Base scenario; charging pattern for EVs focusing on
charging at home using the same premises as the base scenario; EV-SB: Electric Vehicles, Smart charging, Base scenario; charging pattern for EVs focusing at off-peak times,
using the same premises as the base scenario. EV-HL: Electric Vehicles, Home charging, LHB scenario; charging pattern for EVs focusing on charging at home using the same
premises as the LHB scenario; EV-SL: Electric Vehicles, Smart charging, LHB scenario; charging pattern for EVs focusing at off-peak times, using the same premises as the LHB
scenario.

c Data related to the availability of biomass is based on scientific and governmental literature and is presented in Appendix B.
d In TWh, the supply potential for biomass ranges between 3500 and 4400 TWh. This emphasizes the high supply potential of biomass in relation to hydropower.
e The costs of energy supply encompass the costs for primary energy carriers and the costs of converting the primary energy into energy carriers for final energy con-

sumption in the selected sectors. Therefore, costs for the conversion of final energy to useful energy (for instance, the conversion of gasoline to kinetic energy in a car) are
excluded. When costs are mentioned with relation to the results of this study, this means the annual costs of energy supply.

f In all scenarios the electricity demand patterns are analyzed as described in Section 2.3.2.
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result of agricultural land that becomes available because of agri-
cultural yield increases. The availability of land is assumed to be the
most important factor that causes differences in supply potential of
bioenergy [27].

The EV demand scenarios are used to explore the impact of
electricity demand for EVs on the power system, by analyzing the
charging patterns of EVs. The charging pattern of EVs is important,
as it can ensure a strong peak in electricity demand when com-
muters begin to recharge their batteries after commuting, as shown
by Bobmann and Staffell for Germany and the UK [15]. By using
demand-sidemanagement consumers can be encouraged to charge
their vehicles during off-peak times by financial incentives and/or
by stimulating charging at work (day-time). Ideally, they can be
charged in off-peak times or when intermittent electricity pro-
duction by VRE is high, lowering the burden on the grid during
peak hours [28].
2.2. Research steps

An overview of the research steps is shown in Fig. 1.
2.2.1. Step 1: Scenario runs least-cost optimization model
The base scenario, and three supply-constraint scenarios are

modelled in TIMBRA to analyze the low carbon electricity mix for
2050. Outcomes from step 1 are:

� Electricity generation mix in 2050 (TWh per power plant type)
� Capacity expansion of the power system (installed capacity per
power plant type)

� Additional electricity demand for EVs (endogenous in TIMBRA)
� Costs of energy supply (billion US$/year)

The base scenario is run in TIMBRA with variation for nine pa-
rameters. The sensitivity of these parameters is shown in relation to
the power generation mix and the annual costs of energy supply
(see Appendix G). The impact of the uncertainty of the future
capital expenditures of VRE power plants is discussed in Appendix
G.
2.2.2. Step 2: Simulation runs power system model
The installed capacity per type of power plant (from TIMBRA,

research step 1) are simulated in PowerPlan to analyze the dis-
patched power production and loss-of-load of the power system on
an hourly basis. The techno-economic input data of the power
plants is equal for both models, based on reported data [12] (see
Appendix B).

Hourly production of VRE sources is calculated using supply
patterns for solar and wind energy. These patterns are created
following a simulation tool described in Staffel & Pfenninger [29]
(see Appendix D for detailed information). The supply pattern for
run-of-river (RoR) hydropower in PowerPlan is based on the
weekly inflow pattern of the current operating plants in the North.
For future RoR power plants, the ratio between the inflow of water
and the capacity is assumed to be the same as for the existing RoR
power plants (see Appendix C for more details). The supply pattern
for bagasse is based on the monthly sugarcane harvest reports (see
Appendix D). The bagasse supply pattern is included separately
because the electricity production fluctuates over time (dependent
on the sugarcane harvesting). While the sugarcane harvest period
falls within the dry period, bagasse is seen as complementary to
hydropower in terms of electricity production [30]. This can result
in a more reliable low carbon power system [31].

The VRE supply patterns are normalized for 8760 h per year. The
data of the supply patterns is normalized as normalized data can be
linked to different capacities. The normalization shows the hourly
production for a 1 MW power plant. The pattern exists of 8760 data
points representing the load factor of that specific hour (Equation
(1)). The sum of all data points is therefore the total power output
given a certain capacity for a total year. The generic conversion from
the pattern to generated power is calculated using Equation (1). The
sum of the electricity production of all hours is the annual elec-
tricity production per power plant. A detailed explanation of the
VRE patterns is found in Appendix D.

Ph;u ¼ Cu � VREh (1)

P ¼ Power generated at hour h for VRE power plant u in GWh, C ¼
Installed capacity of VRE power plant u in MW, VRE ¼ variable
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generation pattern normalized at hour h.
Besides the hourly supply pattern, an hourly electricity demand

pattern is created. The demand pattern for 2050 is converted from
the 2015 demand pattern to the 2050 pattern, by multiplying the
maximum hourly demand [32] to the growth in electricity demand
(taken from TIMBRA, step 1). The demand at each hour in 2050 is
calculated using Equation (2), and the sum of each hour is the total
electricity demand for 2050.

Dh ¼ MD2050 x Ph (2)

D ¼ Demand at hour h in GWh, MD ¼ Maximum hourly demand
(GWh) for 2050, P ¼ variable electricity demand pattern normal-
ized between 0 and 1 at hour h.

The LOLP is calculated by subtracting the generated electricity of
all power plants from the demand at each specific hour. If the
returned value is negative, this means there is a loss of load. The
model sums up all loss of load hours to give the yearly hours of loss
of load.

The results from step 2 are:

� Hourly dispatch profiles of the power system for the modelled
scenario

� LOL (number of days/year)
� Electricity generation costs ($/MWh)

The electricity generation costs are calculated by PowerPlan and
are based on levelized costs of electricity generation, using the
capacity for each power plant type (TIMBRA output) as input. The
methods used to calculate the levelized costs are found in IEA 2010
[33] and encompass fuel, capital, and operational costs. Reservoir
hydropower data as used in PowerPlan is based on the mean
monthly inflow of water to the current hydropower reservoirs and
the maximum storage capacity of the reservoirs for the four main
regions (see Appendix C and D for more details).

2.2.3. Step 3: Mismatch analysis
The aggregated patterns of both supply and demand are used as

input for PowerPlan to identify the difference between aggregated
and hourly patterns. The model run is made in PowerPlan to
analyze the match between electricity supply and demand in Brazil
for 2050. The installed capacity of power plants derived from
TIMBRA is used as input, however, here the hourly demand and
supply patterns (see step 2, Section 2.3.2) are used as input.

The result of run 2 in PowerPlan is aligned to an international
reliability target. In this study the reliability should be a LOLP of 3
days per 10 years for all scenarios. The LOLP in Europe ranges be-
tween 1 and 3.3 [34], while in developing countries the LOLP may
be much higher [35]. Therefore, a LOLP of 3 is considered to be
realistic for Brazil. When the LOLP is > 3, the power system is
perceived as not being sufficiently reliable, and additional capacity
is needed to fulfil demand for electricity in a reliable way. Next,
additional capacity is added in PowerPlan (step 3; Fig. 1), until the
LOLP target is reached.

For the additional capacity it is assumed that this will be fulfilled
with flexible operating natural gas fired combined cycle (NGCC)
power plants. The additional costs of the additional required ca-
pacity to overcome the mismatch between electricity demand and
supply per scenarios are assessed by linking this additional capacity
back toTIMBRA. The total annual costs of energy supply, as assessed
in this study, therefore includes the additional capacity of the NGCC
power plants required to fulfill the target for a reliable power grid.
The methodological steps of the soft-link approach are shown in
Fig. 1. The mismatch analysis is also carried out for step 4 (see
below), and the results of all the scenarios are shown in Section 3.4.
2.2.3. Step 4: The impact of charging patterns of electric vehicles
The demand for electricity consumed by EVs is simplified in

TIMBRA considering the temporal resolution. The electricity de-
mand of EVs is an output of TIMBRA (Step 1), where it is assumed
that this demand is the same for every hour of the year (flat line EV
demand). However, charging of EVs depends on user preferences
[36], and access to charging facilities [37]. By using batteries of EVs
the flexibility of the power system can be influenced, i.e., DSM.

Four hourly charging patterns are created to assess the impact of
EV electricity demand on the reliability of the power system (based
on Bobmann & Staffell [15] and Gnann et al. [38]). The patterns are
used as input for PowerPlan: a conventional charging pattern
where commuters charge their cars right after the trip (at work and
at home), and a smart charging pattern where charging is done
during off-peak time to lower the burden on the grid. The patterns
are created by taking the total demand for EVs from the base and
the LHB scenario (step 1).

The EV charging patterns are added to the electricity demand
pattern from step 2 (minus the flat line EV demand). The conven-
tional charging pattern is adjusted from the flat line EV demand
from TIMBRA by increasing the demand when commuters arrive at
their work (between 9 a.m. and 2 p.m., Monday to Friday), or at
home (between 5pm and 11pm for the whole week), while
decreasing it during other hours of the week. The sum of the pat-
terns should be the same as this represents the total demand for
charging EVs. The demand pattern for smart charging of EVs has
increased demand during off-peak times. The patterns are visual-
ized in Appendix B. The installed capacity of the power plant types
of the base scenario (from TIMBRA; step 1) is used as input for
PowerPlan. Eventually, themismatch analysis is carried out for both
scenarios (step 3) showing themismatch capacity and the influence
on the costs of the energy system.

3. Results

The results of the research steps are described below.

3.1. Installed capacity and electricity mix

The results show that around 1500 TWh of electricity will be
produced in 2050, compared to 630 TWh in 2010. At first glance,
the electricity production for 2050 from the base, and the supply
constraint scenarios appear very similar. Hydropower delivers
47e52% of all electricity and is the largest producing source, fol-
lowed bywind (21e22%, Fig. 2B). The total installed capacity ranges
from 346 to 380 GW (Fig. 2A). The main difference is the installed
capacity of concentrated solar power, which is 55 GW in the base
scenario and 77 GW in the LHB scenario. Although the supply po-
tential for biomass is high (see Table 1), the use of biomass for
electricity production is limited. This is because biomass is mainly
consumed in both the transport and industrial sector. In those
sectors, biomass is seen as the major low-cost renewable alterna-
tive for fossil fuels [12].

In comparison to the base scenario, the LB scenario shows a
decrease in electricity production from biomass power plants
(�27%). Amix of power plants (mainly CSP but also nuclear and coal
with carbon capture and storage [CCS]) substitutes this decrease in
biomass. The lower supply of biomass mostly affects the delivery of
baseload power, which explains why nuclear and coal come into
play because they also deliver baseload power. However, CSP with
12 h of thermal storage capacity, is also capable of delivering power
with a high load factor (47%).

The LH scenario shows a decrease, mainly in hydropower from
RoR (�20%) and slightly in reservoir-based hydropower (�4%). This
is because the reservoir-based hydropower capacity is small in the



Fig. 2. A Projected installed capacity in Brazil per power plant type in 2050 for the
base, and the three supply constraint scenarios as modelled in TIMBRA. 2 B:Projected
annual electricity production in Brazil in 2050, for the base, and the three supply
constraint scenarios as modelled in TIMBRA in this study.
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northern region (the region that is expected to be affected by a
decrease in precipitation). The loss of hydropower is substituted by
wind energy and CSP. In the LHB scenario, the loss of power is
substituted by CSP, wind, and coal with CCS. Power generation from
biomass with CCS remains important in all the scenarios. The
combination of baseload power generation from biomass with CCS
(causing a net decrease of atmospheric CO2 emissions) is present in
all scenarios, even given a lower biomass supply.

Furthermore it is noticed that the overall electricity production
is larger (þ3%) in both low biomass scenarios, due to increasing
electricity demand for an increasing number of electric cars. As the
supply potential of biomass is lower, less biofuels are produced.

While there is still demand for low-carbon transportation, in
these scenarios this demand is met by EVs, resulting in a higher
demand for electricity. In the base scenario the total energy de-
mand for private transportation met by electric cars is 195 TWh,
compared to 263 TWh for both low biomass scenarios.
3.2. Dispatch profiles

Simulations of the base scenario, and the three supply constraint
scenarios in PowerPlan show a large difference in power produc-
tion between the seasons for the different sources (Fig. 3). In gen-
eral, power production during summer is dominated by
hydropower while production from VRE and bagasse is low.
Conversely, during wintertime electricity production from VRE and
bagasse is higher and during some hours they produce approxi-
mately 75% of the hourly production (Fig. 3). However, where
nowadays hydropower is mainly used to deliver baseload power
[40], in these scenarios hydropower provides a balancing service to
maintain grid stability, i.e., when VRE production is high, hydro-
power production is low and vice-versa.
3.3. The impact of charging electric vehicles

The charging strategy of EVs has a large impact on the LOLP.
When recharging happens after commuting trips (EV-HB) the peak
load reaches over 250 GW in summer, while in the case of smart
charging the load will be balanced out with peak demand close to
220 GW (see Fig. 4). Conventional charging therefore can lead to a
LOLP of nearly 13 days per year (EV-HB scenario) while the LOLP of
a power systemwith smart charging of EVs is one day per year (EV-
SB). The high LOLP in the EV-HB scenario arises because, during
peak times there is not enough capacity to fulfill demand, especially
when VRE production is low. In the EV-SB scenario, the demand for
EVs is shifted to off-peak times. The load curve is flattened out and
therefore the combined capacity of hydro, baseload and VRE is
better able to meet the total demand in comparison to the EV-HB
scenario. The result of the mismatch analysis is shown in
Section3.4.

3.4. Summarized results of the soft-link approach

The total capacity needed for a reliable power system ranges
between 357 and 437 GW, dependent on the scenarios (Fig. 5). The
need for additional capacity to reach the LOLP target differs per
scenario and ranges between 10 and 57 GW. Scenarios with lower
biomass availability and home charging of EVs require additional
capacity.

In both low biomass scenarios the loss of baseload power gen-
eration from biomass is partly compensated by more variable
sources (e.g. wind), and the overall electricity generation increased
(see Fig. 3). The combination of both changes leads to a mismatch
between supply and demand. An important reason for this
mismatch is the difference between hourly and aggregated pat-
terns. In the aggregated wind supply patterns from TIMBRA the
minimum load factor is 12% (Fig. B2, Appendix B) and the difference
in peak load is approximately 13% (Fig. B1, Appendix B). In the
modeling structure of TIMBRA, this minimum load factor of wind
energy is model-wise regarded as baseload power production.
However, in comparison to the hourly data, there are several hours
with no wind production. The combination of low to no wind en-
ergy and peak demand therefore requires back-up capacity of
approximately 50 GW (additional to hydropower) to secure a reli-
able production. This can also be observed in Fig. 3 where hydro-
power has reached its maximum capacity, and VRE production is
low (e.g. hours 382 and 405 for the summer profiles of the LHB
scenario; Fig. 3).

The second reason for a higher need for additional capacity
(Fig. 5B) is conventional charging of EVs. High peak demand from
commuters charging the batteries of their EVs after commuting
results in 19 GW of additional capacity in comparison to the base
scenario (EV-HB scenario). In the EV-HL scenario, even more
additional capacity is required, i.e., an additional 34 GW compared
to the base case. The combination of lower biomass and hydro-
power availability does already lead to higher required additional
capacity. This, in combination with conventional charging, am-
plifies the need for additional capacity to 68 GW (þ18%) to secure a
reliable power grid.

The scenarios with smart charging have lower additional ca-
pacity requirements. In comparison to the base scenario the EV-SB
requires 13 GW less in additional capacity. The EV-SL scenario re-
quires 18 GW less than the LHB scenario.

Biomass supply potential and additional capacity are the two
main factors that influence the difference of the total costs of en-
ergy supply when all scenarios are compared (Table 2). When
biomass supply is lower, the costs increase with 17 (LB scenario) to
25 (LHB scenario) billion dollars per year compared to the base



Fig. 3. Dispatch profiles of the base and the LHB scenario as modelled in PowerPlan for this study. The dispatch profiles are shown for the 3rd (summer) and the 27th (winter) week
of the year. The secondary axis shows the share of the load of VRE and bagasse as the percentage of the total load.
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scenario. The higher costs are explained by biomass, which affects
the entire energy system. Biomass is a relatively low-cost renew-
able alternative in both the industry and transport sector. Because
of the restrictions on GHG emissions due to the carbon budget,
more expensive low-carbon alternatives, or more expensive
biomass conversion technologies with higher efficiencies (e.g.
biomass gasification for hydrogen production), are required in
these sectors when biomass supply is low. The costs of the addi-
tional capacity are proportional to the required additional capacity
to fulfill the reliability target.

4. Discussion

The difference between aggregated (TIMBRA) and hourly
(PowerPlan) supply and demand patterns in energy scenario
modeling, results in a mismatch capacity of 10e57 GW for a low-
carbon power system in Brazil in 2050. On average, this is
approximately 7% of the total required capacity. Poncelet et al. [39]
shows that the mismatch due to differences in temporal resolution
(also hourly versus aggregated patterns) for the Belgium case is 10%
of the total capacity. The share of solar and wind energy is very
similar to this study (i.e., just over 50% of the total capacity). The
higher mismatch reported by Poncelet et al. [39] can likely be
explained by the number of time slices used in the Belgium model,
which is lower than in the TIMBRA model.

In Gouvello et al. [25] the reduction of hydropower in Brazil in
the low hydropower scenario (for 2030) in terms of generated
power is 5.2% in comparison to the reference scenario, which is
slightly lower, but comparable to the 7.2% reduction found in this
study. Similar trends can be observed in Lucena et al. [18], showing
a reduction between 0.3% (RCP4.5 low impact scenario) and 11.9%
(no policy high impact) in terms of generated power in comparison
to the reference scenario. Besides the impacts of climate change on
hydropower, it can also influence the supply potential of bioenergy
[40]. To assess the impact of climate change on the energy system, a
combination of global circulation models, crop growth models and
energy system models are required.

As a potential solution to lower this risk, the international en-
ergy agency (IEA) proposes lowering the hydropower demand
during the dry season, because this can be complementary with a
larger production of solar and wind energy and electricity gener-
ation from bagasse during the same season [41]. This solution is
confirmed in this study, where electricity production from wind,
solar, and bagasse is responsible for on average 43e50% of the
power generation in the period MayeNovember compared to
31e37% during the other months, dependent on the scenarios.

In general, this study shows that the flexible operational nature
of hydropower is successful in securing grid stability. However,
backup capacity is required in a limited number of hours. PHS or
vehicle-to-grid (V2G) are two options that can deliver peak de-
mand services. Although, storage services are unnecessary if there
is approximately 50 GW of baseload capacity (see Section 3.4), as
possible surpluses of VRE can be compensated by lowering the
production from hydropower. Biomass is a feasible option (see
Section 3.1) to deliver low-carbon baseload power generation.
Furthermore CSP, in combination with short term storage is
demonstrated as an excellent technology to provide flexible power
generation during peak demand, as also shown by Soria et al. [42].

Bobmann & Staffell [15] show for Germany and the UK that the
load with conventional charging of EVs can increase the normal
electricity load by 8e15%, which is similar to this study. The average
demand for electricity for transportation is on average 13% [15],



Fig. 4. Dispatch profiles of the EV-HB and EV-SB scenarios as modelled in PowerPlan for this study. It shows the additional capacity required to bring the LOLP from 13 days per year
(upper graph) to one day per year (lower graph). The dispatch profiles show are shown for a typical week (here in November).

Fig. 5. A) Capacity mix of the base scenario for the Brazilian power system of 2050.5 B:
Changes in capacity planning per type of power plant of the Brazilian power system for
the modelled scenarios as compared to the base scenario. The red circle represents the
total change in capacity in comparison to the base scenario. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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which is also similar to this study (15%). However, the analysis of EV
charging in this study is limited because it only considers grid-to-
vehicle interaction. Whereas, electric car batteries can also serve
as energy storage units which can deliver energy to the grid (V2G)
at peak demand, therefore they can provide storage capacity to
stabilize the grid [14]. The V2G service however, mainly affects the
local electricity distribution network and therefore it cannot be
generalized for the whole country. Just like V2G, there are other
DSM options to increase the flexibility of the local network, such as
peak shaving with electronic appliances [43]. Other methods and
system boundaries are required to analyze the impact of V2G and
similar flexibility measures.

The incorporation of EVs in the passenger transport fleet is not
only influenced by economics and GHG performance. For instance,
range anxiety, presence of charging facilities and reduction of local
air pollution can influence sales either positively or negatively [44].
These factors are not considered in this study and to assess this in
combination with economics and GHG performance, a different
method like e.g. agent based modeling (ABM) is required [45]. ABM
is also a suitable method to assess short-to medium term transi-
tions in the energy system, to reflect on uncertainties like political
landscape, and provide business perspectives. Addressing range
anxiety, user preferences on charging strategies (to overcome
unloaded batteries at all time), and charging speeds is key for the
transition from fossil to electric vehicles. In the Netherlands there
are currently multiple pilot projects (ongoing or planned) [46],
showing that overcoming these issues is possible in the near future.

There is a mismatch in peak demand due to different repre-
sentation of the temporal resolution in both models, leading to a
LOLP that is too large. To reach the LOLP target additional capacity is
added. NGCC is chosen as power plants that delivers the additional
capacity because it can deliver power during peak demand.
Although NGCC power plants emit CO2, because the number of
operating hours is very limited, the CO2 emissions from NGCC po-
wer plants are negligible in comparison to the total CO2 emissions
of the energy system. However, there are options to produce flex-
ible low-carbon electricity that can also serve as additional capac-
ity. For example, PHS can deliver 15 GWwith a reservoir capacity of
29 TWh [47] and batteries from EVs can be used to temporarily



Table 2
Results of the soft-link approach for the analyzed scenarios of the power system of Brazil in 2050.

Scenario B LB LHB LH EV-HB EV-SB EV-HL EV-SL

Total Capacitya 369 394 408 376 388 356 437 391
Total costsb 207 224 232 212 211 205 237 229
Cost differencec e 7.9% 11.7% 2.3% 1.6% �1.1% 14.1% 10.3%
Mismatch capacity 23 29 28 18 42 10 57 11
Mismatch costsd 4 5 5 3 7 2 10 2
Electricity costse 62.90 65.80 69.30 63.80 63.80 62.30 70.80 68.50

a In GW, including the mismatch capacity.
b Total costs of supply of energy (in billion US$/y), including the costs for the additional capacity
c Difference of total costs of supply of energy, relative to the base scenario
d In billion US$/y, considering the additional capacity is met with NGCC-CCS power plant
e In US$/MWh
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deliver electricity. The selection of the power plant for the addi-
tional capacity is a drawback of the soft-link approach as ideally
this choice is made endogenously within TIMBRA, because of the
least-cost optimization methodology. However, due to the soft-link
approach this is not possible. Furthermore, baseload power plants
(e.g., nuclear, fossil with CCS, or biomass [with CCS]) are interesting
options to deliver the additional capacity, because this alleviates
the power system to use hydropower resources for baseload power
production. Water is expected to become a scarcer resource in the
future in Brazil as there will be large demand for tap and irrigation
water [48].

5. Conclusion

The aim of this study is to assess how the interplay between
variable supplies of biomass and hydropower, intersectoral
competition for low-carbon energy carriers and reliability affects a
low-carbon electricity generation mix for 2050 in Brazil.

The variable supply of power by solar and wind energy does not
result in electricity overproduction because it is well balanced with
hydropower from reservoirs due to its fast ramping time, and also
due to the thermal storage of concentrated solar power. Another
positive factor considering the reliability is the seasonal balance
between hydropower on the one hand, and variable renewable
energy and co-generation from bagasse on the other hand. Hy-
dropower is dominating power production in the summer season,
while electricity production from variable renewable energy and
bagasse is dominating the power system in the dry season. How-
ever, the capacity of hydropower is insufficient to fulfill demand in
specific conditions when wind and solar power production is near
zero, and peak demand for electricity is high. Although hydropower
and VRE contribute an average of 85% of the total installed capacity,
15% (i.e., 60 GWon average) is required in the form of baseload and
additional capacity, for a reliable Brazilian power grid.

When the biomass supply potential is low, the effect of inter-
sectoral competition becomes visible. In the transport sector low-
carbon transportation using ethanol cars is decreasing and
substituted by electric cars. Subsequently, the total demand for
electricity increases with approximately 70 TWh in comparison to
the base scenario. Furthermore, the capacity of baseload biomass
fired power plants with carbon capture technology decreases by
5 GW. The low hydropower scenario shows a decrease of nearly
60 TWh of electricity from hydropower and no changes in EVs
compared to the baseload scenario. In both scenarios, the electricity
decrease is compensated for, by increasing the capacity of
concentrated solar power. This is an interesting alternative as it can
provide flexible electricity generation due to its 12-h thermal
storage unit. The low biomass scenario also compensates for the
decrease of baseload electricity (from biomass), by increasing the
capacity of coal-fired power plants (with carbon capture), and
nuclear energy.
Another effect of the interplay between the supply potential of

biomass and reliability, is the impact of charging patterns of EVs.
When conventional charging is applied (EV-HB scenario) peak load
increases by approximately 40 GW, resulting in the need for large
additional capacity (þ45 GW compared to the base scenario) and
costs (þ8% compared to the base scenario). However, when smart
charging is applied (EV-SB scenario), less additional capacity is
required (-3 GW) with lower costs (-0,5%), compared to the base
scenario. When less biomass is available and demand for electricity
increases further due to the electrifying transport fleet (EV-HL and
EV-SL scenario), the effect of EVs on the electricity system
amplifies.

The annual costs of energy supply range from 207 to 237 billion
dollars per year for the assessed scenarios. The additional costs (to
fulfill the reliability target) range from �2 to 30 billion dollar per
year in comparison to the base scenario. The highest costs are
observed in the two low biomass scenarios and the EV-home sce-
narios. The higher costs due to low biomass availability are because
they affect the entire energy system, and subsequently more
expensive alternatives are required. The impact of climate change
on hydropower can be overcome at relative low costs (þ1.7%
compared to the base case).

Assessing the interplay between resource availability, intersec-
toral competition and reliability of a Brazilian low-carbon power
system, shows that lower biomass supply leads to multiple changes
in the electricity mix. While a shift away from biobased electricity
to variable renewable energy is observed, this leads to a relativly
small loss in installed capacity (5 GW). However, due to a shift from
cars fueled with ethanol to electricity, more variable renewable
energy capacity is required (22 GW). This shift results in changes of
the reliability of the power system because of the charging strategy
of electric vehicles. Overall, the combination of lower biomass
supply and a conventional charging strategy, requires 68 GW of
additional capacity for a reliable power system. However, when
charged smart, only 10 GW of additional capacity is required to
ensure a reliable power system with a reduced biomass supply.
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