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Abstract. We consider one-dimensional long-range spin models (usu-
ally called Dyson models), consisting of Ising ferromagnets with slowly
decaying long-range pair potentials of the form 1/|i − j|α, mainly focus-
ing on the range of slow decays 1 < α ≤ 2. We describe two recent
results, one about renormalization and one about the effect of external
fields at low temperature.

The first result states that a decimated long-range Gibbs measure in
one dimension becomes non-Gibbsian, in the same vein as comparable
results in higher dimensions for short-range models.

The second result addresses the behaviour of such models under inho-
mogeneous fields, in particular external fields which decay to zero poly-
nomially as 1/(|i| + 1)γ . We study how the critical decay power of the
field, γ, for which the phase transition persists and the decay power α
of the Dyson model compare, extending recent results for short-range
models on lattices and on trees. We also briefly point out some analogies
between these results.

Keywords: Long-range Ising models · Hidden phase transitions ·
Generalized Gibbs measures · Slowly decaying correlated external fields

1 Introduction

In this short review we investigate some properties of one-dimensional long-
range spin models, also known as Dyson models. In his original work, Dyson [13]
considered an Ising spin system with formal Hamiltonian given by
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H(ω) = −
∑

i>j

J(|i − j|)ωiωj

and J(n) ≥ 0 for n ∈ N e.g. of the form J(n) = n−α.
There is no phase transition for this model, if the series M0 =

∑∞
n=1 J(n) is

infinite, since then there is an infinite energy gap between the ground states
and all other states, which yields that at all finite temperatures the system is
expected to be ordered. Neither is there a transition if |{n : J(n) �= 0}| < ∞, by
[49], since then the system is disordered at all finite temperatures. See also [6] and
[8] for accessible proofs of different versions of this absence of a transition under
conditions of sufficiently fast polynomial decay of J(n). Thus in particular, there
is no phase transition for J(n) being of finite range, and neither for J(n) = n−α

with α > 2 [47].
A conjecture due to Kac and Thompson [34], early on, stated that there

should be a phase transition for low enough temperatures if and only if α ∈ (1, 2].
Dyson proved a part of the Kac–Thompson conjecture, namely that for long-
range models of the form n−α with α ∈ (1, 2) there is a phase transition. Note
that for M0 < ∞ the infinite-volume measure is well defined.

We will consider, analogously to Dyson, one-dimensional ferromagnetic mod-
els with slowly decaying pair interactions of the form J(|i − j|) = 1/|i − j|α, for
appropriate values of the decay parameter, α ∈ (1, 2], which display a phase
transition at low temperature. This makes Dyson models particularly interest-
ing, because they thus can exhibit phase coexistence even in one dimension,
which is very unusual. Varying this decay parameter plays a similar role as
varying the dimension in short-range models. This can be done in a continuous
manner, so one obtains analogues of well-defined models in continuously varying
non-integer dimensions. This is a major reason why these models have attracted
a lot of attention in the study of phase transitions and critical behaviour (see
e.g. [7] and references therein).

In this paper, we first sketch the proof of the fact that, at low enough temper-
ature, under a decimation transformation the low-temperature measures of the
Dyson models are mapped to non-Gibbsian measures. Indeed, similar to what
happens for short-range models in higher dimensions, in the phase transition
region (1 < α ≤ 2 and low enough temperature), decimating the Gibbs mea-
sures to half the spins leads to non-Gibbsianness of the decimated measures. This
is obtained by showing the alternating configuration to be a point of essential
discontinuity for the (finite-volume) conditional probabilities of the decimated
Gibbs measures.

Just as with external fields or boundary conditions, the configuration of
renormalised spins, acting on the system of “hidden spins” which are to be
integrated out, can prefer one of the phases, and there are choices where this
preference depends only on spins far away. The renormalised spins can act as
some kind of (possibly correlated) random field, acting on the other (hidden)
spins.

We have extended our analysis to consider the effects of more general, pos-
sibly decaying, external fields on Dyson models and discuss how Dyson models
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in external fields decaying to zero as 1/(|i| + 1)γ behave as regards phase coex-
istence. Again similarly to what happens in short-range models, it appears that
the existence of a plurality of Gibbs measures persists when the decay of the
field is fast enough, whereas for slowly decaying fields we expect that there is
only one Gibbs measure which survives, namely the one favoured by the field.
What the appropriate decay parameter of the field, γ, which separates the two
behaviours is, depends on the Dyson decay parameter α. This extends recent
results on short-range models on either lattices or trees.

The review is organized as follows. In Sect. 2, we introduce notations and
definitions of Gibbs measures and describe what is known about phase transitions
in Dyson models. In Sect. 3, we introduce the decimation transformation – a
renormalization transformation that keeps odd or even spins only – and sketch
how to prove non-Gibbsianness at low temperature for the decimated Gibbs
measures of the Dyson models. We show that, conditioned on the even spins to
be alternating, a “hidden phase transition” occurs in the system of odd spins.
In Sect. 4 we will discuss Dyson models in decaying fields.

2 Gibbs Measures and Dyson Models

2.1 Specifications and Measures

We refer to [17] and [5] for proofs and more details on the general formalism
considered here.

Dyson models are ferromagnetic Ising models with long-range pair interac-
tions in one dimension, possibly with an external field which we will take pos-
sibly inhomogeneous, random and/or correlated. We study these models within
a more general class of lattice (spin) models with Gibbs measures on infinite-
volume product configuration spaces (Ω,F , ρ) = (EZ, E⊗Z, μ⊗Z

o ), the single-site
state space being the Ising space E = {−1,+1}, with the a priori counting
measure μ0 = 1

2 (δ−1 + δ+1). We denote by S the set of the finite subsets of
Z and, for any Λ ∈ S, write (ΩΛ,FΛ, ρΛ) for the finite-volume configuration
space (EΛ, E⊗Λ, μ⊗Λ

o ) – and extend afterwards the notations when consider-
ing infinite subsets S ⊂ Z and (restricted) infinite-volume configuration spaces
(ΩS ,FS , μS) � σS .

Microscopic states or configurations, denoted by σ, ω, η, τ, , etc., are elements
of Ω equipped with the product topology of the discrete topology on E for which
these configurations are close when they coincide on large finite regions Λ (the
larger the region, the closer). For ω ∈ Ω, a neighborhood base is provided by

NL(ω) =
{

σ ∈ Ω : σΛL
= ωΛL

, σΛc
L

arbitrary
}

, L ∈ N, ΛL := [−L,+L] ∈ S.

For any integers N > L, we shall also consider particular open subsets of
neighborhoods

N+
N,L(ω) =

{
σ ∈ NL(ω) : σΛN \ΛL

= +ΛN \ΛL
, σ arbitrary otherwise

}
,

(
and similarly for N −

N,L(ω)
)
.
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We denote by C(Ω) the set of continuous (quasilocal) functions on Ω, char-
acterized by

f ∈ C(Ω) ⇐⇒ lim
Λ↑S

sup
σ,ω:σΛ=ωΛ

| f(ω) − f(σ) |= 0. (1)

Monotonicity for functions and measures concerns the natural partial (FKG)
order “≤”, which we have on our Ising spin systems: σ ≤ ω if and only if σi ≤ ωi

for all i ∈ Z. Its maximal and minimal elements are the configurations + and −,
and this order extends to functions: f : Ω −→ R is called monotone increasing
when σ ≤ ω implies f(σ) ≤ f(ω). For measures, we write μ ≤ ν if and only if
μ[f ] ≤ ν[f ] for all f monotone increasing1.

Macroscopic states are represented by probability measures on (Ω,F , ρ),
whose main description – at least in mathematical statistical mechanics – is
in terms of consistent systems of regular versions of finite-volume conditional
probabilities with prescribed boundary conditions, within the so-called DLR for-
malism [11,37,51]. To do so, one introduces families of probability kernels that
are natural candidates to represent such versions of conditional probabilities.

Definition 1 (Specification). A specification γ =
(
γΛ

)
Λ∈S on (Ω,F) is a

family of probability kernels γΛ : ΩΛ × FΛc −→ [0, 1]; (ω,A) �−→ γΛ(A | ω)
s.t. for all Λ ∈ S:

1. (Properness) For all ω ∈ Ω, γΛ(B|ω) = 1B(ω) when B ∈ FΛc .
2. (Finite-volume consistency) For all Λ ⊂ Λ′ ∈ S, γΛ′γΛ = γΛ′ where

∀A ∈ F , ∀ω ∈ Ω, (γΛ′γΛ)(A|ω) =
∫

Ω

γΛ(A|σ)γΛ′(dσ|ω). (2)

These kernels also act on functions and on measures: for all f ∈ C(Ω) or
μ ∈ M+

1 ,

γΛf(ω) :=
∫

Ω

f(σ)γΛ(dσ|ω) = γΛ[f |ω]

and
μγΛ[f ] :=

∫

Ω

(γΛf)(ω)dμ(ω) =
∫

Ω

γΛ[f |ω]μ(dω).

Definition 2 (DLR measures). A probability measure μ on (Ω,F) is said to
be consistent with a specification γ (or specified by γ) when for all A ∈ F and
Λ ∈ S.

μ[A|FΛc ](ω) = γΛ(A|ω), μ−a.e. ω. (3)

We denote by G(γ) the set of measures consistent with γ which forms a Choquet
simplex [12,20].

A specification γ is said to be quasilocal when for any local function f , the
image γΛf should be a continuous function of the boundary condition:

γ quasilocal ⇐⇒ γΛf ∈ C(Ω) for any f local (or any f in C(Ω)). (4)

1 We denote μ[f ] for the expectation Eμ[f ] under a measure μ.
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A measure is said to be quasilocal when it is specified by a quasilocal
specification.

A particularly important subclass of quasilocal measures consists of the Gibbs
measures with (formal) Hamiltonian H defined via a potential Φ, a family Φ =
(ΦA)A∈S of local functions ΦA ∈ FA. The contributions of spins in finite sets
A to the total energy define the finite-volume Hamiltonians with free boundary
conditions

∀Λ ∈ S, HΛ(ω) =
∑

A⊂Λ

ΦA(ω), ∀ω ∈ Ω. (5)

To define Gibbs measures, we require for Φ that it is Uniformly Absolutely
Convergent (UAC), i.e. that

∑
A	i supω |ΦA(ω)| < ∞,∀i ∈ Z. One then can give

sense to the Hamiltonian at volume Λ ∈ S with boundary condition ω defined for
all σ, ω ∈ Ω as HΦ

Λ (σ|ω) :=
∑

A∩Λ �=∅ ΦA(σΛωΛc)(< ∞). The Gibbs specification
at inverse temperature β > 0 is then defined by

γβΦ
Λ (σ | ω) =

1

ZβΦ
Λ (ω)

e−βHΦ
Λ (σ|ω)(ρΛ ⊗ δωΛc )(dσ) (6)

where the partition function ZβΦ
Λ (ω) is an important normalizing constant. Due

to the, in fact rather strong, UAC condition, these specifications are quasilocal.
It appears that the converse is also true up to a non-nullness condition2 (see e.g.
[18,26,36,42,52]) and one can take:

Definition 3 (Gibbs measures). μ ∈ M+
1 is a Gibbs measure iff μ ∈ G(γ),

where γ is a non-null and quasilocal specification.

Quasilocality, called Almost Markovianness in [52], is a natural way to extend
the global (two-sided) Markov property. When μ ∈ G(γ) is quasilocal, then for
any f local and Λ ∈ S, the conditional expectations of f w.r.t. the outside of Λ
are μ-a.s. given by γΛf , by (2), and each conditional probability has a version
which itself is a continuous function of the boundary condition, so one gets for
any ω

lim
Δ↑Z

sup
ω1,ω2∈Ω

∣∣∣μ
[
f |FΛc

]
(ωΔω1

Δc) − μ
[
f |FΛc

]
(ωΔω2

Δc)
∣∣∣ = 0 (7)

Thus, for Gibbs measures the conditional probabilities always have continu-
ous versions, or equivalently there is no point of essential discontinuity. Those
are configurations which are points of discontinuity for ALL versions of the
conditional probability. In particular one cannot make conditional probabilities
continuous by redefining them on a measure-zero set if such points exist. In the
generalized Gibbsian framework, one also says that such a configuration is a bad
configuration for the considered measure, see e.g. [42]. The existence of such bad
configurations implies non-Gibbsianness of the associated measures.

2 expressing that ∀Λ ∈ S, ∀A ∈ FΛ, ρ(A) > 0 implies that γΛ(A|ω) > 0 for any ω ∈ Ω.
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2.2 Dyson Models: Ferromagnets in One Dimension

Definition 4 (Dyson models). Let β > 0 be the inverse temperature and
consider 1 < α ≤ 2. We call a Dyson model with decay parameter α the Gibbs
specification (6) with pair-potential ΦD defined for all ω ∈ Ω by

ΦD
A (ω) = − 1

|i − j|α ωiωj when A = {i, j} ⊂ Z, and ΦD
A ≡ 0 otherwise. (8)

We shall also consider Dyson models with non-zero magnetic fields h =
(hi)i∈Z acting as an extra self-interaction part ΦD

A (ω) = −hiωi

when A = {i} ⊂ Z

We first use that as a consequence of the FKG property [22,30], the Dyson
specification is monotonicity-preserving3, which implies that the weak limits
obtained by using as boundary conditions the maximal and minimal elements of
the order ≤ are well defined and are the extremal elements of G(γD).

Proposition 1 ([19,30,38]). For α > 1 (and not only for α ∈ (1, 2]), the weak
limits

μ−(·) := lim
Λ↑Z

γD
Λ (·|−) and μ+(·) := lim

Λ↑Z
γD
Λ (·|+) (9)

are well-defined, translation-invariant and extremal elements of G(γD). For any
f bounded increasing, any other measure μ ∈ G(γD) satisfies

μ−[f ] ≤ μ[f ] ≤ μ+[f ]. (10)

Moreover, μ− and μ+ are respectively left-continuous and right-continuous.

While μ− and μ+ coincide at high temperatures, and at all temperatures
when there is fast decay, α > 2, one main peculiarity of this one-dimensional
model is thus that when the range is long enough (1 < α ≤ 2), it is possible to
recover low-temperature behaviours usually associated to higher dimensions for
the standard Ising model, in particular phase transitions can occur. For more
details on the history of the proofs, one can consult [17] and references therein
or below.

Proposition 2 ([1,7,14,23–26,33,41,44,48]). The Dyson model with potential
(8), for 1 < α ≤ 2, exhibits a phase transition at low temperature:

∃βD
c > 0, such that β > βD

c =⇒ μ− �= μ+ and G(γD) = [μ−, μ+]

where the extremal measures μ+ and μ− are translation-invariant. They have
in particular opposite magnetisations μ+[σ0] = −μ−[σ0] = M0(β, α) > 0 at low
temperature. Moreover, the Dyson model in a non-zero homogeneous field h has
a unique Gibbs measure.
3 in the sense that for all bounded increasing functions f , and Λ ∈ S, the function

γD
Λ f is increasing.
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We remark that the infinite-volume limit of a state (or a magnetisation) in
which there is a + (resp. −)-measure or a Dyson model in a field h > 0 (resp.
h < 0) outside some interval is the same as that obtained from + (resp. −)-
boundary conditions (independent of the magnitude of h). This can be e.g. seen
by an extension of the arguments of [40], see also [39]. Notice that taking the
+-measure of the zero-field Dyson model outside a finite volume enforces this
same measure inside (even before taking the limit); adding a field makes it more
positive, and taking the thermodynamic limit then recovers the same measure
again.

The case of α = 2 is more complicated to analyse, and richer in its behaviour,
than the other ones. There exists a hybrid transition (the “Thouless effect”), as
the magnetisation is discontinuous while the energy density is continuous at
the transition point. Moreover, there is second transition below this transition
temperature. In the intermediate phase there is a positive magnetisation with
non-summable covariance, while at very low temperatures the covariance decays
at the same rate as the interaction, which is summable. For these results, see
[1,31,32,50], and also the more recent description in [44].

3 Decimation

We first apply a decimation transformation to the lattice 2Z. Similarly to what
was discussed in [15], to analyse whether the transformed measure is a Gibbs
measure, and in particular to show that it is non-Gibbsian, we have to show that
conditioned on a particular configuration of the transformed spins, the “hidden
spins” display a phase transition. If we choose this particular configuration to be
the alternating one, each hidden spin feels opposite terms from the left and the
right side, coming from all odd distances. Thus the conditioned model is a Dyson
model in zero field, at a reduced temperature. As such it has phase transition.

To translate this hidden phase transition into nonlocality of the “visible”
transformed spins follows straightforwardly the arguments of [15]. See [17] for
the details. We make use of the fact that one can define global specifications, so
there are no measurability problems due to global conditioning.

We start from μ+ as defined in (9), the +-phase of a Dyson model without
external field in the phase transition region, and apply the decimation transfor-
mation

T : (Ω,F) −→ (Ω′,F ′) = (Ω,F); ω �−→ ω′ = (ω′
i)i∈Z, with ω′

i = ω2i (11)

Denote ν+ := Tμ+ the decimated +-phase, formally defined as an image
measure via

∀A′ ∈ F ′, ν+(A′) = μ+(T−1A′) = μ+(A)

where
A = T−1A′ =

{
ω : ω′ = T (ω) ∈ A′}.

We study the continuity of conditional expectations under decimated Dyson
Gibbs measures of the spin at the origin when the outside is fixed in some special
configuration ω′

alt. By definition,
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ν+[σ′
0|F{0}c ](ω′) = μ+[σ0|FSc ](ω), ν+−a.s. (12)

where Sc = (2Z) ∩ {0}c, i.e. with S = (2Z)c ∪ {0} is not finite: the conditioning
is not on the complement of a finite set, and although the extension of the
DLR equation to infinite sets is direct in case of uniqueness of the DLR-measure
for a given specification [19,21,27], it can be more problematic otherwise: it is
valid for finite sets only and measurability problems might arise in case of phase
transitions when one wants to extend them to infinite sets. Nevertheless, beyond
the uniqueness case, such an extension was made possible by Fernández and
Pfister [19] in the case of attractive models. As we will make essential use of it,
we describe it now in our particular case. The concept they introduced is that of
a global specification, and this is in fact a central tool in some of our arguments.

Definition 5 (Global specification, [19]). A global specification Γ on Z is
a family of probability kernels Γ = (ΓS)S⊂Z on (ΩS ,FSc) such that for any S
subset of Z:

1. ΓS(·|ω) is a probability measure on (Ω,F) for all ω ∈ Ω.
2. ΓS(A|·) is FSc-measurable for all A ∈ F .
3. ΓS(B|ω) = 1B(ω) when B ∈ FSc .
4. For all S1 ⊂ S2 ⊂ Z, ΓS2ΓS1 = ΓS2 where the product of kernels is made
as in (2).

Similarly to the consistency with a (local) specification, one introduces the
compatibility of measures with a global specification.

Definition 6. Let Γ be a global specification. We write μ ∈ G(Γ), or say that
μ ∈ M+

1 is Γ-compatible, if for all A ∈ F and any S ⊂ Z,

μ[A|FSc ](ω) = ΓS(A|ω), μ−a.e. ω. (13)

Note, by considering S = Z, that G(Γ) contains at most one element.
In the case considered here, we get a global specification Γ+ such that μ+ ∈
G(Γ+), with S = (2Z)c ∪{0} consisting of the odd integers plus the origin. Hence
S = (2Z)c ∪ {0} and (12) yields for ν+-a.e. all ω′ ∈ NΛ′(ω′

alt) and ω ∈ T−1{ω′}:

ν+[σ′
0|F{0}c ](ω′) = Γ+

S [σ0|ω] μ+−a.e.(ω). (14)

to eventually get (see [17,19]) an expression of the latter in terms of a constrained
measure μ+,ω

(2Z)c∪{0}, with ω ∈ T−1{ω′} so that we get for any ω′ ∈ NΛ′(ω′
alt),

ν+[σ′
0|F{0}c ](ω′) = μ+,ω

(2Z)c∪{0} ⊗ δω2Z∩{0}c [σ0].

Thanks to monotonicity-preservation, the constrained measure is explicitly
built as the weak limit obtained by +-boundary conditions fixed after a freezing
the constraint to be ω on the even sites:

∀ω′ ∈ NΛ′(ω′
alt), ∀ω ∈ T−1{ω′},

μ+,ω
(2Z)c∪{0}(·) = lim

I∈S,I↑(2Z)c∪{0}
γD

I (· | +(2Z)c∪{0})ω2Z∩{0}c). (15)
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Observe that when a phase transition holds for the Dyson specification – at
low enough T for 1 < α ≤ 2 – the same is true for the constrained specification
with alternating constraint (although at a lower T). This phase transition then
implies non-Gibbsianness of ν+ (and for all other Gibbs measures of the model,
see [17]).

Theorem 1 ([17]). Let α ∈ (1, 2], let μ be a Gibbs measure for the interaction
given by (8) and let the transformation T be defined by (11). Then for low
temperatures, β > 2αβD

c , the decimated measure ν = T ◦ μ is non-Gibbs.

Sketch of Proof. The main idea is to prove that the alternating configuration is
an essential point of discontinuity for the decimated conditional expectations. As
already observed, because any non-fixed site at all odd distances has a positive
and a negative spin whose influences cancel, conditioning by this alternating con-
figuration yields a constrained model that is again a Dyson model at zero field,
but at a temperature which is higher by 2α. This again has a low-temperature
transition in our range of decays 1 < α ≤ 2. The coupling constants are indeed
multiplied by a factor 2−α, due to only even distances occurring between inter-
acting (hidden) spins.

To prove non-Gibbsianness in [17], we essentially follow the proof strategy
sketched in [15], by showing that within a neighborhood NL(ω′

alt), there exists
two subneighborhoods N ±

N,L of positive measure on which the conditional mag-
netizations defined on NN , L±

M+ = M+(ω) = μ+,ω+

(2Z)c∪{0}[σ0] and M− = M−(ω) = μ+,ω−

(2Z)c∪{0}[σ0] (16)

differ significantly.
The role of the “annulus” where configurations are constrained to be either

+ or − is played by two large intervals [−N,−L − 1] and [L + 1, N ]. Due to the
long range of the interaction, their might be a direct influence from the boundary
beyond the annulus, to the central interval. To avoid effects from this influence,
we take N much larger than L. An argument based on “equivalence of boundary
conditions” as in e.g. [6], under a choice N = L1/(α−1) then implies that (16)
does hardly depend on ω.

Once this choice of big annulus is made, observe that if we constrain the
spins in these two intervals to be either + or −, within these two intervals the
measures on the unfixed spins are close to those of the Dyson-type model in
a positive, c.q. negative, magnetic field. As those measures are unique Gibbs
measures, no influence from the boundary can be transmitted.

Indeed, in contrast to the case of the purely alternating configuration, in the
case when we condition on all primed spins to be + (resp. −) in these large annuli,
there is no phase transition and the system of unprimed spins has a unique Gibbs
measure. It is a Dyson model, again at a heightened temperature, but now
in a homogeneous external field, with positive (resp. negative) magnetisation
+M0(β, α) > 0 (resp. −M0(β, α) < 0), stochastically larger (resp. smaller) than
the zero-field + ( resp. −)-measure.
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In the −-case, in the annulus the magnetisation of the -even-distance- Dyson–
Ising model is essentially that of the model with a negative homogeneous external
field −h everywhere, which at low enough temperature and for L large enough is
close to (and in fact smaller than) the magnetisation of the Dyson–Ising model
under the zero-field −-measure, i.e to −M0(β, α) < 0. Thus the inner inter-
val where the constraint is alternating feels a −-like condition from outside its
boundary. On the other hand, the magnetisation with the constraint ω+ will be
close to or bigger than +M0(β, α) > 0 so that a non-zero difference is created at
low enough temperature. One needs again to adjust the sizes of L and N to be
sure that boundary effects from outside the annulus are negligible in the inner
interval.

Thus, for a given δ > 0, e.g. δ = M0(β, α)/2, for arbitrary L one can find
N(L) large enough, such that the expectation of the spin at the origin differs by
more than δ. One can therefore feel the influence from the decimated spins in
the far-away annulus, however large the central interval of decimated alternating
spins is chosen. Thus, indeed it holds that M+ − M− > δ, uniformly in L. ��

In our choice of decimated lattice we made use of the fact that the constrained
system, due to cancellations, again formed a zero-field Dyson-like model. This
does not work for decimations to more dilute lattices, but although the original
proofs of Dyson [13] and of Fröhlich and Spencer [24], or the Reflection Positivity
proof of [23] do no longer apply to such periodic-field cases, the contour-like
arguments of [7] and [33] could presumably still be modified to include such
cases. Compare also [16,35].

The analysis of [9] which proves existence of a phase transition for Dyson
models in random magnetic fields for a certain interval of α-values should imply
that in that case there are many more, random, configurations which all are
points of discontinuity. We note that choosing independent spins as a constraint
provides a random field which is correlated. However, these correlations decay
enough that this need actually not spoil the argument. Similarly, one should
be able to prove that decimation of Dyson models in a weak external field will
result in a non-Gibbsian measure. An interesting question would be to perform
the analysis of [45]) or [43] to get a.s. configuration-dependent correlation decays.

On the other side of the Gibbs-non-Gibbs analysis, when the range of the
interaction is lower, i.e. for α > 2, or the temperature is too high, unique-
ness holds, for all possible constraints and the transformed measures should be
Gibbsian. Some standard high-temperature results apply, which were already
discussed in [15].

About these shorter-range models, (i.e. long-range models with faster polyno-
mial decay), Redig and Wang [46] have proved that Gibbsianness was conserved,
providing in some cases (α > 3) a decay of correlation for the transformed
potential. In our longer-range models, for intermediate temperatures (below the
transition temperature but above the transition temperature of the alternating-
configuration-constrained model) decimating, both +- and −-measures, should
imply Gibbsianness, essentially due to the arguments as proposed for short-range
models in [29].
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4 Dyson Models in Decaying Fields

In this section we consider one-dimensional Dyson models in a decaying field
with decay parameter γ. The corresponding interaction ΦD

A (ω) is defined by

ΦD
A (ω) =

{
− J

|i−j|α ωiωj if A = {i, j}
− h

(|i|+1)γ ωi if A = {i} (17)

for some J, h > 0. The question raised in [5] is whether it is possible to extend
results from e.g. [7,9], and in particular to investigate whether and under which
conditions the existence of two distinct phases prevails in the presence of an
external field. Let us mention that one-dimensional Dyson models in a field were
considered before, for example in [35], where uniqueness was proven for fields
which are either strong enough (ΦD

{i} = hiωi, where there exists h0 > 0 such
that |hi| > h0) or periodic in large enough blocks.

The main tool we will use are the one-dimensional contours of [7]. Recall that
in [7] the authors prove that under the technical constraints α ∈ (α∗, 2], where
α∗ := 3 − log(3)/log(2), J(1) >> 1 and h = 0, there exists βD

c,0 > 0 such that
for all β > βD

c,0

M0(β, α) = μ+[σ0] = −μ−[σ0] > 0

i.e. there is spontaneous magnetization yielding non-uniqueness of the Gibbs
measures, μ+ �= μ−. This result was generalized to all values of α ∈ (1, 2] in [44],
again assuming the technical condition J(1) >> 1.

Phase coexistence in a positive external field is an unusual phenomenon,
since typically Gibbs measures for models in a field are unique. It was previ-
ously observed in nearest-neighbour pair potentials with polynomially decaying
fields in d ≥ 2, see [2,3,10] or for sufficiently fast decaying (but not necessarily
summable) fields on trees [4]. In [3] it is proven that in nearest-neighbour models
for γ > 1 and low enough temperatures, there are multiple Gibbs states, whereas
for γ < 1 there is a unique one.

Pirogov-Sinai is a robust and often applicable version of the Peierls contour
argument [28], applicable in d ≥ 2, which is the most generally applicable app-
roach in higher dimensions.

In [7], inspired by and extending results of the seminal paper of Fröhlich and
Spencer [24], the authors presented a contour argument which works even for
long-range models in one dimension, in particular, it worked for one-dimensional
Dyson models with α∗ < α ≤ 2. The techniques used in [7] rely on developing a
graphical representation of spin configurations in terms of triangular contours.

It turns out that for a one-dimensional long-range model in a decaying field,
depending on the relation between α and γ, there can be either one or two
extremal Gibbs measures. Let us emphasize that we manage to remove technical
restrictions both on on α and J(1). We can prove the following theorem.

Theorem 2 ([5]). Let α ∈ (1, 2] and γ > max{α − 1, α∗ − 1} be the exponents
of the Dyson model w.r.t. an interaction ΦD given by (17). Then, there exists
βD

c,h > 0 s.t. for all β > βD
c,h we have M0(β, α, γ) > 0, i.e. μ+ �= μ−.
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Sketch of Proof. The main idea of the proof is to extend the analysis in [7,9],
combined with [44]. Consider a finite-volume Gibbs measure on an interval, say
Λ = [−N,N ] and fix +-boundary conditions. Each spin configuration σ can be
uniquely mapped into a triangle configuration T = (T1, ..., Tn) where endpoints
of the triangles are defined by interface points dividing plus from minus spins.
Contours Γ are collections of triangles Ti such that they are in some sense well
separated from each other and subadditive, so that we obtain a lower bound for
the energy of given triangle configuration T . Phase coexistence will follow from
the well-known Peierls argument for d > 1, i.e. from the estimate that for β
sufficiently large

μ+
Λ [σo = −1] ≤ μ+

Λ [{o ∈ Γ}] ≤ 1
Z+

Λ

∑

Γ	o

∑

Γ compatible

e−βH(T ) <
1
2
.

The main difficulty then is to obtain a good energetic lower bound for the Hamil-
tonian including the effect of the external field. ��

Physically, an argument explaining the statement of the theorem goes as
follows: There is a competition between the effect of the pair interaction and that
of the external field. Having minus boundary conditions means that inserting a
large interval [−L,L] of plus spins will cost an energy of order

∑

|i|<L

∑

|j|>L

|i − j|−α = O(L2−α).

However, the gain in energy due to the spins following the external magnetic
field is of order ∑

|i|<L

|i|−γ = O(L1−γ).

Thus, (somewhat similar to an Imry–Ma argument), we see that for γ > α−1
we should expect that the field is too weak to overcome the boundary conditions
and the plus and minus measures are different: μ+ �= μ−.

When the opposite case pertains, that is γ < α− 1, there should be a unique
Gibbs measure, with a magnetisation in the direction of the field, whatever the
boundary conditions employed. We are in the process of rigorising this picture.

In fact, the analogous prediction in the 2-dimensional short-range model has
been fully proved by [3,10], also giving that the critical value for γ equals 1, where
is possible to prove the phase transition even in the critical case, assuming that
h is small enough. Here we have the same situation, we can extend the theorem
above for the case when γ = max{α − 1, α∗ − 1} if we take h small enough.

The restriction on γ involving α∗ seems due to technical reasons, since we
use arguments developed in [7]. However, from the physical argument sketched
above, we expect that these limitations should not be required and the argument
should work, just assuming the inequality between γ and α.

Remark Added in Proof: J. Littin has kindly informed us that he has per-
formed a similar analysis in which the signs of the external fields are chosen i.i.d.
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random and symmetric. In that case, instead of γ = α − 1, the threshold value
for phase transition stability becomes γ = α − 1

2 .
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20. Föllmer, H.: Phase transition and martin boundary. In: Séminaires de Probabilités
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