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NO LONGER DISCRETE:

MODELING THE DYNAMICS

OF SOCIAL NETWORKS

AND CONTINUOUS BEHAVIOR

Nynke M. D. Niezink*
Tom A. B. Snijders*,y

Marijtje A. J. van Duijn*

Abstract

The dynamics of individual behavior are related to the dynamics of the social

structures in which individuals are embedded. This implies that in order to

study social mechanisms such as social selection or peer influence, we need

to model the evolution of social networks and the attributes of network actors

as interdependent processes. The stochastic actor-oriented model is a statis-

tical approach to study network-attribute coevolution based on longitudinal

data. In its standard specification, the coevolving actor attributes are

assumed to be measured on an ordinal categorical scale. Continuous vari-

ables first need to be discretized to fit into such a modeling framework. This

article presents an extension of the stochastic actor-oriented model that does

away with this restriction by using a stochastic differential equation to model

the evolution of a continuous attribute. We propose a measure for explained

variance and give an interpretation of parameter sizes. The proposed method
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is illustrated by a study of the relationship between friendship, alcohol con-

sumption, and self-esteem among adolescents.

Keywords

social networks, longitudinal data, continuous-time modeling, stochastic dif-

ferential equations

1. INTRODUCTION

Social actors, such as people, organizations, and countries, simultane-

ously shape and are shaped by their social context. For example, indi-

viduals may select their friends based on their behavior, but they may

also change their own behavior based on that of their friends. Social

relationships among actors, such as friendship or collaboration, can be

represented in social networks. These networks can change over time,

often in interdependent relation with changing actor characteristics.

While earlier studies of network dynamics were mainly descriptive in

nature, many statistical models for network dynamics have been devel-

oped since (e.g., Almquist and Butts 2014; Doreian and Stokman 1997;

Krivitsky and Handcock 2014; Robins and Pattison 2001; Snijders

2001, 2005). For the study of the interdependent dynamics of networks

and individual behavior, the stochastic actor-oriented model is widely

used (Snijders, Steglich, and Schweinberger 2007; Steglich, Snijders,

and Pearson 2010).

The stochastic actor-oriented model can be used to test hypotheses

about the social mechanisms driving network and actor attribute

dynamics and study the interdependent processes of partner selection

and social influence. One basic assumption of the model proposed by

Snijders et al. (2007) is that dynamic actor attributes are measured on

an ordinal scale with a limited number of categories. Under this assump-

tion, the network and attribute evolution can be represented in a com-

mon statistical framework (i.e., by a continuous-time Markov chain

with a discrete outcome space). However, restricting the coevolving

attribute to a limited number of categories has proven to be a practical

limitation in several studies because of the necessity to discretize attri-

butes measured on a very fine-grained or continuous scale.

In a study of the development of body weight of adolescents and their

friendships, for example, Haye et al. (2011) split the dependent attribute,

body mass index, into ordered categories to make their analysis feasible.
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Flashman (2012) measured scholastic achievement on a continuous

scale and later transformed it into a five-point scale for the same pur-

pose. Some other continuous variables that had to be treated similarly

are job satisfaction (Agneessens and Wittek 2008), self-reported and

peer-reported aggression and victimization (Dijkstra et al. 2012), and

physical activity (Gesell, Tesdahl, and Ruchman 2012).

For corporate actors, performance indicators composed of multiple

variables and monetary outcomes are often measured on a continuous

scale. Many individual physical attributes are continuous variables.

Psychological scales often assume the existence of one or more latent

continuous dimensions, measured on a fine-grained categorical scale.

For all such measures, discretization into a few categories would involve

arbitrary choices (number and width of categories) and could lead to loss

of information. Moreover, different discretizations could lead to differ-

ent results.

The role of peers for organizational performance or individual health

outcomes has been the subject of several studies (e.g., Checkley et al.

2014; Haye et al. 2011). Psychological characteristics may be suscepti-

ble to social influence (e.g., depression through corumination), but they

may also play a buffering role. People with certain psychological char-

acteristics might be more susceptible to influence by their peers than

others. If we want to study such a moderating effect, unless the charac-

teristic is a stable personality trait, we need to model the network

through which influence occurs, the variable that is influenced, and the

psychological moderator as three coevolving elements.

Motivated by the practical limitations discussed previously, Niezink

and Snijders (2017) have extended the stochastic actor-oriented model

for the coevolution of networks and continuous actor behavior. In this

article, we first give an applied introduction to this model. Newly treated

in the current study are a proposal for defining explained variance and

an extensive discussion about interpretation of results, two topics that

are not addressed in Niezink and Snijders (2017) but that are essential

for the model to be useful in practice. We use the method to study

whether self-esteem moderates adolescents’ susceptibility to peer influ-

ence on alcohol use by combining a stochastic actor-oriented model for

the coevolution of a network and a discrete individual behavior variable

(Steglich et al. 2010) with the model for continuous actor behavior

(Niezink and Snijders 2017). The study illustrates how the new model

may be of help in moving forward and transcending the “selection
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versus influence” narrative that has gained popularity after Steglich

et al. (2010).

The model for the coevolution of networks and continuous actor

behavior applies a stochastic differential equation to model behavior

dynamics. Stochastic differential equations model the dynamics of con-

tinuous variables and can be considered the continuous-time version of

autoregressive models for time series data. The use of ordinary differen-

tial equations, their deterministic counterparts, in sociological applica-

tions was first advocated by Coleman (1964, 1968). Such models

quickly became a standard part of the toolbox of mathematical sociolo-

gists (Beltrami 1993; Blalock 1969). Applications include the study of

inequality in socioeconomic careers (Rosenfeld and Nielsen 1984) and

the study of change in academic achievement and the role of school

effects in this process (Sørensen 1996).

Stochastic differential equations have been applied extensively in

econometrics and financial mathematics (e.g., Fouque, Papanicolaou,

and Sinclair 2000), but many of the contributions to the social science

literature have been primarily technical (e.g., Bergstrom 1984; Hamerle,

Singer, and Nagl 1993; Oud and Jansen 2000; Singer 1998, 2012).

However, recent work attests to an increase in interest in the application

of stochastic differential equations in the social sciences (e.g., Deboeck

2012; Oravecz, Tuerlinckx, and Vandekerckhove 2011; Reinecke,

Schmidt, and Weick 2005; Voelkle et al. 2012). Moreover, their use is

stimulated through the introduction of open source software (e.g.,

Driver, Oud, and Voelkle 2017).

Relational phenomena too have been studied by differential equa-

tions but mainly on the dyad level—that is, pertaining to pairs of indi-

viduals. Nicholson et al. (2011), for example, assessed the reciprocal

relationships between maternal depressive symptoms and children’s

behaviors. Felmlee and Greenberg (1999) defined a theoretical model

of romantic partner interaction using differential equations in which the

behaviors of partners mutually affect each other. This model has been

applied to study affective dynamics in couples (e.g., Steele, Ferrer, and

Nesselroade 2014).

So far, stochastic differential equations in the social sciences have

mainly been applied to study developmental processes within individu-

als or in dyads from a psychological perspective. In this article, stochas-

tic differential equation models are combined with models for the
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evolution of social structures, opening them up to a new world of socio-

logical questions.

One sociological puzzle is that of network autocorrelation—the phe-

nomenon that in a social network, related social actors often show simi-

larities. Social influence and network partner selection based on shared

characteristics are examples of processes that may lead to network auto-

correlation. Many methods have been proposed to study social influence

on continuous behavior variables. Reviews of methods to identify peer

effects include Mouw (2006), An (2014), and Sacerdote (2014). In sev-

eral models, social influence is studied while keeping the network fixed.

For example, the linear model in which actors’ attribute values are

regressed on the average value of their network neighbors constitutes a

basic statistical model for peer influence (Manski 1993). A related

model for social influence is the network autocorrelation model, which

originates in spatial analysis as a linear model for spatially distributed

data (e.g., Doreian 1980, 1981; Dow, Burton, and White 1982; Friedkin

1998; Leenders 2002; Ord 1975). While originally this model was

defined for cross-sectional data, extensions for longitudinal data have

been proposed as well (e.g., Cressie 1991; Elhorst 2001; Zhu et al.

2017).

Steglich et al. (2010) argue that to come to grips with the distinction

between selection and influence, a case of the “reflection problem” as

discussed by Manski (1993), it is necessary to study the mutual depen-

dence between network and behavior, where both are studied longitud-

inally as endogenously changing structures. To study the simultaneous

dynamics of spatial weights and continuous behavior variables, Hays,

Kachi, and Franzese (2010) proposed an extension of the spatial auto-

correlation model in which the spatial weights are estimated based on

covariates explaining connectivity and on the dynamic individual beha-

vior variables. O’Malley (2013) touched on the idea of combining a

temporal network autocorrelation model with a temporal extension of

the p2 model, which is a dyad-independent random effects model for

network data (Van Duijn, Snijders, and Zijlstra 2004). Leenders (1997)

combined a longitudinal autocorrelation model with a dyad-independent

Markov model for network dynamics.

While the longitudinal autocorrelation models mentioned previously

are all discrete-time models, the model presented in this article is a

continuous-time model extending the approach of stochastic actor-

oriented models (Snijders 2001). The idea to use continuous-time
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models for network evolution was already advocated by Holland

and Leinhardt (1977) and Wasserman (1977). The advantages of

continuous-time modeling are discussed, for example, by Voelkle et al.

(2012) and Block et al. (2018). To summarize, continuous-time model-

ing provides a good framework for representing the feedback that is

essential for interdependent dynamics (or coevolution) and offers a

direct approach to overcome the problem of nonequidistant panel

waves. Moreover, the model presented here does not assume dyad inde-

pendence, and it can be used to study a wide range of social mechan-

isms, such as transitivity and popularity, driving network change. Such

structural mechanisms cannot be modeled in the autocorrelation models

mentioned previously.

The overall structure of this article is as follows. Section 2 briefly

introduces stochastic differential equation models. Section 3 defines the

model for the coevolution of a social network and the continuous attri-

bute of network actors. Section 4 discusses effect sizes—parameter

interpretation and explained variance—for the continuous attribute

model. Section 5 presents the study of the coevolution of friendship,

alcohol use, and self-esteem among adolescents.

2. STOCHASTIC DIFFERENTIAL EQUATIONS

This section briefly introduces stochastic differential equation models

with a simple example. Øksendal (2000) and, in a more applied way,

Iacus (2008) give general treatments of the topic.

A differential equation model is a continuous-time model describing

the evolution of a continuous variable. In a continuous-time model, time

is not an explanatory variable. Instead, the model as a whole, with time

as an index variable, explains the dynamics underlying an evolutionary

process (e.g., people do not change weight because of time but over

time). The general form of an ordinary (i.e., nonstochastic) differential

equation modeling the evolution of a variable z is

dz(t)

dt
= f (z(t), u(t)): ð1Þ

We focus here only on first-order differential equations; that is, higher

order derivatives are not included in the equation. The equation models

the change in z, expressed by its derivative, as some function f of a set

of explanatory variables u, which can be constant or time-dependent,
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and the value of z itself. A simple example of an ordinary differential

equation is

dz(t)

dt
= az(t) + b: ð2Þ

The only function z(t) that satisfies this differential equation is

z(t) = z0eat +
b

a
(eat � 1), ð3Þ

where z0 denotes the value of z at time t = 0. This function is the solu-

tion of equation 2. Parameter a is a feedback parameter; it represents

the influence of z(t) on its own rate of change. The stability of equation

3 is determined by feedback parameter a. Empirical growth processes

are usually stable. However, the situation of explosive growth of social

processes also has considerable theoretical interest (Sørensen 1978).

Figure 1 illustrates the behavior of solutions to differential equation 2.

If a is positive, z(t) will increase (or decrease) at an ever-increasing rate,

as shown in Figure 1a. If a is negative, z(t) will converge to the equili-

brium value �b=a of the solution, as shown in Figure 1b. In the latter,

stable case, z(t) is the weighted mean of its initial value z0 (weight ea)

and the equilibrium value �b=a (weight 1� ea) for any time t. The rate

of change of z(t) is proportional to the distance of z(t) to the equili-

brium. This means that values further away from the equilibrium move

toward it at a faster pace than those close to the equilibrium (see again

Figure 1b). Moreover, the larger jaj is, the faster z(t) will converge to

the equilibrium value.

Differential equation 2 describes a deterministic process; given an

initial value z0, it spells out the complete evolution of z. It also describes

a very smooth process (see again Figure 1). In many applications, how-

ever, the evolution processes of the variables of interest behave errati-

cally. In those cases, models that allow for random disturbances are

more appropriate. Stochastic differential equation models do exactly this

by including an error term in the differential equation (Øksendal 2000).

Let Z(t) be a continuous random variable. A stochastic differential

equation model, similar to the deterministic model 3, is

dZ(t) = ½aZ(t) + b�dt + g dW (t), Z(0) = z0, t � 0: ð4Þ

Modeling the Dynamics of Social Networks and Continuous Behavior 301



where W (t) denotes the Wiener process (also known as standard

Brownian motion), a continuous-time error process. The strength of the

disturbance of W (t) is given by diffusion coefficient g. A draw from a

Wiener process is called a sample path. The Wiener process is charac-

terized by the following three properties (e.g., Mikosch 1998):

1. Its initial value is zero: W (0) = 0.

2. Its sample paths have no “jumps” (or more formally, W (t) is continuous

with probability one).

3. It has independent increments W (t)�W (s) that are N (0, t � s) distrib-

uted, where 0 � s\ t.

Here, N (m, n) denotes a normal distribution with mean m and variance

n. The independent increments property means that for all nonoverlap-

ping time intervals ½s1, t1� and ½s2, t2�, with 0 � s1\t1 � s2\t2, the

increments W (t1)�W (s1) and W (t2)�W (s2) are independent random

variables, and the similar condition holds for any number of increments.

Combining the first and third property shows that W (t) has a N (0, t)

distribution for every t � 0. Both W (t � s) and W (t)�W (s) are nor-

mally distributed with mean zero and variance t � s. This variance is

equal to the length t � s of the interval under study. The larger the inter-

val, the larger the fluctuations of the Wiener process on the interval.

Note that even though the distributions of W (t � s) and W (t)�W (s)

Figure 1. The behavior of solutions to differential equation 2.
Note. (a) The unstable situation: a . 0. (b) The stable situation: a \ 0.
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are the same, in a particular sample path, the subpath between 0 and

t � s and that between s and t do not need to look similar.

The Wiener process W (t) is not differentiable with respect to time.

Therefore, equation 4 is expressed in terms of infinitesimal increments

dZ(t) instead of the usual derivatives dZ(t)=dt. In fact, equation 4 is a

shorthand notation for the stochastic integral equation

Z(t) = z0 +

ðt

0

½aZ(s) + b�ds +

ðt

0

g dW (s), ð5Þ

where the second integral is an Itô stochastic integral (Øksendal 2000).

An intuitive interpretation of equations 4 and 5 is that in a small time

interval of length Dt, the stochastic process Z(t) changes its value by an

amount that is normally distributed with mean ½aZ(t) + b�Dt and var-

iance g2Dt and that is independent of the past behavior of the process.

The solution to equations 4 and 5 is

Z(t) = z0eat +
b

a
(eat � 1) + g

ðt

0

ea(t�s) dW (s): ð6Þ

Unlike z(t) in equation 3, Z(t) is a random variable, normally distributed

with mean

E(Z(t)) = z0eat +
b

a
(eat � 1) ð7Þ

and variance

var(Z(t)) =
g2

2a
(e2at � 1): ð8Þ

A derivation of equations 6 through 8 and further background on linear

stochastic differential equations can be found in Mikosch (1998). In the

case a\0, for increasing values of t, the distribution of Z(t) approaches

a normal distribution with mean �b=a, as in the deterministic case, and

variance �g2=(2a). This variance represents a balance between the dif-

fusion coefficient g and the damping feedback a. Note that the addi-

tional stochastic term in differential equation 4 does not affect the

expectation value, that is, E(Z(t)) = z(t).

Figure 2 explores stochastic differential equation 4 with a =� 2,

b = 6, g = 1, and z0 = 0. Figure 2a shows 50 sample paths (realizations)

of the solution to the stochastic differential equation. The figure also
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shows the solution of ordinary differential equation 2 for a =� 2, b = 6,

and z0 = 0. The sample paths fluctuate around the solution of equation

2, which is in line with the fact that E(Z(t)) = z(t). Figure 2b shows the

variance of the 50 sample paths in Figure 2a. It also shows that when

the number of sample paths is increased, their variance converges to the

theoretical variance in equation 8. In the example, the equilibrium mean

is 3, and the equilibrium variance is 0.25.

3. STOCHASTIC ACTOR-ORIENTED MODEL

The stochastic actor-oriented model represents network and attribute

coevolution as an emergent group-level result of interdependent attri-

bute changes and network changes (Snijders 2001; Snijders et al. 2007).

One important characteristic of the model is its assumption that changes

occur continuously in time. This means that in a real-valued time inter-

val, changes can occur at any time point. The models discussed by

Snijders (2001) and Snijders et al. (2007) are defined for discrete out-

come spaces so that a change is always a discrete jump (one tie change

or one category change in an attribute value) and on a finite interval

only finitely many jumps will occur.

In the stochastic actor-oriented model, we assume that the observa-

tions of the network and actor attributes at discrete time points are the

outcomes of an underlying continuous-time Markov process. In the cur-

rent extension, we model the network evolution by a continous-time

Markov chain (Norris 1997) and the evolution of a continuous actor

attribute by a stochastic differential equation. These model components

are discussed in Sections 3.2 and 3.3. Both processes satisfy the Markov

property: Given their current state, the probability distribution of future

states of the processes is independent of their past states. The Markov

chain and the stochastic differential equation together constitute the

network-attribute coevolution model (Section 3.4). In Section 3.1, we

introduce the necessary notation.

3.1. Notation and Data Structure

The outcome variables for which the coevolution model is defined are

the dynamic network and the dynamic actor attributes. The network is

defined by its node set f1, . . . , ng, representing the network actors, and

the binary tie variables Xij, representing a directed relation between

Modeling the Dynamics of Social Networks and Continuous Behavior 305



actors; Xij = 1 and Xij = 0, respectively, indicate the presence and absence

of a tie from actor i to actor j. The relation is assumed to be nonreflex-

ive, that is, Xii = 0 for i = 1, . . . , n. The network as a whole is represented

by the n3n adjacency matrix X = (Xij).

The actor attributes are continuous variables, and they are measured

on an interval scale. We will specify the stochastic actor-oriented model

for a single coevolving continuous attribute, but extension to multivari-

ate attributes is straightforward (Niezink and Snijders 2017). The vector

Z contains the attribute variables for the n actors; Zi denotes the attri-

bute of actor i. Time dependence in the model is indicated by denoting

X = X (t) and Z = Z(t).

The data we consider are network-attribute panel data; the network

and the attribute data are collected at two or more points tm in time. The

period between tm and tm + 1 will be referred to as period m. The data are

indicated by lowercase letters. We thus observe networks x(tm) and attri-

butes z(tm). The stochastic model components are indicated by upper-

case letters, where X (t) denotes the network model and Z(t) the attribute

model. The state of the model is given by Y (t) = (X (t), Z(t)). Although

they are often not mentioned explicitly, exogenous actor covariates and

dyadic covariates (characteristics of pairs of actors) may also be part of

the state Y (t).

3.2. Network Evolution Model

We include here a short definition of the stochastic actor-oriented

model. For a detailed discussion, see Snijders (2001, 2005, 2017b). A

characteristic property of the model is its actor-oriented architecture.

Changes in the network are modeled as choices made by actors about

their outgoing ties. In other words, actors control the ties they send. We

assume that at any given moment, all actors act conditionally indepen-

dently of each other given the current state of the network and attributes

of all actors. Moreover, actors are assumed to make only one tie change

at a time. Similar to many other agent-based models, the model is based

on local rules for actor behavior. It combines the strengths of agent-

based simulation and statistical modeling (Snijders and Steglich 2015).

The stochastic actor-oriented model decomposes the network evolu-

tion process into two stochastic subprocesses. The first subprocess mod-

els the speed by which the network changes or, more precisely, the rate

at which each actor in the network gets an opportunity to change one of
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their outgoing ties. The second subprocess models the mechanisms that

determine which particular tie is changed when the opportunity arises.

In the following, we specify both subprocesses.

For each actor i, the waiting time until the next opportunity to make

a tie change is exponentially distributed with a parameter given by a rate

function li. The waiting time until any of the actors makes a change is

exponentially distributed with rate lþ =
Pn

i = 1 li. The rate function li

may depend on the state Y (t). Here we assume period-dependent con-

stant and equal rate functions for all actors: In period m, li = lm for all

actors i. We thus assume homogeneous change activity across actors.

The extension to nonconstant rate functions is straightforward and has

been implemented (Ripley et al. 2018; Snijders 2005).

If actor i has the opportunity to make a network change, he or she can

either choose to maintain the status quo or change a tie to one of the

other actors. In terms of adjacency matrices, the set of potential new

states comprises the current state x itself and the n� 1 matrices that

deviate from x in exactly one nondiagonal element in row i. Let x(6ij)

denote the adjacency matrix equal to x, in which entry xij is changed into

1� xij. By definition, let x(6ii) = x. The adjacency matrix corresponding

to the new network will thus be of the form x(6ij) with j 2 f1, . . . , ng.
The choice of actor i depends on the so-called objective function

fi(x, z) that takes into account the potential new network state, the cur-

rent state of the attributes, and actor and dyadic covariates. The prob-

ability that actor i selects x(6ij) as the next network state is of the form

p(x(6ij)) =
exp (fi(x

(6ij), z))Pn
h = 1 exp (fi(x(6ih), z))

, ð9Þ

also known as the multinomial logit model (McFadden 1974). This

model can be obtained as the result of myopic stochastic optimization.

The objective function is defined as a weighted sum of network effects

sik(x, z),

fi(x, z) =
X

k

bksik(x, z): ð10Þ

Parameter bk indicates the strength of the kth effect, controlling for all

other effects in the objective function. The effects represent the actor-

level mechanisms governing network change, as the effects in ui(t) in

equation 11 do for attribute change. Steglich et al. (2010) and Ripley
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et al. (2018) provide an overview of the many effects that are currently

implemented for stochastic actor-oriented models. Basic examples are

the outdegree effect (number of outgoing ties), the reciprocity effect

(number of reciprocated ties), and the transitivity effect (number of

transitive triplets). These model the general tendency of actors to form

ties, their tendency to reciprocate ties, and their tendency toward transi-

tive closure (e.g., “befriending the friends of my friends”). Effects may

also depend on actor attributes or covariates. In this way, the differential

tendency of actors with high attribute or covariate values to send (ego

effect) or receive (alter effect) network ties can be assessed.

The model for the dynamics of discrete actor behavior is defined ana-

logously to the network evolution model (Snijders et al. 2007), with a

behavior rate function and objective function. In the discrete behavior

model, once actors get the opportunity to change their behavior, they

can either increase or decrease their attribute value by 1 or keep the

value constant. Choice probabilities are defined by a multinomial logit

model, as in equation 9. Like the network, the actors’ attribute values

are modeled as evolving in the smallest steps possible.

3.3. Continuous Attribute Evolution Model

Stochastic differential equation 4 describes the change in an attribute,

but it does not include any information on what may have brought this

change about. In our model, the dynamics of the attribute of an actor

i may depend on characteristics of i (e.g., individual covariates, network

position) and characteristics of others in the network. We model

these dependencies through the elements of input vector ui(t) =

(ui0(t), . . . , uir(t)) in the stochastic differential equation

dZi(t) = aZi(t) + b>ui(t)
� �

dt + g dWi(t), Zi(t1) = zi(t1): ð11Þ

If ui(t) itself does not depend on Zi(t), the solution to this equation—

similar to equation 6—is given by

Zi(t) = ea(t�t1)zi(t1) +

ðt

t1

ea(t�s)b>ui(s)ds +

ðt

t1

ea(t�s)g dWi(s): ð12Þ

The parameters in vector b = (b0, . . . , br) represent the strength of the

effects in input ui(t). By default, the model includes the unit variable

ui0(t) = 1, which has a role equivalent to that of the intercept in a linear
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regression model. Other effects may include constant actor attributes,

such as gender or height. These variables, being, respectively, binary

and continuous, may be included directly in the stochastic differential

equation. Categorical actor attributes can be included through ways

known from linear regression, for example using dummy coding. In

subsection 3.3.1, we discuss the effect of network-dependent actor char-

acteristics on attribute dynamics.

Equation 11 can be used to study the evolution of actor attributes

between two measurements. However, when we are interested in mod-

eling data from more than two measurement moments, we use the alter-

native specification,

dZi(t) = tm aZi(t) + b>ui(t)
� �

dt +
ffiffiffiffiffi
tm

p
dWi(t), Zi(tm) = zi(tm), ð13Þ

where tm is a period-specific scale parameter, comparable to the rate

parameter in the network evolution model. The scale parameters

account for the fact that we model each period between consecutive

measurements as having unit duration (Niezink and Snijders 2017). The

differences in period lengths are absorbed in the tm, while the general

dynamics remain the same over all periods. The factor
ffiffiffiffiffi
tm
p

in the sto-

chastic term in equation 13 contains a square root because of the scaling

properties of Wiener processes (Steele 2001). In equation 13, parameter

g has been set equal to 1 for identifiability.

3.3.1. Network Effects on Attribute Evolution. The effects dis-

cussed in the previous section are examples of exogenous effects.

However, network-attribute coevolution studies usually focus on how

the local network environments of actors and the characteristics of the

actors to whom they are connected (i.e., their “alters”) affect their attri-

bute dynamics. For example, the number of friends a student has or the

self-esteem of his or her friends may affect that student’s self-esteem.

We can model how actors are influenced by their alters in various ways,

combining information on the current network state and the alters’ cur-

rent attribute values.

Table 1 gives an overview of some network effects on attribute

dynamics that have been implemented so far. For each of the effects,

we give an example hypothesis in the context of the study discussed in

Section 1. The actor’s network position itself may influence his or her

behavior: For example, the indegree, outdegree, or reciprocated degree

might lead to an increase or decrease in the value of the attribute.
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Table 1. Network-Dependent Effects Currently Implemented for Modeling
Continuous Attribute Dynamics

Effect Effect Formulaa Illustrationb Example Hypothesis

Indegree
P

j xji ( = x + i) Being popular leads to
higher self-esteem.

Indegree (sqrt)
ffiffiffiffiffiffiffi
x + i

p
(Same as above; differences between

high indegrees are relatively less
important than the same differences
between low indegrees.)

Outdegree
P

j xij ( = xi + ) Having (nominating) many
friends leads to higher
self-esteem.

Outdegree (sqrt)
ffiffiffiffiffiffiffi
xi +
p

(Same as above; differences between high
outdegrees are relatively less important
than the same differences between
low outdegrees.)

Reciprocated
degree

P
j xijxji Having many close (reciprocated)

friendship ties leads to
higher self-esteem.

Nonreciprocated
degree

P
j xij(1� xji) Having many unreciprocated

friendship ties leads to
lower self-esteem.

In-isolate 1�maxjfxjig Having nobody calling you a
friend leads to lower self-
esteem.

Minimum alter minj xij(zj � �z)
� �

The higher the minimum
value of the self-esteem
of one’s friends, the larger
the increase in one’s self-
esteem.

Average alter
P

j xij(zj � �z)=xi +

(0 if xi + = 0)

The higher the average value
of the self-esteem of one’s
friends, the larger the
increase in one’s self-
esteem.

Maximum alter maxj xij(zj � �z)
� �

The higher the maximum
value of the self-esteem of
one’s friends, the larger
the increase in one’s self-
esteem.

aTime dependence is omitted for brevity. �z denotes the observed mean of z.
bDarker colors represent higher values of the attribute. Shaded area indicates the actors who

exceed influence.
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Degree-related effects can be considered in their raw form or in a trans-

formation (e.g., Steglich et al. 2010). If the effect of an additional tie

decreases with the number of ties an actor already has, this can be

accounted for by a square root transformation. Especially for a right-

skewed degree distribution, where some actors have a very high degree,

such a transformation is natural.

Actors may be affected by the attribute values of their alters. Three

remarks about social influence may be noted here. First, we use the

term social influence generally for all ways in which the network com-

bined with the behavior of other actors in the network affects the beha-

vior of actors. This is more general than the narrower meaning of social

influence that refers only to ways in which the behavior of the influen-

cing actor becomes more similar to the behavior of the actor being

influenced, and it is illustrated in the following for some of the effects.

Second, while some theories of social influence are formulated in terms

of one actor who is being influenced by one other actor, neglecting third

and additional actors, because of the empirical goals in coevolution

studies, we must necessarily keep in mind that, in most cases, actors are

surrounded by several other actors. The behavior of the focal actor is

potentially influenced by all actors who are tied to the focal actor, and

an aggregation step is necessary from the level of ties to the level of the

personal network. Third, we interpret the tie from i to j as an assertion

that j is subjectively meaningful to i (cf. Lomi et al. 2011) and therefore

accord a primary role to influence coming from those to whom the focal

actor has an outgoing tie, relegating a minor importance to influence

from those actors from whom the focal actor has an incoming tie.

The theoretical mechanisms behind social influence can vary by con-

text. The choice to model influence by a particular effect is thus a theo-

retical one. Influence effects will have to reflect theories and potential

mechanisms that could apply to the phenomenon being analyzed. Table

1 shows three examples of influence effects. As the corresponding

hypotheses in the context of self-esteem could be artificial in some

cases, we will discuss them instead for deviant behavior. The attribute-

related influence effects in Table 1 are centered by the mean observed

attribute value �z. Centering the attribute values in the effects gives

meaning to the zero effect for actors without alters; this zero effect

equals the effect for actors with average alters.

Having at least one friend who is not involved in deviant behavior

may keep a person on the straight and narrow. In this case, a person’s
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score on a deviance scale could increase when his or her least deviant

friend becomes more deviant (minimum alter effect). If the least deviant

friend of individual A is less deviant than the least deviant friend of indi-

vidual B and this results in a higher increase in deviance of B than of A,

we can consider this a form of social influence.

An alternative could be that having at least one deviant friend has a

large impact on someone’s deviant behavior. In this case, a person’s

deviance score could increase when his or her most deviant friend

becomes more deviant (maximum alter effect). This may lead a person

to deviate from the norm in his or her friendship group. Social influence

thus does not necessarily imply that actors become more similar to their

friends over time. Note that the person who is the least or most deviant

friend may change over time.

A third possibility is that a person is affected by the average deviance

level of his or her friends (average alter effect). In this case, the positive

effect of the nondeviant individuals and the negative effect of the devi-

ant individuals are assumed to even each other out. The average alter

effect is a common operationalization of social influence in studies

using the stochastic actor-oriented model. The idea of using a (weighted)

average alter effect to model influence goes back to classical sociologi-

cal models (e.g., Abelson 1964; French 1956); see Flache et al. (2017)

for a recent overview of formal models of social influence.

This list can be extended with many other effects. A large variety of

these have already been defined for discrete attribute variables in the

stochastic actor-oriented modeling framework (Ripley et al. 2018), and

many of these allow for a straightforward generalization to the case of

continuous attributes. For example, in the discrete attribute evolution

model, the total in-alter effect is defined by actor i’s behavior multiplied

by the sum of the behaviors of his or her in-alters, zi(
P

j xjizj) (Ripley

et al. 2018). In the continuous attribute evolution model, the total in-

alter effect would be
P

j xjizj.

Note that the effects in the discrete model are interpreted as effects of

the type of a utility, or negative potential, whereas in our model, it is of

the type of a derivative. This is why the effects in the discrete model

have the additional factor zi. Disregarding the factor zi is a strategy that

turns many of the discrete attribute model effects into continuous attri-

bute model effects. This principle works for effects in the discrete model

defined by functions that are a multiple of zi, which is the case for many

but not all behavior effects. When input vector ui(t) includes functions
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depending on zi, equation 12 is no longer the solution to stochastic dif-

ferential equation 11.

3.3.2. Discrete-Time Consequences. Stochastic differential equa-

tions describe how continuous variables may evolve over time. They

express a rate of change. However, observations are usually made at

discrete time points. The distribution of the continuous variables at a

certain time point is fully determined by the stochastic differential equa-

tion and the initial conditions, yet for most models, it is impossible to

derive an explicit expression for this distribution. Bergstrom (1984)

addressed this problem for systems of linear stochastic differential equa-

tions that model the coevolution of multiple continuous variables. He

showed that under certain conditions, discrete-time observations exactly

satisfy a system of stochastic difference equations. His so-called exact

discrete model links the discrete-time parameters with the continuous-

time parameters.

Equation 11 is the one-dimensional case of the model addressed by

Bergstrom (1984). For this model, the exact discrete model reduces to

an expression very similar to what we have seen in Section 2 on stochas-

tic differential equations (e.g., see Oud and Jansen 2000). Let zi, t denote

the attribute value and ui, t the values of the effects in the input vector of

actor i at time t. The exact discrete model states that after a time Dt, the

value of the attribute of actor i is given by

zi, t + Dt = ADtzi, t + BDtui, t + wi, Dt, ð14Þ

where wi, Dt can be considered the random error caused by the error pro-

cess over Dt time, with a N (0, QDt) distribution, and where

ADt = eaDt, BDt = 1
a
(eaDt � 1)b>, QDt = 1

2a
(e2aDt � 1)g2: ð15Þ

For equation 13, modeling attribute dynamics based on more than two

measurement moments, these coefficients are given by

ADt = eatmDt, BDt = 1
a
(eatmDt � 1)b>, QDt = 1

2a
(e2atmDt � 1): ð16Þ

In the derivation of difference equation 14, it is assumed that the r

effects in ui are constant between t and t + Dt. In some cases, this

assumption clearly does not hold—for example, when the average alter

effect is included in the model. In Section 3.4, we reflect on the conse-

quences of this approximation on the coevolution model.
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3.4. Integration of Network and Attribute Model

The network-attribute coevolution model is specified by the rates li

defining the pace of the network change, the objective function (equa-

tion 10) modeling the mechanisms by which actors make network

changes, and the exact discrete model (equation 14), corresponding to a

stochastic differential equation. The stochastic differential equation

models both the pace and the direction of change in the continuous

actor attributes.

In the coevolution model, the network evolves in “jumps” of one tie

change, while the actor attributes evolve gradually. The Markov chain

for the network evolution is fully specified by its infinitesimal generator

matrix or intensity matrix Q (Norris 1997), of which the entries q(x, x0)
indicate the rate at which network state x changes into ~x,

q(x, ~x) = lim
dt!0

P(X (t + dt) = ~x jX (t) = x)

dt
: ð17Þ

The diagonal entries of Q are chosen such that the rows of Q sum to

zero. The intensity matrix is given by

q(x, ~x) =

li p(x(6ij)) if ~x = x(6ij) for some i 6¼ j

0 if ~x 6¼ x(6ij) for some i, j

�
P

x 6¼~x q(x, ~x) if ~x = x:

8<
: ð18Þ

Note that the off-diagonal entries that are nonzero correspond to net-

work changes that involve only a single tie change. The waiting time

until a transition out of state x is the minimum of the exponentially dis-

tributed waiting times with rates q(x, ~x) to change from x to ~x, and thus

exponentially distributed with rate �q(x, x). Given the occurrence of an

instantaneous transition out of x, the conditional probability that the state

shifts from x to ~x is

q(x, ~x)

�q(x, x)
=

li

lþ
p(x(6ij)) if ~x = x(6ij) for some i 6¼ j

0 else:

�
ð19Þ

This transition probability decomposes into the probability li=lþ that

actor i gets the opportunity to make a network change and the probabil-

ity p(x(6ij)) that the change made by actor i consists of a tie change to

alter j. Using the exact discrete model to evaluate how much the

dynamic actor attributes have evolved between two consecutive tie
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changes, we can thus set up a simulation scheme for the network-

attribute coevolution process in period m, which consists of seven steps:

1. Initialize: set t = 0, x = x(tm), z = z(tm) and compute ui = ui(x, z) for all

actors i.

2. Sample Dt from an exponential distribution with rate lþ.

While t + Dt\1,

3. Update zi to a sample from a N (ADtzi + BDtui, QDt) distribution, for

all actors i.

4. Select actor i 2 f1, . . . , ng according to probabilities li=lþ.

5. Select alter j 2 f1, . . . , ng according to probabilities p(x(6ij)).

6. Update: set t = t + Dt and x = x(6ij) and compute ui = ui(x, z) for all

actors i.

7. Sample a new Dt from an exponential distribution with rate lþ.

Return to Step 3.

In the simulation scheme, there is a waiting time until a new network

change is drawn (Steps 2 and 7), the actor attributes are updated (Step

3), the actor who will make a change is determined (Step 4), and the tie

change is determined (Step 5). To reach t = 1, the attributes of all actors

are updated for a final time (Step 3). The choice for a simulation time

length of 1 is arbitrary. The actual length tm + 1 � tm of period m is

captured in the rate parameters and the parameters of the stochastic dif-

ferential equation. The definitions of ADt, BDt, and QDt in the aforemen-

tioned simulation scheme are as in equations 15 or 16, depending on

the choice of differential equation.

For simulation purposes, we assume that ui is constant between con-

secutive tie changes at times t and t + Dt. This is not always true. The

network is constant between t and t + Dt, so any effects in ui that are

functions of only the network and individual and dyadic covariates are

constant between t and t + Dt. However, if ui contains an effect, such as

the average alter effect, that depends on the attribute values zj of other

actors j 6¼ i in the network, the assumption is no longer valid as the val-

ues zj evolve between t and t + Dt.

If the Dt is small, the errors introduced by the approximation are

small as well, as is shown by Niezink and Snijders (2017) in a simula-

tion study. For a small Dt, the number of actors n and/or the rate
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parameters lm need to be sufficiently large as E(Dt) = 1=(nlm). Niezink

and Snijders (2017) explore the effect of E(Dt) on the approximation

error in the values of the actor attributes. Given the results obtained in

the simulation study, any deviation in parameter estimates is likely to

be negligible when nlm is larger than 100. This is true for most of the

data sets studied in practice, which have the size of a school class

(n = 25) or larger.1

For very small networks with little change between observations,

deviations in simulated attribute values will be larger. Splitting up the

time interval ½t, t + Dt) between two consecutive network changes in a

simulation into smaller parts and evaluating the exact discrete model

for each smaller part would decrease the deviation.

4. EFFECT SIZES

An important difficulty in working with stochastic actor-oriented mod-

els is the interpretation of parameters in a nonstandardized fashion. The

parameters in the standard stochastic actor-oriented model for discrete

behavior variables are nonstandardized coefficients in the multinomial

logit model for the discrete changes in network and behavior.

Multinomial logit model parameters are difficult to interpret, and their

arrangement in this complex network model adds to the difficulties in

interpretation. The relation of the stochastic differential equation model

to linear regression can be used to have a better understanding of the

parameters, with analogues of the proportion of explained variance and

effect sizes.

4.1. Parameter Interpretation

Estimated parameters in attribute dynamics models (equations 11 and

13) represent the strength of effects on change in attribute values. Using

the exact discrete model (see again Section 3.3.2), we can assess the

implication of this model for expected change trajectories. Considering

these change trajectories helps in interpreting parameter sizes.

Assume, by way of example, that in a simple coevolution model, the

stochastic differential equation for evolution of a mean-centered attri-

bute variable was given by

dZi(t) = ½aZi(t) + b0 + b1 vi � b2 X + i(t)�dt + g dWi(t), ð20Þ
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where X + i(t) denotes the indegree of actor i at time t, representing popu-

larity in a friendship network. This differential equation contains a feed-

back parameter a, an intercept parameter b0, a parameter b1 for binary

(0/1) covariate vi, an indegree parameter b2, and a diffusion parameter

g. The model illustrates the general model (equation 11). Suppose that

this model was estimated as

dZi(t) = ½�0:4Zi(t) + 0:1 + 0:2vi � 0:05X + i(t)�dt + 0:4dWi(t): ð21Þ

The parameters in equation 13, for more than two measurement

moments, can be interpreted along the same lines as discussed in the

following.

To simplify parameter interpretation, we approximate the indegree

X + i(t) by a constant x + i. All input variables ui(t) being constant, exact

discrete model equation 14 shows that

E(Zi(t)jzi(0)) = eat zi(0) + 1
a
(eat � 1)(b0 + b1 vi + b2 x + i)

= e�0:4t zi(0) + 1
�0:4(e

�0:4t � 1)(0:1 + 0:2vi � 0:05x + i)

= 0:67t zi(0) + (1� 0:67t)(0:25 + 0:5vi � 0:125x + i),

ð22Þ

where t runs between 0 and 1. This expression represents the expected

attribute trajectory for actor i between two measurement moments. The

expected value is a weighted average of the initial score zi(0) and the

theoretical equilibrium value 0:25 + 0:5vi � 0:125x + i. The weights are

eat and 1� eat. The variation about the expected value is

var(Zi(t)jzi(0)) = 1
2a

(e2at � 1)g2

= 1
�0:8(e

�0:8t � 1)30:42

= 0:2(1� 0:45t):

ð23Þ

Figure 3 visualizes the attribute dynamics given in equation 21. Figure 3a

shows the extent of the variation in 50 sample trajectories for one actor.

Note that we assume the variation to be the same for all actors, much like

the homoscedasticity assumption in a regression analysis. Figure 3b shows

the effect of an actor’s indegree on his or her attribute value. The differ-

ences between the trajectories for actors with different indegrees are small,

especially considering the amount of random variation in Figure 3a.

As shown by the previous exposition, the continuous-time parameters

are best interpreted in terms of their discrete-time consequences.

Interpreting the value of 0.2 for the covariate parameter b1 by itself is
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difficult. The ratio �b1=a = 0:5 indicates the size of the difference

between actors with vi = 0 and vi = 1 in the theoretical equilibrium. The

equilibrium coefficients �bi=a are more fundamental entities than the bi.

This was discussed for a basic ordinary differential equation model by

Nielsen and Rosenfeld (1981). The substantive interpretations of these coef-

ficients can be given according to the same logic applied to coefficients in

a linear regression model. Also, the equilibrium variance, �g2=(2a) = 0:2,

is easier to interpret than the parameter g as it corresponds directly with the

total intraindividual variance (Oravecz et al. 2011).

Nevertheless, the processes we study are often far from being in equi-

librium, and focusing on the equilibrium coefficients may not be all-

revealing. Therefore, we also evaluate the discrete-time consequence of

the continuous-time model after one observation period. Since in the

model the time between consecutive measurements is set to 1, the exact

discrete model yields

E(Zi(1)jzi(0)) = ea zi(0) + 1
a
(ea � 1)(b0 + b1 vi + b2 x + i)

= 0:67zi(0) + 0:08 + 0:16vi � 0:04x + i,
ð24Þ

where the indegree is again taken to be constant. Moreover,

var(Zi(1)jzi(0)) = 0:11, and the corresponding standard deviation is 0.33.

Figure 3. Visualization of the attribute dynamics given in equation 21.
Note. (a) The mean trajectory and 50 sample paths for an actor with an average initial

attribute value, vi = 0 and indegree 0. (b) The mean trajectories for actors with vi = 0

for various initial attribute and indegree values.
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The coefficient ea = 0:67 can be interpreted as representing the memory

of the process, the dependence of Zi(1) on zi(0) (Nielsen and Rosenfeld

1981). The covariate coefficient 0:16 is much smaller than the equili-

brium coefficient �b1=a = 0:5 due to the weight 1� ea. Each additional

incoming tie decreases the expected change after one observation period

of an actor’s attribute value by 0.04. Though in reality X + i(t) is usually

not constant, this line of reasoning provides a good approximation of

the effect of the indegree on attribute change.

Filling out observation interval length t = 1 in equations 22 and 23

facilitates interpretation. Oud et al. (2012) illustrate this, presenting the

discrete-time parameters corresponding to their observation interval of

one year alongside continuous-time parameter estimates. The impor-

tance of also reporting the continuous-time parameters is stressed by

examples given by, for example, Oud and Delsing (2010) and Voelkle

et al. (2012). The continuous-time parameters are necessary to compare

parameters between studies with different time intervals between mea-

surements because they are not time-dependent. For example, if in

Study 1 the time between two measurements was six months and in

Study 2 this interval was one year, we need to fill out t = 1 for Study 1

and t = 0:5 for Study 2 to make a comparison possible.

4.2. Explained Variance

For stochastic actor-oriented models for network evolution, Snijders

(2004) proposed a measure of explained variation using information

theory. The measure is based on the entropy (Shannon 1984) in the

probabilities involved in actors’ network change decisions, where a low

entropy indicates a high degree of certainty in the outcomes of network

changes and thus high explained variation. Unfortunately, the measure

is not easily interpretable and is therefore hardly applied.

In linear regression, the proportion of explained variance, usually

denoted by R2, is a well-interpretable and widely used measure of “fit.”

As the discrete-time outcomes of our stochastic differential equation

model for attribute dynamics can be considered in a regression frame-

work, we can define an equivalent measure of the proportion of

explained variance based on

var(Zi(tm + 1)jy(tm)), ð25Þ

Modeling the Dynamics of Social Networks and Continuous Behavior 319



where y(tm) denotes the network and attribute state at observation

moment tm.

For a linear regression model zi = X>i b + εi, i = 1, . . . , n, the propor-

tion of explained variance is given by

R2 =
var(zi)� var(εi)

var(zi)
= 1� var(εi)

var(zi)
: ð26Þ

We can consider R2 as a proportional reduction in the unexplained var-

iance or equivalently, the proportional reduction in the mean squared

error of prediction. If no covariates are available (a null or intercept-only

model), the best predictor for zi is m = E(zi), and the mean squared pre-

diction error is var(zi) = E((zi � m)2). For the regression model with cov-

ariates, the best predictor for zi is the regression value E(zijXi) = X>i b.

The observed residual εi is the difference between the observed value zi

and this best predictor, and the mean squared prediction error under the

regression model is var(εi). Equation 26 thus gives the proportional

reduction in prediction error due to the inclusion of covariates.

The same ideas can be applied to define a proportion of explained

variance in the context of the continuous attribute model presented here.

For the stochastic differential equation, the null model M0 contains a

feedback parameter a, an intercept parameter b, and a diffusion or scale

parameter. The best predictor for Zi(tm + 1) under this model follows from

the exact discrete model and is given by

EM0
(Zi(t2) jy(t1)) = eazi(t1) + (1� ea) b

�a
ð27Þ

for model equation 11 and

EM0
(Zi(tm + 1) jy(tm)) = eatm zi(tm) + (1� eatm ) b

�a
ð28Þ

for model equation 13. This quantity can be computed using estimates

of a and b (and for equation 28 also tm) based on all attribute data, with-

out the need for simulations. The best predictor under a more elaborate

model M ,

EM (Zi(tm + 1) jy(tm)), ð29Þ

can be estimated based on simulations of the coevolution model under

study. In line with equation 26, the proportional reduction in
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unexplained variance, or the proportional reduction in prediction error

for period m, is given by

R2
m = 1�

Pn
i = 1 (zi(tm + 1)� EM Zi(tm + 1)jy(tm)ð Þ)2Pn
i = 1 (zi(tm + 1)� EM0

Zi(tm + 1)jy(tm)ð Þ)2
: ð30Þ

Note that if the attribute dynamics do not depend on network charac-

teristics, we can estimate the attribute model straightforwardly using the

exact discrete model and likelihood maximization and determine the

explained variance as in a standard regression model. This is also possi-

ble if the network is constant and the model contains only purely struc-

tural and covariate effects. Note also that while R2 is always positive

for linear regression models, for other types of models such as nonlinear

regression or multilevel models, negative values are known to occur as

well.

5. THE COEVOLUTION OF FRIENDSHIP, ALCOHOL
USE, AND SELF-ESTEEM

This section investigates the interplay of friendship dynamics and the

dynamics of alcohol use and self-esteem among adolescents. We use a

stochastic actor-oriented model to study the coevolution of a network

(friendship), a discrete actor variable (alcohol use), and a continuous

actor variable (self-esteem). Steglich et al. (2010) advocated the use of

the stochastic actor-oriented model to distinguish peer selection from

social influence, two social mechanisms leading to network autocorrela-

tion. Since then, many researchers have followed in disentangling selec-

tion and influence in various contexts. Nevertheless, few studies have

considered the conditions under which selection and influence occur.

Some actors may be more susceptible to these processes than others.

Schaefer (2016) studied whether adolescents with particular risk factors,

such as having low self-control or weak attachments to protective insti-

tutions (e.g., family or school), have a greater risk of befriending

substance-using peers, who could later become a source of negative

influence. However, not all adolescents may be equally suspectible to

influence. Discovering the characteristics of the adolescents who are

most susceptible to influence of their peers is important. Compared with

trying to change a person’s friendship ties, interventions aimed at
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individidual characteristics are easier to implement (e.g., in a personal

skills training context) and often more ethical.

In this study, we consider self-esteem as a potential buffer for the

effect of peers on the behavior of adolescents. Adolescents with high

self-esteem may be less susceptible to influence than their low self-

esteem peers. We reanalyze the data studied by Steglich et al. (2010),

considering the role of self-esteem in friendship and alcohol use

dynamics. Furthermore, we assess the effects of popularity and alcohol

use on self-esteem.

5.1. Data

The data are part of the Teenage Friends and Lifestyle Study (Pearson

and Mitchell 2000; Pearson and West 2003), which aimed to identify

the mechanisms by which attitudes toward smoking and smoking beha-

vior itself change during early to midadolescence. Students in a cohort

at a secondary school in Glasgow were followed over a two-year period

(February 1995–January 1997). Of the 160 students in the cohort, aged

12 to 13 at the beginning of the study, 150, 146, and 137 participated at

the first, second, and third measurement, respectively. We include all

160 students in the analysis, taking into account the changes in compo-

sition. The students were asked to nominate up to six friends from their

cohort and answer questions about various behaviors and attitudes,

including social relations and risk behavior. Previous studies of these

data have addressed the coevolution of friendship and taste in music

(Steglich, Snijders, and West 2006) and that of friendship and cannabis

use (Pearson, Steglich, and Snijders 2006).

Alcohol consumption frequency was measured on a scale ranging

from 1 (not at all) to 5 (more than once a week). Self-esteem was mea-

sured by a 10-item scale, based on Rosenberg (1941), with items such

as “I am easy to like” and “I often wish I was someone else.” The items

were measured on a scale ranging from 0 (strongly agree) to 3 (strongly

disagree). The self-esteem score was calculated as the average over all

items after reverse coding the negatively formulated items so that a high

score corresponds to high self-esteem. Students also reported their sex

(0 = male, 1 = female).

For descriptive statistics of the friendship network and alcohol use

data, we refer to Steglich et al. (2010). The distribution of the self-

esteem data at the three measurements is shown in Figure 4, where a
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slight increase of self-esteem can be seen over time. The average self-

esteem score increases from 1.63 at the first measurement to 1.68 at the

second and 1.79 at the third. For the analysis, self-esteem is centered by

subtracting the overall mean of 1.70.

5.2. Model

In order to study the effect of self-esteem on students’ susceptibility to

peer influence on drinking behavior, we need to model self-esteem as a

coevolving dependent variable. We thus study the coevolution of friend-

ship, alcohol use, and self-esteem, modeling the evolution of a network,

a discrete actor variable, and a continuous actor variable simultaneously.

Two models are estimated. In the first model, the “evolution model,”

we study the dynamics of friendship, alcohol use, and self-esteem sepa-

rately. Formally, this can be done in one joint model, where the three

dependent variables are specified as being mutually independent. The

interplay among the three dependent variables is studied in the second

model, the “coevolution model.” In this model, we assess through an

interaction term whether students’ susceptibility to peer influence on

alcohol use depends on their level of self-esteem. We estimate para-

meters by the methods of moments. See Appendix A and Appendix B

for a discussion of parameter estimation and standard error estimation.

Figure 4. Observed distribution of self-esteem at the three measurements.
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Missing data are imputed for simulation purposes but disregarded in the

computation of the statistics of the moment equations (Huisman and

Steglich 2008; Ripley et al. 2018).

5.2.1. Friendship Dynamics. In the friendship dynamics part of the

model, we first include structural effects in the objective function. The

outdegree effect represents the balance between creating and dropping

ties, and it is like an intercept. We also model the tendency to recipro-

cate friendship nominations (reciprocity) and the tendency for actors to

befriend the friends of their friends (transitivity) and the interaction of

these two effects. Reciprocity and transitivity usually play an important

role in friendship dynamics, but their effect is mostly not additive,

resulting in a negative interaction effect. As explained by Block (2015),

the tendency toward reciprocation of friendships within transitive groups

is usually lower than it is outside of transitive groups.

Apart from the basic outdegree effect, we include three other degree-

related effects: the effect of current popularity (number of incoming ties,

indegree) on receiving friendship nominations (indegree popularity) and

sending friendship nominations (indegree activity) and the effect of cur-

rent network activity (number of outgoing ties, outdegree) on nominat-

ing friends (outdegree activity).

We also assess the effects of alcohol use and self-esteem on friend-

ship dynamics by including their ego effects and alter effect in the net-

work objective function. These effects measure the differential tendency

of students with higher values to nominate friends and receive friend-

ship nominations, respectively. We model the differential attractiveness

of students with high self-esteem to other students with high self-esteem

by an interaction effect of ego’s and alter’s self-esteem scores. We also

include the interaction of ego’s and alter’s alcohol use. Finally, we

account for effects of gender (ego, alter, same) on the dynamics of the

friendship network.

5.2.2. Self-esteem Dynamics. In the coevolution model, we also

include, apart from the feedback, intercept and scale parameters, the

effect of alcohol use on change in self-esteem and that of popularity, as

measured by a student’s indegree in the friendship network. The sto-

chastic differential equation for the self-esteem dynamics in period

m = 1, 2 is thus given by

dZi(t) = tm aZi(t) + b0 + b1 Ali(t) + b2 X + i(t)½ �dt +
ffiffiffiffiffi
tm

p
dWi(t), ð31Þ
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where Ali(t) denotes the alcohol use score of actor i at time t.

Since we analyze the centered esteem scores instead of the original

ones, we can meaningfully interpret the intercept parameter b0. When

no other input effects are included in the model (b1 = b2 = 0), the inter-

cept represents the general tendency of students to decrease or increase

in self-esteem.

5.2.3. Alcohol Use Dynamics. The alcohol use dynamics, like the

friendship dynamics, are modeled in the discrete Markov chain frame-

work. The base components of the alcohol use objective function are the

linear and quadratic shape effects, which capture the basic shape of the

alcohol use distribution. The model contains one main friendship-related

peer influence component: the effect of the average alcohol use among

friends on adolescent alcohol use (average alter effect). As we are inter-

ested in whether self-esteem moderates the strength of peer influence on

alcohol use, we include the interaction effect of ego’s self-esteem and

the average alter effect on alcohol use. We also take into account the

potential direct effect of self-esteem on alcohol use.

5.3. Results

The results for the evolution model and the coevolution model are

shown in Table 2. Based on 1,000 simulations of the coevolution model

and using the procedure developed by Lospinoso (2012) implemented

in the RSiena package (Ripley et al. 2018), we can conclude that the

model fits the network data well in terms of its outdegree distribution

(p = .10), indegree distribution (p = .60), and triad census (p = .09). The

alcohol and self-esteem data also fit fairly well, as shown in Figure 5.

In the following discussion, we first explain the friendship network

dynamics results and then the results for the alcohol use and self-esteem

dynamics.

We find that students with higher self-esteem tend to send more

friendship nominations (self-esteem ego). Apart from this, students’

self-esteem seems to have little effect on the evolution of friendship

ties, and the same holds for their alcohol use.

The estimates of the purely structural effects do not change much

when the alcohol and self-esteem effects are included in the model.

Students have a tendency to reciprocate friendship ties and prefer rela-

tionships with their friends’ friends (positive transitive triplets), but

these effects are not additive (negative transitive reciprocated triplets).
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Moreover, students who are mentioned by many others as a friend have

a lower tendency to nominate others as friends (negative indegree activ-

ity). Finally, we find strong evidence of homophily based on sex (posi-

tive same gender).

Table 2. Coevolution of Friendship, Alcohol Use, and Self-esteem

Evolution Model Coevolution Model

Estimate (SE) Estimate (SE)

Friendship dynamics
Rate period 1 13.17a (1.24) 13.20a (1.36)
Rate period 2 10.77a (1.12) 10.88a (1.08)
Outdegree (density) –2.98a (.21) –2.92a (.20)
Reciprocity 2.62** (.15) 2.58** (.15)
Transitive triplets .88** (.05) .88** (.06)
Transitive reciprocated triplets –.54** (.08) –.55** (.09)
Indegree popularity –.022 (.020) –.022 (.019)
Indegree activity –.16** (.05) –.12* (.04)
Outdegree activity .054 (.029) .025 (.031)
Female ego –.002 (.124) .049 (.10)
Female alter –.10 (.12) –.13 (.09)
Same sex .70** (.10) .68** (.09)
Alcohol ego .086 (.074)
Alcohol alter –.091 (.058)
Alcohol ego 3 alter .12 (.06)
Self-esteem ego .39* (.15)
Self-esteem alter –.17 (.14)
Self-esteem ego 3 alter –.10 (.26)

Alcohol use dynamics
Rate period 1 1.33a (.26) 1.52a (.30)
Rate period 2 2.40a (.51) 2.58a (.58)
Linear shape .42a (.10) .45a (.14)
Quadratic shape –.28a (.08) –.61a (.24)
Average alter 1.32* (.66)
Self-esteem –.14 (.32)
Self-esteem 3 average alter –.29 (.88)

Self-esteem dynamics
Scale period 1 .12a (.01) .12a (.02)
Scale period 2 .17a (.02) .17a (.01)
Feedback –2.41a (.42) –2.49a (.43)
Intercept .52* (.19) .63 (.54)
Alcohol –.22 (.30)
Friendship indegree –.029 (.126)

aNot tested.

*p \ .05. **p \ .001.
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Peer influence is the social mechanism of key interest in our model

of how students’ alcohol use changes over time. Table 2 shows that

friends indeed have an effect on students’ alcohol intake (positive

Figure 5. Goodness-of-fit plots for alcohol use and self-esteem distribution
based on 1,000 data sets simulated with the coevolution model parameters
(see Table 2).
Note. (a) Alcohol use distribution, p = .47. (b) Self-esteem distribution, p = .07. The

numbers and solid lines represent the values observed at the end of periods 1 and 2.
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average alter). However, we find no evidence that susceptibility to peer

influence differs by students’ self-esteem level (self-esteem 3 average

alter). Students’ self-esteem does not appear to directly affect their alco-

hol use either. The results for the full model without the self-esteem

and average similarity interaction effect—not presented here—are com-

parable to those for the coevolution model. In this model, the average

alter effect is 1.34 (SE = 0.60), and the effect of self-esteem on alcohol

use is –0.13 (SE = 0.33).

Considering the self-esteem dynamics model results for the evolution

model, we find that self-esteem significantly increases over the course

of the study period (positive intercept). This corresponds to the distribu-

tions shown in Figure 4. The sizes of the intercept and feedback para-

meter and the scale parameter for period 2 can be interpreted by

considering again Figure 3a. The parameters in the estimated differen-

tial equation

dZi(t) = 0:17 �2:41Zi(t) + 0:52½ �dt +
ffiffiffiffiffiffiffiffiffi
0:17
p

dWi(t)

= �0:41Zi(t) + 0:09½ �dt + 0:41dWi(t)
ð32Þ

are very similar to those used for simulating the trajectories in Figure

3a. The figure depicts the expected trajectory and gives an idea about

the amount of uncertainty on the trajectory for a student with a self-

esteem score of 1.70 (the overall observed average) at the beginning of

period 2. The size of the random fluctuations is similar in the coevolu-

tion model and quite large compared with the effects of alcohol use or

popularity on self-esteem. To see this, compare the parameter sizes of

alcohol use and self-esteem in the estimated coevolution model

dZi(t) = 0:17 �2:49Zi(t) + 0:63� 0:22Ali(t)� 0:03X + i(t)½ �dt +
ffiffiffiffiffiffiffiffiffi
0:17
p

dWi(t)

= �0:42Zi(t) + 0:11� 0:04Ali(t)� 0:005X + i(t)½ �dt + 0:41dWi(t)

ð33Þ

for period 2 with the size of the popularity effect (� 0:04) in equation

24, which was used to generate Figure 3b. This figure showed that the

differences between trajectories for actors with different indegrees are

small given the amount of random variation. In our estimated model

(equation 33), the popularity effect (�0:005) is approximately 10 times

smaller! The effect of alcohol use on self-esteem seems to be larger, but

note that the range of the alcohol scale is 4 while the indegrees in Figure

3b vary from 0 to 8.
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Table 2 also shows that there is no significant effect of popularity or

alcohol use on self-esteem in the coevolution model. Moreover, popu-

larity and alcohol use do not improve the model in terms of explained

variance for self-esteem. Based on 1,000 Monte Carlo simulations of

the coevolution process, we find that for periods 1 and 2 the explained

variance estimates are R2
1 = 0:002 and R2

2 = � 0:006, respectively. The

negative value of R2
2 for period 2 means that the self-esteem model that

includes popularity and alcohol as predictors fits the data worse than the

null model.

6. DISCUSSION

This article presented a model for studying the coevolution of social net-

works and continuous attributes of network actors. The model extends

the stochastic actor-oriented model for network evolution (Snijders

2001). The model discussed by Snijders et al. (2007) and Steglich et al.

(2010) requires continuous attributes to be discretized, but in the model

presented here, this is no longer necessary. Continuous attributes arise

as representations not only for variables that are “really” continuous,

such as income or length or weight dimensions, but also as results of

multi-item scales such as psychological constructs, approximations to

counts that have a wide range, and measured variables that are aggrega-

tions of many decisions and circumstances such as performance of indi-

viduals or companies.

We illustrated the proposed method with a study of the dynamics of

friendship, alcohol use, and self-esteem among adolescents. This study

advocates the elaboration of the “selection versus influence” narrative

by considering under which circumstances peer selection based on

shared characteristics and social influence occur. In the study, we con-

sider whether the susceptibility of students to peer influence on alcohol

use differs according to their self-esteem, but we do not find evidence

for such differential susceptibility. This example was presented not so

much because of its substantive results—the sample size is on the low

side for such a question—but as an illustration of the type of research

question for which this method could be used.

The continuous attribute dynamics are modeled by a linear stochastic

differential equation. We showed how given estimated parameters, for-

mulas and figures can be of help in understanding continuous actor

attribute dynamics and in the communication of results. Moreover,
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stochastic differential equations give us access not only to average tra-

jectories but also to information about the variability in these trajec-

tories. Comparable information for discrete dynamic actor attributes in

the stochastic actor-oriented model is not obtained in as straightforward

an approach.

The linear stochastic differential equation model closely resembles

(and in some cases is equivalent to) an ordinary linear regression model.

Many generalizations of the ordinary regression model can be imple-

mented for the stochastic differential equation as well. Examples include

random effect and latent variable models. In this article, we assumed

that the network represents one group. A study of coevolution processes

in a sample of networks (e.g., Knecht et al. 2011) would require a multi-

level extension of the method proposed here.

The resemblance of the attribute evolution model with the ordinary

linear regression model at the same time instills awareness of potential

modeling challenges. Questions about the validity of the linearity and

homoscedasticity assumption follow naturally. Moreover, although dis-

cretization of continuous variables is no longer necessary due to the

model extension, transformation might be. This transformation could be

aimed at improving the validity of the distributional assumptions of the

model, but it could also have a substantive objective. For example, the

perception of the importance of a one-point change in an attribute value

may differ in different ranges of the attribute spectrum. We can study

transformations of continuous actor attributes to ensure that the assump-

tion of an interval scale is reasonable.

While the network and discrete behavior coevolution model (Snijders

et al. 2007) assumed that the behavior variable has a lower and upper

bound, no such assumption was made for the continuous behavior model

presented in this article. If a continuous variable is studied that takes val-

ues only in a certain range, simulated behavior trajectories will mostly

lie in this range but also partly outside it. A stochastic differential equa-

tion model with reflecting boundary conditions could be developed to

counter this.

The choice between a coevolution model with a continuous versus a

discrete attribute is not merely a methodological issue or a matter of

data, but it depends on the research question under study. For example,

even in the case when the exact amount of alcohol consumed by stu-

dents in a high school is known, drinking behavior is best modeled on a

binary scale when the research is about peer influence on the onset of
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drinking. An onset model (Greenan 2015) in the stochastic actor-

oriented modeling framework would in this case match the research

question better than a model with an ordinal or continuous drinking

variable. The differences in results and model properties between the

models for continuous attributes and discretized continuous attributes

require further exploration.

APPENDIX A

Parameter Estimation

Stochastic actor-oriented models are generally too complicated for like-

lihoods or estimators to be written in a closed-form expression, which

makes maximum likelihood estimation and Bayesian estimation com-

plex. Although methods for maximum likelihood estimation (Snijders,

Koskinen, and Schweinberger 2010) and Bayesian estimation (Koskinen

and Snijders 2007) have been developed for models for discrete depen-

dent attribute variables, the most straightforward way to estimate the

model parameters is by a method of moments procedure, which is com-

putationally less intensive. It is described in detail by Snijders (2001)

and Snijders, Steglich, and Schweinberger (2007) and can be summar-

ized as follows.

For each parameter uk in the model, a statistic Sk is selected that cap-

tures the variability in the data accounted for by this parameter.

According to the method of moments (e.g., Bowman and Shenton

1985), parameter estimates are the values for which the expected data

given the parameters and the observed data are most similar. Formally,

the method of moments estimator û is the value of u = (uk) for which

EûfSg= s, ðA1Þ

where S = (Sk) denotes the vector of statistics and s the observed out-

come. This expression is referred to as the moment equation. In the con-

text of the network-attribute coevolution model, parameters are

estimated from panel data. In the moment equation, we can therefore

condition on the observed initial state y(tm) of period m. This amounts

to not modeling the initial state and thus making no assumptions about

it. The parameter estimates û are defined as the solution to the condi-

tional moment equation, given by
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EûfSk(Y (tm), Y (tm + 1))jY (tm) = y(tm)g= Sk(y(tm), y(tm + 1)) ðA2Þ

for parameters specific to a period m, such as rates lm in the network

model and scale parameters tm in the continuous attribute model, and

XM�1

m = 1

EûfSk(Y (tm), Y (tm + 1))jY (tm) = y(tm)g=
XM�1

m = 1

Sk(y(tm), y(tm + 1)) ðA3Þ

for parameters that are assumed to be constant across the periods. The

conditional expectations in equations A2 and A3 cannot be calculated

explicitly, except for some trivially simple models. Therefore, para-

meter estimates are obtained by a stochastic iterative procedure, which

is based on the Robbins-Monro (Robbins and Monro 1951) algorithm

and elaborated by Snijders (2001; 2017a). This procedure exploits the

property that stochastic actor-oriented models can be used to simulate a

coevolution process. Given an initial state y(tm) and parameters u, the

state Y (tm + 1) can be simulated and the conditional expectations

approximated.

A.1. Statistics for the Conditional Moment Equation. For each of

the parameters in the stochastic actor-oriented model, we need to select

an appropriate statistic for the conditional moment equation. For the

parameters in stochastic differential equation 11, the attribute model for

one period of data, we propose the statistics

feedback a
X

i

Zi(t2)zi(t1), ðA4Þ

attribute effect bk

X
i

Zi(t2)uik(t1), ðA5Þ

diffusion g
X

i

(Zi(t2)� zi(t1))2: ðA6Þ

These statistics are derived from an autoregression model that is closely

related to differential equation 11 (Niezink and Snijders 2017). In case

effects ui(t) are constant over the period of analysis, the statistics are

the sufficient statistics for equation 11—that is, no other statistic can be

calculated from the same observed data that provides additional infor-

mation about the values of the parameters. In this particular situation,

the method of moments and the maximum likelikood estimators for
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these parameters are equal. For the parameters in the network part of

the model, Snijders (2001) proposed the statistics

network rate l1

X
i, j

jXij(t2)� xij(t1)j, ðA7Þ

network effect bk

X
i

sik(X (t2), y(t1)): ðA8Þ

When the model is estimated based on data from more than two mea-

surements, the statistics for the feedback, attribute effect, and network

effect parameters are summed over all periods, as in equation A3. The

diffusion statistic evaluated by period yields the statistic for the scale

parameters tm in the model in equation 13. Also the network rate statis-

tic is evaluated by period. For a discussion of how cross-lagged statistics

are used in equations A5 and A8 to disentangle selection and influence,

we refer to Snijders et al. (2007) and Niezink and Snijders (2017).

APPENDIX B

Standard Error Estimation

The standard errors of û are obtained as the square roots of the diagonal

elements of the approximate covariance matrix

cov(û)’D�1
u Su(D�1

u ) ðB1Þ

(Bowman and Shenton 1985). Here Du denotes the Jacobian matrix of

partial derivatives of the statistics S with respect to the parameters u and

Su the covariance matrix of the statistics. Matrices Du and Su are evalu-

ated at the estimate û through simulations.

Neither the Jacobian matrix Du nor the covariance matrix of the sta-

tistics Su can be expressed in closed form. Therefore, they are deter-

mined using Monte Carlo estimation—that is, based on a large number

of data sets simulated under the estimated model with estimated para-

meters û. The estimate of S is simply the sample covariance matrix of

the values of the statistics S in the simulated data sets.

For the estimation of the Jacobian D, Schweinberger and Snijders

(2007) proposed an estimator based on the idea that the Jacobian can be

rewritten as
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Du =
∂S

∂u
= Eu S

∂ log p(Y )

∂u0

� 	
: ðB2Þ

Here, Y denotes the complete data corresponding to a stochastic actor-

oriented model analysis. It consists of the observed data, the holding

times of the Markov process, and the sequence of all changes in the

modeled time interval. The complete data likelihood is denoted by p(Y ).

The complete data scores can be computed using the expressions

derived by Schweinberger and Snijders (2007) and Niezink and Snijders

(2017).

Based on N Monte Carlo simulations of the data, Y1, . . . , YN , given

the moment estimator û, we can estimate expression B2 by

1

N

XN

i = 1

(Si � c)Jið Þ, ðB3Þ

where Si denotes the statistics evaluated on simulated data Yi, Ji denotes

the complete data score ∂ log p(Yi)=∂u0, and c is a constant to reduce the

Monte Carlo variance; note that E(Ji) = 0. In practice, we use

c = 1
N

PN
j = 1 Sj, which is not constant but is almost so (Schweinberger

and Snijders 2007). This estimator applies variance reduction based on

control variates and is currently the default for estimating standard

errors in the stochastic actor-oriented model (Snijders 2017b). When

parameters are estimated based on more than one period, the statistic S

is the sum over statistics Sm computed separately based on the periods

m between measurements at time tm and tm + 1. In this case, the Jacobian

is estimated by

1

N

XN

i = 1

XM�1

m = 1

(Sm
i � cm)Jm

i

 !
, ðB4Þ

where Jm is the complete data score and cm the constant to reduce

Monte Carlo variance based on the data in period m.
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Note

1. A high attribute rate of change relative to the network rate of change will likely

result in a larger approximation error than a relatively low attribute change rate.

However, as the attribute change in the simulation study by Niezink and Snijders

(2017) is already rather extreme compared with what is usual in observations, the

rule of thumb formulated here will apply to most situations.
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