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Nonsingular and ghost-free infinite derivative gravity with torsion
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We present the most general quadratic curvature action with torsion including infinite covariant
derivatives and study its implications around the Minkowski background via the Palatini approach.
Provided the torsion is solely given by the background axial field, the metric and torsion are shown to
decouple, and both of them can be made ghost and singularity free for a fermionic source.

DOI: 10.1103/PhysRevD.99.104021

I. INTRODUCTION

The theory of general relativity (GR), which respects
diffeomorphism invariance, can be modified to incorporate
the gauge structure of the Poincaré group, provided a
torsion field is added [1]. This is known as Poincaré gauge
gravity (cf. Ref. [2]). Both GR and Poincaré gravity suffer
from the short distance behavior at a classical level in terms
of black hole and cosmological singularities, known as the
UV problem. In this paper, our aim will be to construct an
action which recovers GR and Poincaré theory of gravity in
the IR, while ameliorating the UV behavior of both metric
and torsion fields. Infinite derivative gravity (IDG) can
potentially ameliorate the classical UV behavior of a metric
theory of gravity [3–6]. Different approaches of IDG have
been made in the context of teleparallel gravity [7] and
symmetric teleparallel gravity [8]. However, constructing a
Poincaré gravity possessing a better UV behavior at a
classical level remains very challenging. To the best of our
knowledge, the systematic study of infinite derivative
extensions of the Poincaré gravity has never been done
before. The aim of this paper will be to construct an action
including metric and torsion fields up to quadratic in
curvature with infinite covariant derivatives.

II. MOST GENERAL QUADRATIC
ACTION WITH TORSION

We start with the most general covariant action of gravity
with no prior assumptions on the connection. In order to
obtain the quadratic action, let us consider perturbations
around theMinkowski metric gμν ¼ ημν þ hμν, where μ; ν ¼
0; 1; 2; 3 and we work with the ð−;þþþÞ signature. We
stick to the terms up to quadratic in curvature Oðh2Þ.
Regarding the connection, the only requirement is that the
metricity condition, i.e., ∇ρgμν ¼ 0, is fulfilled. With that,
one can find a relation between the Levi-Civita connection Γ
and the general one Γ̃, namely Γ̃ρ

μν ≐ Γρ
μν þ K ρ

μ ν, whereK is

the so-called contorsion tensor, Kρ
μν ≐ Tρ

μν þ T ρ
μ ν þ T ρ

ν μ,
which is defined in terms of the torsion tensor, Tμ

ν ρ ¼ Γ̃μ
½νρ�,

where the symbol ½··� means antisymmetrization of the
indices. Note that if the effects of torsion in the action are
to be considered the deviation from the Levi-Civita con-
nection must be OðhÞ, i.e., K ∼OðhÞ, which is compatible
with experiment [9]. The most general action for metric and
torsion, quadratic in both, which generalizes both the metric
[6,10,11] and the teleparallel actions [7], and generalization
of second order curvature invariants [12] will be of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R̃
2
þ R̃μ1ν1ρ1σ1O

μ1ν1ρ1σ1
μ2ν2ρ2σ2R̃

μ2ν2ρ2σ2

þ R̃μ1ν1ρ1σ1O
μ1ν1ρ1σ1
μ2ν2ρ2 Kμ2ν2ρ2 þ Kμ1ν1ρ1O

μ1ν1ρ1
μ2ν2ρ2K

μ2ν2ρ2

�
;

ð1Þ
where O denote differential operators containing covariant
derivatives and theMinkowski metric ημν. Also, the tilde (e)
represents the quantities calculated with respect to the total
connection Γ̃. Indeed, Eq. (1) is the most general action
satisfying the aforementioned requirements, since operators
acting on the left can always be integrated by parts to provide
operators acting on the right plus total derivatives. Action (1)
is captured by 46 functions containing infinite covariant
derivatives. Such functions reduce to 19 when imposing the
Bianchi identities, and the total derivatives are taken into
account; see the Appendix. Further note that the usual
Poincaré gauge gravity (including Einstein-Cartan gravity)
can be recovered from (1), provided one takes the local limit.
The linearized version of the action (1) around the
Minkowski background can be written as

Sq ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ðLM þ LMT þ LTÞ

¼ SM þ SMT þ ST; ð2Þ
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where

LM ¼ 1

2
hμν□að□Þhμν þ h α

μ bð□Þ∂α∂σhσμ þ hcð□Þ∂μ∂νhμν

þ 1

2
h□dð□Þhþ hλσ

fð□Þ
□

∂σ∂λ∂μ∂νhμν; ð3Þ

LMT ¼ h□uð□Þ∂ρK
ρσ

σ þhμνv1ð□Þ∂μ∂ν∂ρK
ρσ

σ

þhμνv2ð□Þ∂ν∂σ∂ρKμσρþhμν□wð□Þ∂ρKρμν; ð4Þ

LT ¼Kμσλp1ð□ÞKμσλ þKμσλp2ð□ÞKμλσ þK ρ
μ ρp3ð□ÞKμσ

σ

þKμ
νρq1ð□Þ∂μ∂σKσνρ þKμ

νρq2ð□Þ∂μ∂σKσρν

þK ρ
μ νq3ð□Þ∂ρ∂σKμνσ þK ρ

μ νq4ð□Þ∂ρ∂σKμσν

þKμρ
ρq5ð□Þ∂μ∂νKνσ

σ þKλ
λσq6ð□Þ∂μ∂αKσμα

þK νρ
μ sð□Þ∂ν∂ρ∂α∂σKμασ; ð5Þ

where a, b, c, d, f, u, v1;2, w, p1;2;3, q1;2;3;4;5, and s are
functions of covariant infinite derivatives of □ ¼ gμν∇μ∇ν

(see the Appendix for a detailed discussion). Note that□ is a
dimensionful quantity, since strictly speaking there is a
scale □s ¼ □=M2

s , where Ms is the new scale at which
gravity is modified in four dimensions withMs < MPlanck ¼
1.2 × 1019 GeV. In order not to clutter our formulas,we shall
suppress writing Ms. Furthermore, note that LM in (3) has
only metric terms and coincides with the nontorsion case
Lagrangian [6], as expected. On the other hand, LMT in (4)
represents the mixed terms between metric and torsion, and
LT in (5) only contains torsion terms. Thus, Eq. (2) is the new
most generalized linearized action of gravity withoutmaking
any assumption about the choice of connection. To the best of
our knowledge, this is the first such generalization within
Poincaré theory of gravity. Furthermore, when □=M2

s → 0,
then the terms involving the operators u and w tend to 0,
recovering the local action, therefore yielding a Poincaré
gauge gravity in the IR. In general, these two terms in (4)
break the Poincaré invariance.

III. FIELD EQUATIONS

We apply the Palatini formalism [13] to obtain the field
equations, finding differences with respect to the torsion-
free case in both the Einstein and Cartan equations. We vary
action (2) with respect to the metric, i.e., δg=δgμν, to find the
Einstein equations and with respect to contorsion Kμ

νρ to
yield the Cartan equations, i.e., δK=δK

μ
νρ. Equations of

motion derived from LM when varying with respect to
metric tensor have already been calculated in Refs. [6,14],
which serves as a consistency check for our calculations. It
is worth noting that this is the first time the Palatini
approach has been used in the context of IDG, since the
existing literature has always assumed the Levi-Civita as
the underlying connection, hence only variations with

respect to the metric are perfomed to obtain the field
equations.

A. Einstein equations

Variations with respect to the metric in LM as presented
in (4) yield

δgSM
δgμν

¼ □að□Þhμν þ bð□Þ∂σ∂ðνh σ
μÞ

þ cð□Þ½∂μ∂νhþ ημν∂ρ∂σhρσ� þ ημν□dð□Þh

þ 2fð□Þ
□

∂μ∂ν∂ρ∂σhρσ; ð6Þ

an expression which is compatible with the results in
Ref. [6]. fð□Þ can be proven to have a polynomial form
in □, so there are no inverse, nonanalytic 1=□ operators
involved in (6). From the explicit expression of the
functions in (6), the following relations can be obtained [6],

að□Þ þ bð□Þ ¼ 0; cð□Þ þ dð□Þ ¼ 0;

bð□Þ þ cð□Þ þ fð□Þ ¼ 0; ð7Þ

which are a consequence of the Bianchi identities and the
conservation of the energy-momentum tensor. For LMT, we
have

δgSMT

δgμν
¼ ημν□uð□Þ∂ρK

ρσ
σ þ v1ð□Þ∂μ∂ν∂ρK

ρσ
σ

þ v2ð□Þ∂σ∂ρ∂ðνK
σρ
μÞ þ□wð□Þ∂ρK

ρ
ðμνÞ: ð8Þ

Again, from the explicit decomposition of the functions in
(8) (see Appendix), one obtains

uð□Þ þ v1ð□Þ ¼ 0; v2ð□Þ − wð□Þ ¼ 0; ð9Þ

where the second constraint above arises from the con-
servation of the energy-momentum tensor. Interestingly,
when uð□Þ ¼ v1ð□Þ ¼ v2ð□Þ ¼ wð□Þ ¼ 0, the mixed
term LMT vanishes. Note that the contributions of the
contorsion tensor in (8) are purely symmetric. In the next
section, this property will allow us to obtain solutions able
to ameliorate the classical UV behavior.

B. Cartan equations

Variations now with respect to the contorsion in (4) and
(5) yield

δLMT

δKμ
νρ

¼ −□uð□Þ∂ ½νηρμ�h − v1ð□Þ∂α∂β∂ ½νηρμ�hαβ

þ v2ð□Þ∂β∂ρ∂ ½νhμ�β þ□wð□Þ∂ ½μhν�ρ; ð10Þ
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δLT

δKμ
νρ

¼ 2p1ð□ÞK νρ
μ þ 2p2ð□ÞK ρ�ν

½μ þ 2p3ð□Þην½ρK σ
μ� σ − 2q1ð□Þ∂σ∂ ½μKρ�νσ þ 2q2ð□Þ∂σ∂ ½μKσjρ�ν

þ q3ð□Þð∂ν∂σK
ρ�σ

½μ þ ∂σ∂ ½ρK σν
μ� Þ þ 2q4ð□Þ∂ν∂σK

σρ
μ þ 2q5ð□Þην½ρ∂μ�∂λKλσ

σ

þ q6ð□Þð∂λ∂αη
ν
½μK

ρ�λα − ∂ν∂ ½ρK λ
μ�λ Þ þ 2sð□Þ∂σ∂λ∂ρ∂ ½νKμ�σλ: ð11Þ

Note that in the standard Poincaré gravity there are no
mixed terms. However, in our case, the presence of
differential operators causes the emergence of mixed terms
between the metric and the torsion. While applying the
Palatini formalism, there will be terms in the Cartan
equations which are nonzero even if the torsion is set null.
If we set the torsion to zero, the Cartan equations do not
play any role in the dynamics of the system, and variations
with respect to the contorsion cannot be performed. Hence,
the sole remaining equations would be the usual Einstein
equations take the same form as in Ref. [6].

IV. SOLUTIONS

In order to obtain solutions for the classes of theories
provided by the action (2), let us recall the torsion tensor
property thanks to which such a tensor can be uniquely
decomposed as [2]

Tμνρ ¼
1

3
ðTνgμρ − TμgμνÞ −

1

6
εμνρσSσ þ qμνρ; ð12Þ

where the components above are given by the trace vector
Tμ ¼ Tν

μν, the axial vector Sμ ¼ ερσνμTρσν, and a tensor,
qμνρ, such that qνμν ¼ 0with ερσνμqρσν ¼ 0, where ε denotes
the totally antisymmetric tensor in four dimensions.
Making use of this decomposition, we find that the only
components contributing in the Einstein equations turn out
to be the trace and the tensor parts. Therefore, if we assume
that the torsion field only possesses a nonvanishing axial
component, the Einstein equations would reduced to those
in Ref. [6]. This means that the metric solutions would be
the same ones as in standard IDG. Nevertheless, Cartan
equations still need to be solved for those metrics in order
to obtain the torsion field solutions. One possible solution
would then be

uð□Þ ¼ v1ð□Þ ¼ v2ð□Þ ¼ wð□Þ ¼ 0; ð13Þ

which yields LMT ¼ 0; i.e., the metric and torsion fields are
decoupled. As a consequence, in this scenario (13), the
degrees of freedom (d.o.f.) can be studied for the metric and
the Cartan theories separately. Consequently, the theory
space reduces to that of the Poincaré gauge gravity. Now, let
us study the conditions for which the field equations do not
host extra dynamical d.o.f.

V. GHOST-FREE CONDITIONS FOR
METRIC AND TORSION

The equations of motion for the pure metric theory are
given by (6). Since there are infinite covariant derivatives
present, new dynamical d.o.f. arise, which may include
ghosts. It has been shown in Ref. [6] that, in order to ensure
the metric part of the theory is ghost free with the same
on-/off-shell d.o.f. as that of the massless graviton in four
dimensions, we would require [6]

að□Þ ¼ cð□Þ ¼ eγð□Þ; ð14Þ

where γð□Þ is an entire function, which has no poles,
suggesting that að□Þ does not introduce any new dynami-
cal d.o.f. [6]. We can also show that the form factor F̃3ð□Þ
in (A1) becomes redundant due to the fact that the Weyl
part does not contribute at the background level around the
Minkowski spacetime. The simplest choice would be to
consider γð□Þ ¼ □=M2

s. Also, the above expression (14)
for að□Þ appears in the graviton propagator. The gauge-
independent part of the graviton propagator can be recast in
terms of the spin projection operators, i.e., spin-2, Pð2Þ, and
spin-0, Pð0Þ [6],

Πðk2Þ ¼ 1

aðk2Þ
�
Pð2Þ

k2
−
Pð0Þ

2k2

�
¼ 1

eγðk2Þ
Πðk2ÞðGRÞ; ð15Þ

where spacetime indices have been suppressed. As a
consequence, provided aðk2Þ is given by an exponential
of an entire function, then it does not introduce any new
pole nor any new dynamical d.o.f., and therefore the true
dynamical d.o.f. remain that of the massless GR. In order to
obtain the ghost-free conditions for the torsion axial vector,
the relevant Lagrangian LT in (2) can be rewritten as

LT ¼ Sμ□Λð□ÞSμ − SμΣð□Þ∂μ∂νSν; ð16Þ

where Σð□Þ ¼ q1ð□Þ − q2ð□Þ − q3ð□Þ þ q4ð□Þ and
Λð□Þ ¼ 3ðp1ð□Þ þ p2ð□ÞÞ þ Σð□Þ. Hence, the Cartan
equations in vacuum become

□Λð□ÞSμ − Σð□Þ∂μ∂νSν ¼ 0: ð17Þ

Consequently, now the torsion propagator O can be recast
in terms of its corresponding d.o.f., namely the spin-0 and
spin-1 modes, as follows:
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Oðk2Þ ¼ Pð0Þ

Λð−k2Þ − Σð−k2Þ þ
Pð1Þ

−k2Λð−k2Þ : ð18Þ

In order to have a ghost-free axial vector field, we need to
impose that the scalar mode does not propagate, so only the
spin-1 component propagates, and both Λ and Σ in (16)
must be of the form of an exponential of an entire
function in order to not introduce any new d.o.f.
Therefore, we have

Λð−k2Þ ¼ Σð−k2Þ ¼ eβðk2Þ; ð19Þ

where β is an entire function, which introduces neither new
poles nor new d.o.f.

VI. AVOIDANCE OF POINT-SOURCE
SINGULARITY

The simplest choice of both entire functions β and γ
would be βðk2Þ ∼ γðk2Þ ¼ k2=M2

s . Other choices for these
entire functions can also be made [15], but neither the UV
nor the IR part is overtly sensitive enough to such choices.
Let us first deal with the metric theory of gravity, where it
has already been shown that, in the presence of a massive
static point source, the 00 component of the energy-
momentum tensor can be written as: τ00 ¼ mδð3ÞðrÞ.
Accordingly, the Einstein equations (6) along with (7)
yield a nonsingular solution in isotropic coordinates,

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞdr⃗2; ð20Þ

ΦðrÞ ¼ ΨðrÞ ¼ −
Gm
r

ErfðrMs=2Þ; ð21Þ

where G is Newton’s constant and one can see that when
r ≫ 2=Ms we recover the correct IR limit of a metric theory
of gravity, i.e., the correct Newtonian limit of massless
gravity, while in the UV counterpart, i.e., r < 2=Ms, the
metric potentials approach being constant, Φ ¼ Ψ ¼
GmMs=

ffiffiffi
π

p
. In fact, it has been shown that in the UV

limit the Weyl tensor vanishes linearly in r, and both the
Ricci scalar and the Ricci tensor approach constant values.
Effectively, gravity becomes conformally flat in the UV
limit [16]. The time-dependent dynamical equations, such
as those in the matter collapse case, have also been solved
and shown to be nonsingular [17]. Analogous nonsingular
solutions exist in three [18] and higher dimensions [19].
The complete nonlinear equations of motion do not permit
singular behavior r−α, (α > 0) [20], and it is possible that
astrophysical objects can be made devoid of singularity as
well as horizons [16,21].
Now, let us study the evolution of the axial torsion field

Sμ, which couples to fermionic sources only. Since

fermions have an intrinsic spin, instead of having a
Dirac-delta point source for a fermion, we would need
to consider a singular source endowed with angular
momentum. Indeed, for the sake of simplicity, we can
fix the angular momentum to be in the z direction, without
any loss of generality. However, a mere Dirac delta at r ¼ 0
will not be able to capture the spin of the fermion; instead,
we would need a rotating singular Dirac-delta ring. We will
use again isotropic coordinates (20), in which the singular
source can be expressed as AμδðzÞδðx2 þ y2 − R2Þ.
Then, adding this source to the Cartan equations in (17),

and substituting the ghost-free conditions in the torsion
sector (19), one finds that

□eβð□ÞSμ ¼ AμδðzÞδðx2 þ y2 − R2Þ; ð22Þ

where Aμ holds for a source vector and R holds for the
constant Cartan radius of a singular rotating ring, where
effectively the singularity is located. For illustrative pur-
poses, we may assume βð□Þ ¼ −□=M2

s . In order to solve
Eq. (22), we need to calculate the Fourier transform F of
the source, as follows,

F ½δðzÞδðx2 þ y2 − R2Þ� ¼ πJ0
�
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �
; ð23Þ

where J0 represents the Bessel function of first kind
(n ¼ 0). Thus, applying the Fourier transform to Eq. (22),
one obtains

F ½□e−□=M2
s Sμðx⃗Þ�¼F ½AμδðzÞδðx2þy2−R2Þ�⇒

−k2ek2=M2
s Sμðk⃗Þ¼πAμJ0

�
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y

q �
⇒

Sμðk⃗Þ¼−πAμe
−k2=M2

s

k2
J0
�
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y

q �
; ð24Þ

Local gravity

Torsion IDG

0 2 4 6 8 10 12 14
–0.4

–0.3

–0.2

–0.1

0.0

ρ

A
xi
al
to
rs
io
n

FIG. 1. Results of the numerical computation of (26) for the
case of local theories of gravity (limit when Ms → ∞ or
□=Ms → 0) and IDG theories with torsion. We have chosen
Aμ ¼ 4; μ ¼ f1;…; 4g, R ¼ 5.06, and Ms ¼ 1.
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Then, performing the inverse of the transform of (24), we
find that the solution of Eq. (22) can be expressed as

Sμ ¼ −πAμ

Z
d3k
ð2πÞ3

e−k
2=M2

s

k2
J0
�
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q �

× eiðkxxþkyyþkzzÞ; ð25Þ

where d3k ¼ dkxdkydkz and k2 ¼ k2x þ k2y þ k2z . In order to
see how the axial vector behaves at the singularity r ¼ R,
we can restrict the study of the integral in (25) to the z ¼ 0
plane, assuming that the ring rotation axis lies along the z
direction. By using cylindrical coordinates, kx ¼ ξ cosðφÞ,
ky ¼ ξ sinðφÞ, kz ¼ kz, we obtain

SμðρÞ ¼ −πAμ

Z
ξ¼∞

ξ¼0

Z
φ¼2π

φ¼0

Z
kz¼∞

kz¼0

ξdφdξdkz
ð2πÞ3

e−ðξ2þk2zÞ=M2
s

ξ2 þ k2z
J0ð−RξÞeiξx cosðφÞeiξy sinðφÞ

¼ −
πAμ

ð2πÞ3
Z

ξ¼∞

ξ¼0

ξdξJ0ð−RξÞ
�Z

kz¼∞

kz¼0

dkz
e−ðξ2þk2zÞ=M2

s

ξ2 þ k2z

��Z
φ¼2π

φ¼0

dφeiξx cosðφÞeiξy sinðφÞ
�

¼ −
1

4
Aμ

Z
∞

0

dξJ0ð−RξÞJ0ð−ξρÞErfcðξ=MsÞ; ð26Þ

where ErfcðzÞ ¼ 1 − ErfðzÞ is the complementary error
function. Since finding the analytically closed form is not
possible, the integral in (26) can be solved numerically for
physically relevant values, as can be seen in Fig. 1. In the
case of stable local Poincaré gauge theories of gravity, in
the limit Ms → ∞, the singularity at r ¼ R is unavoidable;
see Ref. [22]. Within the infinite derivative theory of
Poincaré gravity, which has no ghosts, the ring singularity
can be smeared out. In both cases in the figure, the axial
torsion presents a 1=r behavior in the IR limit. Therefore,
for IDG theories, we conclude that the axial torsion is
regular everywhere in the presence of a Dirac-delta
fermionic source with spin. This result is similar to the
Kerr-like singularity, which is cured in the infinite deriva-
tive metric theory of gravity [23].

VII. CONCLUSIONS

In this paper, we have presented the most general action
for infinite derivative gravity with torsion. We have applied
the Palatini formalism for the first time in this context to
obtain the linearized field equations around the Minkowski
background. Under the assumption that the torsion com-
ponent is solely given by an axial field, we have shown that
the coupling between the metric and the torsion vanishes,
therefore leading to two separate infinite derivative theories
of gravity along with an axial torsion field. For both sectors,

we were able to show that the ghost-free conditions are able
to smear out pointlike and ringlike singularities. The
solution where the axial torsion couples to a fermionic
source with a spin is absolutely novel. Consequently, our
results may have seminal consequences for building quan-
tum theory of gravity with spins and understanding the UV
aspects of Poincaré gauge theories of gravity.
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APPENDIX

The full nonlinear quadratic Lagrangian in both curva-
ture and torsion (around Minkowski) is given by

Lq ¼ R̃F̃1ð□ÞR̃þ R̃F̃2ð□Þ∂μ∂νR̃μν þ R̃μνF̃3ð□ÞR̃ðμνÞ þ R̃μνF̃4ð□ÞR̃½μν� þ R̃ðμνÞF̃5ð□Þ∂ν∂λR̃μλ þ R̃½μν�F̃6ð□Þ∂ν∂λR̃μλ

þ R̃μ
νF̃7ð□Þ∂ν∂λR̃ðμλÞ þ R̃μ

νF̃8ð□Þ∂ν∂λR̃½μλ� þ R̃λσF̃9ð□Þ∂μ∂σ∂ν∂λR̃μν þ R̃ðμλÞF̃10ð□Þ∂ν∂σR̃μνλσ

þ R̃½μλ�F̃11ð□Þ∂ν∂σR̃μνλσ þ R̃μλF̃12ð□Þ∂ν∂σR̃ðμνjλσÞ þ R̃μλF̃13ð□Þ∂ν∂σR̃½μνjλσ� þ R̃μνλσF̃14ð□ÞR̃ðμνjλσÞ

þ R̃μνλσF̃15ð□ÞR̃½μνjλσ� þ R̃ðρμjνλÞF̃16ð□Þ∂ρ∂σR̃μνλσ þ R̃½ρμjνλ�F̃17ð□Þ∂ρ∂σR̃μνλσ þ R̃ρμνλF̃18ð□Þ∂ρ∂σR̃ðμνjλσÞ

þ R̃ρμνλF̃19ð□Þ∂ρ∂σR̃½μνjλσ� þ R̃ðμνjρσÞF̃20ð□Þ∂ν∂σ∂α∂βR̃μαρβ þ R̃½μνjρσ�F̃21ð□Þ∂ν∂σ∂α∂βR̃μαρβ
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þ R̃μνρσF̃22ð□Þ∂ν∂σ∂α∂βR̃ðμαjρβÞ þ R̃μνρσF̃23ð□Þ∂ν∂σ∂α∂βR̃½μαjρβ� þ KμνρF̃24ð□ÞKμνρ þ KμνρF̃25ð□ÞKμρν

þ Kμ
ρ
ρF̃26ð□ÞKμσ

σ þ Kμ
νρF̃27ð□Þ∂μ∂σKσνρ þ Kμ

νρF̃28ð□Þ∂μ∂σKσρν þ Kμ
ρ
νF̃29ð□Þ∂ρ∂σKμνσ

þ Kμ
ρ
νF̃30ð□Þ∂ρ∂σKμσν þ Kμρ

ρF̃31ð□Þ∂μ∂νKνσ
σ þ Kμ

νρF̃32ð□Þ∂ν∂ρ∂α∂σKμασ þ Kλ
λσF̃33ð□Þ∂ρ∂νKνρσ

þ R̃μ
νρσF̃34ð□Þ∂μKνρσ þ R̃μν

ρ
σF̃35ð□Þ∂ρKμνσ þ R̃ðρσÞF̃36ð□Þ∂νKνρσ þ R̃½ρσ�F̃37ð□Þ∂νKνρσ þ R̃ρσF̃38ð□Þ∂νKρνσ

þ R̃ðρσÞF̃39ð□Þ∂σKρμ
μ þ R̃½ρσ�F̃40ð□Þ∂σKρμ

μ þ R̃F̃41ð□Þ∂ρKρμ
μ þ R̃μ

α
ρ
σF̃42ð□Þ∂μ∂ρ∂νKνðασÞ

þ R̃μ
α
ρ
σF̃43ð□Þ∂μ∂ρ∂νKν½ασ� þ R̃μ

α
ρ
σF̃44ð□Þ∂μ∂ρ∂νKανσ þ R̃ðμ

σÞF̃45ð□Þ∂μ∂ν∂αKσνα

þ R̃½μ
σ�F̃46ð□Þ∂μ∂ν∂αKσνα; ðA1Þ

where R̃ðαβjγρÞ ¼ 1
2
ðR̃αβγρ þ R̃γραβÞ and R̃½αβjγρ� ¼ 1

2
ðR̃αβγρ − R̃γραβÞ. In order to be consistent with the action in Ref. [6] when

the torsion is zero, we need to satisfy the following relations:

F̃5ð□Þ þ F̃7ð□Þ ¼ F4ð□Þ; F̃10ð□Þ þ F̃12ð□Þ ¼ F7ð□Þ;
F̃16ð□Þ þ F̃18ð□Þ ¼ F11ð□Þ; F̃20ð□Þ þ F̃22ð□Þ ¼ F12ð□Þ: ðA2Þ

After some computations, we arrive at Eq. (2), in which the coefficients are given by

uð□Þ ¼−4F̃1ð□Þ− F̃5ð□Þ□− F̃7ð□Þ□− F̃9ð□Þ□2þ 1

2
F̃39ð□Þþ F̃41ð□Þ;

v1ð□Þ ¼ 4F̃1ð□Þþ F̃5ð□Þ□þ F̃7ð□Þ□þ F̃9ð□Þ□2−
1

2
F̃39ð□Þ− F̃41ð□Þ;

v2ð□Þ ¼−
1

2
F̃3ð□Þ− F̃10ð□Þ□− F̃12ð□Þ□þ F̃9ð□Þ□2 −4F̃14ð□Þ− F̃16ð□Þ□− F̃18ð□Þ□− F̃20ð□Þ□2− F̃22ð□Þ□2

þ 1

2
F̃34ð□Þþ 1

2
F̃35ð□Þþ 1

2
F̃36ð□Þþ 1

2
F̃42ð□Þ;

wð□Þ ¼−
1

2
F̃3ð□Þ− F̃10ð□Þ□− F̃12ð□Þ□þ F̃9ð□Þ□2 −4F̃14ð□Þ− F̃16ð□Þ□− F̃18ð□Þ□− F̃20ð□Þ□2− F̃22ð□Þ□2

þ 1

2
F̃34ð□Þþ 1

2
F̃35ð□Þþ 1

2
F̃36ð□Þþ 1

2
F̃42ð□Þ;

q1ð□Þ ¼ 1

2
F̃3ð□Þþ 1

2
F̃4ð□Þþ 1

2
F̃10ð□Þ□þ 1

2
F̃11ð□Þ□þ 1

2
F̃12ð□Þ□þ 1

2
F̃13ð□Þ□þ 1

2
F̃16ð□Þ□þ 1

2
F̃18ð□Þ□

þ 1

2
F̃19ð□Þ□þ 1

2
F̃20ð□Þ□þ 1

2
F̃21ð□Þ□þ 1

2
F̃22ð□Þ□þ 1

2
F̃23ð□Þ□þ F̃27ð□Þ−1

2
F̃36ð□Þ− 1

2
F̃37ð□Þ

−
1

2
F̃42ð□Þ□−

1

2
F̃43ð□Þ□;

q2ð□Þ ¼ 1

2
F̃3ð□Þ− 1

2
F̃4ð□Þþ 1

2
F̃10ð□Þ□−

1

2
F̃11ð□Þ□þ 1

2
F̃12ð□Þ□−

1

2
F̃13ð□Þ□þ 2F̃14ð□Þ− 2F̃15ð□Þ

þ 1

2
F̃16ð□Þ□þ 1

2
F̃20ð□Þ□−

1

2
F̃21ð□Þ□þ 1

2
F̃22ð□Þ□−

1

2
F̃23ð□Þ□þ F̃28ð□Þ− 1

2
F̃36ð□Þþ 1

2
F̃37ð□Þ

−
1

2
F̃42ð□Þ□þ 1

2
F̃43ð□Þ□;

q3ð□Þ ¼−F̃17ð□Þ□− F̃18ð□Þ□þ F̃19ð□Þ□þ F̃29ð□Þþ F̃34ð□Þ− F̃35ð□Þ− F̃38ð□Þ− F̃44ð□Þ□;

q4ð□Þ ¼−F̃14ð□Þ− F̃15ð□Þþ F̃30ð□Þ;

q5ð□Þ ¼ 4F̃1ð□Þþ 2F̃2ð□Þ□þ 1

2
F̃3ð□Þ− 1

2
F̃4ð□Þþ F̃5ð□Þ□þ F̃7ð□Þ□þ F̃9ð□Þ□2þ F̃31ð□Þ− 1

2
F̃39ð□Þ

−
1

2
F̃40ð□Þ− 2F̃41ð□Þ;

q6ð□Þ ¼ F̃3ð□Þþ F̃4ð□Þþ F̃32ð□Þþ 1

2
F̃36ð□Þþ 1

2
F̃37ð□Þ− F̃38ð□Þ− 1

2
F̃39ð□Þþ 1

2
F̃40ð□Þþ 1

2
F̃45ð□Þ□þ 1

2
F̃46ð□Þ□;
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p1ð□Þ ¼ F̃14ð□Þ□þ F̃15ð□Þ□þ F̃24ð□Þ; p2ð□Þ ¼ 1

2
F̃18ð□Þ□2 −

1

2
F̃19ð□Þ□2 þ F̃25ð□Þ þ F̃34ð□Þ;

p3ð□Þ ¼ 1

2
F̃3ð□Þ□þ 1

2
F̃4ð□Þ□þ F̃26ð□Þ − 1

2
F̃39ð□Þ□þ 1

2
F̃40ð□Þ□;

sð□Þ ¼ −
1

2
F̃10ð□Þ − 1

2
F̃11ð□Þ − 1

2
F̃12ð□Þ − 1

2
F̃13ð□Þ − 1

2
F̃16ð□Þ þ F̃17ð□Þ − 1

2
F̃20ð□Þ − 1

2
F̃21ð□Þ − 1

2
F̃22ð□Þ

−
1

2
F̃23ð□Þ þ F̃33ð□Þ þ 1

2
F̃42ð□Þ − 1

2
F̃43ð□Þ − 1

2
F̃44ð□Þ − 1

2
F̃45ð□Þ − 1

2
F̃46ð□Þ:

Explicit expressions for the purely metric functions a, b, c, d, and f are given in Ref. [6].
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