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A B S T R A C T

The assumption that market efficiency informs the pricing of oil stocks is critical to understanding the co-
movement between stock markets and oil markets. To test this assumption in relation to various types of real
oil price changes, this article proposes a two-stage analysis method that starts with a quantile regression to
identify oil shocks and develop interval-valued factor pricing models. These interval-based methods, relative
to traditional point-based methods, can produce more efficient parameter estimations by providing more
information. The results show that oil stocks tend to be overpriced following negative oil price shocks, which
partially violates the efficient market hypothesis. Yet oil stocks are efficiently priced in response to moderate
changes or positive oil price shocks, such that in most cases, the market remains efficient in pricing oil stocks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the effort to model and analyze oil prices (Yu et al., 2008; Zhang
et al., 2008, 2009; He et al., 2010; Li et al., 2013; Lu et al., 2014; Zhao
et al., 2016), studies often identify a positive co-movement between
oil prices and the stock prices of oil companies (e.g., Sadorsky, 2001;
Henriques and Sadorsky, 2008). Intuitively, it appears that increased
oil prices enhance oil companies’ profitability, and stock prices
respond positively in turn. This typical, fundamental analysis pre-
dicts that oil stocks’ observed prices correctly reflect their intrinsic
values, in accordance with the efficient market hypothesis. As a more
detailed, novel test of that assumption, this article closely examines
the stock market’s efficiency in pricing oil stocks by comparing the
market efficiency across different types of oil price changes: negative
shocks, positive shocks, and moderate price changes. The empirical
evidence indicates that the efficient market hypothesis does not hold
in every case.

Research already has established that oil price changes can affect
the prices of oil companies’ stocks: Higher oil prices should lead to

* Corresponding author at: Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, China.

E-mail address: sunyuying@amss.ac.cn (Y. Sun).

the enhanced financial performance of oil firms in stock markets.
Using a vector error correction model, Hammoudeh et al. (2004) find
that future oil prices relate positively to U.S. oil companies’ stock
prices, and Sadorsky (2001) similarly finds that oil prices exert a pos-
itive effect on Canadian oil firms’ stock returns. By investigating the
relationship between oil prices and stock prices in China’s stock mar-
ket, Cong et al. (2008) find that “some important oil price shocks
depress oil company stock prices.” Henriques and Sadorsky (2008)
also use a vector autoregressive model to show that oil price changes
positively Granger cause oil stock returns. According to Boyer and
Filion (2007), Canadian energy stock relates positively to crude oil
and natural gas prices, and Nandha and Faff (2008) find that oil price
changes have positive impacts on oil stock prices in international
equity markets. Because oil companies produce oil and gas, higher
oil prices tend to lead to their increased profitability, which in turn
prompts positive oil stock price changes.

This explanation relies on a fundamental analysis in which oil
stocks’ observed prices correctly reflect their intrinsic values-that
is, the efficient market hypothesis. However, relatively few studies
explicitly or empirically test this assumption. Fama and French
(1997) test both the capital asset pricing model (CAPM) and the
Fama-French three-factor model with various stock indices for dif-
ferent industries and find that pricing errors for the energy industry
are consistently insignificant. Similarly, Arshanapalli et al. (1998) use

https://doi.org/10.1016/j.eneco.2019.04.016
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a multifactor pricing model to examine the financial performance
of various industry portfolios and show that the international stock
market is efficient when it comes to pricing oil stocks.

Yet not all oil price changes are the same. For example, oil price
shocks refer to unexpected, substantial changes in real oil prices that
accompany the availability of increased information about supply
and demand. Existing literature that examines the market efficiency
of pricing oil stocks and confirms the efficient market hypothesis does
not address these various types of oil price changes, which might
include negative shocks and positive shocks, as well as moderate
price changes. In this sense, previous studies provide “unconditional”
tests, without confirming whether the market is consistently effi-
cient across all these different types of oil price changes. The rare
shocks in the market involve more information than do common,
moderate oil price changes. Therefore, the market should be more
efficient in response to moderate oil price changes than to oil price
shocks, but it also is of interest to examine market efficiency for
pricing oil stocks when all these different types of oil price changes
occur.

In this paper, oil company’s equity prices are used to study mar-
ket efficiency during real oil price shocks for three reasons. First,
during oil price shocks, the stock price data of oil companies better
reflect market efficiency related to other industries. As the produc-
ers of crude oil, oil stock prices are expected to be strongly correlated
with real oil prices. Thus, oil companies’ stock prices can constitute
an ideal index to assess whether the news, reflected by the oil shock,
is fully digested by the financial market. Second, different from other
industries, oil prices dominate oil companies’ profitability. Thus, the
pricing efficiency of oil stocks essentially reflects the linkage with
real oil price changes and its impact on the financial market. Third,
as mentioned before, the pricing efficiency of oil company stocks is
the fundamental of most of the existing studies on the co-movement
between oil prices and oil stock prices.

This paper proposes a two-stage procedure to examine this mar-
ket efficiency. In the first stage, quantile regression identifies oil
shocks and their directions. In the second stage, a novel interval-
valued factor pricing model evaluates market efficiency and pro-
duces a minimum distance estimation. The empirical study, con-
ducted with the daily growth rates of WTI spot oil prices, produces
some interesting findings. In particular, oil stocks are significantly
overpriced in response to negative oil price shocks but efficiently
priced for positive oil price shocks and moderate oil price changes.
This result also is robust to various factor pricing models. The over-
pricing seemingly might arise because agents underreact to negative
shocks; alternatively, agents might prefer to anchor their initial
forecasts on their prior beliefs and then revise forecasts smoothly,
instead of overadjusting (Capistrán and López-Moctezuma, 2014).

Compared with existing literature, this study offers three notable
contributions. First, it uses quantile regression to identify oil price
shocks. This method reconciles two important features of oil shocks
(unpredictability and substantial changes), as revealed in previous
studies, instead of just one of them. Second, the interval-valued fac-
tor pricing models that evaluate market efficiency in this study are
superior to traditional point-valued factor pricing models, in that
they produce more efficient estimations due to the gain in infor-
mation they offer. That is, interval data contain more information
(e.g., trend, volatility) than point-valued data in the same period. In
turn, the proposed interval models can derive classic factor pricing
models, including CAPM and the Fama-French three-factor and five-
factor models. Third, the empirical results violate the efficient market
hypothesis, challenging the findings of previous studies that rely on
unconditional tests. Even if the market is efficient in most cases, the
results reveal that the observed prices of oil stocks differ from their
intrinsic values in relation to negative oil shocks.

Section 2 accordingly presents the novel methodology, includ-
ing the new approach developed to identify the oil shocks and the

interval-valued factor pricing models that serve to evaluate market
efficiency. Section 3 describes the data analysis and empirical results.
Section 4 contains robustness checks with various traditional factor
pricing models, and Section 5 concludes.

2. Methodology

To establish a procedure for assessing the pricing efficiency of oil
stocks in response to various types of oil price changes, two issues
are relevant. First, the appropriate approach must be able to define
three types of oil price changes: negative oil shocks, moderate oil
price changes, and positive oil shocks. Second, an interval-valued fac-
tor regression with interval-valued dummy variables can uncover
the intrinsic values of oil shocks and potential pricing errors.

2.1. Oil shocks

In this subsection, the goal is to define positive and negative oil
price shocks. An oil price shock is an ambiguous concept with no
generally accepted definition. Extant literature reveals two widely
used measures though: net oil price increase/decrease and normal-
ized oil price growth. First, Hamilton (1996) proposes the net oil
price increase, which defines oil price shocks with quarterly data, as
in the following equation:

NOPIt = max
(

0, ln
pt

max (pt−1, pt−2, pt−3, pt−4)

)
, (1)

where pt denotes the oil price for quarter t. If the current oil price
exceeds the maximal price over the previous year, the oil shock is
equal to this percentage change; if the current oil price does not
exceed the maximal oil price over the previous year, it is defined as
0. In a similar sense, a net oil price decrease is calculated as

NOPDt = min
(

0, ln
pt

min (pt−1, pt−2, pt−3, pt−4)

)
. (2)

This net oil increases/decrease series appears in many studies (Lee
and Ni, 2002; Cunado and Gracia, 2003; Hamilton, 2003; Bernanke
et al., 2004; Aloui and Jammazi, 2009; Ceylan and Berument, 2010;
Engemann et al., 2014). Another widely used measure is normal-
ized oil price growth, as proposed by Lee et al. (1995), which models
the evolution of oil price growth according to an AR(n)-GARCH(p,q)
process

rt = l +
n∑

i=1

qirt−i + et , (3)

et = st4t , (4)

s2
t = y +

p∑
i=1

his
2
t−i +

q∑
i=1

cie
2
t−i, (5)

where rt = pt
pt−1

− 1 is the oil price growth rate. Then the nor-
malized growth rate is simply defined as the innovation process 4t.
This measurement is widely adopted in existing literature (Sadorsky,
1999; Cunado and Gracia, 2003; Park and Ratti, 2008; Ceylan and
Berument, 2010).

Both measures reflect important features of oil price shocks. First,
the net oil price increase/decrease implies that oil price shocks are
rare, such that only dramatic oil price changes can be regarded as
shocks. Relatively insignificant oil price changes are excluded from
this definition. Second, the normalized oil price growth measure
implies that only unexpected oil price changes can be called shocks.
Thus, rarity and unexpectedness mutually and essentially define oil
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price shocks; in turn, for this study, oil price shocks are formally
defined as substantial and unpredictable changes in oil prices.

Using conditional quantiles of oil price growth as thresholds can
distinguish the types of oil price changes. Suppose Ft is an informa-
tion set observed at time t. The lower tth and upper tth quantiles of
rt+1, conditional on Ft , can be calculated as

qt
t+1 = sup

{
q : Prob(rt+1 < q|Ft) < t

}
, (6)

q1−t
t+1 = inf

{
q : Prob(rt+1 > q|Ft) < t

}
, (7)

where t is a relatively small number that can be set subjectively,
at 1%, 5%, or 10% for example. Then oil price change rt+1 is a nega-
tive shock at time t + 1 if its realized value is smaller than qt

t+1 or
a positive shock at time t + 1 if its realized value is greater than
q1−t

t+1; otherwise, rt+1 is a moderate oil price change. Unlike the net
oil price increase/decrease series and normalized oil price growth,
this quantile-based identification considers both attributions of oil
price shocks, rather than focusing on one or the other. The condi-
tional quantiles qt

t+1 and q1−t
t+1 are derived from the information set

Ft , such that the predictable components of rt+1 have been incorpo-
rated into these quantiles. By using lower and upper quantiles of rt+1

as thresholds, this method also can identify relatively insignificant
or small shifts in oil prices as moderate oil price changes. Only sharp
increases or decreases are identified as shocks, according to both of
their crucial characteristics.

Quantile regression in turn can provide the conditional quan-
tiles of rt. Suppose x1

t , x2
t , . . . , xn

t are n Ft−1-adopted random variables.
Then a quantile regression for rt can be written as

qt
t = Qt

(
rt|x1

t , x2
t , . . . , xn

t

)
= f

(
x1

t , x2
t , . . . , xn

t ; bt
)

, (8)

where f is a predetermined function, and bt is the vector of unknown
parameters. With some regularity conditions, bt can be estimated
according to the following equation:

b̂t = arg min
bt

{(t − 1)
∑

rt<qtt

(rt − qt
t ) + t

∑
rt>qtt

(rt − qt
t )}. (9)

Thus, the lower and upper tth quantiles of rt can be calculated as
q̂t

t = f
(

x1
t , . . . , xn

t ; b̂t
)

and q̂1−t
t = f

(
x1

t , . . . , xn
t ; b̂1−t

)
, respectively.

Quantile regressions offer three main advantages over GARCH-based
approaches (Lee et al., 1995). First, they impose few restrictions on
the data-generating process for rt. No economic theory exists to sug-
gest a GARCH model for oil price growth rates, such that the choice
of a GARCH model setting is arbitrary. Second, quantile regression
establishes a general framework for various choices of function f(∗)
and regressors x1

t , . . . , xn
t . Third, without the assumption of normally

distributed error terms, quantile regression performs well in fitting
rt

′s tail distribution. Empirical experience reveals that normal distri-
bution often achieves only poor fit with the tail distribution of many
financial and economic variables, despite its strong performance in
fitting most observations except extreme values. In most cases, this
gap is not a serious issue, but for this study, it becomes crucial,
because the focus is the extreme values of rt.

To specify the quantile regression, t is set to 5%. Technically, t
can be set arbitrarily anywhere between 0 and 1. But 1%, 5%, and 10%
are three frequently used values to recognize low probability events
in practice, suggesting 5% as an appropriate choice. In addition, f is
assumed to be a linear function of xt, such that

f
(

x1
t , x2

t , . . . , xn
t ; bt

)
= at + bt

1x1
t + bt

2x2
t + . . . + bt

nxn
t . (10)

Although it is still possible to specify a nonlinear function for f, a
linear specification for quantile regressions is common in previous
studies. Two classes of variables could represent the choice of regres-
sors xt: the AR(n)-GARCH(p,q)-based conditional expectation (r̄t)
and variance

(
s2

t

)
of rt, or else the empirical moments of rt in an n-

period rolling window [t − n, t − 1]. Because the conditional expected
values and volatility of rt largely determine its quantiles, this study
follows previous literature and uses AR(n)-GARCH(p,q) to estimate
them. In addition, the empirical moments of rt reveal more infor-
mation about rt

′s conditional distribution, especially its third- and
fourth-order moments. Thus, it is possible to calculate the sample
mean, variance, skewness, and kurtosis of rt in the n-period rolling
window, then include them in the quantile regression as well. The
skewness and kurtosis are calculated as

skewt =
1
n

n∑
i=1

(
rt−i − avet

volt

)3

, kurtt =
1
n

n∑
i=1

(
rt−i − avet

volt

)4

, (11)

where avert and volt are sample mean and standard deviation of rt in
rolling window [t − n, t − 1].

Finally, the procedure for identifying oil price shocks is as fol-
lows: Initially, the construction of the time series for the AR(n)-
GARCH(p,q)-based conditional expectation (r̄t) and variance

(
s2

t

)
of

rt, as in Eqs. (3) to (5), relies on the sample mean (avert), variance
(volt), skewness (skewt), and kurtosis (kurtt) of rt in a rolling window
[t − n, t − 1]. Following the suggestions of Bollerslev et al. (1992),
this study uses a lower-order model, namely, AR(1)-GARCH(1,1). The
chosen length of the rolling window is 21 trading days, or one calen-
dar month. Then, the quantile regressions can be obtained as follows:

q0.05
t =a0.05 + b0.05

r̄ r̄t + b0.05
s2 s2

t + b0.05
ave avet + b0.05

vol2
vol2t

+ b0.05
skewskewt + b0.05

kurt kurtt , (12)

and

q0.95
t =a0.95 + b0.95

r̄ r̄t + b0.95
s2 s2

t + b0.95
ave avet + b0.95

vol2
vol2t

+ b0.95
skewskewt + b0.95

kurt kurtt. (13)

Next, the process calculates the lower and upper 0.05th quantiles,
q0.05

t and q0.95
t . Finally, if rt < q0.05

t , rt is identified as a negative oil
price shock; if rt > q0.95

t , rt is identified as a positive oil price shock;
and otherwise, rt is identified as a moderate oil price change.

2.2. Interval-valued factor models with interval dummy

A popular definition of an efficient market indicates that the
observed prices of financial assets fully reflect available informa-
tion. Thus, an extreme efficient market implies that the asset prices
equal their intrinsic value, associated with future cash flows (Fama,
1970, 1991; Timmermann and Granger, 2004). Suppose Pt and P∗

t are
the observed price and intrinsic value of an asset at time t. For this
study, the asset is a portfolio that consists of some stocks issued by
oil companies, so in an efficient market, Pt and P∗

t must be identical,
Pt = P∗

t .
Tests of market efficiency inevitably run into the problem of joint

tests of the efficient market hypothesis and pricing models. That is,
to compare the observed price Pt with the intrinsic value P∗

t , it is nec-
essary first to find a value of P∗

t . In essence, P∗
t must be determined by

a general equilibrium (pricing) model. When the asset is mispriced
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though, it is never possible to determine whether the market is inef-
ficient or the chosen pricing model has been misspecified. Thus, all
tests represent joint tests of efficient market and pricing models.

As an alternative, interval-valued factor models with interval-
valued dummy variables can examine market efficiency with three
key advantages. First, these models can derive traditional point-
valued factor pricing models, such as CAPM, the Fama-French three-
factor model, the Carhart four-factor model, or the Fama-French
five-factor model (e.g., Fama and French, 1993, 2015). Because tests
of market efficiency suffer from the problem of joint tests, it becomes
critical to choose a reliable pricing model with strong empirical per-
formance, and these proposed interval-valued factor pricing models
offer ideal options for enriching existing pricing models. Second,
interval data contain more information than point data for the same
period, and this informational gain should produce more efficient
parameter estimates and statistical inferences for the interval-based
models. Third, in the spirit of classic point-valued factor pricing mod-
els, interval-based models provide a flexible framework that can
incorporate various choices of pricing factors. Different specifica-
tions of interval-valued pricing factors with interval-valued dummy
variables also provide good robustness checks.

Therefore, the interval dummy variable to assess the pricing effi-
ciency of oil shocks under different types can be defined as follows:

Definition 1. The interval dummy variable for positive and negative
shocks consists of a pair of interval-valued dummy variables denoted
as IDt and Idt, namely,

IDt =

{ [
− 1

2 , 1
2

]
, positive shock occurs

[0, 0] , otherwise,

and

Idt =

{ [
− 1

2 , 1
2

]
, negative shock occurs

[0, 0] , otherwise.

These interval-valued dummy variables can indicate the three
types of oil price changes (negative oil shocks, moderate oil price
changes, and positive oil shocks) but do not attempt to measure their
sizes, which is pertinent for two reasons. First, this study is dedicated
to determining whether the stock market is consistently efficient in
response to different types of oil price changes, rather than explor-
ing the quantitative relationship between oil price shocks and pricing
errors. Dummy variables provide a more direct way to address this
research question. Second, there is no empirical or theoretical guide-
line for specifying a functional relationship between oil price shocks
and pricing errors. A misspecified model might disturb subsequent
tests and lead to incorrect conclusions. Therefore, it is reasonable to
indicate the types of oil price changes by using dummy variables.
Specifically, if a negative oil price shock occurs, the dummy vari-
able Idt is set at a unit interval

[
− 1

2 , 1
2

]
; if a positive oil price shock

occurs, the dummy variable IDt is set at a unit interval
[
− 1

2 , 1
2

]
; and

otherwise, Idt and IDt are both interval-valued zeros [0, 0].
Denote Rft as the return on the risk-free asset and Rt as the return

on a risky asset. Let
{
Yt|Yt =

[
Rft , Rt

]}
and

{
Xk

t |Xk
t =

[
Xk

Lt , Xk
Rt

]}
, k =

1, · · · , n be a DK weakly stationary interval process, and Yt and Xk
t

are defined by their left bounds (i.e., Rft or Xk
Lt) and right bounds

(i.e., Rt or Xk
Rt), respectively (see Yang et al. (2016), Sun et al. (2018)).

The DK weak stationarity is defined in Theorem 2.1 of Han et al.
(2016). Specifically, if {Yt} is a DK weakly stationary interval process
{Yt}, this satisfies that E(Yt) = l, E

〈
sYt − sl , sYt−j

− sl
〉
K

= c( j) and∑∞
j=−∞ |c( j)| < ∞ for all t and j. The main difference from the tradi-

tional weakly stationary is the autocovariance function with respect

to DK-distance. Each interval process is an inseparable set of ordered
numbers, which can be referred to as an extended random interval,
following the definition of a generalized interval in Kaucher (1980),
to cover the reverse order of interval bounds, such as when the left
bound is larger than the right bound.

Following the spirit of Sun et al. (2018), we propose the general
form of the conditional interval-valued factor pricing model:

Yt = a0 + aI0 + adIdt−1 +aDIDt−1 +
n∑

k=1

bkXk
t + ut = Z′

th + ut , (14)

Et−1

(
ut ⊗

(
1, Idt , IDt , X1

t , . . . , Xn
t

))
= 01×(n+3). (15)

where Yt is the interval-valued return constructed by the
risk-free rate and asset return; Xk

t is the kth interval-
valued pricing factor; Et−1( • ) refers to the conditional
expectation; 01×(n+3) is a one-by-(n+3) zero matrix; Zt =(
[1, 1], I0, Idt−1, IDt−1, X1

t , · · · , Xn
t

)
; I0 = [−1/2, 1/2] is a constant,

unit interval; and h =
(
a0,a,ad,aD,b1, · · · ,bn

)′
. Eq. (15) is

based on the assumption that ut = [uLt, uRt] is an interval mar-
tingale difference sequence with respect to the information set
It−1 =

{
Id0, · · · , Idt−1, ID0, · · · , IDt−1, X1

1 , · · · , Xn
t

}
, ⊗ is defined to

reflect the Hadamard product for matrices based on the support

function sA (see Section 2.4). In turn, Et−1

〈
sut , s

Xj
t

〉
K

= 0, j = 1, · · · , n,

Et−1

〈
sut , sIdt−1

〉
K

= 0 and Et−1
〈
sut , sIDt−1

〉
K

= 0. For simplicity, the
bounds of all interval-valued pricing factors are assumed to be the
returns of some assets. Then the ranges of these interval-valued
variables represent the difference between the returns of two assets.
Thus, the interval-based model can derive a traditional point-valued
factor pricing model as follows:

Rt − Rft = a + addt−1 + aDDt−1 +
n∑

k=1

bkXk
rt + 4t , (16)

where Xrt = XRt − XLt, dt−1 = 1 if a negative oil price shock
occurs; Dt−1 = 1 if a positive oil price shock occurs; and other-
wise, both are zero. In turn, it is possible to define Idt =

[
− 1

2 dt , 1
2 dt

]
and IDt =

[
− 1

2 Dt , 1
2 Dt

]
, as a special case of traditional factor models

under state-based pricing errors (Ferson and Korajczyk, 1995).
Furthermore, a is the pricing error for moderate oil price changes.

When IDt and Idt are both [0,0], interval-valued factor models can
produce traditional point-valued factor pricing models, including
CAPM and the Fama-French three- or five-factor models. In partic-
ular, the test asset is an aggregated price index of oil stocks. If the
classic factor pricing model is correctly specified with appropriate
factors, the asset is efficiently priced if and only if the constant a

is zero. If a > 0, the asset has a greater expected return than the
fair value required to take systematic risks. In this case, the observed
price of the asset is too “cheap” relative to its intrinsic value. That is, a
positive price error implies the asset is underpriced. If instead a < 0,
the asset is overpriced.

The analysis of pricing error under different types of oil shocks
relies on Eq. (14). If ad is the pricing error under negative oil price
shocks, and aD is the pricing error under positive oil price shocks.
Using a = 0 as a benchmark, Table 1 summarizes the economic
implications of a, ad and aD. It is worth noting that a significant ad or
aD cannot be interpreted as a causal relation between oil price shocks
and market inefficiency. That is, oil prices are determined by supply
and demand, so they typically are endogenous variables. Meanwhile,
oil stock prices inevitably are driven by other economic variables too.
Thus, both oil prices and oil stock prices are endogenous and could be
driven by some other common factors. In turn, it is impossible to find
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Table 1
Economic implications of pricing errors under different types of oil price changes.

Negative oil shock Moderate change Positive oil shock

ad < 0 Over-priced
ad > 0 Under-priced
a < 0 Over-priced
a > 0 Under-priced
aD < 0 Over-priced
aD > 0 Under-priced

Note: This table shows the economic implications of the pricing errors under different
types of oil price changes. The pricing errors a, ad and aD are derived by

Re
t+1 = a + addt + aDDt +

n∑
k=1

bkFk
t+1 + 4t+1,

E(4t+1) = E(4t+1dt) = E(4t+1Dt) = E(4t+1F1
t+1) = . . . = E(4t+1Fn

t+1) = 0.

If there is a positive oil price shock at time t, set d = 1; If there is a negative oil price
shock at time t, set D = 1; otherwise, dt = Dt = 0.

any conclusive causal relation between oil price shocks and market
inefficiency with Eq. (14) alone, even if ad or aD were significant.

2.3. Special cases

The general form of the conditional interval-valued factor pric-
ing model (Eq. (14)) also can produce some special cases, includ-
ing an interval-valued CAPM, interval-valued Fama-French three-
factor model, and interval-valued Fama-French five-factor model.
The interval version of CAPM is:

Yt = a0 + aI0 + bXt + adIdt−1 + aDIDt−1 + ut , (17)

where Yt =
[
Rft , Rt

]
, Xt =

[
Rft , Rmt

]
, Rmt is the market return and

E(ut|It−1) = [0, 0], a0, a and b are scalar-valued unknown parame-
ters, I0 = [−1/2, 1/2] is a constant, unit interval; ut = [uLt, uRt] is
an interval martingale difference sequence with respect to the infor-
mation set It−1, i.e., E(ut|It−1) = [0, 0] a.s. From our interval CAMP, it
is possible to derive a point-valued model, reflecting the difference
between the right and left bounds of the interval. Therefore, a classic
CAPM model with point-valued dummy variables results:

Rt −Rft = a+b
(
Rmt − Rft

)
+addt−1 +aDDt−1 +4t , t = 1, · · · , T, (18)

where E(4t|It−1) = E (uRt − uLt|It−1) = 0. The CAPM beta is mea-
sured by the slope coefficient b from Eq. (18). The main advantage of
this interval modeling approach is that it estimates the model using
interval data, which contain more information than range data. Thus,
more efficient estimates result, even if the focus ultimately is on the
range model.

Following a similar approach, the interval-valued three-factor
model, constructed by 2-by-3 Fama-French portfolios formed on the
basis of size and book-to-market ratios, can be written as:

Yt = a0 +aI0 +adIdt−1 +aDIDt−1 +b1X1
t +b2X2

t +b3X3
t + ut , (19)

where

X1
t =

[
Rft , Rmt

]
, X2

t =
[

1
3

(B/Lt +B/Mt +B/Ht) ,
1
3

(S/Lt +S/Mt +S/Ht)
]

,

X3
t =

[
1
2

(S/Lt + B/Lt),
1
2

(S/Ht + B/Ht)
]

,
1
3

(B/Lt + B/Mt + B/Ht)

is the return on the portfolio of big market value firms, 1
3 (S/Lt +

S/Mt + S/Ht) is the return on the portfolio of small market value
firms, 1

2 (S/Lt + B/Lt) is the return on the portfolio of low book-to-
market ratio firms, and 1

2 (S/Ht + B/Ht) is the return on the portfolio

of high book-to-market ratio firms (for portfolio construction details,
see Fama and French (1993)). Each interval-valued factor is well
defined, according to the concept of an extended interval. By taking
the difference between the right and left bounds of the three-factor
interval CAMP, it is possible to derive a point-valued three-factor
model:

Rt − Rft = a + aDDt−1 + addt−1

+b1(Rmt − Rft) + b2SMBt + b3HMLt + 4t , t · · · , T, (20)

where SMB and HML are the differences between the returns on
the high and low book-to-market value portfolios and on the small
minus big firm portfolios, respectively. The Fama-French three-factor
beta is measured by the coefficient bit, i = 1, 2, 3 for each factor.
Small firms usually have relatively large factor loadings b2, and high
book-to-market ratio firms tend to have relatively large b3.

Similarly, the interval-valued five-factor model is constructed by
2-by-3 Fama-French portfolios formed on size and book-to-market
ratio, size and operating profitability, and size and investments, as
follows:

Yt = a0 + a + adIdt−1 + aDIDt−1

+I0 + b1X1
t + b2X2

t + b3X3
t + b4X4

t + b5X5
t + ut , (21)

where

X4
t =

[
1
2

(S/W+B/W),
1
2

(S/R+B/R)
]

, X5
t =

[
1
2

(S/A+B/A),
1
2

(S/C+B/C)
]

,
1
2

(S/W+B/W)

is the return on diversified portfolios of stocks with weak profitabil-
ity, 1

2 (S/R+B/R) is the return on diversified portfolios of stocks with
robust profitability, 1

2 (S/A+B/A) is the return on the two aggressive
investment portfolios, 1

2 (S/C+B/C) is the return on the two conserva-
tive investment portfolios. Then the classic Fama-French five-factor
model is derived as follows:

Rt − Rft = a + b1(Rmt − Rft) + b2SMBt + b3HMLt + b4RMWt

+b5CMAt + addt−1 + aDDt−1 + 4t , (22)

where RMWt is the difference between the returns on diversified
portfolios of stocks with robust and weak profitability, and CMAt is
the difference between the returns on diversified portfolios of stocks
of conservative and aggressive investment firms (Fama and French,
2015). Firms with robust profitability have relatively large factor
loadings b4, but conservative firms have relatively large b5.

Table 2
Data description of main variables.

# of obs. Mean (%) S.D. (%)

Growth rate of oil price (rt) 8001 0.039 2.509
T-bill rate (rft) 8026 0.013 0.010
Excess return on oil stock index (Re

t ) 8026 0.037 1.472
Excess return on market portfolio (Mktrft) 8026 0.034 1.109
Size factor (SMBt) 8026 0.002 0.586
Value factor (HMLt) 8026 0.011 0.573
Operating profitability factor (RMWt) 8026 0.017 0.439
Investment factor (CMAt) 8026 0.012 0.401

Note: This table reports the data description of main variables. Daily growth rate of
oil price (rt) is calculated as rt = pt−pt−1

pt−1
, where pt is the WTI oil price which is down-

loaded from FRED Economic Data; daily T-bill rate (rft), Excess return on oil stock
index (Re

t ), Excess return on market portfolio (Mktrft), Size factor (SMBt), Value factor
(HMLt), Operating profitability factor (RMWt) and Investment factor (CMAt) are all col-
lected from Kenneth R. French’s website. The excess return on Oil Stock Index (Re

t ) is
calculated as Rt − rft , where Rt is the net return on oil stock index. The sample is from
January 2nd, 1986 to October 31st, 2017.
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Table 3
Estimation of AR(1)-GARCH(1,1) and descriptive statistics of oil price growth rates’ conditional moments.

Panel A: quasi-maximum likelihood estimation of AR(1)-GARCH(1,1) model

Conditional expectation Conditional variance

l (%) q y h c

Coef. 0.046** −0.024** 0.000*** 0.891*** 0.103***
(2.410) (−2.080) (8.320) (191.120) (24.440)

Panel B: descriptive statistics of oil price growth rates’ conditional moments

AR(1)-GARCH(1,1) based Rolling window based

Mean S.D. Mean S.D.

Expectation(%) 0.045 0.060 0.040 0.491
Variance(%) 0.066 0.081 0.060 0.082
Skewness −0.055 0.678
Kurtosis 3.283 1.409

Note: Panel A shows the quasi maximum-likelihood estimation of AR(1)-GARCH(1,1) model for the growth rates of WTI oil prices.
The growth rates of oil prices are calculated as rt = pt−pt−1

pt−1
, where pt is the WTI oil price. Panel B presents the descriptive statistics

of conditional moments of rt , including AR(1)-GARCH(1,1) based conditional expectation and variance, and 21-day rolling window
based expectation, variance, skewness and kurtosis. Skewness and kurtosis are calculated as

skewt =
1
n

n∑
i=1

(
rt−i − avet

volt

)3

, kurtt =
1
n

n∑
i=1

(
rt−i − avet

volt

)4

,

where avert and volt are sample mean and standard deviation of rt in rolling window [t − 21, t − 1]. The WTI crude oil prices are
downloaded from FRED Economic Data. The sample period is from January 2nd, 1986 to October 31st, 2017. *, ** and *** denote 10%,
5% and 1% significance respectively. The z-statistics of coefficients’ estimators are presented in the brackets.

2.4. Estimation

Interval information supports estimates of the coefficients h. The
challenge arises in the specification of the objective function to mea-
sure the sum of the squared distance between the observed interval-
valued sets and the interval models. Following Nather (1997) and
Nather (2000), this study seeks to measure the squared DK distance
between set-valued intervals Yt and its fitted value Zt

′h. Specifically,
the DK metric is:

D2
K (Yt , Z′

tb) =
∫

(u,v)∈s0

[
sYt (u), sZ′

th
(u)

] [
sYt (v), sZ′

th
(v)

]
dK(u, v),

=
〈
sYt−Z′

th
, sYt−Z′

th

〉
K

=
∣∣∣∣Yt − Z′

th
∣∣∣∣2

K = ||ut||2K , (23)

where the unit space s0 =
{
u ∈ R1, |u| = 1

}
= {1, −1}, K(u, v) is a

symmetric positive definite weighing function on s0 to ensure that
DK(Yt, Zt

′h) is a metric for extended intervals, and 〈 • , • , 〉 indicates the
inner product in s0 with respect to kernel K(u, v). By minimizing the
sum of squared errors

∑T
t=1 D2

K (Yt , Z′
th), it is possible to obtain the

estimator as follows:

ĥ =

(
T∑

t=1

〈
sZt , sZ′

t

〉
K

)−1 T∑
t=1

〈
sZt , sYt

〉
K , (24)

where sA(u) is the following support function:

sA(u) =
{

supa∈A
{
u • a|u ∈ s0}

if AL ≤ AR,
infa∈A

{
u • a|u ∈ s0}

if AL ≤ AR,
(25)

and it follows that sA(u) = AR if u = 1, sA(u) = −AL if
u = −1. In empirical application, we follow the spirit of Han et
al. (2016) and Sun et al. (2018) to use a two-stage minimum DK-
distance method to estimate parameters with a preliminary choice

of kernel K. Specifically, in first stage, we use a preliminary choice
of kernel K such as (a, b, c) = (5, 3, 4) to estimate an interval-
valued factor model and calculate the estimated residuals {ût}. In
second stage, we estimate an optimal kernel K̂opt with K̂opt(1, 1) =
T−1 ∑T

t=1 û2
Lt , K̂opt(1, −1) = K̂opt(−1, 1) = T−1 ∑T

t=1
∑T

t=1 ûLtûRt , and
K̂opt(−1, −1) = T−1 ∑T

t=1 û2
Rt and employ this optimal kernel to esti-

mate parameters again. After several iterations, we can obtain a
stable optimal kernel and then calculate parameter estimators. For
detailed discussions, see Sun et al. (2018, 2019).

3. Empirical results

3.1. Data analysis

The empirical application investigates Oil & Gas industry stocks’
market prices to examine market efficiency. The Oil & Gas indus-
try is defined by firms categorized into the Petroleum and Natural
Gas standard industrial code1. There are two reasons that drive us
to focus on the Oil & Gas industry. First, the aim of the paper is to
test the market efficiency under different types of oil shocks. Intu-
itively, after an oil price shock, the most affected sectors in the
economy should be the consumers and producers of oil and gas.
Hence, the response of oil producers, namely the Oil & Gas industry,
is an ideal subject for our study. Second, the consumers of oil and
gas are affected across a wide range of industry sectors, but its pro-
ducers only exist in the Oil & Gas industry. We thus expect to find
very strong co-movements of oil and gas producers after an oil price
shock, because those firms are in same industry sector. Therefore, the

1 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_
49_ind_port.html for further details of Kenneth R. French data library’s description of
49 industry’s definition.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html


K. Qiao, Y. Sun and S. Wang / Energy Economics 81 (2019) 661–671 667

Table 4
Estimation of quantile regressions for oil price growth rates and oil shocks identification.

Panel A: estimation of quantile regressions for oil price growth rates

Lower 5%th quantile Upper 5%th quantile

a −0.026*** 0.025***
(−16.040) (15.640)

br̄ 0.640 0.130
(0.610) (0.130)

bs2 −20.364*** 18.140***
(−10.260) (9.310)

bave 0.018 −0.571***
(0.140) (−4.470)

bvol2 0.861 5.812***
(0.440) (3.000)

bskew −0.001 0.000
(−0.640) (0.120)

bkurt 0.001* −0.001**
(1.710) (−2.570)

Panel B: oil price shocks identification

Mean S.D. Sum

Lower 5%th quantile −0.036 0.016
Upper 5%th quantile 0.037 0.019
dt 394
Dt 394

Note: Panel A reports the quantile regression for oil price growth rates rt

q0.05
t = a0.05 + b0.05

r̄ r̄t + b0.05
s2 s2

t + b0.05
ave avet + b0.05

vol2
vol2t + b0.05

skewskewt + b0.05
kurt kurtt ,

q0.95
t = a0.95 + b0.95

r̄ r̄t + b0.95
s2 s2

t + b0.95
ave avet + b0.95

vol2
vol2t + b0.95

skewskewt + b0.95
kurt kurtt ,

where r̄t and s2
t denote the AR(1)-GARCH(1,1) based conditional expectation and variance of rt; avet ,

vol2t , skewt and kurtt denote the 21-day rolling window based conditional expectation, variance, skew-
ness and kurtosis, respectively. Panel B reports the descriptive statistics of estimated quantiles of rt

and oil price shocks identification dummy variables dt and Dt . If rt < q0.05
t , it is identified as a negative

shock and set dt = 1; if rt > q0.95
t , it is identified as a positive shock and set Dt = 1; otherwise, dt

and Dt are both zeros. The growth rates of oil prices are calculated as rt = pt−pt−1
pt−1

, where pt is the WTI
oil price. *, ** and *** denote 10%, 5% and 1% significance respectively. The t-statistics of coefficients’
estimators are presented in the brackets.

Oil & Gas industry is a better choice for our study compared to oil and
gas consumers.

This empirical analysis uses daily data from various sources. Daily
crude oil prices reflect the WTI spot prices, downloaded from FRED
Economic Data2 Daily risk-free rates are proxied by one-month T-
bill rates, collected from Kenneth R. French’s website. The daily
aggregated price index of all oil stocks listed on NYSE/NASDAQ stock
exchanges and various pricing factors (for the Fama-French three-
and five-factor models) also are available from Kenneth R. French’s
website. 3 The sample runs from January 2nd, 1986 to October 31st,
2017. The description of the main variables appears in Table 2,
revealing that the average excess return on the oil stock index is
around 0.037 %, slightly larger than the risk premium of the market
portfolio (0.034 %). The standard deviation of the oil stock index’s
excess returns is about 1.472%, also larger than the standard devi-
ation of the market portfolio’s excess returns (1.109%). The Sharpe
ratios of the oil stock index and market portfolio are 2.519% and
3.022%. Thus, the market portfolio appears more mean-variance effi-
cient than the oil stock index, consistent with a traditional CAPM
model. In addition, the growth rate of oil prices is around 0.039 %
on average, very close to the average excess returns on the oil stock
index. Yet the standard deviation of 2.509% is much greater than the
standard deviation of oil stock index returns. Thus, crude oil prices
are more volatile than oil stock prices.

2 See https://fred.stlouisfed.org/series/DCOILWTICO.
3 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

3.2. Identification for oil shocks

As noted, this study calculates the regressors of the quan-
tile regression: the AR(1)-GARCH(1,1)-based conditional expectation
and volatility of rt, and the sample moments of rt in a rolling win-
dow. Panel A of Table 3 contains the AR(1)-GARCH(1,1) estimation
for rt, demonstrating that the estimator of q is negatively significant;
that is, oil prices’ growth rates exhibit a mean-reversion pattern. The
coefficients h and c are both positively significant, implying a volatil-
ity clustering effect in oil price growth rates. Panel B of Table 3 also
provides the descriptive statistics of the conditional moments of rt,
including AR(1)-GARCH(1,1)-based conditional expectation and vari-
ance, and the 21-day rolling window-based expectation, variance,
skewness, and kurtosis. The mean AR(1)-GARCH(1,1)-based condi-
tional expectation is close to the mean of the rolling-window-based
conditional expectation, but the latter is more volatile, with a larger
standard deviation. Furthermore, the AR(1)-GARCH(1,1)-based vari-
ance and rolling-window-based variance have similar means and
standard deviations. Rolling-window-based skewness is negative on
average, which implies an asymmetric distribution of rt. Finally,
the mean of the rolling-window-based kurtosis is greater than 3,
reflecting the fat tail of rt

′s distribution.
Table 4 contains the results of the quantile regressions for oil

price growth rates and oil shock identification. Panel A offers the esti-
mates of the quantile regressions from Eqs. (12)–(13). The signs and
significance of coefficients are capricious, seemingly caused by the
multicollinearity of the regressors, which is outside the scope of this
study. The focus instead is on the forecast values of the lower and

https://fred.stlouisfed.org/series/DCOILWTICO
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 5
DK-minimum distance estimation of interval-valued factor pricing models.

Column A Column B Column C

(Interval-CAPM) (Interval-FF3 model) (Interval-FF5 model)

a0(%) 0.000 0.000 0.000
(0.640) (0.456) (0.418)

a (%) 0.010 0.010 0.010
(1.199) (0.951) (0.906)

ad (%) −0.200*** −0.210*** −0.200***
(8.497) (9.225) (9.000)

aD (%) 0.070 0.070 0.070
(1.255) (1.504) (1.214)

b1 0.900*** 0.885*** 0.890***
(1.556 × 103) (1.406 × 103) (1.489 × 103)

b2 −0.231*** −0.284***
(91.528) (109.815)

b3 0.256*** 0.140***
(111.687) (10.037)

b4 −0.098***
(8.196)

b5 0.266***
(23.375)

Note: This table shows the two-stage minimum DK-distance estimation of interval-valued factor
pricing models. The sample period is from January 2nd, 1986 to October 31st, 2017. These three
interval-valued factor models (i.e., interval-valued CAPM, interval-valued 3-factor, interval-valued
5-factor) are obtained as follows:

Yt = a0 + aI0 + b1Xt + adIdt−1 + aDIDt−1 + ut ,

Yt = a0 + aI0 + b1X1
t + b2X2

t + b3X3
t + adIdt−1 + aDIDt−1 + ut ,

and

Yt = a0 + aI0 + b1X1
t + b2X2

t + b3X3
t + b4X4

t + b5X5
t + adIdt−1 + aDIDt−1 + ut.

Asterisks *, ** and *** denote 10%, 5% and 1% significance respectively. The Wald-statistics of
coefficients’ estimators are presented in the brackets.

upper 5%th quantiles of oil price growth rates, instead of the eco-
nomic implications of these coefficients. Panel B reports the descrip-
tive statistics of the forecast values of the lower and upper 5%th
quantiles; the average lower (upper) 5%th quantile is around 0.036
(0.037). As noted, if rt < q0.05

t , the interval-valued dummy variable
Idt is set at a unit interval [−1/2, 1/2]; if rt > q0.05

t , the interval-
valued dummy variable IDt is set at a unit interval [−1/2, 1/2]; and
otherwise, they are both [0, 0]. This sample reveals 788 oil price
changes that can be identified as oil prices shocks (394 positive and
394 negative).

3.3. Results for market efficiency

This section reports the main empirical results according to the
interval-valued factor pricing model. Robust results based on classic
factor models are presented subsequently.

The minimum DK-distance estimators of the interval-valued fac-
tor pricing models are in Table 5, and they offer some notable
findings. First, the hypothesis ad = 0 is rejected at 1% level in all
three models. The magnitude of ad is about −0.002, which implies an
annualized loss of approximately −0.002 × 240 ≈ −48 %. The effi-
cient market hypothesis a, aD and ad are all zero if the pricing model
is correctly specified. Of the vast number of tests of three-factor
pricing models, most reveal their fairly good empirical performance.
The annualized loss of 48% is too large here. This finding thus vio-
lates the prediction of the efficient market hypothesis. A negative
ad, reflecting the pricing error related to negative oil price shocks,
indicates that oil stocks tend to be overpriced in response to nega-
tive oil price shocks. Two potential explanations might address this
anomalous finding: investors’ underreaction or an anchoring effect.

Specifically, substantial decreases in crude oil prices often occur
together with extremely bad news about the supply of or demand
for crude oil. The intrinsic value of oil industrial shares thus should
slump simultaneously. But if the market does not efficiently absorb
the news, or investors underreact to it, oil stocks remain overpriced.
Furthermore, investors often prefer to maintain their initial forecasts,
leading to an anchoring effect, which could be related to “anchoring”.
This common human tendency reflects an overreliance on specific
piece of information for making decisions. If more new information
arrived, investors may update their revisions smoothly instead of
over-adjusting; see Tversky and Kahneman (1974) and Capistrán and
López-Moctezuma (2014).

Second, the coefficients a and aD are both insignificant at the
10% level in all three models. Virtually no significant price errors
arise with regard to moderate oil price changes or positive oil price
shocks. This finding complies with the efficient market hypothesis. It
also is worth noting that 95% of the observations of oil price changes
are moderate or positive, so in the vast majority of cases, it is hard
to reject this efficient market hypothesis, consistent with previous
studies (see Fama and French (1997) and Arshanapalli et al. (1998)).

Third, the significance and signs of the betas are consistent with
expectations. The estimator of b1 is approximately 0.89 in all three
models, indicating that oil stocks’ factor loading on the market
portfolio is slightly smaller than 1. The estimated value of b2 is
significantly negative at the 1% level in the three- and five-factor
models. This finding is to be expected, considering the relatively
large market values of oil industry firms. The estimator of b3 is
constantly positive and significant, consistent with oil companies’
higher book-to-market ratios and financial leverages, relative to most
industries.
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Table 6
Robustness checks of pricing efficiency under different oil price changes.

Column A Column B Column C Column D

(CAPM) (FF3 model) (FF5 model) (Time-varying FF3 model)

a (%) 0.015 0.010 −0.009 0.000
(1.200) (0.810) (−3.780) (0.695)

ad (%) −0.208*** −0.213*** −0.197*** −0.185***
(−3.710) (−3.910) (−3.780) (−4.625)

aD (%) 0.068 0.076 0.068 0.060
(1.230) (1.390) (1.310) (1.391)

bmkt 0.903*** 0.920*** 1.059*** 0.952
(82.800) (86.160) (92.060)

bsiz −1.117*** 0.009 −0.106
(−5.800) (0.460)

bval 0.437*** 0.194*** 0.548
(21.170) (8.420)

bpro 0.463***
(15.810)

binv 0.684***
(19.460)

Note: This table presents the tests for pricing efficiency of oil shocks based on various point-valued pricing models. The
sample period is from January 2nd, 1986 to October 31st, 2017. Column A shows the estimation of

Re
t+1 = a + addt + aDDt +

n∑
k=1

bkFk
t+1 + 4t+1,

E (4t+1) = E (4t+1dt) = E (4t+1Dt) = E
(
4t+1F1

t+1

)
= . . . = E

(
4t+1Fn

t+1

)
= 0,

based on Fama-French three-factor model; Column B shows the results based on traditional CAPM; Panel C shows
the results based on Fama-French five-factor model. The models are estimated by OLS estimation. The t-statistics of
coefficients’ estimators are presented in the brackets. Panel D shows the result based on conditional Fama-French three-
factor model,

Re
t+1 = a + addt + aDDt + bmkt

t Mktrft+1 + bsiz
t SMBt+1 + bval

t HMLt+1 + 4t+1,

Et (4t+1 ⊗ (1, Mktrft+1, SMBt+1, HMLt+1)) = 01×4,

bmkt
t = a1 + b1b

mkt
t−1 + e′

1t ; bsiz
t = a2 + b2b

siz
t−1 + e′

2t ; bval
t = a3 + b3b

val
t−1 + e′

3t.

The equations are estimated by Kalman filtering method. The loadings on three factors are reported as the time-series
average smoothed state estimates. The z-statistics of coefficients’ estimators are presented in the brackets. *, ** and ***
denote 10%, 5% and 1% significance respectively.

Fourth, oil stocks tend to be overpriced in response to negative
oil price shocks, while oil stocks are efficiently priced in response
to positive oil price shocks. Positive oil price movements tend to
have detrimental effect on aggregate equity market. Previous stud-
ies (Jones and Kaul, 1996; Sadorsky, 1999; Park and Ratti, 2008)
reported that oil price increases have significantly negative impact
on various stock markets from different countries and regions. Tra-
ditional mean-variance analysis implies the positive relationship
between expected return of market portfolio and investors’ utility
(or Sharpe Ratio). Therefore, according to the theory of behavioral
finance, investors will be more sensitive to positive oil price move-
ments because oil price increases signal bad news to the investors in
financial market. On the contrary, investors tend to underreact to the
negative oil price movements.

Furthermore, another possible explanation is an asymmetric
transmission from crude oil prices to stock prices. It is widely
acknowledged that oil price shocks are mainly driven by global
aggregate demand shocks and precautionary demand shocks (Kilian,
2009b). An increase in precautionary demand for oil would cause an
increase in oil prices, which is considered as a positive oil shock. As
Kilian (2009a) pointed out that this can lead to persistently negative
U.S. stock returns. Empirically, investors are much more sensitive
to negative news in financial markets. Thus, the oil stock prices
respond quickly to positive demand shocks for oil and therefore this
results in efficient market movements, while the oil stock prices
respond slowly to negative demand shocks for oil and this results in
inefficient market movements.

4. Robustness checks

Various robustness checks check some alternative model speci-
fications: ordinary least square (OLS) regression for the traditional
CAPM and Fama-French three- and five-factor models, based on com-
monly used point-valued excess returns and factors; a state-space
model to estimate a time-varying beta Fama-French three-factor
model; and classic point-based parameters.

First, the OLS estimations for traditional (i.e., point-valued)
CAPM and the Fama-French three- and five-factor models appear in
Columns A, B, and C, respectively, of Table 6. The significance of the
pricing errors a, ad and aD is consistent with the findings from the
interval-valued models: Both a and aD are constantly insignificant,
and ad is negatively significant at a 1% level. This result affirms the
previous conclusions that the market is efficient for moderate oil
price changes and positive oil price shocks, but it tends to overprice
oil stocks after negative oil price shocks. The sign and magnitude
of the factor loadings also appear capricious in the point-valued
models. Specifically, the point-valued CAPM and Fama-French three-
factor model both indicate loadings on the market factor of less than
1. But the point-valued Fama-French five-factor model indicates a
factor loading that is greater than 1. This contradictory finding sug-
gests the need to identify the investment style of the oil industrial
portfolio, as aggressive or passive. Unlike point-valued factor pric-
ing models, the interval-valued models consistently imply a passive
investment style, according to the factor loadings below 1. In addi-
tion, the point-valued Fama-French five-factor model produces a
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Table 7
Estimation efficiency of parameters in interval-valued and point-valued factors models.

CAPM a0 a b1 ad aD

Interval Bias 0.000 0.000 0.000 0.000 0.000
MSE 0.001 0.001 0.097 0.000 0.000
SD 0.000 0.000 0.010 0.000 0.000

Point Bias 0.000 0.002 0.000 0.000
MSE 0.001 0.123 0.006 0.005
SD 0.000 0.012 0.001 0.001

3-Factor-model a0 a b1 b2 b3 ad aD

Interval Bias 0.000 0.000 0.001 0.000 −0.000 0.000 0.000
MSE 0.001 0.001 0.113 0.029 0.027 0.001 0.001
SD 0.000 0.000 0.011 0.003 0.003 0.000 0.000

Point Bias 0.000 0.001 0.001 0.002 0.000 0.000
MSE 0.001 0.117 0.187 0.236 0.005 0.006
SD 0.000 0.012 0.019 0.023 0.001 0.001

5-Factor-model a0 a b1 b2 b3 b4 b5 ad aD

Interval Bias 0.000 0.000 −0.001 −0.001 0.001 −0.000 0.000 0.000 0.000
MSE 0.001 0.001 0.099 0.041 0.069 0.053 0.085 0.001 0.001
SD 0.000 0.000 0.010 0.004 0.007 0.005 0.009 0.000 0.000

Point Bias 0.000 0.001 −0.002 0.003 0.000 0.001 0.000 0.000
MSE 0.001 0.105 0.177 0.240 0.251 0.376 0.005 0.005
SD 0.000 0.010 0.018 0.024 0.025 0.038 0.001 0.001

Note: This table shows the bootstrap results for estimation efficiency of parameters in interval-valued factor models and point-valued factor models respectively. Bias, MSE and
SD of each parameter are computed based on 1000 bootstrap replications.

positive (though insignificant) loading for the size factor. This find-
ing contradicts the reality, in which most oil industry firms have
relatively large market values. Unlike these point-valued models,
the interval-valued models always confirm a significantly negative
loading on the size factor. Therefore, the interval-valued factor pric-
ing models provide better empirical performance than traditional
point-valued models.

Second, Column D of Table 6 contains the results of a Kalman fil-
tering estimation of a time-varying beta Fama-French three-factor
model,

Re
t+1 = a +addt +aDDt +bmkt

t Mktrft+1 +bsiz
t SMBt+1 +bval

t HMLt+1 + 4t+1,

(26)

Et(4t+1 ⊗ (1, Mktrft+1, SMBt+1, HMLt+1)) = 01×4, (27)

bmkt
t = a1 +b1b

mkt
t−1 +e′

1t ; bsiz
t = a2 +b2b

siz
t−1 +e′

2t ; bval
t = a3 +b3b

val
t−1 +e′

3t ,

(28)

which assumes the factor loadings are mean-reverting. Previous
studies indicate that unconditional OLS estimates of a factor pricing
model might produce biased pricing error a if the true model is con-
ditional (Jensen, 1968; Dybvig and Ross, 1985; Lettau and Ludvigson,
2001; Lewellen and Nagel, 2003). This robustness check helps rule
out the possibility that the findings are driven by time-varying beta,
not a. According to the Kalman filtering estimation, the coefficient
ad is significantly negative; a and aD are both insignificant. That is,
oil stocks are overpriced in response to negative oil price shocks but
fairly priced for moderate oil price changes and positive oil price
shocks. These results are consistent with the main findings.

Third, with a bootstrap method, it is possible to compare the
estimation efficiency of the parameters of the interval-valued fac-
tor models with those of classic point-valued factor models. The
point-valued innovations {4t}T

t=1 for Eqs. (18), (20) and (22), and the
interval-valued innovations {ut}T

t=1 from Eqs. (17), (19) and (21) are
as described in Section 2. In line with Chen and Hong (2012), this

study generated 1000 bootstrap samples and obtains 1000 boot-
strap estimates for each parameter, to compute the key criteria (bias,
mean square error (MSE), standard deviation (SD)) for the parame-
ter estimators. For each bootstrap sample, OLS provides the estimate
of the model parameters. The estimators also reveal the same set
of model parameters for the interval CAPM, three-factor interval
model, and five-factor interval model, using interval sample data
and the minimum DK-distance estimation procedure. Table 7 reports
the bias, MSE, and SD values of the estimators. A comparison of
interval-based and classic point-based estimators, according to the
minimum DK-distance estimation method using interval information
for three models, yields more efficient estimates than the OLS esti-
mators based on point-valued difference data. This finding highlights
the need to gather the industry information contained in interval
data, even if the goal is to model the difference between asset returns
and risk-free interest rates.

5. Conclusion

This article proposes a two-stage procedure to examine stock
market efficiency in pricing oil stocks in response to different types of
crude oil price changes. The novel first step relies on quantile regres-
sion to identify oil shocks and their directions. In the second stage,
interval-valued factor pricing models evaluate market efficiency,
which supports a novel, minimum distance estimation. Improving
on traditional point-valued data, the interval-valued observations
contain more information and produce more efficient parameter
estimates.

This newly proposed method in turn reveals some interesting
insights. First, the findings challenge the efficient market hypothe-
sis. Oil stocks tend to be overpriced after negative oil price shocks.
Second, the pricing error rarely differs from zero after moderate oil
price changes or positive oil price shocks, so the efficient market
hypothesis is frequently supported. Third, oil stocks’ factor loadings
on the market portfolio are slightly smaller than 1, implying that oil
stocks represent a conservative investment. Fourth, the factor load-
ings on size are significantly negative, due to the relatively large
market values of oil industry firms. Finally, the factor loadings on the
book-to-market ratio are significantly positive, consistent with the
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notion that oil companies tend to have higher book-to-market ratios
and financial leverage than firms in other industries.

By taking a fine-grained approach to investigate market efficiency
in pricing oil stocks, this study reveals that oil stocks are overpriced
when negative oil price shocks occur. Oil companies produce crude
oil; in turn, a natural next question involves the market’s perfor-
mance in pricing stocks issued by their consumers, such as steel
works, machinery industries, or the aircraft industry. This interesting
issue will be a focus of continued research.

Acknowledgments

We thank the editor, two referees, Lammertjan Dam, Yongmiao
Hong, Arjan Trinks and some participants at the Third International
Symposium on Interval Data Modelling: Theory and Applications at
Beijing for their comments and suggestions. This work was partially
supported by National Natural Science Foundation of China (Nos.
71703156, 71701199, 71871213) and funds No. 201601 provided by
Fujian Provincial Key Laboratory of Statistics (Xiamen University).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.eneco.2019.04.016.

References

Aloui, C., Jammazi, R., 2009. The effects of crude oil shocks on stock market shifts
behaviour: a regime switching approach. Energy Econ. 31 (5), 789–799.

Arshanapalli, B.G., Coggin, T.D., Doukas, J., 1998. Multifactor asset pricing analysis of
international value investment strategies. J. Portf. Manag. 24 (2), 10–23.

Bernanke, B.S., Gertler, M., Watson, M.W., 2004. Reply: oil shocks and aggregate
macroeconomic behavior: the role of monetary policy. J. Money Credit Bank. 36
(2), 287–291.

Bollerslev, T., Chou, R., Kroner, K., 1992. Arch modelling in finance: a review of the
theory and empirical evidence. J. Econ. 52 (1-2), 5–59.

Boyer, M.M., Filion, D., 2007. Common and fundamental factors in stock returns of
Canadian oil and gas companies. Energy Econ. 29 (3), 428–453.

Capistrán, C., López-Moctezuma, G., 2014. Forecast revisions of Mexican inflation and
GDP growth. Int. J. Forecast. 30 (2), 177–191.

Ceylan, N.B., Berument, N.D.M.H., 2010. The impact of oil price shocks on the economic
growth of selected MENA countries. Energy J. 31 (1), 149–176.

Cong, R.G., Wei, Y.M., Jiao, J.L., Fan, Y., 2008. Relationships between oil price shocks and
stock market: an empirical analysis from China. Energy Policy 36 (9), 3544–3553.

Cunado, J., Gracia, F.P.D., 2003. Do oil price shocks matter? Evidence for some Euro-
pean countries. Energy Econ. 25 (2), 137–154.

Dybvig, P.H., Ross, S.A., 1985. Differential information and performance measurement
using a security market line. J. Financ. 40 (2), 383–399.

Engemann, K.M., Owyang, M.T., Wall, H.J., 2014. Where is an oil shock? J. Reg. Sci. 54
(2), 169–185.

Fama, E.F., 1970. Efficient capital markets: a review of theory and empirical work. J.
Financ. 25 (2), 383–417.

Fama, E.F., 1991. Efficient capital markets: II. J. Financ. 46 (5), 1575–1617.
Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds.

J. Financ. Econ. 33 (1), 3–56.
Fama, E.F., French, K.R., 1997. Industry costs of equity. J. Financ. Econ. 43 (2), 153–193.
Fama, E.F., French, K.R., 2015. Incremental variables and the investment opportunity

set. J. Financ. Econ. 117 (3), 470–488.

Ferson, W.E., Korajczyk, R.A., 1995. Do arbitrage pricing models explain the pre-
dictability of stock returns? J. Bus. 68 (3), 309–349.

Hamilton, J.D., 1996. This is what happened to the oil price-macroeconomy relation-
ship. J. Monet. Econ. 38 (2), 215–220.

Hamilton, J.D., 2003. What is an oil shock? J. Econ. 113 (2), 363–398.
Hammoudeh, S., Dibooglu, S., Aleisa, E., 2004. Relationships among U.S. oil prices and

oil industry equity indices. Int. Rev. Econ. Financ. 13 (4), 427–453.
Han, A., Hong, Y., Wang, S., Yun, X., 2016. A vector autoregressive moving average

model for interval-valued time series data. Adv. Econ. 417–460.
He, Y., Wang, S., Lai, K.K., 2010. Global economic activity and crude oil prices: a

cointegration analysis. Energy Econ. 32 (4), 868–876.
Henriques, I., Sadorsky, P., 2008. Oil prices and the stock prices of alternative energy

companies. Energy Econ. 30 (3), 998–1010.
Jensen, M.C., 1968. The performance of mutual funds in the period 1945–1964.

J. Financ. 23 (2), 389–416.
Jones, C.M., Kaul, G., 1996. Oil and the stock markets. J. Financ. 51 (2), 463–491.
Kaucher, E., 1980. Interval Analysis in the Extended Interval Space IR. Fundamentals of

Numerical Computation (Computer-Oriented Numerical Analysis), , pp. 33–49.
Kilian, L.and Park, C., 2009a. The impact of oil price shocks on the US stock market. Int.

Econ. Rev. 50, 1267–1287.
Kilian, L., 2009b. Not all oil price shocks are alike: disentangling demand and supply

shocks in the crude oil market. Am. Econ. Rev. 99 (3), 1053–1069.
Lee, K., Ni, S., 2002. On the dynamic effect of oil price shocks: a study using industry

level data. J. Monet. Econ. 49 (4), 823–852.
Lee, K., Ni, S., Ratti, R.A., 1995. Oil shocks and the macroeconomy: the role of price

variability. Energy J. 16 (4), 39–56.
Lettau, M., Ludvigson, S.C., 2001. Measuring and modelling variation in the risk-re-

turn trade-off. In: Constantinides, G., Harris, M., Stulz, R. (Eds.), Handbook of the
Economics of Finance. Elsevier, pp. 617–690.

Lewellen, J., Nagel, S., 2003. The conditional CAPM does not explain asset-pricing
anomalies. J. Financ. Econ. 82 (2), 289–314.

Li, Z., Sun, J., Wang, S., 2013. An information diffusion-based model of oil futures price.
Energy Econ. 36, 518–525.

Lu, F., Hong, Y., Wang, S., Lai, K.K., Liu, J., 2014. Time-varying granger causality tests for
applications in global crude oil markets. Energy Econ. 42, 289–298.

Nandha, M., Faff, R., 2008. Does oil move equity prices? A global view. Energy Econ. 30
(3), 986–997.

Nather, W., 1997. Linear statistical inference for random fuzzy data. Statistics 29 (3),
221–240.

Nather, W., 2000. On random fuzzy variables of second order and their application to
linear statistical inference with fuzzy data. Metrika 51 (3), 201–221.

Park, J., Ratti, R.A., 2008. Oil price shocks and stock markets in the U.S. and 13 European
countries. Energy Econ. 30 (5), 2587–2608.

Sadorsky, P., 1999. Oil price shocks and stock market activity. Energy Econ. 21 (5),
449–469.

Sadorsky, P., 2001. Risk factors in stock returns of Canadian oil and gas companies.
Energy Econ. 23 (1), 17–28.

Sun, Y., Han, A., Hong, Y., Wang, S., 2018. Threshold autoregressive models for
interval-valued time series data. J. Econ. 206, 414–446.

Sun, Y., Zhang, X., Hong, Y., Wang, S., 2019. Asymmetric pass-through of oil prices to
gasoline prices with interval time series modelling. Energy Econ. 78, 165–173.

Timmermann, A., Granger, C.W.J., 2004. Efficient market hypothesis and forecasting.
Int. J. Forecast. 20 (1), 15–27.

Tversky, A., Kahneman, D., 1974. Judgment under uncertainty: heuristics and biases.
Science 185 (4157), 1124–1131.

Yang, W., Han, A., Hong, Y., Wang, S., 2016. Analysis of crisis impact on crude oil
prices: a new approach with interval time series modelling. Quant. Finan. 16 (12),
1917–1928.

Yu, L., Wang, S., Lai, K.K., 2008. Forecasting crude oil price with an EMD-based neural
network ensemble learning paradigm. Energy Econ. 30 (5), 2623–2635.

Zhang, X., Lai, K.K., Wang, S., 2008. A new approach for crude oil price analysis based
on empirical mode decomposition. Energy Econ. 30 (3), 905–918.

Zhang, X., Yu, L., Wang, S., Lai, K.K., 2009. Estimating the impact of extreme events
on crude oil price: an EMD-based event analysis method. Energy Econ. 31 (5),
768–778.

Zhao, L., Zhang, X., Wang, S., Xu, S., 2016. The effects of oil price shocks on output and
inflation in China. Energy Econ. 53, 101–110.

https://doi.org/10.1016/j.eneco.2019.04.016
https://doi.org/10.1016/j.eneco.2019.04.016
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0005
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0010
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0015
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0020
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0025
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0030
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0035
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0040
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0045
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0050
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0055
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0060
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0065
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0070
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0075
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0080
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0085
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0090
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0095
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0100
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0105
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0110
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0115
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0120
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0125
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0130
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0135
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0140
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0145
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0150
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0155
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0160
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0165
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0170
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0175
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0180
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0185
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0190
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0195
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0200
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0205
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0210
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0215
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0220
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0225
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0230
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0235
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0240
http://refhub.elsevier.com/S0140-9883(19)30130-6/rf0245

	Market inefficiencies associated with pricing oil stocks during shocks
	1. Introduction
	2. Methodology
	2.1. Oil shocks
	2.2. Interval-valued factor models with interval dummy
	2.3. Special cases
	2.4. Estimation

	3. Empirical results
	3.1. Data analysis
	3.2. Identification for oil shocks
	3.3. Results for market efficiency

	4. Robustness checks
	5. Conclusion
	Acknowledgments
	=-References


