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In superconducting monolayer transition metal dichalcogen-
ides (TMD), the spins of a Cooper pair are strongly aligned by a 
Zeeman-type spin–orbit coupling (SOC) (βSO) in the vicinity of  

K and K’ points of the conduction and valence bands of the hex-
agonal Brillouin zone forming so-called Ising pairing1–4. The strong 
out-of-plane spin alignment, which alternates at the K and K’ points, 
makes this family of superconductors highly robust against an in-
plane magnetic field. The resilience of pairing can be parameter-
ized by the degree of violation of the Pauli limiting field BP = 1.86 
[T/K] Tc0, which is estimated for a Bardeen–Cooper–Schrieffer-type 
superconductor with a transition temperature Tc0. For typical Ising 
superconductivity observed in TMD monolayers, the ratio between 
upper critical field Bc2 and BP ranges from around 5–6 in MoS2 
(βSO = 6.2 meV)1 and NbSe2 (~76 meV)2, to ~9 in TaS2 (~122 meV)5 
and more than 40 in monolayer WS2 (30 meV)4. However, when 
two or more layers are stacked together, the spin configuration of 
superconductivity in many TMDs can be influenced by interlayer 
coupling to form a coupled state.

On the basis of the monolayer superconductivity configured by 
SOC, more exotic pairing schemes can be prepared by coupling two 
identical layers, for which two types of systems have been proposed 
theoretically6–8. One type requires the coupling between two super-
conducting layers with Rashba-type SOC6, which has been studied 
in the superlattices of CeCoIn5 (ref. 9). Whereas the other type is 
based on Zeeman-type SOC involving two Ising pairings with 
opposite spin configurations coupled through Josephson interac-
tion. The coupled state, having a finite centre-of-mass momentum 
q, is predicted as a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) 
state7,8. The realization of such a coupled system is not only of theo-
retical interest. Technically, the ability to control the Ising state at 
a specific location can build superconducting junctions formed by 
adjacent regions having a similar Tc0 but drastically different Bc2,  
which is demonstrated in Section 4 of the Supplementary 
Information (Supplementary Fig. 5b).

As the strong SOC is an intrinsic property of many TMDs of 2H 
phase, the Ising pairing thus configured by the SOC is inherently 
protected against the external in-plane magnetic field. On the other 
hand, the interlayer interaction can mix the spin configurations of 
the individual layers. Hence, the Ising protection in the coupled 
state is expected to be substantially weakened. At the same time, the 
vector potential of the magnetic field can enter the kinetic energy 
of electron causing orbital effect, which enhances with the increase 
of layer numbers. This weakens the superconducting state due to 
enhanced orbital depairing in the in-plane B field2,5,10. Therefore, 
the superconducting bilayer 2H-type NbSe2 and TaS2 (refs. 2,5) 
are regarded as the candidates for observing the coupled states. 
However, the interlayer coupling in both bilayers can only cause a 
small decrease of Bc2 compared with that of a monolayer, which is 
not consistent with the gross reduction predicted as the signature of 
effective coupling, indicating a coupled state is yet to be prepared. 
For the Ising pairing in the valence band of 2H-type TaS2 and NbSe2, 
the relevant pairing suppression mechanism such as Rashba-type 
SOC and interlayer interaction are much smaller than the intrin-
sic Ising-type SOC (Supplementary Table 4). For example, a typical 
ratio between interlayer coupling t and βSO in bilayer TaS2 and NbSe2 
are 0.31 and 0.056, respectively5. Therefore, to reach the coupled 
state that can significantly influence the Ising protection, weaker 
intrinsic SOC found in the conduction band of MoS2 stands out as 
the natural choice.

Phase diagram of suspended bilayer MoS2
The bilayer 2H-MoS2 exhibits global inversion symmetry (point 
P marked between two layers in Fig. 1a) while maintaining the 
broken inversion symmetry locally within the individual layers11. 
Inducing carrier in the lower-lying electron pockets (Fig. 1b), sym-
metric superconducting states in both top and bottom layers can 
be prepared by applying strong electric fields ELG from ionic liquid  
gating as shown schematically in Fig. 1c. An in-plane magnetic 
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field Bex can then be applied to probe the robustness of the Ising 
pairing. This scheme is implemented by suspending a bilayer MoS2 
flake on an undercut of around 0.8–1 μm in width12,13. As shown in 
Fig. 1d, without having extended exposure, the suspended bilayer 
remains flat under electron microscopy. At room temperature, 

the highly fluidic ionic liquid can permeate through the undercut 
and contact both top and bottom surfaces. Hence, carriers can be 
induced symmetrically by ELG on both sides of the flake by applying 
a single gate bias.

Similar to the single-side gated multilayers14, applying the 
gate bias on the suspended bilayer induces superconductivity as 
shown in Fig. 2a. The transition temperature, Tc0, measured at a 
magnetic field B = 0, varies as a function of two-dimensional car-
rier density n2D, which was measured at 10 K by the Hall effect 
(Supplementary Fig. 6). As shown in the phase diagram (Fig. 2b), 
the superconductivity emerges near n2D = 1.8 × 1014 cm−2, which is 
significantly higher than that observed in single-side gated devices 
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Fig. 1 | Crystal and device structure of suspended MoS2 bilayer.  
a, Side view of the crystal structure of a bilayer 2H-MoS2, where the  
Mo and S atoms are coloured in blue and brown, respectively. A unit cell is 
enclosed by the dashed rectangle, where the inversion symmetry point P is 
located between two neighbouring layers. b, The hexagonal Brillouin zone 
of a bilayer MoS2 and the electron doping near the conduction band edge. 
The electrons of the top and bottom layer near the one K/K’ point shows 
the opposite spin configuration. The up (red)/down (blue) spin at K/K’ 
point is switched between layers. c, Schematic configuration of the  
double-side gating on a bilayer MoS2. The superconducting state is induced 
by the strong electric field ELG (blue arrows) generated by accumulating 
ions on both top and bottom layers. The effect of interlayer interaction 
(orange arrow) on Ising protection is probed by the external in-plane 
magnetic field Bex (purple arrow). d, Optical micrograph (left) and false-colour  
scanning electron microscope image (right) of a typical Hall-bar device of a 
bilayer MoS2 suspended over trenches on LOR before being immersed into 
the ionic liquid. Scale bars: left, 4 μm and right, 1 μm.
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Fig. 2 | Superconducting phase diagram. a, The temperature dependence 
of sheet resistance RS of Sample A. A set of states having different Tc0 values 
(labelled by different colours) was accessed by ionic gating. The inset shows 
the expanded temperature region close to the superconducting transitions. 
b, Superconducting phase diagram of the single- (green, Sample B) and 
double-side (blue and red, Sample A and C) gated bilayer devices with 
the onsets close to n2D = 0.6 × 1014 and 1.8 × 1014 cm−2, respectively. The 
red shaded region is reproduced from ref. 14. The critical temperature Tc0 is 
defined as 50% of the normal resistance RN. The dashed line is a guide for 
the eye for the crossover temperature T*

I
 extracted from the upper critical 

field measurements for Samples A (Fig. 3a) and C (Supplementary Fig. 5).
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(0.6 × 1014 cm−2)14. If gated only from the topside, the strong electric 
field confines carriers to the topmost layer breaking inversion sym-
metry and populating electrons in the K and K’ pockets, mimicking 
the band structure of a freestanding monolayer15,16. Whereas gat-
ing from both sides of a bilayer MoS2 preserves the global inversion 
symmetry and induces carriers also in Q pockets in addition to the 
K pockets17, accommodating more carriers than simply doubling 
that required for the single-side gating. In double-side gated Sample 
A (Fig. 2b), the Tc0 increases monotonically with the increase of n2D 
reaching highest Tc0 = 6.87 K at n2D = 4.75 × 1014 cm−2, the highest 
n2D accessed in this device. Applying strong gating to a monolayer 
TMD can cause a decrease of Tc0, which eventually enters a highly 
resistive re-entrance state4,18. In contrast, no clear Tc0 saturation was 
observed even at the maximum gating in the bilayer. This is consis-
tent with the larger density of states from the additional Q/Q’ pock-
ets, which also enhances the screening. Although metallic transport 
and superconducting state maintains at the maximum applied ionic 
gating, the normal resistance RN, measured just above Tc0, increases 
by ~100 Ω for states from Tc0 = 4.2 to 6.8 K. The systematic increase 
of the sheet resistance RS indicates the increasing contribution  
from the localization effect (Fig. 2b), a tendency approaching the 
re-entrant insulating state towards the dome peak4.

In-plane upper critical field of the coupled Ising state
The resilience of the induced superconducting states (Fig. 2a) 
against in-plane magnetic field Bex was then examined. As shown 
in Fig. 3a, we plot the temperature dependence of Bc2 of Sample A 

for superconducting states with different induced carrier density n2D 
and critical temperature Tc0. The overall Ising protection is strongly 
suppressed in contrast with the single-side gated MoS2, where the 
Bc2/BP of ~6 was typically observed1. The Bc2 of double-side gated 
devices shows a strong and non-monotonic change with Tc0 (Fig. 3a). 
The Bc2 values for the states with Tc0 < 5 K are comparable or lower 
than the BP. For the states with Tc0 > 5 K, the temperature dependence 
of Bc2 shows a clear feature of a 2D to bulk three-dimensional cross-
over at T* close Tc0, which was observed previously in layered bulk 
superconductors with strong 2D anysotropy19. At T < T*, the out-of-
plane coherence length ξ⊥ becomes smaller than the interlayer spac-
ing, which defines the condition of establishing a Josephson vortex 
between the layers. As a typical example, the bulk 2H-TaS2 is an 
anisotropic three-dimensional superconductor with a weak anisot
ropy ratio γ ¼ Bkc2

B?c2
 6

I

. By intercalating organic molecule spacers19, 
the expanded layers reduce Josephson coupling, resulting in a larger 
anisotropy ratio γ ¼ Bkc2

B?c2
 60

I

. The Ising pairing in a monolayer TaS2 

with the extrapolated Bc2/BP ratio of 9 at zero temperature reduces 
slightly to ~6 in a bilayer20 case. The further reduction of Bc2/BP is 
even smaller when the layer number increases from 2 to 5 (ref. 5). 
Compared with the static value for a given thickness, the Bc2 shown 
in Fig. 3a,c can be electrostatically tuned. Compare with the Bc2/BP 
of ~6 found in bilayer 2H-TaS2, here the Bc2 can be suppressed well 
below BP due to the comparable energy scales of Josephson coupling 
over spin–orbit interaction: ħJ/βSO. The gate controllable ħJ then 
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the left and right axes show Bc2(0 K)/BP and Josephson coupling energy ħJ, respectively. Both Bc2(T = 0 K) and ħJ are extracted from KLB fitting of Sample A.
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enables an effective competition. Therefore, Ising protection can be 
effectively tuned and reduced even to Bc2 < Bp.

To understand the upturn curvature of Bc2 near Tc0 for the states 
with Tc0 between 5 and 6.6 K, we applied the microscopic Klemm–
Luther–Beasley (KLB) theory21,22 to fit the temperature depen-
dence of Bc2 (solid lines in Fig. 3a). The representative parameters 
extracted from KLB fitting such as the intrinsic spin–orbit inter-
action and the Josephson coupling between the layers are listed in 
Supplementary Table 1 and Supplementary Fig. 3. Here, the phase 
diagram is shaped by the interplay between spin–orbit interaction 
and Josephson coupling ћJ. The states with Tc0 < 5 K and Tc0 > 6.6 K 
show a nearly linear temperature dependence of Bc2 close Tc0. This 
behaviour can be assigned to three-dimensional-like states due to 
strong Josephson coupling. The ћJ is >0.85βso, where orbital pair-
breaking effect dominates. The states with Tc0 between 5 and 6.6 K 
are characterized by the Josephson coupled three-dimensional state 
and decoupled 2D state above and below T*, respectively, causing an 
upturn of the temperature dependence of Bc2 at T*. The correlation 
between this upturn feature and formation of Josephson coupling 
between two adjacent layers was carefully analysed by KLB theory 
in bulk doped TaS2 (ref. 19). Our observation of the clear upturn of 
the curvature, for states with ℏJβSO

¼ 0:66�0:85

I
 and Tc0 between 5 and 

6.6 K, shows clear evidence that Josephson vortices were established 
in a bilayer. The presence of Josephson vortex is a prerequisite to 
realize FFLO state in present bilayer system7,8.

To confirm the strong suppression of Bc2 and especially to 
remove the concern about the flatness of the flake after suspension, 
a control experiment was performed on a single-side gated device of 
bilayer MoS2 prepared on flat SiO2/Si substrate (Fig. 3b). In spite of 
the flat surface shown in Fig. 1d, small curvature is still possible and 
is difficult to characterize after immersing the suspended bilayer 
into the ionic liquid, which might couple to the in-plane field caus-
ing the observed phenomena. In sharp contrast to the suppression 
observed in double-side gating (Fig. 3a,b is plotted with the same 
scales in B and T), a strongly protected Ising state was observed 
close to the onset of superconducting dome 0.6 × 1014 cm−2, which is 
consistent with the dominant contribution from the topmost layer 
(phase diagram in Fig. 2b) and previous observations in single-side 
gated multilayers, where the stronger protection was found in the 
states with lower Tc0 (ref. 1). Inducing higher carrier concentration 
above the onset, the Tc0 follows the previously established phase 
diagram (the red shaded region from ref. 14 in Fig. 2b) and reaches 
the dome peak. For the states with Tc0 on the left side of the dome 
peak, the temperature dependence of Bc2 remains steep as shown 
in the upper panel of Fig. 3b. For the states having Tc0 on the right 
side of the dome peak, carriers are increasingly doped to the second 
layer by the electric field penetrated from the top monolayer due to 
the intrinsically weak screening effect of a 2D system4. Therefore, 
superconductivity is increasingly shared by both MoS2 layers. The 
variation of Bc2 in this process can be described by the changing 
ћJ from zero (data with open circles, starting with lowest Tc0 in the 
upper panel of Fig. 3b) to a finite value (data shown in filled cir-
cles in the lower panel of Fig. 3b) mimicking the enhancement of 
Josephson interaction. As a result, for states in both layers accessed 
by strong gating (gold and red curves in Fig. 3b), a clear upturn of 
the curvature region characteristic for the dimensional crossover is 
also observed close to the Tc0. Although the Ising protection is also 
reduced by ћJ, the degree of reduction of Bc2/BP is smaller than that 
observed in double-side gated samples (Fig. 3a), where the coupling 
is stronger between two identically doped superconducting layers.

As shown in Fig. 3a, the Bc2/BP ratio does not follow the change of 
Tc0 monotonically. Especially, for the states with Tc0 > 6 K, the upturn 
of the curvature becomes less prominent, which is concomitant with 
the decrease of Bc2/BP. This anomalous dependence can be clearly seen 
in Fig. 3e, where the Bc2/BP ratio at zero temperature and Josephson 
coupling ћJ were extracted from KLB fitting for superconducting 

states of different Tc0 values. By assuming constant spin–orbit pro-
tection, the ratio of Bc2/BP is mainly affected by the gate tuneable ћJ. 
Details of the fitting can be found in Section 2 of the Supplementary 
Information and Supplementary Fig. 3. As shown in Fig. 3e, the anti-
correlation between Bc2/BP and ћJ is observed for the entire phase 
diagram for each accessed state with different Tc0 values. The ћJ 
decreases gradually with the increase of Tc0 reaching the minimum 
of 3.95 meV for the state with Tc0 = 6.35 K. This monotonic decrease 
is stopped by an abrupt increase up to 8.35 meV within a narrow 
range of Tc0 from 6.35 to 6.69 K, which can be reversibly accessed by 
gating. The Josephson coupling is modified mostly by the applied 
electric field E, which changes the doping profile of induced carriers. 
For the states with Tc0 ≤ 4 K, the induced carrier is centrosymmetric 

b

a

I (
µA

)

100

80

60

40

20

0

–20

–40

–60

–80

–100

T (K)

2 3 4 5 6 7 8

200

100

0

dV/dI (Ω)

j c 
(M

A
/c

m
2 ) 

3

2

1

0

T (K)

0 2 4 6

Experiment
Fitting

T (K)

B
c2

 (
T

)

0 2 4 6
0

1

2

Tc0 = 6.63 K
Δ0 = 1.28 meV
ξ0 = 13.6 nm
λ0 = 250.7 nm
κ = 18.5B||c-axis 

Fig. 4 | The I–V mapping of the double-side gated bilayer MoS2.  
a, The temperature dependence of differential resistance dV/dI for the 
superconducting state with Tc0 = 6.63 K. b, The temperature dependence of 
the critical current density jc (black circle) extracted from a and the fitting 
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and the localized spin texture in the individual layers is suppressed 
due to the symmetric doping. Applying a stronger gate accesses a 
higher Tc0 and enhances the carrier confinement to the individual 
layer17. This, consequently, weakens the coupling between layers and 
reveals the hidden local spin polarization in each layer with broken 
local inversion symmetry11. The even higher doping and penetra-
tion of the electric field eventually smear out the confined carrier 
distribution, which also restores the three-dimensional-like behav-
iour of Bc2. This saturated screening effect at strong gating has been 
observed previously in many ionic liquid gated systems4,18,23 and is 
consistent with the stronger localization effect shown in Fig. 2a—the 
increase of RN for states with higher Tc0—observed at higher gating 
due to the saturation of screening from both layers.

Single-band pairing at the K and K’ pockets
As shown in Fig. 2b, the carrier concentration required for the onset 
of the superconducting dome of the double-side gated bilayer is 
much higher than that of the single-side gating, which can be well 
understood by the additional Q/Q’ pockets to be filled by the gate 
induced carriers. Due to the presence of multiple pockets, it is pos-
sible to form two different superconducting gaps at both K and Q 
points that might have different temperature dependences of Bc2, 
causing the upturn observed in Fig. 4a,b. To remove this concern, 
we map the differential resistance dV/dI extracted from a set of V–I 
(Supplementary Fig. 4a) measurements at different temperatures 
for the state with Tc0 = 6.63 K (Fig. 4a). The temperature dependence 
of critical current density jc was evaluated from Fig. 4a using 50% 
of (dV/dI)N criteria, which approaches 2.84 MA cm–2 towards the 
zero-temperature limit. The best fit of jc(T) was obtained with the 
single-band self-field model24, where the superconducting energy 

gap Δ0 and London penetration depth λ0 were adjustable parameters 
(Fig. 4b). As shown in Fig. 4b, the gap ratio is obtained by fitting the 
temperature dependence of jc. The ratio 2Δ0

kBTc0
¼ 4:49

I
 is close to the 

standard Bardeen–Cooper–Schrieffer weak electron–phonon cou-
pling limit favouring the conventional s-wave superconductivity25. 
This is consistent with the present understanding of the single-band 
pairing at K and K’ points, which also eliminates the concern that 
the upturn observed in the temperature dependence of Bc2 might  
be caused by the multiband contribution.

Conclusions
Bilayer 2H-type TMDs are predicted to support a FFLO state7,8. In 
particular, bilayer MoS2 as a centrosymmetric crystal with broken 
local inversion symmetry possesses strong alternating Ising SOC 
and sufficient Josephson coupling to allow for vortex formation 
between the two layers hosting Ising superconductivity. However, 
the present bilayer is still in the dirty limit: l � ξ0

I
, where l = vFτ is 

the mean free path, vF is the Fermi velocity, τ is the total scatter-
ing time and ξ0 is the in-plane coherence length. For example, the 
state with Tc0 = 6.63 K has l ≈ 1.3 nm and ξ0 = 13.6 nm, respectively. 
Furthermore, while still being influenced by the orbital depairing 
mechanism, a bulk doped single crystal of Ba3Nb5S13 (ref. 26) has 
shown mobility of 103 cm2 V–1s–1, which is an essential ingredient for 
the FFLO state. These findings show that TMDs are promising and 
flexible candidates to fulfil the stringent theoretical requirements 
for achieving finite momentum q pairing.

Figure 5a compares the effect of Josephson coupling for the 
superconducting states induced in the conduction bands of TMDs. 
From Bc2/BP of ~40 as extrapolated from monolayer WS2, the  
present control of interlayer coupling (dark blue and red squares 
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in Fig. 5a) provides an effective way to tune and suppress the Ising 
protection below BP. We also compared the variation of Bc2/BP in 
Fig. 5b for superconductors well known for SOC-induced strong 
spin protection27–30, as a function of thickness from monolayer, few-
layer, to bulk. The 2H-TaS2 (purple open circle) and NbSe2 (yellow 
diamond) are the archetypal examples of intrinsic Ising supercon-
ductors. In the bilayer case, the intrinsic spin–orbit and interlayer 
interactions are competing, therefore, the spin protection in pairing 
becomes thickness dependent. Comparing with the bilayer 2H-type 
TaS2 and NbSe2, the double-side gated bilayer 2H-MoS2 is a unique 
platform where these parameters are similar in energy scale and gate 
controllable. Hence, as a function of gating, both Ising protected 
(decoupled) and interlayer Josephson dominated (coupled) regimes 
can be continuously accessed (Sample A, dark blue squares). The 
ratios of Bc2/BP of bilayer MoS2 are mostly located near the Pauli 
limit approaching the bulk intercalated three-dimensional cases at 
low gating (light green squares). In contrast, Bc2 of superconductiv-
ity induced in a few-layer MoS2 (open green squares) by single-side 
gating is mostly determined by βSO and αRkF, where the competing 
Rashba SOC is overwhelmed by the strong intrinsic SOC. Especially 
at low gating, the state is well separated from the bulk showing 
Bc2/BP of ~6 (ref. 1). The large gap between these two distinct cases 
can be bridged by introducing gate tuneable Josephson interaction 
ћJ as shown in highly doped single-side gated bilayer MoS2 (Sample 
B, red squares). With the effective control of pairing protection by 
SOC demonstrated above, this all-around gate control of carriers 
introduces an extra variable degree of freedom for in situ tuning of 
the spin protection in superconductors.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41565-019-0564-1.
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Methods
Sample fabrication. The MoS2 flakes were exfoliated using scotch tape from a bulk 
2H-MoS2 single crystal (SPI Supplies). The substrate is prepared by coating lift-off 
resist and silicon dioxide (LOR/SiO2) layers (540 ± 10/30 nm) on a degenerately 
doped Si wafer. Standard electron-beam lithography was used to define electrodes 
in Hall-bar geometry followed by electron-beam evaporation of Ti/Au (0.5/50 nm). 
After lift-off in hot o-xylene at 80 °C, a second electon-beam lithography step was 
used to define the undercut structure. Thereafter, the exposed LOR was developed 
with ethyllactate for the undercut pattern. The suspended bilayer is then immersed 
into a droplet of a widely used ionic liquid N,N-diethyl-N-(2-methoxyethyl)-N-
methylammonium bis-(trifluoromethylsulfonyl)-imide (DEME–TFSI).

Transport measurements. The transport measurement was performed using the 
standard alternating current lock-in technique (Stanford Research SR830 at 13 Hz) 
in the four-probe configuration. The Keithley K2450 and K182 were used for the 
DC current excitation and a voltage meter in DC critical current measurements. 
The sample was gated at 220 K up to 5 V (maximum gate voltage used for this 
device) of the liquid gate to accumulate the maximum number of carriers and then 
cooled down below glass transition temperature Tg ≈ 190 K of ionic liquid at 3 K 
per min to freeze the ionic motion. All electronic properties were measured at a 
temperature well below Tg. The different states with different carrier densities were 
prepared by the thermal release of liquid gate4, which prepare all states with lower 
carrier doping.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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