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Abstract
This paper proposes that common measures for network transitivity, based on the enumeration of tran-
sitive triples, do not reflect the theoretical statements about transitivity they aim to describe. These
statements are often formulated as comparative conditional probabilities, but these are not directly
reflected by simple functions of enumerations. We think that a better approach is obtained by consid-
ering the probability of a tie between two randomly drawn nodes, conditional on selected features of the
network. Two measures of transitivity based on correlation coefficients between the existence of a tie and
the existence, or the number, of two-paths between the nodes are developed, and called “Transitivity Phi”
and “Transitivity Correlation.” Some desirable properties for these measures are studied and compared
to existing clustering coefficients, in both random (Erdös–Renyi) and in stylized networks (windmills).
Furthermore, it is shown that in a directed graph, under the condition of zero Transitivity Correlation, the
total number of transitive triples is determined by four underlying features: size, density, reciprocity, and
the covariance between in- and outdegrees. Also, it is demonstrated that plotting conditional probability of
ties, given the number of two-paths, provides valuable insights into empirical regularities and irregularities
of transitivity patterns.

Keywords: network transitivity; transitive triples; transitivity covariance; transitivity correlation; transitivity Phi; clustering
coefficient

1. Introduction
The literature contains various measures for the degree of transitivity in a network. The most
well known are the transitiviy coefficient, also called the cluster coefficient, introduced by Harary
& Kommel (1979), and its close cousin, the local cluster coefficient of Watts & Strogatz (1998).
While these measures have direct interpretations, they also are limited in the ability to assess the
most critical question—that is, to what extent does the network’s two-step paths i→ j→ k induce
an increased propensity for a direct tie i→ j, to complete the transitive triple?

Transitivity is the qualitative aspect of the transitive triple configuration (e.g., Holland &
Leinhardt, 1976) that occurs when there is a tie between an ordered pair of nodes i and j, and there
exist at least one node k, such that there are directed ties from i to k, and from k to j. Transitivity
measures have been developed to measure the frequency of transitive triples in networks (e.g.,
Holland & Leinhardt, 1970; Frank, 1980). Newman et al. (2001) writes: “Clustering refers to the
increased propensity of pairs of people to be acquainted with one another if they have another
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acquaintance in common” [p. 026118-12] (italics added). Corresponding to this, but using the
more traditional term “transitivity” rather than “clustering,” we refer to “network transitivity” as
the network-level property that captures the increased propensity of pairs of nodes to be directly
connected when they are connected through an intermediary node.

The motivation of this paper resides in the fact that although network transitivity has often
been quantified to describe theoretical processes, this quantification has been separate from those
theories. As noted by Holland & Leinhardt (1976), many theoretical statements in sociology and
psychology are framed in terms of transitive triple configurations. In fact, various strands of sci-
entific literature (e.g., biology, sociology, social psychology, and physics) assign an important role
to this configuration. Yet, theories explicitly or implicitly using the concept of network transitivity
refer to the frequency of transitive triples being higher relative to some null situation, for exam-
ple, bridging in sociology, epidemiology or diffusion in biology, medicine, and marketing science.
This means it is not enough to consider the frequency or relative frequency of transitive triples in
a network, but a measure needs to capture the increase in frequency compared to a situation with-
out transitivity. Here a set of measures is developed, presented, and analyzed that can capture the
increased propensity of transitive triples in networks. To prevent confusion, it should be noted
that this set of measures is purely descriptive, and distinctive from the larger body of literature
on inferential statistics for structural dependencies in network models (see, e.g., Goodreau et al.,
2009). This paper does not deal with inferential statistics. No assumptions of underlying graph
models are made in the development of the measures. Probabilities in this article relate solely to
those in empirical networks.

It is important to distinguish this set of measures from other related concepts, especially,
clustering. In social sciences, micro processes are considered at the basis of many macro social
phenomena we can observe (e.g., Coleman, 1990; Faust, 2010; Schelling, 1978). A ubiquitous con-
struct in studying consequences of such processes is the concept of clustering in social networks.
Clustering is the extent to which there are regions in the network that have a higher density
than there is between these regions. In some of the literature, clustering has been equated to
network transitivity. For example, in their pivotal paper, Newman et al. (2001, p. 026118-12)
state: “...clustering in social networks [is] also sometimes called network transitivity.” However,
the two concepts do differ, as is implied by the definitions given above. This paper recognizes the
distinction between clustering and transitivity and explores the property of transitivity.

The ideas in this paper also build on the work of authors (e.g., Holland & Leinhardt, 1970;
Wasserman, 1975; Feld & Elmore, 1982; Faust, 2007) who have shown that the triad censuses
of networks are highly associated with lower-order properties (nodal and dyadic). This implies
that descriptive network transitivity measures should control for the lower-order properties. The
purpose of this paper is to elaborate on this.

In this paper, first a theoretical development of network transitivity measures is presented.
Second, existing and new measures of network transitivity are defined and their properties
described. Third, behavior of different measures is compared in examples (stylized, random, and
empirically observed networks). Subsequently, findings and further research opportunities are
discussed, and conclusions presented.

2. Network transitivity as a comparative quantity
Formalizing and generalizing statements about lower-order network descriptives allow us tomake
statements about substructures in whole systems. These statements are essential in allowing to
make empirical descriptions of theoretical processes on the level of a whole network. The gap
between local observations and the global nature of much social theory can be bridged “... by
examining local structural properties and determining whether they hold, on the average, across
entire social systems” (Holland & Leinhardt, 1976, p. 3). Hence, average occurrence of local struc-
tures (or substructures) is considered an important descriptive statistic of whole systems as it

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2019.32
Downloaded from https://www.cambridge.org/core. University of Groningen, on 21 Feb 2020 at 15:16:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2019.32
https://www.cambridge.org/core


Network Science 355

allows to link social structure to global theoretical statements. Transitivity is such a lower-order
network descriptive which plays an important role in social theory (e.g., Granovetter, 1973).

Transitivity is a property of ordered labeled 3-subgraphs (Holland & Leinhardt, 1971, 1972) or
triples. It thus not only plays a role as conceptual configuration in sociological theory, it is also an
attractive statistical concept for network modeling. Its theoretical importance in much of social
science stems from a Heiderian view that transitivity occurs in social interactions at a rate that is
in excess of what we would expect by chance (Holland & Leinhardt, 1971, p. 108). This has led
to statistical modeling of the frequency of transitive triples under a variety of null models (e.g.,
Holland & Leinhardt, 1971; Frank, 1988; Karlberg, 1999).

Another view, deviating from the approach that focuses on enumerating transitive triples, can
be derived fromNewman et al. (2001). They define network transitivity as “... the increased propen-
sity of pairs of people to be acquainted with one another if they have another acquaintance in
common” [p. 026118-12] (italics added). Here, the concept of network transitivity is not reflected
by a mere average measure of transitive triples, but rather an average increased propensity to form
transitive triples. This definition suggests measuring an intrinsic comparative transitivity quality
of a network.

In the literature, transitivity is measured usually as the ratio of transitive to potentially tran-
sitive triples (Harary & Kommel, 1979; Frank, 1980; Karlberg, 1999) or as the average density
of personal networks (Watts & Strogatz, 1998; Newman et al., 2001). These measures, based on
relative frequencies, do not reveal much about an increased propensity, as they do not entail a
comparison.

“Network transitivity” quantifies a statement about the comparative frequency of transitive
triples among relevant triples in the network. It reflects a structural hypothesis that refers to an
elevated conditional probability of ties between a pair of nodes, given the existence, or the number,
of two-paths connecting them.

To define such a comparison, for a given observed digraph with n nodes, we rely on two simple
probability distributions. We stress that these are not probability distributions for the network;
that is, they are not defined on the outcome space of all digraphs. Rather, they are empirical
distributions, defined by the observed network, focusing on a single—randomly chosen—tie vari-
able. In Section 3.1, we use the probability distribution consisting of the random choice of an
ordered triple (i, j, k) of vertices (i �= j, i �= k, j �= k) from the total of n vertices. The probability
distribution used in Section 3.2 is the random choice of a pair of vertices.

3. Measurement of transitivity
In this section, we define various measures that express the comparative frequency of transitive
triples in a network. We denote the digraph by x, with the variables xij being the dichotomous
(0/1) indicators of the existence of the ties i → j, for nodes i and j. Per usual, self-ties are excluded
(xii = 0 for all i).

3.1 Difference in conditional probability and centered clustering coefficient
For the first empirical probability distribution, we consider, for a randomly chosen ordered triple
(i, j, k), the triple of tie variables xij, xik, xkj. Formally, this empirical distribution corresponds to
a random choice from the outcome space

{(xij, xik, xkj) | 1≤ i, j, k≤ n; i �= j �= k, i �= k} (1)

where x is the observed network; this outcome space has n(n− 1)(n− 2) elements. Probabilities
under this empirical probability distribution will be denoted by p. The basic comparison is given
by the difference between conditional probabilities of a tie, given a two-step path, and a tie given
no two-step path,

p(xij = 1 | xikxkj = 1) − p(xij = 1 | xikxkj = 0) (2)
https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2019.32
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Table 1. Transitivity joint andmarginal probabilities

xikxkj

1 0

xij
1 p11 p10 p1+
0 p01 p00 p0+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p+1 p+0 1

where a positive difference demonstrates an increased propensity toward transitivity. This differ-
ence reflects the most relevant alternative to the configuration central to the definition of Newman
et al. (2001), namely, the configuration where pairs of people are acquainted with one another if
they have no other acquaintance in common.

For transitivity as a purely descriptive statistic, a common definition is the ratio of transitive to
potentially transitive triples (e.g., Wasserman & Faust, 1994), as proposed by Harary & Kommel
(1979):

C =

∑
i

∑
j�=i

xij
∑
k�=i,j

xikxkj
∑
i

∑
j�=i

∑
k�=i,j

xikxkj
=

∑
i

∑
j�=i

∑
k�=i,j

xijxikxkj
∑
i

∑
j�=i

∑
k�=i,j

xikxkj
(3)

If the network is nondirected, this is equal to the well-known formula

C = 3× number of triangles in the graph
number of connected triples of vertices

(4)

coined the clustering coefficient byNewman et al. (2001). This is equal to the first term in Equation
(2),

C = p(xij = 1 | xikxkj = 1) (5)

Comparing Equations (2) and (5) immediately shows that Equation (5) is only a partial expression
of theoretical statements about network transitivity, because it lacks a comparative aspect.

Anothermeasure for transitivity is the clustering coefficient defined byWatts & Strogatz (1998)
as the mean of local transitivity around the nodes. The version for digraphs is given by

LC = LCi = 1
n

∑
i

∑
j�=i

∑
k�=i,j

xijxikxkj

ODi(ODi − 1)
(6)

where ODi = ∑
h xih is the outdegree of node i. Just like Equation (3), however, this is not a

comparative measure.
To develop a measure that does have a comparative nature, just like Equation (2), we present

the two-by-two table for the two random variables xij and xikxkj under the empirical probability
distribution of randomly drawing a triple (i, j, k). Here xij indicates the existence of a direct tie
between i and j and xikxkj indicates the existence of a two-path, that is, an indirect connection.
The cells in Table 1 contain joint probabilities, while the row and column sums give marginal
probabilities, respectively. The joint probability’s first index indicates whether xij = 1 or 0, while
the second index indicates whether xikxkj = 1 or 0. For example, p11 is the joint probability of a
tie between the pair (i, j) and a two-step between this pair via k. In the marginal entries, a plus (+)
indicates summing over both joint probabilities. For example, p1+ is the marginal probability of a
tie, which is the sum of the joint probabilities of a tie and a two-path, and a tie and no two-path.

By the definition of conditional probability, Equation (2) is equal to p11/p+1 − p10/(1− p+1).
It is well known that this difference is the bivariate linear regression coefficient for dichotomous
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data (see Falk &Well, 1997, for an excellent exposition).We use this expression to define Equation
(2) as TPB (Transitivity Phi Beta):

TPB= p11
p+1

− p10
(1− p+1)

(7)

A bivariate regression coefficient is equal to the covariance between the two variables divided
by the variance of the explanatory variable. This implies that another expression is

TPB= cov(xij, xikxkj)
var(xikxkj)

, (8)

where again the variance and covariance are with respect to the probability distribution of
randomly drawing a triple of nodes from the digraph.

This expression emphasizes that centering is the major difference with existing measures. The
numerator in Equation (8), which we shall call Transitivity Covariance, is by definition a centered
measure for the joint occurrence of ties and two-paths in an observed digraph. The measures
in Equations (3) and (6) clearly are not centered. This centering is essential for the comparative
nature of our measure for network transitivity.

A major advantage of centering is that it yields the value of 0 if there is no network transitivity
in the sense that the existence of a two-path is not associated with the existence of a direct tie. For
dichotomous variables, a covariance of 0 is equivalent to independence; therefore, our transitivity
measure TPB is 0 if and only if, in case a triple (i, j, k) is randomly drawn, the existence of the
direct tie i → j is independent of the existence of the two-path i → k → j. A direct expression
for the Transitivity Covariance is the centered joint probability

cov(xij, xikxkj)= 1
n(n− 1)(n− 2)

∑
i

∑
j�=i

∑
k�=i,j

xijxikxkj − x · xx (9)

where x is the proportion of ties, or density in the digraph, and xx is the proportion of two-paths
among all triples of nodes in the digraph.

Another measure can be obtained as the bivariate correlation coefficient instead of the regres-
sion coefficient. For this measure, the Transitivity Covariance is divided not by the variance of
the two-path indicator but by the product of the two standard deviations. As both variables
are dichotomous, the Pearson product-moment correlation coefficient is also known as the Phi
coefficient (Falk &Well, 1997). Here, we use the term “Transitivity Phi,”

TPhi= cov(xij, xikxkj)√
var(xij)var(xikxkj)

(10)

The obvious further advantage of this measure is that it is bounded between −1 and +1.

3.2 Correcting for two-path autocorrelation
The measures proposed in the preceding section do not take into account the multilevel issue that
for each pair (i, j) there are n− 2 potential vertices k, which play a different role in the triple than
i and j. The “clustering” of two-paths through specific k’s for a given (i, j), which may be called the
autocorrelation between different two-paths connecting the same pair (i, j), is ignored.

Considering the set of all potential “third” vertices k leads to an interest in the relation between
the total number of two-paths connecting i and j, and the existence of a direct tie i → j. Therefore,
we now turn to the empirical distribution under consideration which is based on the random draw
of an ordered pair (i, j), where the outgoing ties of i and the incoming ties of j from and to other
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nodes are also taken into consideration. This distribution is defined as a random choice from the
outcome space {(

xij, (xih)1≤h≤n, h �=i,j, (xhj)1≤h≤n, h �=i,j
) | 1≤ i, j≤ n; i �= j

}
(11)

where again x is the observed network. This outcome space has n(n− 1) elements. To distinguish
this from the model of the preceding section, we indicate the other nodes by the letter h, distin-
guishing them from the single third node k in the preceding section. Accordingly, we define the
Transitivity Correlation1 by

TC=
cov

(
xij,

∑
h �=i,j

xihxhj
)

√
var(xij)var

( ∑
h �=i,j

xihxhj
) (12)

The relation between TPhi and TC is derived in Appendix (A) and indeed depends on the two-
path autocorrelation. Also, note that Equation (12) depends on the information contained in the
outcome space defined in Equation (11).

The other measure, similar to TPB in Equation (8), replaces variance in two-paths for ordered
triples (i, k, j) with the variance of the number of two-paths for ordered node pairs (i, j). This is
the bivariate regression coefficient of ties on the number of two-paths between ordered pairs (i, j):

TB=
cov

(
xij,

∑
h �=i,j

xihxhj
)

var
( ∑
h �=i,j

xihxhj
) (13)

This slope gives a linear approximation of the conditional probability of a tie, given the number
of two-paths. As such it is more informative about the increased propensity toward transitivity
than for example the clustering coefficient C in Equation (3), which gives an mean conditional
probability over all two-path counts.

At this point, it should be re-emphasized that the expected values, covariances, etc., referred
to in this paper are those of ties between randomly chosen vertices in an observed network, not
those of possible underlying random graph processes. A disadvantage of this is that the measures
discussed above cannot be used for statistical inference without nontrivial additional assumptions.
What is subtracted in centering is not the expected value under a null model for networks. As
shown in the next section, a necessary condition for TC= 0 and TPhi= 0 is that the number of
two-paths is a specified function of n, and the observed density, mutuals, and covariance between
in- and outdegrees.

However, there are random graph processes that do generate an expected value of TC= 0 and
TPhi= 0. For example, in Erdös–Renyi digraphs we have

E
{
Xij

∑
h �=i,j

XihXhj
}

= E{Xij} E
{ ∑
h �=i,j

XihXhj
}

(14)

This does show that the expected value of the numerator in the covariance measures under the
Erdös–Renyi digraph model is 0. Since what is subtracted takes account of the indirect con-
nections, this centering is more subtle than the null expected value under the Erdös–Renyi
digraph.

Further, we note that TC and TPhi differ only in the denominator, that is, the standardization.
Therefore, one way of studying the differences between these measures is to consider the digraphs
for which TC or TPhi are −1 or +1 if such digraphs exist.
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Digraphs that are unions of complete subgraphs, to which also isolated points may be added,
are completely transitive in the sense that C = 1. If all these subgraphs have the same size, then
also TC= TPhi= 1. However, if the subgraph sizes are different, then TC and TPhi are less than 1.

4. Behavior of transitivity covariance measures
In assessing the utility of these centered measures, we look at the behavior in comparison to exist-
ing clustering coefficients. Much of it will depend on the properties of Transitivity Covariance
when we know it to be zero.

4.1 Descriptive mathematical properties
Empirical studies find that the frequency of triangles in a network is to a large extent accounted
for by lower-order network properties (e.g., Faust, 2007). If it is totally accounted for by lower-
order properties, it may be expected that transitivity covariance is close to zero. Then it would be
concluded that there is no “increased” (or decreased) propensity toward transitivity. The mean
number of transitive triples over all ordered pairs (i, j) is given by

TT = 1
n(n− 1)

n∑
i=1

n∑
j=1
j�=i

n∑
h=1
h �=i,j

xij xih xhj (15)

For any digraph, the condition TC= 0 is equivalent to

TT =
(
n cov(OD, ID) + n d2 − M

)
d

n(n− 1)
(16)

(for a proof, see Appendix B). Equation (16) expresses the necessary and sufficient condition for
a zero correlation between xij and xikxkj. Therefore, if Equation (16) holds, which is equivalent to
TC= 0, no elevated or decreased propensity to transitivity may be said to exist in the network.
The number of transitive triples then is determined by a function of the number of nodes n and
three other statistics: density (proportion of ties), reciprocity (number of mutual ties, M), and
covariance between the degree distributions, cov(OD, ID).

The fact that TC= 0 implies a conditioning on cov(OD, ID) relates to the observation of Feld
& Elmore (1982, p. 77), who observe that “... inequality of popularity among individuals implies
disproportionate frequencies of particular types of triads, including transitive triad types.” They do
not make clear how the “increased propensity” of transitive triples depends on degree. Transitivity
covariance does control for such popularity-induced transitivity as it incorporates the covariance
between in- and outdegrees.

4.2 Telling problem: Don Quichot measures and windmills
An example that illustrates the problems with different measures for an increased propensity of
transitive triples in networks is given by structures named windmill graphs (see, e.g., Jackson
2008). A windmill graph has one center node connected to all other nodes, while all other nodes
are in “wings,” which are even-sized cliques where all nodes are connected within wings, but not
to any other node (except the center node). Windmills Wr

m are characterized by two parameters:
the size of each wing (r > 2) and the number of wings (m> 1) (see, e.g., Figure 1).

In such graphs, there are either 1 or (r − 2) two-paths between each pair of nodes, where the
latter are always part of a transitive triple, while the former are not. Given this morphological
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W 2
3 W 3

3 W 4
3 W 5

3

W 2
4 W 3

4 W 4
4 W 5

4

W 2
5 W 3

5 W 4
5 W 5

5

W 2
6 W 3

6 W 4
6 W 5

6

Figure 1. Windmills (Wr
m) with different values for r andm.

constriction, windmills provide an experimental model that allows us to vary the number of
non-transitive two-paths and transitive triples as a function of r andm. The number of two-paths
in a windmill is given by

WTS =m r (r − 1) (r − 2) + m (m− 1) (r − 1)2 (17)
where the first term on the right-hand side is the number of transitive triples, while the second
term gives the number of intransitive triples. The latter increases more strongly in m as it is a
quadratic polynomial, while the former is linear in m. The opposite holds for r as the number of
transitive two-paths increases cubically, and the intransitive triples quadratically, in r. Hence, this
network model allows one to manipulate the total degree of network transitivity.

To assess the behavior of network transitivity measures on the windmill model, we express
them in terms of m and r. Table 2 summarizes these expressions, as well as their behavior in the
limit when either or both approach infinity. It is important to recall that the clustering coeffi-
cients in Equations (3) and (6) give the conditional probability of a transitive triple and themean
conditional probability of a transitive triple occurring in a neighborhood, respectively. The con-
tradictory effects of increases inm and r result in an undefined value for the clustering coefficient
(C) in the bivariate limit, while it behaves as expected in the univariate limits. As r increases C
tends toward 1, while it tends to 0 with increasingm.

Similarly, the local clustering coefficient (LC), in the limit, reflects that, apart from the single
central node, all neighborhoods are cliques where all two-paths are transitive, so that it tends
toward 1. However, LC firmly contradicts C as m→ ∞, which was first noted in Jackson (2008,
pp. 36–37).
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Table 2. Transitivity measures for windmills.

Measure f (m, r)∗ limr→∞ f limm→∞ f lim(r,m)→(∞,∞) f

Clustering coefficients:

C r(r−2)
r(r−2)+(m−1)(r−1) 1 0 Undefined

LC 1− n−r
n

1
n−2 1 1 1



Composites for covariance-basedmeasures:

Var(xij) r(n−r)
n2

m−1
m2 0 0

Var(xikxkj)
((n−1)(n−2)−(r−1)(r−2))(n+r(r−3))

n2(n−2)2
m2−1
m4 0 0

Var(
∑

h xihxhj)
(m−1)r(r−1)(r−3)2

n2 ∞ 0 Undefined

Cov(xij, xikxkj) ∗ ∗ (m−1)r(r−1)(r−3)
n2(n−2)

m−1
m3 0 0



Covariance-basedmeasures (triadic probability model):

TPhi
√
(r)(r−3)√

(nr+r(r−3))(n+r(r−3))
1√
m+1 0 0

TPB (n−2)r(r−3)
(n+r−3)(n+r(r−3))

m
m+1 0 Undefined



Covariance-basedmeasures (dyadic probability model):

TC 1 1 1 1

TB 1
r−3 0 1

r−3 0

*̂n=m(r− 1)+ 1, *̂*Note that lim(r,m)→(∞,∞) (n− 2)Cov(xij , xikxkj) is undefined.

In windmills, the transitivity covariance-based measures, which are weighted functions of TPB
in Equation (8), illustrate another important distinction. For increasing wing size r, the difference
in conditional probabilities (TPB) still depends on the number of wings, m. On the other hand,
whenm grows, the difference tends toward 0 irrespective of r. The multivariate limit is undefined
as it will depend on the asymptotic ratiom/r.

TPhi is restricted to [−1, 1] as it is a correlation coefficient. In the limit in r it becomes a
decreasing function of m, and approaches 0 for increasing m. This is the correlation between xij
and xikxkj for a random triple (i, j, k). For an increasing number of wingsm, the conditional prob-
ability of the two-path through a random k between a given pair of nodes, that is, p{xikxkj = 1‖i, j},
tends to zero for all pairs (i, j); this implies that the correlation tends to 0. The consideration of a
random third node does not bring out the clustering pattern for windmills with many wings, and
therefore this pattern yields approximately a zero correlation.

The covariance-based measures that weight on bases of the cumulative number of two-paths,
TC and TB, do signal this autocorrelation. First, TC as a bounded measure on [−1, 1] is a constant
1, reflecting the perfect control for the morphological similarity of different size windmills. It
indicates the perfect correlation that occurs in these structures, where the presence of a tie implies
(r − 2) two-paths, while lack of a tie implies 1 two-path—the regularity that defines windmills.

In the limit TB in windmills tends to 0. The decline in the ratio of transitivity covariance (based
on the number of two-paths) and the variance of the number of two-paths is due to the fact that
Var(

∑
h xihxhj) is a factor (r − 3) larger than Cov(xij,

∑
h xihxhj). This shows that for the value of

TC a direct interpretation is more clear than for TB.

4.3 Erdös–Renyi random digraphs
The stylized example on windmills in the previous section shows that a family of morphologi-
cally similar networks can produce measures that are undefined in the limit, while they may give
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Figure 2. Means of Transitivity Covariance-based measures and means of the clustering coefficients plotted as a function
of density in random Erdös–Renyi digraphs (n= 100). It becomes immediately clear that the clustering coefficients increase
with density, while there certainly is no increased propensity of these random networks to form transitive triples. The transi-
tivity covariance-based measures remain stable around zero as density increases. Each point is a mean value of each of the
measures based on 100 random draws of Erdös–Renyi digraphs with given density.

ambiguous readings for small networks. This is not a desirable property. However, in practice
other families of networks may be more important to consider.

If there is known to be independence between ties and two-paths in a network, there would
not be expected any elevation or increased propensity in transitive triples, or network transitivity.
Here we compare the behavior of different measures for Erdös–Renyi digraphs (Erdös & Renyi,
1959). In these networks, all ties are independent, and the probability for a tie is constant, deter-
mining the expected density. Hence, within this family of networks on average we do not expect to
find any increased propensity for transitive triples to occur. Consequently, on average a transitiv-
ity measure should be independent of the density, in other words, control for the density. Through
simulations, we first analyze the dependence of different measures on density. Figure 2 shows the
results of these analyses for Erdös–Renyi digraphs. It shows that the covariance based measures
are, as expected, independent of density; while C and LC are, respectively, linear and nonlinear
functions of density (for the latter result, see also Newman, 2003).

To illustrate the interpretive difference in the clustering coefficient measures and the class of
measures proposed in this paper, consider the two digraphs represented in Figure 3. Both are com-
posed of 21 nodes. Each has an abundance of ties and of two-paths, some of which are completed,
forming a transitive triple. However, the differences revealed by the two measures is profound.
In the first network in Figure 3(a), the clustering coefficient is a modest 0.244, signifying that
24% of the directed two-paths are completed with a directed tie to make the triple transitive. The
Transitivity Phi Beta (TPB) coefficient also indicates a moderate positive association between the
number of two-paths and the probability of a completing directed tie, compared to the probability
of a tie when no directed two-path exists. These two statistics are consistent in the story they tell:
Network Transitivity is evident.

In looking at the second network in Figure 3, however, a demonstrably different picture
emerges from the two measures. The clustering coefficient of 0.748, indicating that better than
74% of the two-paths are completed with a direct tie that makes the triple transitive, suggests a
substantially higher rate of transitivity is exhibited in this network (Figure 3(b)) than in the pre-
vious network (Figure 3(a)). While this sounds like a victory for the forces of transitivity, the
Transitivity Phi Beta however sports a small negative value, −0.045. The reason for this switch is
because the apparent high rate of completed two-paths is in fact lower than the probability of a tie
given that no two-path around the directed tie exists. That is, having a two-path from i to jmakes
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n = 21
Density = 0.067

Clus.Coef. = 0.244
TPB = 0.178

n = 21
Density = 0.767

Clus.Coef. = 0.748
TPB = −0.045

(a)

(b)

Figure 3. Examples of positive and negative values for network transitivity (n= 21).

it less likely that i will be directly connected to j in this network. The clustering coefficient hides
this critical interpretive fact.

To further delineate how this happens, we compare the actual count of triples in each graph.
The 2× 2 tables aside each network in Figure 3 demonstrate these relationships. There are 7, 980
ordered triples in each graph. These triples are distributed among the four cells in the 2× 2 tables:
those triples where an i→ k→ j exists and the triple is completed with an i→ j tie to make it
transitive; those triples where an i→ k→ j exists, but no direct i→ j exists (making the triple
clearly intransitive); those triples where an i→ k→ j does not exist, but a direct tie i→ j exists
anyway; and those triples where neither an i→ k→ j nor an i→ j tie exists.

In Figure 3(a), the proportion of two-paths completed with direct ties is 10/41= 0.244, the
clustering coefficient. This is a modest degree of transitivity. But, we note that the conditional
probability of a tie existing given that no two-path exists is 522/7, 939= 0.066. If we subtract out
this baseline value from the proportion of two-paths, we see that the advantage for having the
two-path i→ k→ j in the triple, is that it increases the probability that a direct tie i→ j will exist
by 0.178 (0.244− 0.066), which is the value of the Transitivity Phi Beta. Thus, a straightforward
interpretation of the TPB is that it exactly captures the added propensity for a directed tie given
that a two-path exists compared to the case where no two-path exists.
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The equivalent 2× 2 table for the network in Figure 3(b) shows a considerably different
pattern. The network is much denser, and commensurately the total number of two-paths is
much larger (4, 702). The proportion of two-paths that are completed into transitive triples is
3, 518/4, 702= 0.748, the clustering coefficient for this network. However, the proportion of i→
k→ j triples where there is no two-path, but nonetheless have a direct tie i→ j is 2, 600/3, 278=
0.793. That is, the conditional probability that a tie exists given that a two-path exists is lower
than if a two-path does not exist, yielding a negative TPB, 0.748− 0.793= −0.045. Again, the
useful and direct interpretation of this negative TPB is that it describes the precise reduction in
proportion of ties that exist due to the existence of a two-path.

As appealing and as intuitive as this interpretation of the TPB is, it hides one other factor that
is useful to researchers as they explore the tendencies toward induced transitivity in the structures
they are studying. In the TPB, each triple is treated as an independent case. Left open is the ques-
tion of whether the conditional probability of a directed pair being tied is a function not only of
whether a two-path exists, but also the number of two-paths that exist between i and j.

The graphs in Figure 4 show how TC helps to capture this effect (see Appendix A on the rela-
tion between TC end TPhi). Again, we repeat the same two networks as in Figure 3, but this time
we plot the proportion of ordered dyads that are tied as a function of the number two-paths sur-
rounding each dyad. In the case of the low-density graph (Figure 4(a)), we find that each ordered
pair has either 0, 1, or 2 two-paths indirectly connecting them. The size of the points in the plot is
proportional to the log of the number of instances of pairs of nodes that have that many two-paths.
So, for example, we see in this plot that the majority of ordered pairs has no two-paths; a smaller
number has 1 two-path; and only a tiny fraction has 2 two-paths. As can be seen in the plot, almost
none of the ordered pairs with 0 two-path are connected; around 20% of the ordered pairs with
1 two-path are connected; and all the pairs (although there is a small number of them) which are
surrounded by 2 two-paths are connected directly. This relationship is summarized by the TC
of 0.228, again, a modest but not insubstantial correlation. This leads to a similar conclusion the
Clustering Coefficient would suggest.

In comparison, the plot in Figure 4(b), however, is especially informative. First, the density in
the network results in every pair of points having at least 8 two-paths. A few have as many as
15 two-paths. And many two-paths have directed ties associated with them. But, what is most
striking is the steep descending relationship they have with the proportion of directed ties. Those
with 8 indirect two-paths are almost all connected directly; those with 9 two-paths slightly less so;
those with 10 two-paths even less so; and so on until those with 15 two-paths are less than 20%
likely to be directly tied. The negative relationship (TC =−0.33) between the number of two-paths
and the conditional probability of a tie is readily apparent through this graph. This relationship is
captured by the measures proposed in this paper, not the clustering coefficients.

4.4 Observed networks
The covariance-based measures of transitivity can be interpreted as linear approximations of the
relationship between direct ties and two-path ties. In particular, TB is the linear regression coeffi-
cient of the tie indicator on the number of two-paths between the node pair. Graphical inspection
of this relationship may provide insight about the appropriateness of the linearity assumption.
Due to combinatorial restrictions, the relationship may be highly nonlinear, which can be directly
assessed from a plot. Example data sets were obtained via public websites2,3.

In Figure 5(a)–(c), 12 network data sets from different fields are analyzed. Each figure contains
a diagram, an associated graph plot, and relevant summary statistics. The diagram shows the con-
ditional probability for a tie given the number of two-paths on the vertical axis, and the number
of two-paths on the horizontal axis. Information in the diagram is based on the depicted network
although for clarity isolate nodes have been excluded.
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Figure 4. A comparison of two networks and their revealed transitivity structures.

Number of observations (ordered pairs of nodes) in each category of two-path counts is indi-
cated by the size of dots. Each dot is connected with a straight line to emphasize the differences
and direction in change of conditional probabilities between categories.

The horizontal dotted line indicates the clustering coefficient (C) for that network. This can
be interpreted as the “mean conditional probability” over all categories of two-path counts. By
definition, this measure discards all information about the differences between categories of two-
path counts.

The dashed linear regression line between ties and number of ordered two-paths gives a linear
approximation for these differences. The slope of this line is given by TB, which hence allows for
a network level indication of an increased (decreased) propensity toward transitivity. A downside
is that TB does not allow for comparison between networks or a direct interpretation. However,
TC is a linear transformation of TB, which serves these purposes.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2019.32
Downloaded from https://www.cambridge.org/core. University of Groningen, on 21 Feb 2020 at 15:16:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2019.32
https://www.cambridge.org/core


366
D
.D

ekkeretal.

7

(a) (b)

(c) (d)

10 11 13 14 15 16

0.
0

0.
0

0.
0

0.
2

0.
2

0.
4

0.
4

0.
6

0.
6

0.
8

0.
8

1.
0

1.
0

0.
0

0.
2

0.
6

0.
8

1.
0

0.
4

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Two−Step Paths (∑
k≠i,j

x ikxkj)

p
(x

ij
=

 1
/ k

≠
i,j∑
x

ik
x

k
j)

p
(x

ij
=

 1
/ k

≠
i,j∑
x

ik
x

k
j)

p
(x

ij
=

 1
/ k

≠
i,j∑
x

ik
x

k
j)

p
(x

ij
=

 1
/ k

≠
i,j∑
x

ik
x

k
j)

n = 18
Density = 0.908
Avg. 2−paths = 13.327
Avg. Deg. = 15.444
Clus.Coef. = 0.928
L.Clus.C. = 0.919

T. Covariance = 0.265
TC = 0.445
TB = 0.062
TP Covariance = 0.017
TPhi = 0.154
TPB = 0.119

Conditional Probabilities (size: log of counts)
Linear Probability Estimation
Clustering Coefficient

0 1 2 3 4 5 6 7 8 9 10 12 14 16 19

Number of Two−Step Paths ( ∑
k≠i,j

x ikxkj)

n = 71
Density = 0.172
Avg. 2−paths = 2.163
Avg. Deg. = 12.028
Clus.Coef. = 0.360
L.Clus.C. = 0.522

T. Covariance = 0.406
TC = 0.443
TB = 0.069
TP Covariance = 0.006
TPhi = 0.090
TPB = 0.194

Conditional Probabilities (size: log of counts)
Linear Probability Estimation
Clustering Coefficient

28181614121086420

Number of Two−Step Paths (∑
k≠i,j

x ikxkj) Number of Two−Step Paths (∑
k≠i,j

x ikxkj)

n = 306
Density = 0.025
Avg. 2−paths = 0.259
Avg. Deg. = 7.663
Clus.Coef. = 0.182
L.Clus.C. = 0.413

T. Covariance = 0.041
TC = 0.318
TB = 0.061
TP Covariance = 0.0001
TPhi = 0.029
TPB = 0.157

Conditional Probabilities (size: log of counts)
Linear Probability Estimation
Clustering Coefficient

0 1

n = 21
Density = 0.048
Avg. 2−paths = 0.038
Avg. Deg. = 0.952
Clus.Coef. = 0.0000
L.Clus.C. = 0.0000

T. Covariance = −0.002
TC = −0.044
TB = −0.050
TP Covariance = −0.000
TPhi = −0.010
TPB = −0.048

Conditional Probabilities (size: log of counts)
Linear Probability Estimation
Clustering Coefficient

Figure 5. A. Illustrating 10 descriptive network statistics on 12 data sets. All reported graphs and descriptives are based on xij ∈ {0, 1}. In case data are valued, they are dichotomized by
the rule: xij = 1 ∀ yij > 0 else xij = 0, unless differently indicated. On the vertical axis conditional probabilities for ties are shown, and dot sizes indicate the number of ordered pairs for each
count of two-paths (horizontal axis). The horizontal line indicates the clustering coefficient (Clus.Coef.) for that network. It can be interpreted as the weightedmean conditional probability
over all groups of two-path counts. Third, the linear regression line between ties and number of ordered two-paths is shown. The slope of this line is given by TB.
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The relevant summary statistics here are n, the number of nodes in the network, density, and
the mean number of two-step paths between the n (n− 1) node pairs, average degree (Avg. Deg.),
Clustering Coefficient, C (Clus. Coef.), Local Clustering Coefficient, LC (L. Clus. C.), transitiv-
ity covariance (T. Covariance), transitivity correlation, TC, transitivity beta, TB, transitivity Phi
covariance (TP Covariance), transitivity Phi, TPhi, and transitivity Phi beta, TPB.

The example networks are from a variety of fields, and differ in size (n= 16 to n= 2, 114) and
structure (d= 0.001 to d= 0.908). In most examples, there is a positive TB, implying that in all
these networks there is network transitivity. The exception is the formal organizational “reports
to” relationship among high-tech managers (Figure 5(d)). The negative value for network transi-
tivity here is induced by the design of formal organizational networks, which are usually set up
as trees. Although in some examples, a low clustering coefficient (C< 0.2), such as for C. ele-
gans (Figure 5(c)), protein interactions (Figure 5(h)), and Mediaeval Florentine Family Weddings
(Figure 5(k)), could be interpreted as no tendency toward transitivity in the network, this would
be a mistake. The positive regression coefficient TB indicates an elevated propensity toward tran-
sitive triples occurring on average throughout these networks as the number of two-paths between
pairs increases.

It must be emphasized again that no inferential claims can be made about the statistical sig-
nificance of these descriptive statistics. This would require further nontrivial assumptions about
underlying digraph distributions. What could be done is to make a case by case comparison. For
example, in the Florentine families data (Figure 5(i) and (k)), it would be a valid statement to say
that network transitivity is higher in the observed business network compared to the marriage
network.

Further, this is not restricted to comparing networks on the same group of nodes, but holds
for comparison between any type of network if we would compare TC. For example, comparing
the Southern women club with friendships in a law firm, the latter has (slightly) lower TC (0.443
vs. 0.445), and hence lower network transitivity. In this case, the clustering coefficient would have
led to the same conclusion. But, this is not always so.

Comparing the intercountry trade of minerals and fuel data (Figure 5(j)) with frequent, and,
very frequent information exchange (Figure 5(g)) shows very similar diagrams. However, the clus-
tering coefficients (C= 0.417 and 0.344, respectively) would suggest a different conclusion than
when comparison is done on Transitivity Correlation (TC= 0.481 and 0.584, respectively). This
is due to differences in density of the two networks. The conditional probability of a transitive
triple is higher in observed mineral and fuel trade network compared to information exchange,
due to a higher density. The increased propensity toward transitive triples ismore increased in the
information exchange network, and in this sense it shows more network transitivity.

Further, a remarkable finding that illustrates the value of these plots is that in three cases
(Figure 5(c), (e), and (h)) with positive TB, the probability of a tie does not show a monotonic
increase with increasing two-path counts. Most clearly, this is shown in the neural network of C.
elegans, where beyond 9 two-paths between 2 nodes, the probability for a tie strongly diminishes
(except at 14 two-paths). Reasons for this could be myriad, but it is important to consider that it
could be indicative of missing, incomplete, or biased data. The example in Figure 5(h) has been
shown to be an incomplete data set, which limited conclusions of the study on this data set (see
for critiques Coulomb et al., 2005; Han et al., 2005; Stumpf et al., 2005). Or, due to ill-defined rela-
tionships, for example, interactions could traverse through different media not considered (e.g.,
complementary use of e-mail and phone), so that not all relevant interactions may have been
observed. Similarly, the network in Figure 5(e) displays a drop in tie probability at 3 and 6 two-
paths, while a sharp increase occurs at 7. As this data set is a covert network constructed from
secondary sources, it could be indicative of a missing source, or a bias because some sources are
irrelevant or receive toomuch emphasis. At least, non-monotonicity in the plots deserves a further
theoretical explanation when no data-related reasons can be found.
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5. Discussion
This paper proposed newmeasures for transitivity based on covariances and correlations between
ties and two-paths, and described some of their numerical properties. These new measures all are
defined as correlations, covariances, or regression coefficients in empirical distributions defined
by the network, expressing comparisons between the probability of a tie between two nodes
depending on the occurrence of two-paths connecting the nodes, such as in Equation (2).

5.1 Statistical inference
The measures developed in this paper are proposed as descriptives, and not primarily for use in
statistical inference (for an overview of issues in statistical modeling for social network analysis,
see Snijders, 2011). Statistical inference about transitivity in networks can be directed at test-
ing the null hypothesis of no transitivity, for which the proposed measures can be used as test
statistics.

The latter topic is treated by Karlberg (1999). This author defines two transitivity indices as
potential test statistics, and uses as a null distribution the U | (OD, ID) specification, that is, the
uniform distribution conditional on given in- and out-degree vectors. His first test statistic is
Equation (3). His second test statistic is an average of local transitivity indices, where the local
transitivity is defined as the density of the out-neighborhood of the node, divided by the maximal
density given the indegree, outdegree, and number of mutual ties of the node. We suggest that
our proposed statistic TC could also be a suitable statistic for testing this null. A suitable null
distribution could be U | (OD, ID, M), the uniform distribution conditional on given in- and out-
degree vectors and a given numberM of reciprocated ties. Although generating random networks
from these distributions is not discussed here, it should be noted that generating samples from
the U | (OD, ID) as well as from the U | (OD, ID, M) distribution faces serious combinatorial
restrictions. A computer program that can simulate samples from these two distributions is ZO
(Snijders, 2017), based on Snijders (1991), and obtainable from http://www.stats.ox.ac.uk/
~snijders/socnet.htm. More recently another method for doing this was proposed by Tao
(2016). Further literature about the generation of networks with given in- and outdegrees is Rao
et al. (1996), Roberts (2000), Verhelst (2008), and Chatterjee et al. (2011).

5.2 Absence and presence of transitivity
One of our conclusions is that condition (16), depending on outdegrees, indegrees, and number
of mutual ties, expresses absence of transitivity. This echoes and refines Feld and Elmore’s (1982)
observation, extended later by Faust (2007), that interpretations of the number of transitive triples
in a network should take into account the degree distributions. It is also related to the statement,
made by Snijders et al. (2006) and Lusher et al. (2012, p. 70), that the number of independent two-
paths (also called dyadwise shared partners) should be included in specifications of Exponential
Random Graph Models as a “prerequisite,” or lower-order configuration, for testing the transitive
closure expressed by k-triangles (also called edgewise shared partners).

In the observed network examples in Section 4.4, we have mainly found positive values for
Transitivity Covariance. This unambiguously shows that there is an increased propensity toward
transitive triples in these networks, in line with the predominance of transitive triples found in a
much larger set of networks already by Davis (1970). However, in some cases the diagrams that
depict how the probability of tie depends on the number of two-step connections between the
nodes also show that the observed probabilities for ties may become highly variable for high values
of the number of two-paths. This in itself is thought-provoking theoretically, and might inspire
other measures that express deviations from a linear relation. However, other explanations are
also possible, such as randomness, lack of data quality, or existence of covert ties.
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5.3 Extensions
Next to transitivity wemay consider balance (Heider, 1958).When balance is treated for graphs or
digraphs without considering edge signs, it is usual to treat absent edges as negative ties. Instead of
Transitivity Covariance, the “Balance Covariance” would then be based on the association between
xij and xik xkj + xcik x

c
kj, where x

c is the complement of digraph x, with tie variables xcij = 1− xij. As
the values of xik xkj + xcik x

c
kj still are in {0, 1}, the analyses will remain similar. The measure can

straightforwardly be further adjusted to accommodate other statements about triads.
Further refinements could be made regarding, for example, the implicit assumptions about

homogeneity of nodes. In case nodes are explicitly organized in groups, a distinction between
different subsets of nodes, or different blocks of ties, may refine conclusions about increased, or
decreased, levels of a tendency toward transitivity. Adjusted covariance-based measures could be
derived in this way, controlling for grouping of nodes.

Further developments could also be made for networks with valued ties. A generalized form of
network transitivity for valued ties was proposed byOpsahl & Panzarasa (2009). It is still unknown
in which way this would lead to different conclusions and interpretations than those presented
here.

6. Conclusion
We defined two new measures for transitivity: Transitivity Phi TPhi, defined as the observed
correlation, in a randomly drawn triple, between the tie variable between two nodes and the
two-path connection between them; and the Transitivity Correlation TC, defined as the observed
correlation, for a randomly drawn pair of nodes, between the tie variable and the number of
two-paths between the two nodes. The foremost advantage of these measures is that they offer a
quantitative expression for the “increased propensity” of transitive triples which is the definition
of transitivity as formulated, for example, by Newman et al. (2001). By contrast, the clustering
coefficient C, one of the basic measures for transitivity, reflects the observed conditional prob-
ability of a tie, given a two-path, not a comparative quantity. Under the Erdös–Renyi model,
the clustering coefficient can have any expected value in (0, 1) depending on the density; under
this model, the expected value of TPhi and TC is 0. Because of their comparative nature, these
correlation measures allow for comparison between networks, even networks of unequal size or
density, and from different contexts.

The two measures are both based on considering the tie variable for a random pair (i, j) of
nodes; the difference is that TPhi considers one randomly selected third node, whereas TC con-
siders all other nodes as potential intermediates. Both are functions of the ego-networks of all
nodes in the digraph, where the ego-network is defined as the digraph induced by the node and
all nodes in its direct out-neighborhood. Clearly, TC takes into account much more of the struc-
ture of the ego-networks than TPhi, specifically, the dependence between the different two-paths
connecting any two nodes.

The results found in the comparison of measures for windmill graphs led to the conclusion that
the difference between these twomeasures can imply large differences in conclusions about transi-
tivity. For windmills with many wings, the consideration of the two-path dependence by TC leads
to a value tending to 1, contrasting with the value for TPhi tending to 0. We interpret windmill
graphs as being highly transitive, and find this a strong argument in favor of TC over TPhi.

Correlations between binary variables are known to have a restricted range. Only for graphs
that are unions of disconnected complete subgraphs of equal sizes, both TC and TPhi assume the
maximum of 1. This shows that there may be room for developing other measures for transitivity
that assume their maximum value for all totally transitive graphs, without the restriction of equal-
size components.
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A finding that we believe to be new is that the condition that TC is zero is equivalent to a con-
dition on the covariance between in- and outdegrees, the number of mutual ties, the density, and
the number of nodes. This leads to interest in the uniform distribution for digraphs conditional
on these four quantities. This distribution presumably is very difficult to handle; the distribution
of digraphs, for a given number of nodes, conditional on the vectors of in- and outdegrees and the
number of mutual ties may be presumed to be easier to handle, although this distribution already
poses huge problems (Tao, 2016; Snijders, 2017).
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Notes
1 This measure has been implemented in function gtrans in the R-package ’sna’ (Butts, 2016, p. 112).
2 Data via Opsahl (2017).
3 Data via Freeman (2017).
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Appendix A: Relation TPhi and TC
The covariance between directed ties and the number of two-paths is

cov
(
xij,

∑
h�=i,j

xihxhj
)

= 1
n (n− 1)

∑
i

∑
j �=i

xij
( ∑
h�=i,j

xih xhj
) − x xx (A1)
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The difference between TC and TPhi is in scaling. Consider that covariance in Equation (A1) is a weighted measure of the
numerator in Equation (9):

cov
(
xij,

∑
h�=i,j

xihxhj
)

= (n− 2) cov(xij, xikxkj) (A2)

Further, the denominator in Equation (12) differs from that of TPhi only in s.e.(
∑

h xihxhj) [see Equation (10)]. The variance
of the number of two-paths between any ordered pair can be rewritten as

var
( ∑

h
xihxhj

)
= (n− 2)

[
var(xikxkj)+ (n− 3) cov(xikxkj, xi�x�j)

]
(A3)

Under conditions where cov(xikxkj, xi�x�j)= var(xikxkj), TC reduces to TPhi as

var
( ∑

h
xihxhj

)
= (n− 2)2 var(xikxkj) (A4)

But, more generally, we can state

TC= α × TPhi (A5)

where α is

α = TC
TPhi

= (n− 2)
√
var(xikxkj)√

((n− 2)[var(xikxkj)+ (n− 3) cov(xikxkj, xi�x�j)])
(A6)

for � �= k. Note that (A6) can be rewritten as

α = (n− 2)√
((n− 2) [1+ (n− 3)ρ])

(A7)

where

ρ = cov(xikxkj, xi�x�j)
var(xikxkj)

(A8)

is the autocorrelation between two-paths in a digraph. Now ρ is a correlation so that ρ ≤ 1; further, rewriting Equation (A3),

0 ≤ var
( ∑
k�=i,j

xikxkj
)

= (n− 2) var(xikxkj) + (n− 2)(n− 3) cov(xikxkj, xi�x�j) (A9)

= (n− 2)
(
1+ (n− 3) ρ

)
var(xikxkj)

which implies that ρ ≥ −1/(n− 3). With Equation (A7) this implies that α ≥ 1 except for TPhi= 0, where ρ = −1/(n− 3)
and TPhi is undefined. It can be concluded that TC≥ TPhi. The distinction between TC and TPhi is about size not direction.
Although the relation between α and ρ is nonlinear, α is monotonically decreasing as ρ increases. The ratio of the two
transitivity correlations is a function of n and the two-path autocorrelation in the digraph. The autocorrelation between
two-paths is itself a Phi coefficient, expressing the difference in conditional probabilities of a two-path via a node k given a
two-path via another node � exists and of a two-path via k given that no other two-path exists. As such, it can be interpreted
as a measure of network centrality, where a smaller ρ indicates an elevated uniqueness of nodes as intermediate in two-paths.

Appendix B: When is transitivity covariance equal to zero
We derive an condition equivalent to the property that the Transitivity Correlation TC, or equivalently the Transitivity
Covariance, is zero.

The Transitivity Covariance is defined as the covariance, for a randomly chosen pair (i, j), between the direct tie xij and the
number

∑
h�=i,j xihxhj of directed two-paths between these nodes as defined in Equation (A2). Network density in (di)graphs

is the mean tie-indicator variable

d = x= 1
n(n− 1)

n∑
i=1

n∑
j=1
j �=i

xij (A10)
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Over all ordered pairs (i, j), the mean number of two-paths is

xx= TSP = 1
n(n− 1)

n∑
i=1

n∑
j=1
j �=i

n∑
h=1
h�=i,j

xih xhj (A11)

and the mean number of transitive triples is given by

TT = 1
n(n− 1)

n∑
i=1

n∑
j=1
j �=i

n∑
h=1
h�=i,j

xij xih xhj (A12)

Let

M =
n∑
i=1

n∑
j=1
j �=i

xij xji (A13)

be the sum of reciprocal or mutual ties (note that reciprocal ties are two-paths that do not contribute to a transitive triple).
The mean number of two-paths in Equation (A11) can be rewritten as

TSP = 1
n (n− 1)

(OD · ID−M) (A14)

where ID and OD are the vectors of in- and outdegrees, and OD · ID is their inner product.
Substitution in Equation (A2) gives

cov(xij,
∑
h�=i,j

xih xhj)= (n− 2)
(
TT − (OD · ID−M) d

n(n− 1)

)
(A15)

The inner product of two vectors can be expressed in terms of covariance, in this case the covariance between in- and
outdegrees for the probability distribution that a node is randomly chosen. This gives

cov(OD, ID)= 1
n
(OD · ID)− d2 (A16)

Substitution gives

cov(xij,
n∑

h�=i,j
xih xhj)= (n− 2)

(
TT −

(
n cov(OD, ID)+ n d2 −M

)
d

n(n− 1)

)
(A17)

which simplifies to Equation (16) under the condition of no network (in)transitivity.
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