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ABSTRACT
Background If SGLT2 inhibitors protect the kidneys by reducing albuminuria as hypothesized, peoplewith
type 2 diabetes mellitus (T2DM) with higher albuminuria should benefit more.

Methods We conducted a post-hoc analysis of data from the CANagliflozin cardioVascular Assessment
Study (CANVAS) Program, which randomized 10,142 participants with T2DM and high cardiovascular risk
to canagliflozin or placebo. We assessed effects of canagliflozin on renal, cardiovascular, and safety out-
comes by baseline albuminuria. The trial included 2266 participants (22.3%) with moderately increased
albuminuria (urinary albumin/creatinine ratio [UACR] 30–300mg/g) and 760 (7.5%) with severely increased
albuminuria (UACR .300 mg/g) at baseline.

Results Canagliflozin lowered albuminuria with greater proportional reductions in those with moderately
and severely increased albuminuria (P heterogeneity,0.001). After week 13, canagliflozin slowed the
annual loss of kidney function across albuminuria subgroups, with greater absolute reductions in partic-
ipants with severely increased albuminuria (placebo-subtracted difference 3.01 ml/min per 1.73 m2 per
year; P heterogeneity,0.001). Heterogeneity for the renal composite outcome of 40% reduction in eGFR,
ESKD, or renal-related death was driven by lesser effects in participants with moderately increased albu-
minuria (P heterogeneity=0.03), but no effect modification was observed when albuminuria was fitted as a
continuous variable (P heterogeneity=0.94). Cardiovascular and safety outcomes were mostly consistent
across albuminuria levels including increased risks for amputation across albuminuria subgroups (P het-
erogeneity=0.66). Greater absolute risk reductions in the renal composite outcome were observed in
participants with severely increased albuminuria (P heterogeneity=0.004).

Conclusions The proportional effects of canagliflozin on renal and cardiovascular outcomes are mostly
consistent across patients with different levels of albuminuria, but absolute benefits are greatest among
those with severely increased albuminuria.

JASN 30: 2229–2242, 2019. doi: https://doi.org/10.1681/ASN.2019010064

Received January 21, 2019. Accepted July 16, 2019.

Published online ahead of print. Publication date available at
www.jasn.org.

Correspondence: Dr. Vlado Perkovic, The George Institute for

Global Health, University of New South Wales Sydney, Level 5,
1 King Street, Newtown, Sydney, NSW 2042, Australia. Email:
vperkovic@georgeinstitute.org.au

Copyright © 2019 by the American Society of Nephrology

JASN 30: 2229–2242, 2019 ISSN : 1046-6673/3011-2229 2229

C
LI
N
IC
A
L
R
E
SE

A
R
C
H



CKD is one of the leading causes of morbidity andmortality in
type 2 diabetesmellitus (T2DM), developing in approximately
40% of affected individuals.1,2 Albuminuria is one of the ear-
liest clinically detectable manifestations of kidney damage,
and is an independent risk factor for cardiovascular events,
kidney failure, and death.3,4 Efforts to prevent these outcomes
have targeted not only BP and glucose control, but also the
lowering of albuminuria with renin-angiotensin system
(RAS) blockade, which has been associated with subsequent
renoprotection.5,6

Canagliflozin is a sodium glucose cotransporter 2 (SGLT2)
inhibitor which promotes glycosuria and natriuresis, resulting
in reductions in glycated hemoglobin (HbA1c), BP, and body
weight.7 Canagliflozin and other SGLT2 inhibitors also ame-
liorate albuminuria, resulting in an approximate one-third
reduction in albuminuria in people with moderately or se-
verely increased albuminuria.8 These multiple metabolic ben-
efits have translated into a reduction in cardiovascular events
in large cardiovascular outcome trials.9–13

Most recently, the Canagliflozin and Renal Events in Dia-
betes with Established Nephropathy Clinical Evaluation
(CREDENCE) trial demonstrated that canagliflozin reduces
the risk of kidney failure by approximately 30% in people with
established diabetic kidney disease.14 Almost all participants
in the CREDENCE trial had severely increased albuminuria at
baseline with a median urinary albumin/creatinine ratio
(UACR) of 927 mg/g.14 There is therefore uncertainty as to
whether the renal and cardiovascular benefits demonstrated
in the CREDENCE trial are generalizable across a wider range
of albuminuria, especially to people with T2DM and lesser
degrees of albuminuria.

We hypothesized that by reducing albuminuria, SGLT2 in-
hibitors might be particularly beneficial for renal and perhaps
also cardiovascular outcomes in people with T2DM and
higher levels of albuminuria.We therefore undertook a range
of post-hoc analyses of the CANagliflozin cardioVascular As-
sessment Study (CANVAS) Program to determine the effect
of canagliflozin on renal, cardiovascular, and safety out-
comes in people with T2DM according to baseline levels
of albuminuria.

METHODS

Study Design and Participants
The detailed methods and statistical analysis plan for the
CANVAS Program have been published previously.9 Briefly,
the CANVAS Program comprised two multicenter, double-
blind, placebo-controlled randomized trials (CANVAS
[NCT01032639] and CANVAS-R [NCT01989754]) with
identical key inclusion criteria that were designed to assess
the cardiovascular safety and efficacy of the SGLT2 inhibitor,
canagliflozin, along with effects on renal and safety outcomes
in people with T2DM at high cardiovascular risk. The trials
were conducted in 667 centers across 30 countries. Local

institutional ethics committees approved the trial protocols
at each site, and all participants provided written informed
consent.

The trials included participants with T2DM and HbA1c
levels $7.0% and #10.5% who were either 30 years or older
with established atherosclerotic vascular disease, or 50 years
or older with two or more cardiovascular risk factors. These
risk factors included: duration of diabetes of at least 10 years,
systolic BP higher than 140 mm Hg while receiving one or
more antihypertensive agents, UACR of at least 30 mg/g,
current smoking, or HDL cholesterol level of ,1 mmol/L.
Participants with a baseline eGFR ,30 ml/min per 1.73 m2

were excluded.

Randomization and Masking
All potentially eligible participants underwent a 2-week,
single-blind, placebo run-in period before randomization.
Randomization procedures differed between the trials. Par-
ticipants in CANVAS were randomly assigned in a 1:1:1 ratio
to receive canagliflozin 100 mg daily, canagliflozin 300 mg
daily, or placebo; whereas participants in CANVAS-R were
randomly assigned in a 1:1 ratio to receive canagliflozin
100 mg daily or matching placebo, with an optional increase
to 300 mg or matching placebo daily starting from week 13.
Randomizationwasperformed centrally through aweb-based
response system with the use of a computer-generated ran-
domization schedule with randomly permuted blocks that
were prepared by the trial sponsor. All participants and trial
staffwere blinded to individual treatment allocations until the
end of the trial.

Follow-Up Procedures
Face-to-face follow-upwas scheduled at least three times in the
first year and at intervals of 6 months thereafter. Serum creat-
inine was measured at least three times in the first year includ-
ing at baseline, and then every 26 weeks. UACR was measured
in first-morning void urine specimens at baseline and at
week 12 and then annually in CANVAS, and every 26 weeks
in CANVAS-R. Adverse event assessment was performed at
each visit. Other glycemic and cardiovascular risk factor

Significance Statement

Albuminuria commonly occurs in people with type 2 diabetes and is
an independent risk factor for progression of kidney disease and
cardiovascular events. SGLT2 inhibitors are thought to protect the
kidneys by lowering albuminuria. If this is true, it suggests people
with type 2 diabetes with higher levels of albuminuria would
reap greater renoprotective benefits. The authors conducted a
post-hoc analysis of data from the CANagliflozin cardioVascular
Assessment Study (CANVAS) Program to assess renal, cardiovas-
cular, and safety outcomes with canagliflozin by baseline albumin-
uria subgroups (urinary albumin/creatinine ratio ,30, 30–300, and
.300 mg/g). The data suggest that the relative effects of canagli-
flozin on renal and cardiovascular outcomes are mostly consistent
across different levels of baseline albuminuria, but participants with
severely increased albuminuria saw the largest absolute benefits.
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management, including RAS blockade, was guided by best
practice in accordance with local guidelines.

Outcomes
Definitions for all clinical outcomes in the CANVAS Program
have been previously published.9 The primary outcome
was a composite of cardiovascular death, nonfatal myocardial
infarction, or nonfatal stroke. Other outcomes included car-
diovascular death, fatal or nonfatal myocardial infarction, fatal
or nonfatal stroke, hospitalized or fatal heart failure, and all-
cause mortality. The renal outcomes of interest in this analysis
were: (1) mean annualized difference in eGFR between cana-
gliflozin and placebo; and (2) a sustained and independently
adjudicated composite of 40% reduction in eGFR, ESKD, or
renal death. The end point of 40% reduction in eGFR was sent
for adjudication if sustained for two consecutive measures
$30 days apart or occurring on the last available measure.
eGFR was calculated using the Modification of Diet in Renal
Disease equation using centrally measured serum creatinine
collected at study visits. Central end point adjudication com-
mittees blinded to treatment allocation assessed cardiovascu-
lar, renal, and key safety outcomes.

Adverse events, both serious and nonserious, were collected
in the CANVAS trial until early 2014, as mandated by the
regulatory agencies as a requirement for initial approval for
the use of canagliflozin. After this time, only serious adverse
events, adverse events leading to study drug discontinuation,
and selected adverse events of interest were collected in the
CANVAS trial. This streamlined adverse event collection ap-
proach was used for the entirety of CANVAS-R. We therefore
reported all adverse events for the CANVAS trial separately,
along with all serious adverse events across the CANVAS
Program.

Statistical Analyses
Baseline characteristics for participants with normal, moder-
ately increased, and severely increased albuminuria at baseline
(defined as UACR,30, 30–300, and.300mg/g, respectively)
were compared using chi-squared and ANOVA tests for cate-
gorical and continuous variables.

The effects of canagliflozin on intermediate outcomes and
eGFRover timewere calculated frombaseline toweek 312. The
mean change inHbA1c, BP, and body weight over time and the
difference between canagliflozin and placebo were analyzed
using mixed effect models for repeated measurements that
included all of the postbaseline data up to week 312 and the
covariates for study, visit, treatment, baseline measures, and
baseline-by-visit interactions. Because of the highly skewed dis-
tribution of UACR data, UACR data were log-transformed and
thegeometricmeanofpostbaselineUACRwasestimatedusinga
similar mixed effect model. Changes in albuminuria were cal-
culated as the ratioof the geometricmeanofpostrandomization
UACRmeasures with canagliflozin compared with placebo.We
also included treatment byvisit as a covariatewhen assessing the
effect of canagliflozin on eGFR over time.

Because of the recognized nonlinear association between
eGFR and time resulting from the acute hemodynamic effect
of canagliflozin, the differences in eGFR slope between canagli-
flozin and placebo were assessed by a piecewise linear mixed
effectmodel using an intention-to-treat approach over the total
study duration and separately in two time periods: baseline to
week 13 (acute slope), and week 13 to last available measures
during the trial period (chronic slope). A time-spline variable
measuring the follow-up time fromweek 13 was introduced in
the model to accommodate the nonlinear trends of the eGFR
time trajectory. eGFR data collected at the scheduled visits were
regressedby thefixed effectswith terms for treatment and study,
and with linear covariates of time, time spline, and interactions
of treatment by time and treatment by the spline variable. In-
tercept, time, and time splinewere includedas randomeffects to
allow variation between participants. Time covariates included
in the model were calculated in years to estimate annualized
changes in eGFR.

The effects of canagliflozin on cardiovascular, renal, and
safety outcomes were analyzed overall and in participants
with normal, moderately increased, and severely increased
albuminuria. Hazard ratios (HRs) and 95%CIs for the cardio-
vascular outcomes were estimated with Cox regressionmodels
for all canagliflozin groups combined versus placebo, with
stratification according to trial and history of cardiovascular
disease. The same method was used for the composite renal out-
come, with adjustment for baseline eGFR (,60 or $60 ml/min
per 1.73 m2) and stratification by trial. Analyses for cardiovas-
cular and renal outcomes were conducted on the full integrated
data set using an intention-to-treat approach, which included
all events that occurred at any time from randomization to the
last follow-up date; participants were censored at the time of
cardiovascular or noncardiovascular death or last trial contact
date for those not experiencing an event or lost to follow-up. For
the renal composite outcome, participants were censored when
renal- or nonrenal-related deaths occurred, but not censored if
any nonfatal types of events occurred. Annualized incidence
rates were calculated per 1000 patient-years of follow-up. Sen-
sitivity analyses adjusting for competing risk of death were per-
formed for these outcomes using the Fine and Gray method.15

For safety outcomes, an on-treatment analysiswas performed
(using only events that occurred among participants who had a
safety outcome while they were receiving canagliflozin or pla-
cebo, orwithin 30days after discontinuationof drugor placebo).
For amputation and fracture outcomes, analyses included par-
ticipantswhoreceivedat leastonedoseofcanagliflozinorplacebo
and had an event at any time during follow-up.

The methods for determining heterogeneity of treatment
effect involved adding UACR as a covariate and a term for
UACR-by-treatment interaction to the relevant model to test
for heterogeneity across albuminuria subgroups. Terms for
UACR-by-time interactionwere also included in the piecewise
linear mixed model. The P heterogeneity values across sub-
groups were obtained using the likelihood ratio test. We ex-
plored heterogeneity further in a range of sensitivity analyses
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by testing for trend across ordered UACR subgroups, performing
interaction tests across deciles of baseline UACR, and
assessing for effect modification using log-transformed UACR
fitted as a continuous variable. Tests for trend in treatment effect
across subgroups were performed using a similar approach as
described above with UACR subgroups treated as ordered
categories.

Absolute effects on select outcomes of interest per 1000
patients over 5 years and corresponding 95% CIs were esti-
mated as the differences in the incidence rates between ran-
domized treatment groups, using Poisson regression analysis
with an assumption of constant annual event probabilities. We
performed three pairwise comparisons across normal, mod-
erately increased, and severely increased albuminuria sub-
groups and reported the lowest (i.e., most conservative)
P value to test for heterogeneity.

Analyses were performed with SAS software version 9.2,
SAS Enterprise Guide version 7.11, and STATA software
version 15.1.

Data from the CANVAS Program will be made available in
the public domain via the Yale University Open Data Access
Project (http://yoda.yale.edu/) once the product and relevant
indications studied have been approved by regulators in
Europe and the United States and the study has been com-
pleted for 18 months.

RESULTS

The CANVAS Program randomized 10,142 participants,
10,033 (98.9%) of whom had UACR measured at baseline. A
total of 9734 participants (96%) completed the study, with a
mean follow-up of 188.2 weeks, although mean length of fol-
low-upwas longer inCANVAS(296weeks) than inCANVAS-R
(108 weeks). At baseline, there were 7007 participants with
normal albuminuria (69.1%), 2266 (22.3%) with moderately
increased albuminuria, and another 760 (7.5%) with severely
increased albuminuria. Baseline use of RAS blockade was high
overall and higher across subgroups with increasing albumin-
uria, ranging from 79.2% to 82.6%.

Baseline characteristics of canagliflozin- and placebo-
treated participants were mostly similar within each albuminuria
subgroup (Table 1). Characteristics of participants by baseline al-
buminuria subgroups are also presented in Supplemental Table 1.
Across progressively higher levels of albuminuria, participants
were more likely to be male and have a longer duration of di-
abetes, higher systolic BP, and higher HbA1c (all P,0.001;
Supplemental Table 1). The proportion of participants with
established microvascular complications and a history of pe-
ripheral vascular disease and amputations increased with base-
line albuminuria (all P,0.001; Supplemental Table 1). Mean
eGFR was progressively lower across albuminuria subgroups,
and participants were more likely to be treated with diuretics
and insulin, and less likely to receive metformin and sulfonyl-
ureas (all P,0.001; Supplemental Table 1).

Intermediate Outcomes
Theplacebo-subtracteddifferences inHbA1c, systolicBP, body
weight, and albuminuria varied in participants with normal,
moderately increased, and severely increased albuminuria,
likely due to differences in baseline eGFR across the subgroups
(Figure 1). Proportional reductions in albuminuria increased
with higher levels of albuminuria (P heterogeneity,0.001).
Reductions in HbA1c were attenuated across progressively
higher levels of albuminuria, with a similar pattern observed
for body weight (P heterogeneity=0.002 and 0.08, respectively).
In contrast, the effect on systolic BP was consistent across albu-
minuria subgroups (P heterogeneity=0.26). The effects on in-
termediate outcomes, displayed separately in canagliflozin- and
placebo-treated participants, are summarized in Supplemental
Figure 1.

Renal Outcomes
The effect of canagliflozin on eGFR slope varied during follow-
up (Figure 2). Within 13 weeks, participants randomized to
canagliflozin experienced a fall in eGFR, which was similar
across subgroups with normal, moderately increased, and se-
verely increased albuminuria (placebo-subtracted differences
of22.31,22.50, and22.73 ml/min per 1.73 m2, respectively;
P heterogeneity=0.66). From week 13 until the end of follow-
up (i.e., the chronic slope), canagliflozin attenuated the loss
of kidney function across all levels of baseline albuminuria
(Figure 2), with clear differences in the size of the treatment
effect across subgroups (P heterogeneity,0.001). The annual
rate of eGFR decline in placebo arms was progressively greater
among higher categories of albuminuria (Figure 2). The
corresponding annual mean difference in eGFR slope between
canagliflozin and placebo was greatest in participants with
severely increased albuminuria (placebo-subtracted differ-
ence of 3.01 ml/min per 1.73 m2 per year) and lesser in
those with normal and moderately increased albuminuria
(placebo-subtracted differences of 1.06 and 0.99 ml/min per
1.73 m2 per year, respectively; Figure 2). Total eGFR slope for
the overall population and by albuminuria subgroups is sum-
marized in Supplemental Table 2.

Heterogeneity was observed for the renal composite out-
come across normal albuminuria (HR, 0.50; 95% CI, 0.33 to
0.77), moderately increased albuminuria (HR, 0.98; 95%
CI, 0.60 to 1.60), and severely increased albuminuria sub-
groups (HR, 0.48; 95% CI, 0.31 to 0.74; P heterogeneity=0.03;
Figure 3). The effect on the renal composite outcome adjusted for
competing risk of death was similar, and is presented in Supple-
mental Table 3. However, there was no evidence of a trend in
treatment effect across ordered albuminuria subgroups or
when interaction tests were performed with log-transformed
UACR fitted as a continuous variable (P trend=0.80 and
P heterogeneity=0.94, respectively; Supplemental Table 4).
The effect on the renal composite outcomewas also consistent
when participants were categorized into deciles based on
UACR (P heterogeneity=0.33 and P trend=0.32; Supplemen-
tal Figure 2).
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Table 1. Characteristics of canagliflozin- and placebo-treated participants by baseline albuminuria subgroups (UACR ,30, 30–300, and .300 mg/g)

Characteristics

Normal Albuminuria
(<30 mg/g)

Moderately Increased Albuminuria
(30–300 mg/g)

Severely Increased Albuminuria
(>300 mg/g)

Canagliflozin (n=4012) Placebo (n=2995) Canagliflozin (n=1322) Placebo (n=944) Canagliflozin (n=406) Placebo (n=354)

Age, years, mean (SD) 63.0 (8.2) 63.2 (8.1) 63.8 (8.3) 64.2 (8.3) 63.4 (8.3) 64.0 (8.2)
Sex, no. (%)
Male 2497 (62.2) 1835 (61.3) 936 (70.8) 638 (67.6) 284 (70.0) 248 (70.1)
Female 1515 (37.8) 1160 (38.7) 386 (29.2) 306 (32.4) 122 (30.0) 106 (29.9)

Race, no. (%)
White 3129 (80.0) 2393 (79.9) 1030 (77.9) 722 (76.5) 301 (74.1) 272 (76.8)
Asian 527 (13.1) 323 (10.8) 187 (14.1) 137 (14.5) 62 (15.3) 47 (13.3)
Black 123 (3.1) 108 (3.6) 37 (2.8) 33 (3.5) 12 (3.0) 17 (4.8)
Othera 233 (5.8) 171 (5.7) 68 (5.1) 52 (5.5) 31 (7.6) 18 (5.1)

Current smoker, no. (%) 691 (17.2) 547 (18.3) 235 (17.8) 166 (17.6) 80 (19.7) 57 (16.1)
History of hypertension, no. (%) 3528 (87.9) 2682 (89.5) 1229 (93.0) 868 (91.9) 377 (92.9) 337 (95.2)
History of heart failure, no. (%) 526 (13.1) 439 (14.7) 200 (15.1) 149 (15.8) 63 (15.5) 59 (16.7)
Duration of diabetes, years, mean (SD) 12.9 (7.6) 13.2 (7.7) 14.4 (7.8) 14.3 (7.9) 15.4 (7.6) 16.0 (8.0)
Drug therapy, no. (%)
Insulin 1862 (46.4) 1405 (46.9) 738 (55.8) 526 (55.7) 266 (65.5) 248 (70.1)
Sulfonylurea 1779 (44.3) 1310 (43.7) 586 (44.3) 388 (41.1) 145 (35.7) 118 (33.3)
Metformin 3120 (77.8) 2383 (79.6) 1022 (77.3) 705 (74.7) 260 (64.0) 243 (68.6)
GLP-1 receptor agonist 152 (3.8) 122 (4.1) 49 (3.7) 46 (4.9) 18 (4.4) 15 (4.2)
DPP-4 inhibitor 487 (12.1) 373 (12.5) 144 (10.9) 134 (14.2) 58 (14.3) 52 (14.7)
Statin 2978 (74.2) 2236 (74.7) 1007 (76.2) 727 (77.0) 305 (75.1) 272 (76.8)
Antithrombotic 2914 (72.6) 2224 (74.3) 977 (73.9) 705 (74.7) 306 (75.4) 274 (77.4)
RAAS inhibitor 3171 (79.0) 2378 (79.4) 1095 (82.8) 751 (79.6) 332 (81.8) 296 (83.6)
b-Blocker 2075 (51.7) 1654 (55.2) 726 (54.9) 513 (54.3) 214 (52.7) 188 (53.1)
Diuretic 1667 (41.6) 1271 (42.4) 644 (48.7) 452 (47.9) 200 (49.3) 202 (57.1)

Microvascular disease history, no. (%)
Retinopathy 735 (18.3) 563 (18.8) 319 (24.1) 230 (24.4) 133 (32.8) 124 (35.1)
Nephropathy 434 (10.8) 359 (12.0) 370 (28.0) 244 (25.8) 178 (43.8) 169 (47.9)
Neuropathy 1136 (28.3) 892 (29.8) 477 (36.1) 282 (29.9) 154 (37.9) 127 (35.9)

Atherosclerotic vascular disease history, no. (%)b

Coronary 2239 (55.8) 1754 (58.6) 751 (56.8) 517 (54.8) 214 (52.7) 190 (53.7)
Cerebrovascular 748 (18.6) 571 (19.1) 271 (20.5) 177 (18.8) 83 (20.4) 89 (25.1)
Peripheral 762 (19.0) 601 (20.1) 291 (22.0) 212 (22.5) 114 (28.1) 113 (31.9)
Any 2846 (70.9) 2218 (74.1) 955 (72.2) 673 (71.3) 287 (70.7) 271 (76.6)

Cardiovascular disease history, no. (%)c 2592 (64.6) 2008 (67.0) 863 (65.3) 610 (64.6) 266 (65.5) 253 (71.5)
History of amputation, no. (%) 62 (1.5) 40 (1.3) 45 (3.4) 28 (3.0) 28 (6.9) 32 (9.0)
Body mass index, kg/m2, mean (SD) 31.9 (5.9) 31.8 (5.9) 32.1 (5.9) 32.5 (6.1) 32.1 (6.1) 31.8 (6.0)
Systolic BP, mm Hg, mean (SD) 134.6 (15.1) 135.2 (15.1) 139.4 (15.6) 139.2 (16.2) 145.1 (18.5) 144.8 (16.8)
Diastolic BP, mm Hg, mean (SD) 77.3 (9.4) 77.5 (9.5) 77.8 (10.0) 78.4 (10.1) 80.1 (10.0) 79.0 (9.8)
Glycated hemoglobin, %, mean (SD) 8.2 (0.9) 8.2 (0.9) 8.4 (1.0) 8.4 (0.9) 8.5 (1.0) 8.4 (0.9)
Total cholesterol, mmol/L, mean (SD) 4.3 (1.1) 4.4 (1.1) 4.4 (1.1) 4.3 (1.2) 4.7 (1.3) 4.5 (1.4)
Triglycerides, mmol/L, mean (SD) 1.9 (1.2) 1.9 (1.4) 2.2 (1.4) 2.2 (1.7) 2.4 (1.8) 2.3 (1.7)
HDL cholesterol, mmol/L, mean (SD) 1.2 (0.3) 1.2 (0.3) 1.1 (0.3) 1.1 (0.3) 1.2 (0.4) 1.1 (0.3)
LDL cholesterol, mmol/L, mean (SD) 2.3 (0.9) 2.3 (0.9) 2.3 (0.9) 2.2 (0.9) 2.5 (1.1) 2.4 (1.1)
LDL/HDL cholesterol ratio, mean (SD) 2.0 (0.9) 2.0 (0.9) 2.1 (0.9) 2.0 (0.9) 2.3 (1.1) 2.1 (1.0)
eGFR, ml/min per 1.73 m2, mean (SD) 78.4 (19.5) 78.0 (19.9) 74.8 (20.9) 73.9 (21.9) 65.9 (22.2) 66.9 (22.5)
UACR, mg/g, median (interquartile range) 8.4 (5.7–13.4) 8.2 (5.7–13.2) 67.1 (42.6–127.2) 69.4 (44.6–120.5) 691.9 (433.2–1255.4) 763.2 (451.5–1394.1)
aIncludes American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, multiple, other, and unknown.
bSome participants had .1 type of atherosclerotic disease.
cAs defined in the protocol.

JA
SN

30
:2229

–2242,2019
C
A
N
V
A
S
O
utco

m
es

b
y
A
lb
um

inuria
2233

w
w
w
.jasn.o

rg
C
LIN

IC
A
L
R
E
SE

A
R
C
H



Cardiovascular Outcomes
The relative effect of canagliflozin on the primary cardiovascu-
lar composite outcome in the overall trial population (HR, 0.86;
95% CI, 0.75 to 0.97) was consistent across albuminuria sub-
groups (P heterogeneity=0.46; Figure 3). The samewas true for
all other cardiovascular outcomes, as well as all-cause mortal-
ity (all P heterogeneity.0.20; Figure 3). Results were similar in
sensitivity analyses adjusting for the competing risk of death (Sup-
plemental Table 3). Noheterogeneity was observed for any of these
outcomes when interaction tests were undertaken testing for
trends across ordinal subgroups, or using log-transformed
UACR fitted as a continuous variable (Supplemental Table 4).
Similarly, effects on the primary cardiovascular outcome, heart
failure, and all-cause mortality were consistent across deciles of
UACR (Supplemental Figure 2).

Absolute Effects
Absolute riskdifferences forcanagliflozinversusplaceboacross
different levels of albuminuria are summarized in Figure 4. The

absolute risk reductions for most cardiovascular outcomes
were consistent across albuminuria subgroups. Heterogeneity
was observed for the renal composite outcome and for all-
cause mortality; absolute risk reductions for these outcomes
were larger in people with severely increased albuminuria
(P heterogeneity=0.004 and 0.04, respectively). There was
no statistically significant evidence of heterogeneity for the
absolute effect on amputations (P heterogeneity=0.11), al-
though the risk appeared numerically greater in the
severely increased albuminuria subgroup, which had a
higher proportion of participants with a prior history of
amputations.

Safety Outcomes
The risks of most adverse outcomes with canagliflozin, in-
cluding renal safety outcomes, were consistent across albu-
minuria subgroups (Figure 5, Supplemental Figure 3).
The increased risk of amputation with canagliflozin observed
in the overall trial population was consistent across albuminuria
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subgroups (P heterogeneity=0.66). There was some evidence of
heterogeneity for urinary tract infections and fractures
(P heterogeneity=0.04 and 0.07, respectively). Heterogeneity for
the fractureoutcome remainedwhenfittingUACRas a continuous
variable (P heterogeneity=0.03). There was no evidence of hetero-
geneity in the riskof urinary tract infectionswhen analyzingUACR
as a continuous variable (P heterogeneity=0.22).

DISCUSSION

In this analysis of the CANVAS Program, canagliflozin slowed
the loss of kidney function, as measured by eGFR slope, at all
levels of albuminuria. The absolute effect on eGFR slope was
approximately three times as large in people with severely in-
creased albuminuria, and this was due, at least in part, to the
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much more rapid decline in kidney function in this group.
Kidney function loss was essentially completely abrogated in
canagliflozin-treated participants with normal or moderately
increased albuminuria. Although there was some evidence of
heterogeneity for the renal composite outcome across normal,
moderately increased, and severely increased albuminuria
subgroups, the unusual pattern of effect and the absence of
heterogeneity in a range of sensitivity analyses, including
when interaction tests were performed with albuminuria
fitted continuously, suggest that this may have been a chance
finding. While the largest absolute renal benefits were ob-
served in participants with severely increased albuminuria,

the evidence of renoprotection, even among participants
with normal albuminuria, suggests that mechanisms other
than those associated with albuminuria reductionmight also
be important.

The effects of SGLT2 inhibition have now been studied
across a spectrum of urinary albumin excretion. Our findings
are broadly consistent with those from the EMPA-REG
OUTCOME trial, in which approximately 60% of partici-
pants had normal albuminuria at baseline. The EMPA-REG
OUTCOME trial demonstrated that the effects of empagli-
flozin on cardiovascular and renal outcomes were consis-
tent across different levels of albuminuria, with greater
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effects on eGFR slope in participants with severely in-
creased albuminuria.16–18 The CREDENCE trial demon-
strated clear reductions in the risk of kidney failure and
cardiovascular events in a population with severely increased
albuminuria. Taken together, the data suggest that SGLT2
inhibitors are likely to confer cardiovascular and kidney
benefits across a range of albuminuria, with greater abso-
lute benefits in those with higher levels of urinary albumin
excretion.

A number of potential mechanisms of renoprotection with
SGLT2 inhibitors have been postulated.8 The acute decrease in
eGFR with canagliflozin followed by long-term preservation
of kidney function has been postulated to indicate decompres-
sion of the glomerulus and correction of glomerular hyper-
filtration.8,19 Hyperfiltration is critical in the pathogenesis of
diabetic kidney disease, contributing to a number of structural
changes that increase the susceptibility of the glomerular base-
ment membrane to barotrauma, contributing to albuminuria,
fibrosis, and loss of kidney function. Higher levels of albumin-
uria might therefore reflect the severity of renal injury from
this mechanism. Conversely, others have postulated that
changes in vascular (endothelial) function may play a key
role.20 In both cases the filtered albumin will increase; it has
been proposed that this may lead to direct damage to the glo-
merulus and the tubule, and ultimately nephron loss.21,22 Each
of these could be consistent with our observations that the
benefits of canagliflozin on renal outcomes, as measured by
changes in eGFR slope and the absolute risk reduction for the
composite renal outcome, are greatest in people with severely
increased albuminuria, the individuals in whom raised glo-
merular pressure and/or albuminuria are driving the progres-
sion of kidney disease.

At the same time, it is recognized that our understanding of
the clinical presentation of diabetic kidney disease is evolv-
ing.23,24 Approximately 40% of people with T2DM have been
reported to develop impaired kidney function without ever
having albuminuria documented, with a variety of histologic
changes on biopsy that appear distinct from individuals with
classically progressive albuminuria.25,26 These individualsmay
have other mechanisms of disease progression. The CANVAS
Program data show that canagliflozin appears to stabilize kid-
ney function and prevent the composite kidney outcome even
in participants with normal urinary albumin excretion at
baseline, despite substantially smaller effects on albuminuria.
Mechanisms other than those associated with albuminuria
reduction may be important; there is some experimental ev-
idence that SGLT2 inhibitors improve renal oxygenation and
promote anti-inflammatory and antifibrotic pathways.27–30

Although individuals with T2DM and normal urinary albu-
min excretion are at low absolute risk for renal outcomes in
the short term, the population prevalence is much higher than
severely increased albuminuria,31,32 and treatment of these
individuals with an SGLT2 inhibitor may be an important
strategy in reducing the long-term burden of kidney and car-
diovascular disease due to T2DM.

Because the absolute risk of events was greater at higher
levels of baseline albuminuria, the absolute benefits for renal
outcomes and all-cause mortality were greatest in people with
severely increased albuminuria. This translated into 5-year
numbers needed to treat of seven and ten for these outcomes.
Approximately 80% of participants in the CANVAS Program
were already receiving RASblockade at baseline aswell asmany
other preventative therapies, indicating that the renoprotective
effect of canagliflozin is achieved in addition to the effects of
these agents.

The glycemic efficacy of SGLT2 inhibitors is dependent on
kidney function,33 and differing effects on HbA1c across al-
buminuria subgroups are likely due to differences in eGFR,
which was progressively lower across subgroups with higher
baseline albuminuria. The greater proportional reduc-
tions in albuminuria in participants with moderately and
severely increased albuminuria did not appear to be driven
by reductions in systolic BP, which were consistent across
subgroups.

Albuminuria has beendemonstrated to be among the stron-
gest predictors of cardiovascular outcomes in T2DM.34,35 The
pathophysiologic link between albuminuria and cardiovascu-
lar risk is not entirely understood, but because albuminuria
results primarily from injury to glomeruli, it is thought to be a
marker of systemic endothelial damage.36 These data suggest
that the benefits of canagliflozin for the prevention of cardio-
vascular outcomes are at least as large in people with elevated
levels of albuminuria, and are consistent with a similar analysis
of the EMPA-REG OUTCOME trial.16

Although the riskof amputation and fractureswas increased
with canagliflozin in the CANVAS Program, no increased risk
was observed in the CREDENCE trial.14 It remains unclear
whether this was due to differences in participant character-
istics, trial protocols, or chance. Additionally, the risk of frac-
ture was observed in CANVAS but not CANVAS-R, and the
reason for heterogeneity in the fracture outcome across albu-
minuria subgroups also remains unclear.

This study benefits from a number of strengths. These data
were derived from a large, multicenter, placebo-controlled,
randomized trial program conducted to a high standard. Ex-
pert committees blinded to treatment allocations adjudicated
all cardiovascular and renal outcomes. The use of continuous
eGFR slope data also provided additional power to explore in
more detail the renoprotective effect across albuminuria
subgroups.

Our findings should be interpreted in light of some limita-
tions. This study was a post-hoc analysis and was not explicitly
powered to detect cardiovascular or renal benefits in each of
the albuminuria subgroups. The reported P heterogeneity values
were nominal in nature with no corrections applied for multiple
comparisons. These P values should therefore be interpreted
cautiously in light of the number of tests performed. The
proportion of participants with severely increased albumin-
uria was relatively small in comparison to the overall trial
population. The high proportion of participants in the
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CANVAS Program with established cardiovascular disease
may limit the generalizability of our findings to the broader
population of patients with diabetic kidney disease. Never-
theless, this study represents one of the largest analyses to
date of the influence of albuminuria on the effects of SGLT2
inhibition in people with T2DM.

Upcoming trials are expected to provide definitive infor-
mation about cardiovascular and renal protection for this
high-riskpopulation.These includeDAPA-CKDfordapagliflozin
(NCT03036150),37 EMPA-KIDNEY for empagliflozin
(NCT03594110),38 and SCORED with sotagliflozin
(NCT03315143).39 Some of these trials will also include par-
ticipants with eGFR as low as 20 ml/min per 1.73 m2, irre-
spective of levels of albuminuria.

In conclusion, the CANVAS Program data suggest that,
among individuals with T2DM, canagliflozin improves renal
outcomes. Protective effects on the kidney are observed even
in participants with normal albuminuria, with greater abso-
lute benefits among patients with severely increased
albuminuria.
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