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Abstract. Multi-field inflation with a curved scalar geometry has been found to support
background trajectories that violate the slow-roll, slow-turn conditions and thus have the
potential to evade the swampland constraints. In order to understand how generic this
novel behaviour is and what conditions lead to it, we perform a classification of dynamical
attractors of two-field inflation that are of the scaling type. Scaling solutions form a one-
parameter generalization of De Sitter solutions with a constant value of the first Hubble flow
parameter ε and, as we argue and demonstrate, form a natural starting point for the study
of non-slow-roll slow-turn behaviour.

All scaling solutions can be classified as critical points of a specific dynamical system.
We recover known multi-field inflationary attractors as approximate scaling solutions and
classify their stability using dynamical system techniques. In particular, we discover that
dynamical bifurcations play an integral role in the transition between geodesic and non-
geodesic motion and discuss the ability of scaling solutions to describe realistic multi-field
models. We revisit the criteria for background stability and show cases where the usual
criteria found in the literature do not capture the background evolution of the system.
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1 Introduction

Inflation is the leading paradigm for the early universe, providing an elegant entrance to
the hot Big Bang as well as a way to seed structure at multiple scales, from galaxy clusters
to the CMB. Observations, such as by the Planck satellite [1], are compatible with single-
field models of inflation where the scalar field undergoes slow-roll evolution, but also with
a plethora of other models. It is thus both interesting and necessary to examine possible
inflationary scenarios that go beyond the single-field slow-roll model.

High-energy theories suggest the existence of multiple scalar fields at energy scales rel-
evant for inflation. Furthermore, the field-space metric in many such theories is not flat: the
scalar field kinetic terms GIJ(φ)∂φI∂φJ are not canonical and the fields in general cannot
be re-defined to make the kinetic terms canonical. Moreover, it has recently emerged in a
number of investigations [2–10], that such curved geometries can support multi-field inflation
that differs from the slow-roll, slow-turn paradigm (which moreover can evade the putative
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swampland conditions [11], as discussed in ref. [12]). A proper understanding of these as-
pects is necessary to correctly interpret the constraints on inflationary models arising from
observational data.

A successful model of inflation should provide predictions that are compatible with con-
straints on observables. These are correlation functions of quantum fluctuations evaluated on
a classical background trajectory, that is obtained as a solution to a system of Klein-Gordon
equations for the scalar fields.1 The first step of inflationary model building is therefore to
find solutions of the scalar field equations on a self-consistently expanding FLRW metric. As
this system is non-linear, there is no general prescription to tackle the problem;2 furthermore,
general solutions could introduce initial condition dependence on the inflationary predictions,
making it generically very hard to disentangle dynamics (e.g. initial conditions) from theories
(e.g. scalar potentials).

A feature of inflation that enhances its predictive power is the existence of dynamical
attractors: for a given model, a large number of solutions will converge (come exponentially
close) to a particular solution that lives on a hypersurface of lower dimensionality than the
full problem. The existence of these dynamical attractors is closely related to the expansion
of space-time and the induced Hubble friction. In addition, one can often employ simple
approximations to derive the (lowest-order) predictions of such attractors. Chief amongst
these approximation schemes is the slow-roll for a single field, which neglects the second
time derivative of the scalar field. In multi-field scenarios this can be generalized to the
slow-roll, slow-turn neglecting the covariant acceleration of the scalar fields. As mentioned
before, this approximation has been found to be violated in multi-field scenarios with specific
scalar geometries: the dynamical evolution approaches a different inflationary trajectory. For
this reason it would be valuable to have a broader understanding of dynamical attractors in
such models.

In this paper we focus on a more general set of inflationary solutions that we refer to
as scaling attractors, continuing the investigation of ref. [28] where the analysis was limited
to flat field-space manifolds. The definition of scaling solutions is that they have a constant
parameter ε = d log(H)/ dN , defined in terms of the Hubble parameter H and the number
of e-folds N . Higher-order Hubble flow parameters εi+1 = d log(|εi|)/ dN [32] are zero in
this approximation. Note that this generalizes the slow-roll notion, which can be seen as a
deformation of De Sitter space-time with constant H and hence vanishing ε. Scaling solutions
are therefore a one-parameter generalization of the maximally symmetric De Sitter space-
time, with a power-law expansion of space-time and a constant ratio between the kinetic and
potential energy of the scalar fields [33].

Scaling solutions draw their interest from a number of perspectives. For one, they gen-
eralize the usual (non-exact) slow-roll slow-turn approximation, which can be seen as small
deviations from scaling solutions [28]. Secondly, as we will demonstrate, they are exact solu-
tions that can be conveniently formulated as critical points of dynamical systems. Therefore
they can be attractors (in the mathematical sense) that describe the late-time behaviour of
large classes of inflationary solutions. Moreover, in the multi-field models with curved ge-
ometry that display behaviour away from slow-roll slow-turn [2–9], which can collectively be

1There has been a growing interesting for inflationary models involving gauge fields (see e.g. refs. [13–17]);
however, in such cases, a scalar degree of freedom that takes the role of the inflaton can be identified.

2There are a few examples in the literature which admit general analytical solutions [18–28]. These are
completely integrable systems where the mini-super Lagrangian has Noether symmetries, and have been
classified in refs. [29–31].
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described in the “effective potential” formalism [34], their inflationary phase can be approxi-
mated by such a scaling attractor. A full classification of scaling solutions therefore provides
a list of the different possible background behaviours, to which the various inflationary sce-
narios asymptote during a large number of e-folds (before the end of inflation sets in and
reheating takes over).

While the above discussion is limited to the background behaviour, inflation draws
its power from predicting correlations of quantum fluctuations on these backgrounds.3 In
a number of the inflationary scenarios mentioned above, such an analysis has already been
performed and has been phrased in terms of an effective field theory (EFT) of the fluctuations
during inflation. Despite scaling solutions having dε/ dN = 0 by construction, studying
deformations away from them can still give useful results for the evolution of fluctuations.

This paper is organized as follows. Section 2 provides an opening discussion of the
classification of scaling solutions for a single field, including the formulation in terms of a
dynamical system and the relation to actual inflationary scenarios. Special attention is given
to the ability of scaling expressions to describe more general behaviour and their relation
to the corresponding slow-roll analysis. Section 3 outlines the similar notions for a general
multi-field model, with particular emphasis on the role of the scalar (field-space) geometry.
Throughout most of the subsequent sections, we focus on field-space manifolds with one
transitively acting isometry and provide a classification of scaling attractors. Most exact
scaling solutions are constructed for potentials that exhibit exponential dependence on the
fields. In section 4 we study systems with one integral of motion, which can be though of as
generalizations of systems with a rotationally symmetric potential. Connections to existing
inflationary models [2, 3] are explained. Section 5 addresses the more general case of systems
with arbitrary potential gradients, also relaxing the requirement for an exponential depen-
dence for one of the two fields. Analogies to recently discovered inflationary trajectories [4–8]
are drawn and the relation between scaling and slow-roll fast-turn solutions is explained. We
relax our assumption for the existence of a field-space isometry and discuss the resulting
dynamics in section 6. We offer our conclusions and outlook in section 7.

Note added. Upon completion of this manuscript, the preprint [44] appeared which has
some overlap with our discussion in section 4, albeit in a somewhat different context.

2 Single-field scaling attractors

2.1 Critical points analysis

We start with the well-known case of inflation driven by a single scalar field. Instead of
the usual second-order Klein-Gordon equation, we consider the equivalent dynamical system
formulation consisting of two first-order equations, written in terms of the field φ and its
normalized velocity v ≡ φ′ = dφ/dN , defined as the velocity with respect to the e-folding
number N . The velocity v is related to the field derivative with respect to cosmic time via
φ′ = φ̇/H. The Hubble parameter can be expressed in terms of these variables, H = H(φ, v),
for any positive potential V through the relation V = (3− ε)H2. The latter involves the first

3In multi field models of inflation, the production of entropic (or isocurvature) perturbations, can cause the
gauge-invariant curvature perturbation to evolve on super-horizon scales, during inflation or reheating (see
e.g. [35–38]). In many cases, multi-field models suffer from initial condition dependence of the observables [39].
This problem does not arise in multi-field models that possess strong single-field attractors, such as non-
minimally coupled models [40, 41], or α-attractor realizations [42, 43].
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slow-roll parameter ε which is related to the normalized velocity via4

ε =
v2

2
=

3K

K + V
, (2.1)

where K and V denote the kinetic and potential energy respectively; note that positive
potentials lead to 0 ≤ ε ≤ 3 and thus 0 ≤ v ≤

√
6. Scaling solutions have constant ε by

definition and thus have a constant velocity in terms of e-folds.

The flow of this dynamical system is defined by

φ′ = v , (2.2a)

v′ = −
(

3− 1

2
v2

)
(v + p) , (2.2b)

where the scalar potential provides a driving force via

p ≡ d(lnV )

dφ
, (2.3)

which is related to the potential first slow-roll parameter εV = 1
2p

2. An important special
case is that of an exponential potential, with p constant, for which the velocity subspace of
eq. (2.2b) decouples from eq. (2.2a) and can be studied separately. We therefore first focus
on this particularly clear case.

For a constant velocity, the right-hand-side of eq. (2.2b) has to vanish, leading to three
distinct critical points5 for different values of p (assuming V = Λ exp(pφ)):

• When p = 0, i.e. in the case of a constant potential, one can solve equations (2.2)
by setting v = 0. This case of zero velocity and zero acceleration corresponds to an
exact De Sitter vacuum with a cosmological constant Λ, undergoing a never-ending
exponential expansion a(t) = a0e

Ht, where H2 = Λ/3.

This solution will be the late-time attractor for all initial conditions: due to the expo-
nential increase of the scale-factor a, any initial velocity is quickly redshifted and there
is a fast approach to the above attractor. In addition, since the constant potential has
an exact shift symmetry, the cyclic coordinate φ leads to a conservation law for the
associated conjugate momentum ∂L/∂φ̇ = a3φ̇.

• More generally, the flow equations (2.2) have a critical point solution for v = −p,
which can be integrated to yield φ = φ0 − pN . This solution has a constant velocity
resulting from a tug of war between the exponential gradient of the potential and the
Hubble friction term. Again, a linear stability analysis indicates that this solution is
an attractor for p <

√
6 (with the corresponding eigenvalue equal to λ = −3 + p2/2).

• Finally, a general solution for all p is ε = 3 and hence v = ±
√

6. It corresponds
to a configuration whose kinetic term dominates the potential energy (referred to as
“kination” in ref. [45]). A linear stability analysis shows that the solution v = −

√
6

will be stable for p >
√

6.

4All field values are in units of the reduced Planck mass, or equivalently we set MPl = 1.
5We use the term “critical point” to denote the point at which the derivative of a quantity vanishes. For

the dynamical system a critical point satisfies x′(xcp) = 0 whereas for the potential V ′(φcp) = 0.
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Thus the classification of critical points nicely illustrates the generalization from De Sitter
to scaling solutions with v = −p. Stability of the latter only distinguishes between p ≶√

6 and since the problem is one-dimensional, global stability is fully determined by the
linearized results.

The use of these critical points follows from the asymptotical behaviour of this dynam-
ical system. Even though the full solution for arbitrary initial conditions may be impossible
to find, the asymptotic one will have a parametric relation between the fields and velocities
provided by the critical point. These relations can be used to calculate inflationary observ-
ables in the regime where the scaling solution provides a good approximation for the full
inflationary trajectory.6

More general scalar potentials will not feature asymptotic regimes where exact scaling
solutions apply. However, provided the potential supports slow-roll inflation, one can view
the dynamics as a series of successive scaling solutions. The evolution of the first slow-roll
parameter is

ε̇ =
φ̈φ̇

H2
− 2ε2H , (2.4)

and hence the deviation from scaling is slow-roll suppressed (with small values for the accel-
eration and slow-roll parameter). The smallness of the slow-roll parameters leads to a slowly
varying field-dependent gradient p of a potential:

p,φ =
V,φφ
V
−
(
V,φ
V

)2

= ηV − 2εV . (2.5)

Therefore the slow-roll approximation can be considered as an approximate scaling solution
with small p and a slowly moving critical point [28].

2.2 Comparison to inflationary models

In order to illustrate the critical point catalogue, we now turn to a more realistic scalar
potential that can support inflation for some period and then allows for a graceful exit
towards a Minkowski minimum. Consider for instance the Starobinsky model

V (φ) = Λ
(

1− eαφ
)2

, (2.6)

generalized with an arbitrary parameter α. It has a flat plateau in the far left and an
exponential behaviour in the far right.

The potential of eq. (2.6) exhibits a flat plateau for large negative values of φ, hence
approximating a constant value V (φ) ≈ Λ for φ� −1/α. The time translation symmetry of
an exact De Sitter background in this case is broken by the rolling of the inflaton field in its
potential and can be characterized by the speed of the inflaton, or equivalently by the first
slow-roll parameter ε ≡ Ḣ/H2. This is illustrated on the left part of the flow diagram of
figure 1, where the horizontal line corresponds to the De Sitter scaling solution and can be seen

6Note that the scaling solution provides an exact solution for a single field with an exponential potential,
while the usual slow-role approach is an approximation where one neglects the acceleration term, which leads to

φ̇ = − 2√
3

p

2
e

p
2
φ , ε =

p2

2 + p2/3
.

While the two approaches match very well for small values of the potential steepness, the slow-roll approxi-
mation breaks down for O(1) values of p, as expected.
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Figure 1. The flow of the dynamical system corresponding to a single field with the Starobinsky
potential of eq. (2.6) for α = 0.5. The red dashed line corresponds to the scaling solution φ′ = −p =
−2α, while the black dot-dashed line corresponds to the De Sitter solution φ′ = 0. For illustration
purposes we have also included the green dashed line depicting the usual slow-roll solution for evolution
on the plateau of the Starobinsky model.

to be an excellent approximation at sufficiently large field values. However, at smaller field
values this scaling approximation breaks down, and one enters a slow-roll, or field-dependent
p(φ) regime. As the number of e-folds in this regime exceeds that of the observable CMB
window, the original scaling phase is not relevant for a study of fluctuations.7

Turning to positive field values, the Starobinski potential can be approximated by an
exponential V ∝ exp(2αφ) for αφ� 1, and thus can be approximated by a scaling solution
of the second type with v = −p = −2α. This is illustrated by the horizontal line on the
right hand side of figure 1. For any 0 < p <

√
6 this provides a dynamical attractor for a

large variety of different initial conditions. In this case the number of e-folds after the actual
trajectory has diverged from the scaling solution is far smaller, and hence the fluctution
analysis can be based on the scaling attractor. Finally, for p >

√
6 this horizontal line

moves downwards and disappears under the limiting case ε = 3, which indicates that for this
parameter range the kinetic solution with v = −

√
6 is the dynamically preferred trajectory.

One can also consider potentials with a different asymptotic field dependence. We first
consider a single field model with a quadratic potential V (φ) ∝ φ2. This can be approximated
locally around a field value φ∗ by an exponential potential of the form V (φ) = V0e

pφ with
p = 2/φ∗ and V0 = φ2

∗/e
2. By using the field-dependent value of the potential steepness p

and the result ε = p2/2 that was derived for scaling solutions with a constant p, we can see
that the resulting behavior ε(φ) agrees very well with the numerically computed slow-roll
parameters ε and η for a quadratic potential.

Finally, we would like to illustrate that scaling solutions can also accurately describe
a realistic inflationary background evolution with a concave potential, which is in general
preferred by Planck data. Figure 2 shows how, when locally fitting the plateau of the
Starobinsky models with expontential potentials, the resulting (field-dependent) slow-roll

7Moreover, the semi-classical approximation ignores quantum fluctuations, that can even counter the back-
ground motion of the field and lead to a phase of eternal inflation [46–48]; see refs. [49–51] for recent discussions.

– 6 –



J
C
A
P
1
2
(
2
0
1
9
)
0
5
9

� � �� �� ��
�����

�����

�����

�����

�����

�

|ϕ|

ϵ�
η

� � � � � ��

��-�

��-�

�����

�����

|ϕ|

ϵ�
η

Figure 2. The slow-roll parameters ε (blue & red) and η (green & black) as a function of the norm
of the field value |φ| computed numerically (solid) and using the scaling relation ε = p(φ)2/2 (dashed)
for a quadratic potential (left panel) and the Starobinsky potential (right panel).

parameters ε and η from the scaling solution describe the background evolution of the system
well in the region of η � 1.

3 Multi-field inflation

3.1 Dynamical system

After showing the applicability of scaling solutions in single-field inflation, we now turn to
the main focus of this paper, addressing the analogous questions in multi-field inflation.
We consider a system consisting of multiple scalar fields minimally coupled to gravity with
Lagrangian density

L =
√
−g
(

1

2
R− 1

2
GIJ∂µφI∂µφJ − V

)
, (3.1)

where gµν is the spacetime metric, GIJ is associated with the internal field-space manifold8

(we use mostly plus signature for the space-time metric, while the field-space metric is positive
definite). In an FLRW space-time the background equations of motion are

Dtφ̇I + 3Hφ̇I + GIKV,K = 0 , (3.2a)

Ḣ = −1

2
GIK φ̇I φ̇J , (3.2b)

where the covariant directional derivative and the Friedmann constraint are given by

DtAI = ȦI + ΓIJKA
J φ̇K , 3H2 =

1

2
GIK φ̇I φ̇J + V , (3.3)

in terms of the field-space Christoffel symbols ΓIJK . The dynamics on a curved manifold is
more complex because terms involving field-space Christoffel symbols can act as velocity-

8A non-trivial field space manifold can also arise if one postulates non-minimal couplings of multiple
scalar fields to the Ricci scalar in the Jordan frame and transforms the action to the Einstein frame, where
the gravitational sector has the usual Einstein-Hilbert form [52, 53], even if the fields had canonical kinetic
terms in the Jordan frame. Models in this class exhibit interesting phenomenology during and after inflation,
e.g. [40, 54–56].
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dependent forces. It is the interplay between these forces and potential gradient terms that
give rise to non-trivial dynamics in curved spaces.9

In full analogy to the single-field case analyzed in section 2 one can transform the system
of Klein-Gordon equations (3.2a) as a first order system for the scalar coordinates φI and
their (normalised) velocities vI ≡ dφI/dN :

(φI)′ = vI , (3.4a)

(vI)′ = −(3− ε)
(
vI + pI

)
− ΓIJKv

JvK . (3.4b)

This includes the effect of a curved manifold and hence velocity-dependent “centrifugal”
forces via the Christoffel symbols, as well as of the potential energy gradient via

pI =
∂(lnV )

∂φI
. (3.5)

Finally, the slow-roll parameter in this case is defined in terms of the velocities as

ε =
1

2
vIv

I =
3K

K + V
, K =

1

2
GIJ φ̇I φ̇J , (3.6)

where it is easy to see that 0 ≤ ε ≤ 3 again. Contracting equation (3.4b) with vI gives an
evolution equation for ε:

ε′ = −(3− ε)
(
2ε+ pIv

I
)
. (3.7)

Discarding the kinetic solution with ε = 3 (for now), a scaling solution satisfies

ε = −1

2
pIv

I . (3.8)

Note that this implies vIDtvI = 0 and hence requires the covariant acceleration to either
vanish or to be orthogonal to the velocity. Moreover, as V ′/V = pIv

I = −2ε, it also implies
that for a constant ε the evolution of the potential energy is trivially solved to be

V (N) = V0e
−2εN . (3.9)

Therefore the potential, if bounded from below (to ensure that the transformation t→ N is
well-defined), should be non-zero and tend to zero at the boundary of the field-space (and
not contain any critical points elsewhere).

The relevance of scaling solutions in inflation becomes apparent if we examine the
variation of ε. For multiple fields φI and a general field-metric GIJ , eq. (2.4) generalizes to

ε̇ =
φ̇IDtφ̇I

H2
+ 2ε2H . (3.10)

9Considering an inflationary scenario that proceeds towards a final Minkowski minimum, one should dis-
tinguish two types of potentials. The first type has a global minimum at a point in the interior of field space.
In this case, the global asymptotic stability of the critical point can be proved using La Salle’s theorem (with
3H2 as the Lyapunov’s function). The second type of potentials are positive and vanish only asymptotically
at the boundary of the space. In both cases, the monotonicity of the Friedmann constraint implies that the
fields will eventually roll towards decreasing values of the potential. Only the second case can result in a
scaling solution, with the fields asymptoting towards the Minkowski minimum at the boundary. These global
considerations are similar to the single-field case and unaffected by the geometry of the scalar manifold.
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A possible generalization of the single-field slow-roll behaviour is the slow-roll slow-turn
approximation [57–60], valid when Dtφ̇

I � 1 and ε � 1. If the fields are canonically
normalized then we can relate velocities to gradients of the potential by requiring a slowly
varying εV ≡ 1

2pIp
I :

dεV
dN

=
dφK

dN

(
V ,IV,IK
V 2

−
V ,IV,IV,K

V 3

)
=

dφK

dN
(ηK − 2εV pK) , (3.11)

with the definition

ηK =
V ,IV,IK
V 2

. (3.12)

Since dφK/ dN can be of order one then εV , ηK must be small (as also found in refs. [61, 62]).
When this holds, the multifield slow-roll slow-turn approximation is close to a scaling solution
of a product-exponential potential in which every field contributes with a non-zero velocity.
However, as we discussed, non-trivial geometries can lead to a departure from the slow-roll
slow-turn behaviour, as we will see explicitly.

3.2 Stability criteria of the background

For later reference it is useful to review the notion of stability on a multi-dimensional curved
scalar manifold. A minimal requirement for the existence of an “attractor” solution ΦI

sol is
the decay of small perturbations around that particular solution, which is determined by the
local Lyapunov exponents of the Jacobian matrix evaluated at the solution

(δxI)′ = JIJδx
J . (3.13)

If every exponent is negative then the system converges to ΦI
sol. The case of zero eigenvalues

is more intricate because stability will be determined by higher order terms. Additionally,
a positive exponent indicates an unstable solution (with possibly chaotic behaviour). An
important note is that the linearized stability gives information only at a given point where
the Jacobian matrix is evaluated. Thus, a small perturbation will not evolve according to
the linearized equation (3.13); the Jacobian encodes information only for an infinitesimally
small deformation, not defined a priori. The previous imply that an unstable solution can
manifest an almost oscillating behaviour because higher order terms can have an opposite
effect compared to the leading ones.

Likewise, stability of fluctuations is treated in the adiabatic/entropic decomposition. For
two fields one can distinguish the adiabatic direction, which proceeds along the background
inflaton trajectory, and the entropic (or isocurature) direction which is perpendicular to it.
The two directions can be defined through the unitary vectors σ̂I and ŝI

σ̂I ≡ φ̇I

σ̇
, ŝI ≡ ωI

ω
=
Dtσ̂I

|Dtσ̂I |
=

1√
G
εIJ σ̂J , (3.14)

where σ̇2 ≡ GIJ φ̇I φ̇J is the velocity of the background motion, εIJ is the Levi-Civita symbol,
ωI is the turn-rate vector and ω =

∣∣ωI ∣∣. It is easy to see that both vectors are normalised to
unity and perpendicular to each other. Using eq. (3.7) we can rewrite the turn rate as

ω2 =
GIJV,IV,J − V 2

σ

σ̇2
= H2(3− ε)2

[
εV
ε
−
(

η

2(3− ε)
+ 1

)2
]
. (3.15)
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When the slow-roll conditions hold, ε, η � 1, the previous reduces to the expression given
in [63]. We observe two limiting cases: in the slow-turn limit (i.e. η, (ω/H)� 1) the potential
and Hubble slow-roll parameters coincide ε ≈ εV , whereas in the large turn-rate limit (η � 1
and ω/H � 1) ε� εV . Thus, in multi-field inflation with ε′ � 1 we have ε ≤ εV . Projecting
the mass matrix

M I
J = GIKDKDJV −RIKLJ φ̇K φ̇L , (3.16)

along these two directions we define the adiabatic and isocurvature (or entropic) components
respectively (see for example refs. [59, 60, 64–68]). The latter is given by Mss = ŝI ŝ

JM I
J .

For more than two fields the analogous adiabatic-entropic decomposition proceeds similarly
and can be found for example in ref. [68].

An important remark that has been missed so far in the literature of multi-field models
concerns the stability criteria for the background. More precisely, the local Lyapunov expo-
nents will not necessarily involve the effective mass on super-Hubble scales [34], defined from
the isocurvature perturbations equation of motion for k � aH

Q̈s + 3HQ̇s + µ2
sQs = 0 , µ2

s = Mss + 3ω2 , (3.17)

evaluated along the background solution. As we will outline with specific examples in sec-
tions 4.1 and 5.1 the condition µ2

s > 0 is neither necessary nor sufficient for the existence
of an “attractor solution” of the zeroth order Klein-Gordon equation (while it is of course
necessary for the stability of the full quantum mechanical system). This quantity becomes
relevant at first order because it dictates the growth/decay of normalized orthogonal cos-
mological perturbations. However, in order to substitute the background solution into the
linearized cosmological perturbations one needs to provide either an analytical solution or a
late time solution (by means of stability analysis) to ensure that this is the correct behaviour
of the FLRW background and this can not be done showing µ2

s > 0 for a given background.
We can illustrate this by means the following example. Defining linear combinations of the
perturbations yI ≡ f IKδxK we can write the evolution equation of this variable as

(yI)′ = J̃IKy
K . (3.18)

The sign of the eigenvalues of the new Jacobian matrix provide no information about the
system (3.13) and this is roughly what happens when someone infers stability through the
adiabatic/entropic split.

Background stability does not imply stability of fluctuations, of course. In a negatively
curved manifold, the curvature term in eq. (3.16) can destabilize fluctuations which would
be stable in the absence of geometry [64, 69, 70]. The analogous quantity

m2
s = µ2

s − 4ω2 , (3.19)

governs the evolution of sub-horizon fluctuations and is referred to as the sub-horizon mass
of entropic perturbations. Given the parametric relation between the two, one can imag-
ine that different relations between ms, ω and H can lead to different fluctuation dynam-
ics. Furthermore, the sub-horizon evolution of fluctuations for multi-field models with large
turn-rate (“strongly coupled” fluctuations) can have interesting phenomenology (see e.g.
refs. [8, 71–73]).
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3.3 Scalar geometry

For the purpose of clarity, we restrict ourselves to a two-dimensional field-space manifold,
which is sufficient to illustrate the effects of a non-trivial scalar geometry and easy to visu-
alize. Moreover, we will mainly consider geometries with a transitively acting isometry (and
comment on its generalizations where possible). The most general metric with a transitively
acting isometry can be brought to the form

ds2 = dρ2 + f2(ρ) dφ2 , (3.20)

where the isometry corresponds to shifts in φ (see appendix A). Simple examples include the
polar coordinates of flat space with f = ρ as well as a parametrization of hyperbolic space
of the form f = L sinh(ρ/L). While both of these have a vanishing f at ρ = 0, this is not
necessarily the case: the function f could be nowhere vanishing. Again the hyperbolic space
provides an example of such a parametrization, with f = exp(ρ/L) spanning the Poincare
half-plane.10 In analogy with the definition of the gradient pI of the scalar potential, we can
define Lρ as

1

Lρ
=
f,ρ
f
. (3.21)

The subscript ρ is intended to imply that Lρ will generically be ρ-dependent. A special case
in the classification of critical points will be that of Lρ constant, playing the analogous role
of an exponential potential.

In view of the different possibilities, we will not commit to any particular geometrical
interpretation of the two field coordinates. While ρ and φ can be seen as a radius and angle
in certain cases, this would suggest that ρ must have an origin and φ must have a periodic
identification. These requirements are by no means necessary for the ensuing discussion.
Alternatively, one can also see the above metric as a fibre bundle, with ρ being the base
coordinate and φ being the fibre. Finally, in the case of a hyperbolic manifold, this system
forms a complex axion-dilaton scalar with τ = φ + ie−ρ/L. We will use this terminology
interchangeably in what follows.

The non-zero Christoffel symbols associated to the above metric are given by

Γρφφ = − f
2

Lρ
, Γφρφ =

1

Lρ
, (3.22)

and the field-space Ricci scalar is

R = −2
f,ρρ
f

. (3.23)

A simple example would be the flat geometry with f(ρ) = ρ, which also provides geometric
centrifugal forces as the angular evolution does not proceed along a geodesic. With f,ρρ = 0,
it can be seen as the dividing case between positively and negatively curved manifolds, with
concave and convex functions f(ρ) respectively. For instance, a metric function f = ln (1 + ρ)
has a Ricci scalar given by

R =
2

(1 + ρ)2 ln(1 + ρ)
, (3.24)

that is always positive in the domain of definition ρ ∈ (0,+∞). Similarly, convex functions
give rise to negative field-space curvature. An important case is when f is given by any

10The Poincare disc parametrization can be brought to the form of (3.20) by a simple coordinate transfor-
mation.
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linear combination of exponentials Le±ρ/L, leading to constant negative curvature and cor-
responding to different parametrizations of hyperbolic manifolds. Of these, the case with a
single exponential, i.e. the Poincare half-plane, will play a special case in the classification of
critical points and can be seen as the field-space equivalent of an exponential potential term.

For the above geometries, the Hubble flow parameter is

ε =
1

2

[
(vρ)2 + f2(vφ)2

]
. (3.25)

We will focus on those critical points for which both terms are separately constant. This
requires both the velocity vρ as well as the combination fvφ to be constant. The latter has
the geometric interpretation of being the projection of the general velocity vector vI along
the normalised Killing direction, y = kIv

I , which is given by kI = (0, f). Similarly, projecting
the velocity along the unit vector bI orthogonal to the Killing vector, kIbI = 0, we obtain
x ≡ bIv

I . Introducing the coordinates (x, y) ≡ (vρ, fvφ) for these components, the Hubble
flow parameter becomes

ε =
1

2

(
x2 + y2

)
, (3.26)

and we will focus on the cases where x′ = y′ = 0. These will have ε′ = 0 and hence will
correspond to scaling solutions.

4 Scaling solutions for systems with an integral of motion

4.1 Critical points analysis

We are now ready to start classifying the possible critical points for different parameter
values. Given that we have fixed the metric, the classification will be based on which pI ’s
are non zero.

As a trivial first case we consider a cosmological constant (pI = 0). In this case, both
velocities will be zero and the scaling solution describes De Sitter space. It is the late-
time attractor of the system since contraction with φ̇I in the Klein-Gordon equations (3.2a)
with a constant potential gives the evolution equation for the kinetic energy in terms of the
e-folding number:

K̇ + 3HK = 0 ⇒ K(N) = K(0)e−3N . (4.1)

The kinetic energy of every field vanishes asymptotically and it makes no difference if we
include non-trivial dependence on the metric, because ε is still converging to zero. The
future asymptotic state of the system is a De Sitter space whereas the kinetic solution is
excluded because it corresponds to infinite initial kinetic energy.

A more interesting case is a non-trivial scalar potential that still preserves the isometry
of the metric, i.e. that has a shift symmetry in the potential along the φ direction. This
requires pφ = 0 and there is only a non-zero gradient along the ρ direction. In this case,
there is one integral of motion following from the shift symmetry, which if one thinks of φ as
an angular variable is the conservation of angular momentum

πφ = a3f2φ̇ , (4.2)
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and only three out of the four variables φI , vI are independent; the state space is 3-dimensional
and the dynamical system takes the simple form

x′ = −(3− ε) (x+ pρ) +
y2

Lρ
, (4.3a)

y′ = −
(

3− ε+
x

Lρ

)
y . (4.3b)

Critical points of this system will have ε′ = 0 and hence will correspond to scaling solutions.
Eq. (3.8) for constant pρ implies that both x and y are constants on the scaling solution.
There are three solutions in this case, given as critical points of eq. (4.3).

• The first scaling solution has vanishing angular velocity and hence takes places along
the radius-like ρ coordinate, with the critical point given by

(x, y)grad = (−pρ, 0) , (4.4)

leading to ε = p2
ρ/2 and hence exists only for pρ <

√
6. In this case the velocity

points along the gradient direction; the field slides down the scalar potential along the
radial coordinate. Indeed this proceeds along a geodesic: both the potential and the
centrifugal forces in the orthogonal direction are zero. It resembles the flat metric in
the sense that ε receives contribution only from the ρ field, while any initial velocity
of the second field is redshifted away, and it is given by the projection of the gradients
along the direction orthogonal to the Killing vector: ε = (bIpI)

2/2, which coincides
with εV , resulting in zero turn rate.

• A non-vanishing angle-like velocity is possible when Lρ is constant,11 that is for the
hyperbolic space with f = eρ/L,

(x, y)hyper =

− 6
2
Lρ

+ pρ
,±

√
6
√
p2
ρ + 2

pρ
Lρ
− 6

2
Lρ

+ pρ

 . (4.5)

In this picture the background motion corresponds to a spiralling behaviour, where
the field moves in the angular direction φ and has a decreasing radial value ρ. The
inflationary trajectory therefore does not follow the potential gradient, nor is it along
a geodesic. This solution exists provided

pρ > pcrit = − 1

Lρ
+

√
6 +

1

L2
ρ

, (4.6)

which defines a critical value for the gradient of symmetric potentials. The Hubble flow
parameter for this solution can be given by eq. (3.25) as

ε =
3Lρpρ

2 + Lρpρ
. (4.7)

• Finally, there are two kinetic solutions (x, y)kin = (±
√

6, 0).

11For an exponential metric function f the definition of eq. (3.21). We will however use Lρ, as it makes the
connection to more general cases and approximate scaling solutions more transparent.
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Figure 3. Left: The bifurcation diagram for the system of eqs. (4.3) on a hyperbolic space f = Leρ/L

for a shift symmetric potential with pφ = 0. The red and blue curves correspond to the values of x
and y respectively, as a function of pρ, at the various critical points. Solid (dashed) lines correspond
to stable (unstable) solutions. We see that for large values of the potential steepness pρ the only
stable solution is eq. (4.5). Right: The same bifurcation diagram given as a curve on the (x, y) plane.

We next turn to stability of these critical points. For the hyperbolic space with an expo-
nential function f , there exists an invariant two-dimensional subspace spanned by x and y.
The asymptotic behaviour will be determined by the system’s critical points and their local
stability. The Jacobian matrix evaluated at the gradient solution has eigenvalues

(λ1, λ2)grad =

(
−1

2

(
6− p2

ρ

)
,−3 +

pρ
Lρ

+
p2
ρ

2

)
, (4.8)

which are both negative when pρ < pcrit. The gradient solution becomes unstable when
the gradient along the ρ direction exceeds the critical value, where the hyperbolic solution
appears. The eigenvalues for the hyperbolic solution are more complicated but they always
have a negative real part whenever pρ > pcr and Lρ > 0 (see appendix B). Hence, when the
hyperbolic solution exists, it is always stable.

The behaviour of these critical points is illustrated in figure 3, showing the bifurcation
diagram of the system in the case of a hyperbolic metric with f = eρ/L. We see that the
curve y(pρ) has the typical form of a supercritical pitchfork bifurcation. The branch y = 0
is stable for pρ < pcr and becomes unstable for pρ > pcrit. The total number of stable minus
unstable critical points is conserved through the creation of two stable branches (blue solid
curves) for pρ > pcrit, given by eq. (4.5). The approach to the various critical points in the
case of a hyperbolic metric is numerically illustrated in figure 4. Therefore, when pρ and Lρ
have the same sign kinetic solutions are unstable for the hyperbolic space and never form an
asymptotic attractor.

We can make an interesting observation regarding the value of ε for the geodesic and
hyperbolic solution. By comparing eq. (4.7), which holds for the hyperbolic solution, to
ε = p2

ρ/2, which holds for the geodesic solution, we can immediately see that εhyper < εgrad,
whenever the former is stable. Solving this condition with respect to pρ we recover pcrit

appearing in eq. (4.6). While a general proof for this behaviour is not yet available, it seems
that whenever both solutions are present, the system will dynamically “choose” the one with
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smaller ε. Referring to eq. (3.15), we see that between the two solutions, the one with smaller
ε corresponds to a solution with a non-zero turn rate ω2.

For more general metrics — which are not described by an exponential function f(ρ)-
the subspace includes (ρ, x, y), and since x 6= 0 there are no critical points in the usual sense.
Nevertheless, the (x, y) subspace admits the gradient solution eq. (4.4), in addition to the
kinetic solutions x = ±

√
6. The stability of the gradient solution of eq. (4.4) in the case

of a general metric function with non-constant Lρ is determined by the eigenvalues of the
stability matrix, which correspond to local Lyapunov exponents. They are given again by
the eigenvalues of eq. (4.8), with the addition of a third eigenvalue λ3 = 0 (a reflection of our
ability to define the gradient solution for every χ). The gradient solution is thus stable for
pρ < pcrit, with pcrit given by the expression of eq. (4.6), albeit with Lρ not being constant
in the case of a general non-exponential metric function f(ρ).12

It is worth noticing that for a hyperbolic space (µs/H)2 = −pρ/Lρλ2,grad and so posi-
tivity of the effective isocurvature mass is equivalent to a negative eigenvalue λ2,grad. This
is no longer true for any other f because the second derivative is not a constant multiple of
the first derivative. Thus, we can construct models which have a stable background while
the k = 0 mode of the perturbation equations is unstable and vice versa; this behaviour was
first observed in [70]. As an example, consider f = eρ

2
and a positive pρ. In this case, when

ρ is negative pcrit will always be greater than
√

6 and so the solution will be stable according
to the analysis of this section. On the other hand, the effective mass, evaluated along the
gradient solution, is equal to(µs

H

)2
= 2p

[
ρ(3− p2/2)− p(2ρ2 + 1)

]
. (4.9)

The contribution from the negative curvature will always dominate at late times and so after
a certain number of e-folds µ2

s will become negative, although the solution to the zeroth order
Klein-Gordon equation is stable. Physically, this indicates that the proper distance between
different late-time trajectories diverges.

4.2 Comparison to inflationary models

An example that is close to a scaling solution of this class has been coined “hyperinflation” [2]
and was studied in e.g. [3, 9]. The field-space has constant negative curvature, and is written
in global coordinates as

ds2 = dρ2 + L2 sinh2
( ρ
L

)
dφ2 , (4.10)

where ρ, φ are radial and angular-like variables respectively. Note that the metric function f
asymptotically behaves as an exponential for ρ� L. The late-time solution of equation (4.5)
for this choice of metric can be written as

ρ̇ ≈ − 3HL

coth
( ρ
L

)
+ 1

2pρL
, (4.11)

where we took the local (field-dependent) value of Lρ to be defined according to eq. (3.21)

Lρ = L tanh
( ρ
L

)
, (4.12)

12If pρ > pcrit then solutions with y = 0 (gradient or kinetic) are unstable. This is possible if pρLρ > 0
and so the “centrifugal force” can balance the gradient term, leading to a situation where the system slowly
approaches a De-Sitter phase: x→ 0 and y → 0.
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Figure 4. Left: Evolution of x for the hyperbolic space with L = 0.5 and an exponential potential
for pρ = 0.5 (blue) and pρ = 1.5 (red). Solid lines correspond to initial conditions close to kinetic
domination, while dashed lines close to potential domination. These sub- and super-critical values
for pρ give rise to the gradient (orange dotted) and hyperbolic (black dotted) solution, respectively.
Right: Evolution of ε for the same parameters and color coding.

and the radial velocity to be ρ̇ = Hρ′ ≡ Hx. For large field-space curvature L� 1 at ρ� L
the second term in the denominator is subdominant and thus the radial velocity becomes
ρ̇ ≈ −3HL which is the “attractor” expression given for this model in refs. [2, 3]. Moreover,
the steepness condition for the potential pρ > 3L corresponds to the small L limit of eq. (4.6).

The simplest possible single-parameter potential given by V (ρ) = m2ρ2 provides an
interesting illustration of the bifurcation phenomenon, given a hyperbolic metric. The po-
tential steepness is pρ = 2/ρ, which is a monotonically decreasing function for ρ > 0. At
large field values, the gradient pρ becomes arbitrarily small and hence the gradient solution
is stable. Upon rolling down to smaller values of ρ, the gradient increases and will hit the
critical value pcrit around ρ ∼ 1/L. At this point there will be a transition to the hyperbolic
solution. For an exponential metric function f(ρ) = Leρ/L, inflation will ultimately end when
the fields approach the minimum of the potential. In the case of a different parametrization
of hyperbolic space, like the one used above f(ρ) = L sinh(ρ/L), the hyperbolic solution will
continue up to around ρ ∼ L when the exponential approximation of the metric ceases to be
valid. For small L, corresponding a highly curved field-space manifold, a prolonged period of
hyperbolic inflation will exist (see ref. [9] for a recent discussion of hyperinflation and ref. [34]
for an illustration of the bifurcation in the case of a quadratic potential.).

To illustrate this interplay between the different critical points, we analyse the impli-
cations of the bifurcation diagram of figure 4 in a simpler set-up that will be closer to the
present scaling discussion. We saw in section 2 that models like quadratic and Starobinsky
inflation can be approximated by scaling solutions with field-dependent steepness parameter
p. We can analyze two-field models in the same way: let us consider a hyperbolic space
f = Leρ/L with a shift symmetric potential in φ with a field-dependent gradient pρ = pρ(ρ).
A simple example is given by

pρ = p0 + ∆p tanh (αρ) , (4.13)

arising from the potential

V (ρ) = V0 e
p0ρ [cosh(αρ)]

∆p
α . (4.14)

Note that this simply amounts to a sum of exponentials for the case of α = 1 and ∆p = 1.
In addition, for a range of hyperbolic curvatures, this potential crosses the critical gradient
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Figure 5. Left: Evolution of x and y (blue and red respectively) for the potential steepness of
eq. (4.13) with α > 0 (left) and α < 0 (right). The dotted curves correspond to the scaling solutions
evaluated at pρ = pρ(ρ). The brown dashed line on the right panel corresponds to the kinetic solution
x = −

√
6. The parameters used are L = 10 for the field-space and |α| = 0.01, p0 = 2 and ∆p = 1 for

the potential.

around the origin: for α > 0 the potential steepness p exceeds the critical value pcr for large
field values ρ, while for α < 0 the opposite occurs, pρ < pcr for ρ→∞.

Figure 5 shows a characteristic field evolution in both cases α > 0 and α < 0 for L = 10
and hence pcrit ∼ 2.35, |α| = 0.01, p0 = 2 and ∆p = 1. In the former case (left panel
of figure 5), the steepness of the potential at the initial field value is supercritical, so the
system quickly (after some transient oscillations) follows the hyperbolic solution of eq. (4.5).
As the system evolves towards smaller values of ρ, the potential steepness reduces and the
hyperbolic solution smoothly ceases to exist, as shown in figure 3. From this point onwards
the system evolves along the subcritical gradient solution (4.4).

In contrast, for the case α < 0 (right panel of figure 5), the steepness of the potential at
the initial field value is subcritical, so the system relaxes to the gradient solution. As ρ rolls
towards smaller values, the steepness of the potential increases. Since pρ >

√
6 the system

first enters the kinetic regime x ' −
√

6, as shown by the brown-dashed line. After some e-
folds, the φ field gets de-stabilized and the system follows the hyperbolic solution of eq. (4.5).
The condition pρ > pcr occurs at N ' 15, as shown by the black-dotted line. However y
has come exponentially close to zero by the initial phase, so that the destabilization takes
several e-folds. In reality, one should take into account the quantum fluctuations, which can
de-stabilize the system and push it to the hyperbolic solution earlier.

Overall, figure 5 shows both the transition from hyperbolic to gradient solution, as
well as the transition from gradient (or even kinetic) to hyperbolic. The latter is a typical
example of spontaneous symmetry breaking, since the equations of motion are invariant with
respect to y → −y, whereas the solution picks up a definite sign of y, determined by initial
conditions or quantum fluctuations. In particular, the approach to a gradient or kinetic
solution occurs at an exponential rate for pρ < pcr and hence a classical system can be put
arbitrarily close to it. In a real scalar field system, quantum fluctuations put a lower limit
on how close to y = 0 the system can be. Stochastic effects in inflation play an important
role in cases of spontaneous symmetry breaking, such as hybrid inflation [74–77], and have
been studied lately using analytical and numerical techniques (e.g. refs. [49, 50]). The same
behavior depicted in figure 5 can also arise in systems with a field-dependent field-space
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curvature instead of a field-dependent potential steepness, or even in systems where both the
field-space curvature L as well as the potential steepness pρ are field-dependent.

5 Scaling solutions for systems with an isometry and generic potentials

5.1 Critical points analysis

Finally, we turn to the case of potentials that depend on both fields ρ and φ. The dynamical
system of eq. (5.1) is generalized to

x′ = −(3− ε) (x+ pρ) +
y2

Lρ
, (5.1a)

y′ = −(3− ε)
(
y +

pφ
f

)
− xy

Lρ
. (5.1b)

Critical points of this system will have ε′ = 0 and hence will correspond to scaling solutions.
We focus on product separable potentials with either an exponential dependence on φ

or in ρ; we have not found any scaling solutions when there is not exponential dependence on
either of the coordinates. For such potentials, there are generically no conserved charges and
the configuration space is four-dimensional with (φI , vI) all independent variables.13 Since
we have assumed non-zero gradients pI , each vI must become constant (in order for eq. (3.7)
to contain constant terms) and so their values must be given as critical points of the above
dynamical system.

We start with the case of an exponential dependence on the radius-like coordinate,

V = epρρh̃(φ) , (5.2)

and distinguish the following cases:

• A solution similar to the gradient solution of the previous section is possible if the
function h(φ) has an extremum at some value:

(φ, x, y)grad = (φgrad,−pρ, 0) . (5.3)

This is essentially a single field trajectory, where the turn rate vanishes. It resembles
the gradient solution of the symmetric potential; however, in this case inflation proceeds
along a valley with h̃ minimised at some “angular” value φgrad.

• The only other scaling solution is the kinetic one, with ε = 3 and y = 0.

The kinetic solution with x = ±
√

6 has local eigenvalues of the Jacobian matrix

{λ1,2,3,4}kin =

(
0, 0,
√

6
(√

6∓ pρ
)
,
±
√

6

Lρ

)
, (5.4)

and hence there is a stable solution for pρLρ < 0 and p2
ρ > 6. The gradient solution exists

provided p2
ρ < 6 and has local eigenvalues

{λ1,2,±}grad =

(
0,−(3− ε), 1

2

(
Agrad ±

√
A2

grad −Bgrad

))
, (5.5)

13The case of a possible “hidden” conserved charge and its connection to the analysis of section 4 is studied
separately in section 5.3.
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where

ε =
1

2
p2
ρ , Agrad = −(3− ε) +

pρ
Lρ

, Bgrad = 4 (3− ε)
V,φφ(φ0)

f2V
. (5.6)

Agrad is negative for pρ < pcrit, where pcrit is given by eq. (4.6), whereas Bgrad is positive
when h̃ has a local minimum at the critical value φ0. For the former a sufficient condition is
pρLρ < 0, in which case |pcrit| >

√
6. The stability conditions are therefore identical to those

of section 4.1 with the additional requirement V,φφ > 0. Similar to section 4.1, if the space is
hyperbolic with the specific parametrization f = eρ/L the effective mass is given by µ2

s/H
2 =

Bgrad/4 − pρ/LρAgrad. A positive effective mass requires Bgrad > 4pρ/LρAgrad, which is a
weaker condition than the stability requirement resulting from studying the corresponding
eigenvalues. Thus, for a potential with a minimum Bgrad > 0 and for pρ > 0 after some ρ < 0
the first term of the effective mass will always dominate over the second implying µ2

s > 0.
However, if pρ is supercritical the background trajectory will be unstable, even though the
homogeneous mode is stable. The above discussion shows that the background trajectory
can be unstable, even if µ2

s > 0.

The case of an exponential dependence on the angle-like coordinate,14

V = h(ρ)epφφ (5.7)

exhibits a richer phenomenology, which falls into different cases:

• In order for y to be constant the metric function should also become constant and hence
vρ vanishes, i.e. this coordinate will be frozen. A critical point with x = 0 requires the
following relation for the ρ coordinate

f2 =
p2
φ

6

(
1 +

2

pρLρ

)
, (5.8)

where Lρ, pρ and f are generically functions of ρ. This condition is equivalent to the
vanishing of the effective gradient for the orthogonal field given in [34]. This will fix
the coordinate ρ to a specific constant value15 ρ0. In the radius (ρ) and angle (φ)
terminology, the former is constant due to a balance between the radial gradient of
the potential and the centrifugal force of the non-geodesic trajectory, while the field
spins along the angular direction. This is a critical point16 with normalised velocities
given by

(ρ, x, y)froz =

(
ρ0, 0 , −

pφ
f

)
. (5.9)

In this case, ε is equal to the projection of the gradient along the Killing direction
ε = (kIpI)

2/2, therefore it is always smaller than εV , resulting into moderate to large

14The present discussion and solution only applies locally. To allow for a global interpretation, one would
have to give up the angular identification between φ and φ+ 2π or include a monodromy affecting the scalar
potential upon traversing the circle.

15Since ρ is constant throughout the trajectory, the existence of this solution only probes the first derivative
of the scalar potential and metric function along ρ. This is why the frozen solution does not require V (ρ) and
f(ρ) to be exponential in ρ, unlike the hyperbolic case of section 4.

16In principle eq. (5.8) can have an arbitrary number of solutions. We will only consider cases where it has
up to two isolated solutions or a continuous set of values, as in shift-symmetric orbital inflation [8].
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turn-rate. Moreover, a noteworthy property of this solution is that ε can be rewritten
in a form that is independent of the φ gradient, resulting in

ε =
3pρLρ

2 + pρLρ
, (5.10)

which is smaller than ε = 3 corresponding to the kinetic regime for any finite pρ.
One can immediately note that this is identical to eq. (4.7), derived for the hyperbolic
solution with a radial potential. A deeper connection between the two will be uncovered
in section 5.3.

• In the case when h(ρ) and f(ρ) each exhibit an extremum at the same value ρextr, a
solution similar to the gradient solution emerges, which we will call “extremum solu-
tion”

(ρ, x, y)extr =

(
ρextr, 0,−

pφ
f

)
, (5.11)

for the value ρextr of the coordinate such that f and h are extremised. The Hubble flow
parameter becomes

ε =
p2
φ

2 f2
. (5.12)

Note that this is very similar to the previously mentioned gradient solution (5.3) with
inflation occurring along a geodesic. Furthermore, the extremum of h ensures that there
is no radial gradient; hence there is no competition between potential and centrifugal
forces as discussed in [34]; instead, both vanish separately.

• Finally, if eq. (5.8) admits an infinite number of solutions where the critical values
form a continuous curve then the solution is neutrally stable since the corresponding
eigenvalue is zero.

For the frozen solution, the invariant subspace consists of (ρ, x, y) and the eigenvalues
of the stability matrix are of the form

(λ1,±)froz =

(
−Afroz,−

1

2

(
Afroz ±

√
A2

froz −Bfroz

))
, (5.13)

where Afroz = 3 − ε > 0. A necessary and sufficient condition for the local stability of the
frozen solution is Bfroz > 0.

In the simple case of a product exponential potential and an exponential form of f ,
leading to constant values for pρ and Lρ, the stability parameter Bfroz is given by

Bfroz =
48ε

(3− ε)L2
ρ

=
8

L2
ρ

(2 + pρLρ) , (5.14)

where we used the eq. (5.10) for the second equality. We thus showed that the frozen solution
with an exponential potential and an exponential metric function is always stable, and hence
this critical point is a dynamical attractor for all parameter values (assuming pρ, Lρ > 0).

Linearized stability in the more general case with non-exponential functions requires
the expression

Bfroz = −8ε

(
f,ρρ
f
− 9− ε

3− ε
f2
,ρ

f2

)
+ 4(3− ε)(pρ),ρ , (5.15)
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to be negative. Using the adiabatic/entropic decomposition reviewed in section 3, we can
show that the quantity Bfroz is proportional to the effective mass of isocurvature perturbations
on super-Hubble scales. Since motion proceeds along the φ direction, we have

σ̂ =

0,
φ̇√
f2φ̇2

 , ω2 =
V 2
,ρ

σ̇2
=

2εH2

L2
ρ

, (5.16)

and so indeed17 Bfroz = 4µ2
s/H

2. Note that the equivalence of the µ2
s > 0 to the stability

criterion derived from the Lyapunov analysis of the background dynamical system arises for
a trajectory that proceeds along an isometry of the field-space manifold.

Similarly, the stability of the extremum solution is determined by the sign of the effective
mass, given by

µ2
s = V,ρρ + εH2R , (5.17)

due to the absence of a turn rate in this case. Positive curvature of field space has a stabilizing
effect on such solutions, while negative curvature can destabilize the extremum solution [64].

Before proceeding to connect the scaling solutions of this section to inflationary models
that can be found in the literature, we examine the transition between two solutions in a
similar vein as we did in the previous section for the hyperbolic solution. In order to be
specific, we take the radial dependence of the metric and potential to be

f = Lh = L cosh(ρ/L) . (5.18)

This simplifies the above discussion by having pρLρ = 1. This system always has an extremum
solution at ρ = 0, and in addition can also support a frozen solution depending on the value of
pφ: does f2 = p2

φ/2 have roots? This leads to the critical value pcrit =
√

2L, with the frozen
solutions only existing for supercritical gradients. The corresponding bifurcation diagram
is given in figure 6, again providing a typical case of a supercritical pitchfork bifurcation.
Depending on the initial conditions, the system will be ultimately drawn towards one of the
two stable branches for p > pcrit, signaling an instance of spontaneous symmetry breaking,
similar to the one described in section 4.

It is worth examining the ε parameter for the types of pitchfork bifurcations shown in
figure 6. By using eqs. (5.8) and (5.10) we see that both the extremum solution, as well as
the frozen one have ε = p2

φ/(2f
2). In this work we only consider cases where the extremum

of f is a minimum, which trivially leads to εextr > εfroz. Hence, similar to the pitchfork
bifurcations examined in section 4, the system in this case also “chooses” the solution which
exhibits a smaller value of ε by having a non-zero turn-rate ω2.

As illustration we use the equivalent field-dependent gradient of eq. (4.13),

pφ = p0 + ∆p tanh(αφ) , (5.19)

arising from the “angular” potential

h̃(φ) = ep0φ [cosh(αφ)]
∆p
α (5.20)

17It is a rather straightforward algebraic exercise to relate Bfroz to µ2
s, but some components are clearly

visible: the term in Bfroz that includes fρρ is identified to the Riemann term in eq. (3.16). The term in Bfroz

that includes the derivative of pρ contains the second derivative of the potential, which is the first term in
eq. (3.16). The remaining terms can be grouped to give the turn-rate contribution of eq. (3.17).
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Figure 6. Left: The bifurcation diagram for (5.18). The solid (dashed) curves correspond to stable
(unstable) branches. Right: The value of ε for ρ = 0 (blue) and ρ 6= 0, lying on the two branches of
the pitchfork bifurcation (red). The solid (dotted) curves correspond to stable (unstable) solutions.

For α & 1 this leads to a fast transition from sub- to supercriticality, and vice versa for α
negative. We initially consider α = 1 and L = 0.1, such that pcrit ∼ 0.14. Figure 7 illustrates
that, for random initial conditions (field values and velocities), the system first approaches
either the frozen or the extremum solution, around N ≈ 20. When the transition described
by eq. (5.19) occurs, around N ≈ 50, the field positions and velocities exhibit transient
oscillations, which ultimately lead to the system relaxing to the new state, controlled by the
late-time value of pφ. This is reminiscent of the effects of geometric destabilization giving
rise to sidetracked inflation. A minor difference is found in the fact that ε is constant for
scaling solutions, and thus it cannot trigger geometrical destabilization, as it does in realistic
inflationary set-ups [7, 51]. Furthermore, our analysis does not take into account quantum
fluctuations, which in some cases are crucial in destabilizing a system, that could classically
be made to lie arbitrarily (exponentially) close to an unstable trajectory.

A further interesting feature appears for N . 20. In this regime, both x and y seem to be
constant, however this behavior does not correspond to one of the scaling solutions described
in this section and this phase can be considered a transient phase before the gradient / frozen
solution dynamics is reached. Upon a closer examination of our set-up, our initial conditions
are chosen far away from the origin, at ρinit � 1. This leads to the normalized angular
gradient pφ/f being exponentially small and hence the system exhibiting an approximate
shift symmetry in φ. This means that an initial period of hyperinflation is possible [9], which
is exactly the behaviour that is shown in figure 7 for N . 20.

While eq. (5.19) with α = 1 leads to a fast change in the parameters of the system and
a “jump” between two trajectories, as shown in figure 7, choosing α = 0.01 leads to a slow
change in the potential steepness along the φ direction. Figure 8 shows the resulting behavior,
which is reminiscent of the behavior shown in figure 5 for a radially symmetric potential with
varying steepness. We clearly see that the evolution of the system adiabatically follows the
change in pφ. The evolution of the coordinate ρ during the frozen regime and can thus be
described by the solution of eq. (5.8) for a varying pφ.

5.2 Comparison to inflationary models

Realistic multi-field models of inflation are not described by product-separable exponential
potentials. However systems with general potentials and non-exponential metric functions
have been shown to exhibit behaviour very similar the “frozen” solution that we derived
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Figure 7. Left: Evolution of the radius ρ for (5.18) and (5.19) with α = 1 and {p0,∆p} =
{0.15, 0.05}, {0.15,−0.05} (red and blue respectively). The initial conditions were chosen to be far
from any scaling solution. Right: Evolution of the normalized velocities for the same parameters.
Brown and red (x and y respectively) correspond to {p0,∆p} = {0.15,−0.05} while green and blue
(x and y respectively) correspond to {p0,∆p} = {0.15, 0.05}.

�� �� �� �� ���
-����

-����

����

����

����

�

ρ

� �� �� �� �� ���
-���

-���

-���

���

���

���

���

�

�
��

Figure 8. Identical to figure 7 but with α = 0.01 instead.

above. This was to be expected, as some of these models prompted the current investigation
into critical points.18

Non-trivial behaviour of this kind for curved geometries was first observed in multi-
field α-attractors. It was shown in ref. [78] that for generic scalar potentials with moderate
steepness and moderate values of the field-space curvature, the scalar field rolls towards the
minimum of the potential predominantly along the radial direction ρ, despite the presence
of possible gradients along the angular direction. Remarkably, although this is a multi-field
system, the inflationary predictions come out identical as in the single-field incarnation of α-
attractors [79]. Subsequently, it was shown that a novel phase of inflation appears at stronger
curvature [5]. Prompted by the angular gradient, the motion ceases to be predominantly
radial at some point, and ends up in a novel dynamical attractor for a wide range of initial
conditions. Moreover, it can attain a large number of e-folds in this subsequent angular
phase. In this regime, the radial coordinate approximately freezes as the scalar field spins
around near the boundary of the Poincare disc. The scenario of ref. [5] can thus be seen as
a succession of frozen attractors with subsequent gradients pφ along the angular direction.

18Although a space of positive curvature can accommodate frozen solutions, bifurcations are forbidden.
Positivity of the Ricci scalar translates to f,ρρ < 0 and so it is impossible to have both a minimum and f ′ > 0.
Thus, they are not of great interest compared to negatively curved spaces.
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The existence of a potential minimum causes inflation to end, which is not the case for
scaling solutions.

It is worth reviewing the construction that led to angular inflation and compare it with
the corresponding scaling solution. In ref. [5] two scalar fields with quadratic potentials were
considered on a Poincare disc. In polar coordinates with19

ds2 =
6α

(1− r2)2
(dr2 + r2dφ2) , (5.21)

the potential acquires a product-separable form

V (r, φ) =
1

2
αr2(m2

1 cos2 φ+m2
2 sin2 φ) . (5.22)

The connection to the present analysis becomes more transparent when performing the simple
transformation

r = tanh

(
ρ√
6α

)
, (5.23)

which makes the radial coordinate canonically normalized

ds2 = dr2 +
3α

2
sinh2

(√
2

3α
ρ

)
dφ2 , (5.24)

which we already considered before with the identification L2 = 3α/2. The equations of
motion in the coordinates {ρ, φ} are20

φ̈+ 3Hφ̇+ Γφρφρ̇φ̇+ GφφV,φ = 0 , (5.25)

ρ̈+ 3Hρ̇+ Γρφφ(φ̇)2 + V,ρ = 0 . (5.26)

The angular motion proceeds along a slow-roll trajectory derived by equating the Hubble
term to the potential term in the angular equation,

3Hφ̇ ' − 1

f2

dV

dφ
. (5.27)

This is equal to the result given in eq. (5.9) by using the approximation 3H2 = V . Hence
in the slow-roll regime, the two constructions match for the angular motion. The radius at
which angular inflation proceeds is computed by equating the Christoffel (“centrifugal”) term
and the potential term in the radial equation,

Γρφφ(φ̇)2 + V,ρ ' 0 . (5.28)

Using eq. (5.27) for the slow-roll motion for φ̇ along with the Christoffel term for this metric
allows one to perform the following manipulation:

f2 =
2

6

(
V,φ
V

)2( V

V,ρ

)(
f,ρ
f

)
=

2p2
φ

6pρLρ
, (5.29)

19In ref. [5] the angular coordinate was denoted as θ. Here we call it φ to be consistent with the nomenclature
used for the rest of the present analysis.

20In the Poincare disc coordinates used in ref. [5], the radial equation of motion has an extra term of the
form Γrrr ṙ

2, which is absent when we canonically normalize the radial variable. In any case, it will not play
any role in the analysis, since ṙ ' 0 for angular inflation and ṙ = 0 for “frozen” scaling solutions.
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where we again used the slow-roll approximation 3H2 = V . This matches the condition given
in eq. (5.8) for pρLρ � 1, which holds for strongly curved hyperbolic field-space manifolds,
as the ones that were considered in ref. [5]. Thus, while the trajectory of angular inflation
was shown to possess a slowly varying radius, we can view it as an approximate scaling
solution with slowly varying parameters for the potential steepness and a small radius of
field-space curvature.

An alternative realization of the same scaling solutions arises in the sidetracked infla-
tion scenario [7], employing a sum separable potential, V = V (ρ) + V (φ). After an initial
phase along a geodesic trajectory, inflation is sidetracked due to the occurance of geometrical
destabilization and instead ends up in a different dynamical attractor, with ρ approximately
constant and non-vanishing. During this phase, the background asymptotes to a frozen
solution with field-dependent potential steepness pφ. It can therefore be seen as a succes-
sion of scaling attractors with slowly changing pφ. This phase has been shown to exibit
an interesting EFT of fluctuations, with either a reduced or an imaginary speed of sound
cs [7]. The distinction between the latter two possibilities depends on the subhorizon mass
of isocurvature fluctuations.

Finally, a similar set-up (also based on the geometry of eq. (3.20)) was investigated very
recently in ref. [8] with emphasis on the case of massless isocurvature flucatuations, µ2

s = 0.
It turns out that there is a shift symmetry in the corresponding EFT of fluctuations and
thus this was coined as “shift-symmetric orbital inflation”. By using a product-separable
potential with exponential dependence on the angle V (φ, ρ) = h(ρ)epφφ and demanding that
scaling solutions exist for all values of the radius ρ (corresponding to massless orthogonal
fluctuations) and any form of the metric function f(ρ), eq. (5.8) can be integrated to give

h(ρ) = 1−
p2
φ

6f2(ρ)
. (5.30)

Hence by choosing the above specific relation between the metric and the potential, a scaling
solution exists for any value of ρ. Trajectories21 are related by a shift symmetry ρ → ρ + c
and by using this form of the potential, the stability parameter Bfroz in eq. (5.15) is zero.
This was derived in ref. [8] using the different perspective of the Hamilton-Jacobi formulation
with angle-dependent Hubble function. The trajectories arising in this context can thus be
seen as frozen solutions with the special property of having massless isocurvature fluctuations
(in the super-horizon limit). Note, that unlike the other cases with a zero eigenvalue this
system leads to a non-diagonalizable Jacobian matrix, therefore stability conclusions cannot
be drawn since the usual theorems do not apply.

We conclude this section by studying the ability of scaling solutions to describe the
evolution of a system which does not exhibit an exponential potential dependence along the
φ direction and for which h(ρ) does not exhibit any extrema. We choose the concrete example

pφ =
√
φ2 + 1 , (5.31)

derived form the potential

V (φ, ρ) = V0 e
pρρ e

1
2

[
φ
√
φ2+1+arcsinh(φ)

]
. (5.32)

21The exact construction of the potential relies on a multi-valued function of the angle, resulting in a
“corkscrew” structure.
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Figure 9. Evolution of x, y, ρ (left) and log |φ|, ε (right) for a system with an exponential metric
f = L exp(ρ/L) with L = 1 and the potential of eq. (5.32) with h(ρ) ∝ e2ρ. The solid curves
correspond to the full numerical evolution of the system and the dotted ones represent the evaluation
of the scaling solution of eqs. (5.9) and (5.8) using the field-dependent potential steepness pφ ≡ V,φ/V .
Color-coding is as follows. Left: The normalized velocities x (blue solid) and y (red solid, blue dotted)
and the field coordinate ρ (green solid, brown dotted). Right: The logarithm of the field coordinate
φ (red solid, blue dotted) and the Hubble flow parameter ε (green solid, black dotted). The slow
evolution of the “frozen” coordinate ρ is evident, arising from the non-exponential potential dependent
of the potential on φ.

The form of eq. (5.31) was chosen because it quickly asymptotes to a linear function pφ = |φ|
at large field values (which makes the analytical computations easier) and is still analytic at
φ = 0. Figure 9 shows the evolution of the field coordinate and derivatives for a particular
realization and initial condition choice for a system described by the potential of eq. (5.32)
and an exponential metric function f = L exp(ρ/L). We see that the system undergoes
a transient phase of non-scaling behavior, before settling into the attractor solution. The
initial conditions were chosen so that the system is not put near the scaling solution and
thus exhibits a non-trivial transient period. Repeating the simulation with different initial
conditions resulted in a longer or shorter transient, all leading to the same attractor solution.
After the systems settles onto the approximate scaling solution, it is clearly visible that
x = dρ/dN ≈ 0. However, the non-exponential dependence of the potential on φ leads
to a slow change of ρ. This is captured using the expressions of the scaling solution and is
reminiscent of the slowly varying radial coordinate in angular inflation [5] and similar behavior
in side-tracked inflation [7]. We thus see that scaling solutions can be an excellent starting
point to study realistic inflationary scenarios, both for building intuitive understanding as
well as for constructing approximate expressions describing the full evolution.

5.3 Hyperinflation as a special case of frozen solutions

It is worth re-visiting our claim that the frozen solutions that are described by eq. (5.9)
in general do not have any conserved quantities. The identical form of the Hubble flow
parameter ε in eqs. (5.10) and (4.7), provides the intriguing possibility that the two solutions
are somehow related or even that one is a special case of the other, as already discussed
in ref. [34].

We start our investigation from a set-up that leads to a hyperbolic solution of eq. (4.5).
It only appears for a hyperbolic field-space expressed through an exponential metric function
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f(ρ) and an exponential potential in ρ, while the shift symmetry along φ induces the conser-
vation of angular momentum. Our guiding principle will be the possible reparametrisations
of hyperbolic space, which can be found for example in refs. [26, 80]. We start with

ds2 =
3α

2

dτdτ̄

(Im τ)2
, (5.33)

where we choose τ = φ + ieρ
√

2/3α to describe the axion-dilaton system. This leads to the
field-space line element

ds2 = dρ2 +
(
Leρ/L

)2
dφ2 , (5.34)

with L =
√

3α/2. By choosing an alternative coordinate basis τ = eZ = eX(cosY + i sinY )
we can easily re-write the metric as

ds2 = L2 1

sin2 Y

(
dX2 + dY 2

)
. (5.35)

We now canonically normalize one of the two variables, by choosing

ρ̃ = L log

[
tan

(
Y

2

)]
, X = φ̃ , (5.36)

leading to

ds2 = dρ̃2 + L2 cosh2

(
ρ̃

L

)
dφ̃2 , (5.37)

which is of the form that we focus on in this paper. Both diagonal metrics define a hyperbolic
space with the same Ricci curvature scalar. The inverse transformation rule is

ρ = −φ̃L+ L log

[
cosh

(
ρ̃

L

)]
, φ = −eφ̃ tanh

(
ρ̃

L

)
. (5.38)

The potential that we choose in the {ρ, φ} basis is one that allows for hyperbolic inflation,
namely

V (ρ, φ) = V0e
pρ . (5.39)

Following the same transformation, we re-write the potential in the new basis {ρ̃, φ̃} as

V
(
ρ̃, φ̃
)

= V0

[
cosh

(
ρ̃

L

)]pL
e−pLφ̃ . (5.40)

This potential is of the form of eq. (5.7) and thus allows for a frozen solution. It is straight-
forward to check that the time evolution of the various coordinates based on the hyperbolic
and frozen solution respectively are related to each other by the above described coordinate
transformations. In fact for every positive single field potential V (ρ) we have

pρ̃ = p tanh

(
ρ̃

L

)
, (5.41)

and so both the potential and the metric have an extremum at ρ̃ = 0, allowing for an
extremum solution.
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Figure 10. Left The evolution of the “radial” coordinate ρ̃ as a function of e-folding number N for the
metric of eq. (5.37) and the potential of eq. (5.42). The parameters are L = 0.1 and {p, q} = {0.1, 0.1}
(blue), {p, q} = {0.4, 0.4} (red), {p, q} = {0.4, 0.2} (green) and {p, q} = {0.4, 0.6} (brown). Right:
The generalized velocity parameters x (dashed) and y (solid) for the same parameters and color-
coding. The dots on the right part of both panels correspond to the analytical predictions for the
frozen solutions.

We therefore showed, that while the two types of attractor solutions, hyperbolic and
frozen, were discovered in different contexts and were thought to be inherently different,
this is not the case, due to the enhanced symmetry properties of hyperbolic manifolds. In
particular, hyperbolic solutions are a special case of frozen solutions, when the latter are found
in hyperbolic manifolds with a specific form of the potential function h(ρ̃) that allows for the
existence of a “hidden” integral of motion. This allowed us to transform the metric function
to a pure exponential form, while at the same time recovering an exponential potential for
the dilaton field ρ with a shift symmetry for the axion field φ.

Before we conclude, it is worth generalizing the form of the potential given in eq. (5.40),
such that the integral of motion is not present. A simple way is22

V
(
ρ̃, φ̃
)

= V0

[
cosh

(
ρ̃

L

)]qL
e−pLφ̃ , (5.42)

where generically q 6= p. Taking L = 0.1, we first point out that in the case of q = p the
analysis of the system in terms of ρ̃ and φ̃ results in a hyperinflation-type solution that exists
and is stable for p & 0.3. We computed the evolution of the system in the basis of eq. (5.37)
and the results are plotted in figure 10. We first see that for p = q = 0.1 the system relaxes
to ρ̃ = 0, while for p = q = 0.4 the system “freezes” at ρ̃ ≈ 0.1, which is the exact value
given by solving eq. (5.8). An important point is made by studying the case p 6= q. We
see that for p = 0.4 and q = 0.2 or q = 0.6, the system relaxes to ρ̃ ' 0.06 or to ρ̃ = 0
correspondingly. The former corresponds to a frozen solution, which has no exact analogue
in the case of hyperinflation, since it cannot be transformed to a radially symmetric potential
in the {ρ̃, φ̃} basis. The latter corresponds to geodesic motion along ρ̃ = 0, where both the
potential and the metric exhibit a minimum.

22Note that this potential can be seen to interpolate between the symmetric case of hyperinflation with
pL = qL and the special case with qL = 1 discussed in the paragraph around (5.18).
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6 The non-isometric case: simple unified description

The isometry assumption induces a natural distinction between the different types of solu-
tions, and makes geometric interpretation of coordinates possible. Note that in both gradient
and frozen solutions the normalized velocity of one field is fixed, while the other rolls down
its exponential potential. Dropping the isometry assumption, the most general 2D metric
can be written as

ds2 = g2(ρ, φ) dρ2 + f2(ρ, φ) dφ2 , (6.1)

with the following non-zero Christoffel symbols

Γρρρ =
g,ρ
g
, Γρφρ =

g,φ
g
, Γρφφ = −

gg,φ
f2

, (6.2)

Γφφφ =
f,φ
f
, Γφρφ =

f,ρ
f
, Γφρρ = −ff,ρ

g2
. (6.3)

The equations of motion for the two variables x, y, with x = gvρ generalize to

x′ = −(3− ε)
(
x+

pρ
g

)
−
g,φ
fg
xy +

f,ρ
fg
y2 , (6.4a)

y′ = −(3− ε)
(
y +

pφ
f

)
− f,ρ
fg
xy +

g,φ
fg
x2 . (6.4b)

For this problem there is no distinction between the two fields, so we will examine the
existence of frozen solutions with x = 0. In order for this to be a solution of the dynamical
system we obtain the following two equations

(3− ε)pρ =
f,ρ
f
y2 , y = −

pφ
f
. (6.5)

We observe the same interplay between the Christoffel and gradient terms as the isometric
case, implying that the metric function g does not affect the critical value for y. Moreover, a
constant y requires that pφ/f is independent of φ. To retain some analytical control we will
consider the product-exponential potential (5.7) which also requires f,φ = 0 as well.23

Stability is determined as usual by the eigenvalues of the Jacobian matrix. However, in
order to avoid examining complicated expressions for eigenvalues we instead do the following:
the characteristic equation for the Jacobian matrix is

λ
(
λ3 + a2λ

2 + a1λ+ a0

)
= 0 , (6.6)

where

a2 = 2(3− ε)−
√

2ε
g,φ
fg

, a1 =
1

3− ε

(
(3− ε)−

√
2ε
g,φ
fg

+

(
M

H

)2
)
, a0 =

(
M

H

)2

,

(6.7)

defining a mass M using eq. (5.15) as (M/H)2 = Bfroz/4 and which is not equal to µ2
s, when

g 6= 1. Using Routh’s criterion (see appendix B) we obtain the following two requirements
that guarantee that the eigenvalues will have negative real part

M2 > 0 , (3− ε) > −(ln g)′ =
√

2ε
g,φ
fg

. (6.8)

23More generally one finds V = exp[w(ρ)
∫

dφf ], where w is an arbitrary function.
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The latter equation defines a critical value for ε, beyond which the solution is unstable. When
M > 0, we reproduce the stability requirements of section 5; g = 1 corresponds to isometric
frozen solutions, where also µs = M , while f = 1 corresponds to gradient solutions. If instead
M = 0, we factorize eq. (6.6) and stability reduces to just (3 − ε) + (ln g)′ > 0 and ε < 3.
If f = 1, we reproduce the stability requirements of section 4, whereas g = 1 leads to the
non-diagonalizable Hamilton-Jacobi construction.

7 Summary and discussion

As has been illustrated in a number of investigations in recent years, slow-roll slow-turn is not
necessarily the dominant behaviour in multi-field inflation, especially when the field-space
manifold is curved. Depending on the curvature and the potential gradient, a range of novel
regimes has been uncovered. The aim of this paper is to provide an extensive classification
of these as well as their conditions and properties.

Building on the observation that a common trait of all behaviours is a nearly constant
ε, we have outlined how scaling solutions (with constant ε) correspond to critical points
in a dynamical system and categorized various critical points on a two-dimensional scalar
manifold. When the metric has an isometry these amount to:

• Gradient solutions, given by eqs. (4.4), (5.3) and (5.11): these are the usual slow-roll
slow-turn solutions, in which the velocity of the isometric field vanishes. In the case of
a rotationally symmetric potential with a small radial gradient, the system will inflate
along the direction of the gradient and hence slide down the potential landscape. This
behaviour is an attractor provided the gradient is subcritical (4.6), and does not require
an isometry direction (see section 6). Similarly, provided a non-rotationally symmetric
potential has a minimum along either its radius-like or its angle-like direction, one can
see the same slow-roll slow turn behaviour for the orthogonal field. Models with an
isometry will evolve close to a gradient solution if p′ρ � 1 and pφ ≈ 0.

• Hyperbolic solutions, given by eq. (4.5): if the radial gradient exceeds a certain threshold
and if the scalar geometry is hyperbolic, the solution enters a spiralling phase, with
a non-vanishing velocity along both the radial and angular direction in such a way as
to preserve angular momentum. This phase therefore exhibits spontaneous symmetry
breaking and is an attractor provided the gradient is supercritical, as given by eq. (4.6).
Under a coordinate transformation this can be mapped to a frozen solution (see below).

• Frozen solutions, given by eqs. (5.8) and (5.9): generic potential gradients allow for a
frozen solution with only angular-like velocity, while the radial coordinate is “frozen” at
a non-vanishing value. Stability of this critical point can be translated into a positive
mass of its superhorizon isocurvature fluctuations, and this solution does not require
an isometric geometry (see section 6). A model with an isometry will evolve close to a
frozen solution if p′φ � 1.

• Kinetic solutions: finally, solutions that are dominated by the kinetic energy have ε = 3
and are possible for all geometries and gradients. A kinetic solution will only be an
attractor whenever the frozen (or hyperbolic) solutions do not exist and the radial
gradient remains subcritical with pρ ≥

√
6.
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Furthermore, as we have outlined, the hyperbolic solution can be mapped by a coordinate
transformation to the frozen form and can be seen as a special case (with additional symme-
tries and conservation of angular moment) of this class. Consequently, all scaling behaviour
is either of the slow-roll slow-turn type along a gradient and a geodesic, or can be formu-
lated as slow-roll along one direction while the orthogonal direction is frozen, or stationary.
Exponential potentials of this type provide exactly solvable models for which the effective
potential formalism [34] applies exactly.

The scaling attractors can be seen as the generalization of De Sitter solutions with
a non-vanishing Hubble flow parameter ε. Remarkably, it is possible to link the known
non-slow-roll slow-turn inflationary models in these categories: even when these models do
not have the exponential potential required for an exact scaling solution, they can often be
approximated as an exponential with slowly varying steepness. To a very good accuracy,
the resulting trajectory can then be approximated by a scaling solution with field-dependent
parameters. It is in this sense that hyperinflation provides an approximation of a hyperbolic
solution, and angular, sidetracked and orbital inflation asymptote to frozen solutions, at least
for part of their evolution. Note that hyperinflation, in particular, naturally arises from our
classification analysis as a special solution valid only for the hyperbolic space.

The formulation in terms of (critical points of) a dynamical system allows for a very sim-
ple organizing principle for these novel behaviours. Their stability is easily calculated from a
linearised analysis around these critical points, leading to conditions (6.8) which do not nec-
essarily include the effective mass on super-Hubble scales µ2

s. The condition µ2
s > 0 becomes

necessary and sufficient for background stability when there exists a coordinate system in
which the orthogonal field is canonically normalized. In many cases, stereotypical pitchfork
bifurcations take place, e.g. as a function of the radial gradient in a hyperbolic geometry.
Remarkably, in all pitchfork bifurcations that we encountered, the instability will always
drive the system to the critical point with the smallest possible value of ε. Revisiting this ob-
servation and providing a physical intuition for it is left for future work. Moreover, while we
have performed a classification of scaling solutions for two-dimensional geometries it would
be interesting to investigate whether this behaviour is also present in higher-dimensional
geometries with less isometries than the hyperbolic one.

Finally, as cosmological obervations involve fluctuation correlations, it is essential to go
beyond the background description and perform an analysis of perturbations. As we have
indicated in the previous sections, this has been performed in some of the models that exhibit
attractors that violate the slow-roll slow-turn conditions, with interesting properties at the
EFT level. It would be worthwhile to investigate what the most convenient description is
for exact scaling solutions, and what this adds to the fluctuation analyses. This is left for
future work.
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A Coordinate transformations and isometries

A metric with an isometry possesses a Killing vector ~ξ = ξI∂I . Under a coordinate change
xI ≡ {χ, ψ} → x̃I ≡ {ρ, φ} the components of the vector transform according to

ξ̃I =
∂x̃I

∂xK
ξK . (A.1)

Therefore, it is possible to set the first component to zero which is equivalent to solving the
advection equation with variable coefficients

∂ρ

∂χ
ξχ +

∂ρ

∂ψ
ξψ = 0 . (A.2)

With appropriate boundary conditions this can always be solved, e.g. by the method of
characteristics. Thus, in the new coordinate system the Killing vector points along the
second basis vector ~ξ = ξ̃φ∂φ and so the new metric is independent of that coordinate.
Any remaining off-diagonal terms can be absorbed through a redefinition of the variable φ,
whereas Gρρ can be set to one by an appropriate redefinition of ρ

φ̃ = −
∫ Gρφ
Gφφ

dρ+ c1(φ) ρ̃ =

∫ √
Gρρ dρ+ c2(φ) . (A.3)

So, indeed, the most general form of the metric with one isometry is of the form of eq. (3.20).
As a side note, 2D metrics can have 0, 1 or 3 isometries, where the latter describes a maximally
symmetric space of constant curvature (flat, hyperbolic or spherical).

B Hurwitz-Routh stability criterion

A polynomial of degree n is called stable if all roots have negative real part. The relevance to
the stability of dynamical systems is clear: the characteristic equation of the N×N Jacobian
matrix is an nth order polynomial

λn + an−1λ
n−1 + · · ·+ a0 = 0 , (B.1)

and if every root has negative real part the dynamical system is called (asymptotically)
stable. Analytical formulae for the roots of eq. (B.1) exist up to 4th order so it is necessary
to develop tools to infer stability without finding the roots. One method is the Hurwitz-
Routh theorem [81]: a polynomial will be stable if every coefficient is positive an > 0 and
if every principal Hurwitz determinant is also positive. The latter is the determinant of a
matrix constructed as follows: the first elements are {an−1, 1} while the rest are zeros. In
the second row the first elements are {an−3, an−2, an−3, 1} and the rest zero. Similarly, the
i-th row is constructed using the an−i coefficient

∆k =


an−1 1 · · · 0
an−3 an−2 · · · 0
· · · · · · · · · 0
an−k · · · ak+1 ak

 . (B.2)

The criterion is formulated as follows: |∆k| > 0, for all k < n.
For a quadratic equation the criterion reduces to positivity of every coefficient, while

for a cubic equation we obtain the additional condition a2a1 > a0.
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C Bifurcations in dynamical systems

When a dynamical system depends continuously on some parameters then stability of crit-
ical points may depend on the parameter values. More specifically, variation of the pa-
rameters may alter stability properties of certain critical points or it can lead to the cre-
ation/annihilation of critical points with different stability properties.

Specializing to one dimension
ẋ = f(x, a) , (C.1)

a necessary (but not sufficient) condition for the existence of a bifurcation at a critical point
located at x = 0 and for the bifurcation parameter acrit = 0 is [82, 83]

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0 . (C.2)

The next-to-leading terms in the Taylor expansion near the critical point will determine the
type of bifurcation:24

• if ∂xxf(0, 0) 6= 0 and ∂xaf(0, 0) 6= 0 then a transcritical bifurcation occurs for a = 0.
The normal form of equations around the critical point is

ẋ = c1ax+ c2x
2 . (C.3)

• if ∂xxf(0, 0) = 0 instead but ∂xaf(0, 0) 6= 0 and ∂xxxf(0, 0) 6= 0 then a pitchfork
bifurcation occurs for a = 0. Similar the normal form is

ẋ = c1ax+ c2x
3 . (C.4)

An example of the first kind is the exchange of stability between the solution v = −p and
the kinetic solution for one field when p =

√
6. Translating the critical point at the origin by

defining z = v+ p and changing the bifurcation parameter to k = p−
√

6 eq. (2.2b) becomes

z′ =
√

6kz +
√

6z2 +

(
1

2
k2z + kz2

)
. (C.5)

Note that there are no first order terms in either k or z, the second order terms are exactly
those mentioned above and the terms in parenthesis are higher order.

An example of the second kind is the bifurcation of the velocity in the 3D hyperbolic
problem. After a similar coordinate translation the 2D reduced dynamical system can be
transformed to

z′ =
y2

L
− 1

L

(√
1

L2
+ 6− 1

L

)
z +

(√
1

L2
+ 6− 1

L

)
kz +

1

2

(
k2 + y2

)
z (C.6)

−

(√
1

L2
+ 6− 1

L
+ k

)
z2 +

z3

2
,

y′ = y

√
1

L2
+ 6 (k − z) +

k2y

2
− kyz − y3

2
, (C.7)

k′ = 0 , (C.8)

24With a redefinition of x the constant c2 can be set to ±1, while c1 can be absorbed in the definition of
the bifurcation parameter.
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where the last equation increases the dimension of the system in order to study the bifurcation
with center manifold techniques. Parametrizing the stable direction in terms of the center
manifold variables z = z(y, k) we obtain

z′ = y′
∂z

∂y
, (C.9)

with ∂z
∂y (0, 0) = ∂z

∂k (0, 0) = 0. Thus, z can be expressed as a Taylor expansion over the two
variables as

z = c11y
2 + c12yk + c22k

2 + · · · . (C.10)

Since z is at least second order in terms of y,25 center manifold dynamics to lowest order is
governed by

y′ =

√
1

L2
+ 6yk − y3

2
+O(y4) , (C.11)

and a pitchfork bifurcation happens at (y, k) = (0, 0).
For the 4D problem the frozen solution a bifurcation is possible if f,ρ and pρ have a

common root which without loss of generality we consider to be at ρ = 0. Diagonalizing the
system the zero eigenvalue occurs for the variable

z = ρ+
x

3− εc
, (C.12)

while the other two variables are x/(3 − εc) and w = y − pφ/f(0). The equation of motion
for z is given by

z′ = x

(
1− 3− ε

3− εc

)
− V ,ρ

eff , (C.13)

where V ,ρ
eff is the effective gradient introduced in [84] and extensively studied in [34]. As

usual we consider x and w to be quadratic functions of z and the bifurcation parameters
and the first term of eq. (C.13) is at least 4th order. Therefore, close to the critical point
V ,ρ

eff determines the dynamics of the center manifold. Expanding around z = 0 we obtain to
lowest order

z′=−k+
√

2εc(p
′(0)−R)w

3−εc
z+

1

(3−εc)

(
−R

2εc
4
− 1

6
(3−εc)p(3)(0)+

1

3

f (4)

f
εc

)
z3 , (C.14)

w′=−(3−εc)
(
w+

√
2εc
4

R

)
z2 , (C.15)

where we omitted the equation for x as it does not affect the equation of the center manifold.
Since z′ is at least 3rd order in z the quadratic coefficient of w(z) should cancel the second
term of eq. (C.15) and so w(z) = −1

4

√
2εcR. Substituting back to eq. (C.14) we finally obtain

the equation of the center manifold

(3− εc)z′ = −kz +

(
2p′ − 3R2εc

4
− 1

6
(3− εc)p(3) +

1

3

f (4)

f
εc

)∣∣∣
ρ=0

z3 , (C.16)

and a supercritical pitchfork bifurcation occurs for k = 0. This equation is exactly the same
as the expansion of V ,ρ

eff around ρ = 0 up to 3rd order when we have expressed every variable
in terms of ρ.

25Close to the critical point y ∼
√
k, so k is of order y2.
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