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Abstract—In this paper we propose a rank measure for
comparison of (dis-)similarities regarding their behavior to reflect
data dependencies. It is based on evaluation of dissimilarity
ranks, which reflects the topological structure of the data in
dependence of the dissimilarity measure. The introduced rank
measure can be used to select dissimilarity measures in advance
before cluster or classification learning algorithms are applied.
Thus time consuming learning of models with different dissimi-
larities can be avoided.

I. INTRODUCTION

Similarity or dissimilarity based data processing is one of
the key features in almost all areas of data analysis and
visualization [1]. A comparison of data in terms of numerical
quantities is frequently the basic principle for any regarding
algorithmic approach including machine learning. For exam-
ple, prototype based vector quantizers in unsupervised and
supervised learning as well as nearest neighbor approaches
rely in appropriately chosen (dis-)similarity measures such that
classes can be discriminated or clusters become separated as
well as possible [2], [3]. Generally, all variants of nearest
neighbor classifiers (NPC, [4]) and clustering approaches
crucially depend on the used dissimilarity or similarity.

There exists a broad range of those measures reflecting
different aspects like symmetry, transitivity and others. The
most prominent are the Euclidean distance or the correlation
measure. Kernel distances became popular during the last
years whereas divergences and mutual information are used in
information theoretic data analysis [5], [6], [7]. A systematic
categorization scheme of (dis-)similarity types regarding their
mathematical properties is provided in [8].

Other decision approaches like linear discriminant analysis
or support vector machines (SVM) do not belong to the class
of (dis-)similarity based approaches. Here the classification
decision is made in dependence on the localization of an object
regarding a separating hyperplane. The key ingredients for
those approaches are semi-inner products, which are not (dis-
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)similarities in general [8]. However, semi-inner products are
directly related to norms and, hence, also to distances [9].

Unfortunately, it is difficult to decide in advance, which
measure is the best one for a given task. Here, the experience
of the researcher is important to find a suitable measure.
Yet, frequently one has to consider and to compare several
measures for a given problem, which usually requires a time
consuming learning process for adaptive machine learning
models. One possibility for problem reduction is the applica-
tion of adaptive (parameterized) measures which are optimized
during the learning process according to the specific task [10],
[11], [12]. Another idea is to combine several measures in
one model like in fusion trees or as a linear combination
and to adapt the respective coefficients [13], [14], [15]. The
latter strategy requests, however, again a thorough selection of
measures to be involved. More precisely, if all used measures
would share the same (mathematical) properties, the combi-
nation thereof can not generate better solutions.

Hence, there is a need for a practicable scheme to get an
advice in advance. This scheme should suggest a subset out of
a given set of measures at a glance for reasonable computa-
tional costs. One possible strategy is the topic of this paper. In
particular, we propose to compare (dis-)similarities preselected
for a given data analysis task. If the measures behave differ-
ently we can assume that they reflect distinct properties of the
data. Only in that case a nearest neighbor classifier will deliver
different results. Hence, a diverse collection of dissimilarities
would be the basis to built up a linear combination which
offers the possibility for substantial improvement [15]. To
evaluate the degree of diversity for dissimilarities, we propose
in this paper a rank measure, which allows to compare (dis-
)similarities based on the rank statistics. Thus we are able to
select diverse dissimilarity measures in advance before time-
consuming training of a classifier model takes place.

The paper is organized as follows: first, we briefly review
basic properties of (dis-)similarities. Thereafter, we introduce
the rank measure for comparison of pairs of dissimilarities.
Based on this rank measure we compare the behavior of



several dissimilarities regarding two real world datasets. After
a respective selection of the most differently behaving dissim-
ilarities, these were combined in a median variant of learning
vector quantization to obtain an optimal linear combination
for best class discrimination.

II. COMPARISON OF DISSIMILARITIES BASED ON RANK
STATISTICS

A. The General Absolute Rank Equivalence Measure

Similarities as well as dissimilarities can be categorized
regarding their mathematical properties like boundedness, def-
initeness, symmetry or the validity of the triangle inequality
[16]. There are different possibilities to transfer a similarity
to dissimilarity and vise versa. A simple one is: if we assume
a bounded similarity measure s (x, y) with the upper bound
bu then ds (x, y) = bu − s (x, y) will obviously establish a
dissimilarity measure. Therefore, we will concentrate in the
following to dissimilarity measures with the further assump-
tion that d (x, x) = 0 is valid.

We start with a distance measure d for a non-empty dataset
X , which fulfills all mathematical properties of be a metric
and, thus the pair (X, d) is a metric space. Transformations of
data keeping their distance relations are therefore denoted as
isometric transformations. Otherwise, if we consider another
metric δ over X , the pair (X, δ) is another metric space
different from (X, d). Hence, the transition from one metric
space (X, d) to another one (X, δ) can also be seen as a formal
data transformation.

A weaker concept than isometric between metric spaces for
data comparison is the concept of topological spaces, which
essentially only compare neighborhood relations instead of
distance values. Suppose a (symmetric) dissimilarity measure
d and for an arbitrary x ∈ X the open ball around x as
B (x, ε) = {y ∈ X|d (x, y) < ε}. Then the system

τd (x) = {U (x) ⊆ X|x ∈ U (x) and ∃ε > 0 : B (x, ε) ⊂ U}
(1)

determines a local topology on X with the neighborhood
U(x). If X is not continuous, τd (x) is denoted as a dis-
crete topology and (X, τd (x)) is a local topological space.
For those local spaces the concept of neighborhood can be
defined as follows: an element y ∈ X is denoted as rank-
one neighbor of x ∈ X if for all z ∈ X with z 6= x
the relation d (x, y) ≤ d (x, z) is valid. We denote this fact
by rx (y, (X, τd (x))) = 1 whereas rx (x, (X, τd (x))) = 0.
Further, we iteratively define: An element y ∈ X has the
neighborhood rank rx (y, (X, τd (x))) = k if y is rank-
one neighbor for X \ Nk (x), where the set Nk (x) =
{z ∈ X|rx (z, (X, τd (x))) < k} contains all neighbors of x
with lower ranks than k.

Two discrete local topologies τd (x) and τd̂ (x) generated
by the dissimilarities d and d̂ are said to be locally equivalent
for the dataset X with respect to x ∈ X , if for all y ∈ X
the neighborhood ranks are equal, i.e. rx (y, (X, τd (x))) =
rx
(
y,
(
X, τd̂ (x)

))
is valid for all y ∈ X . Consequently,

two discrete local topologies τd (x) and τd̂ (x) are said to be

globally equivalent for the dataset X if they are equivalent
with respect to all x ∈ X .

Since the above topologies are determined by the generating
dissimilarities we analogously define rank-equivalence for
dissimilarities. More precisely, two dissimilarities are defined
to be locally rank-equivalent for the (discrete) dataset X with
respect to x ∈ X iff the related discrete local topologies τd (x)
and τd̂ (x) are locally equivalent. The global equivalence
is defined accordingly. We denote this relation between the
dissimilarities by d .

=
X
d̂.

Based on these definitions we are able to introduce a
comparison measure for dissimilarities d and d̂ to judge their
behavior regarding a given dataset X of NX samples. For
this purpose, we calculate the dissimilarity matrices D (X)
with dij = d (xi, xj) and D̂ (X) with d̂ij = d̂ (xi, xj): such
that the corresponding rank matrices R (X) and R̂ (X) are
determined by

rdij = rxi (xj , (X, τd (xi))) (2)

and
rd̂ij = rxi

(
xj ,
(
X, τd̂ (xi)

))
(3)

respectively. We can calculate the matrix entries rdij and rd̂ij
as

rdij =

NX∑
k=1

H (dij − dik) and rd̂ij =

NX∑
k=1

H
(
d̂ij − d̂ik

)
(4)

using the Heaviside-Function

H (z) =

{
1 for z > 0

0 otherwise

as it was suggested in [17].
We emphasize at this point again that comparing ranks is

weaker than consideration of dissimilarities. To demonstrate
this effect, we have visualized in Fig.1 the dissimilarity
matrix for the Euclidean distance dE and the RBF -kernel
dissimilarity

dRBF,σ (x, y) = 1− exp

(
−d2E (x, y)

σ

)
(5)

for a real world dataset X described more detailed in the
application section (sugar dataset). Although the resulted dis-
similarity matrices look differently, the corresponding rank
matrices seem to be equal, see Fig.1.

An intuitive measure to compare two dissimilarity rank
matrices Rd(X) and Rd̂(X) is

ϑ̃X

(
p,D, D̂

)
=

NX∑
i=1

NX∑
j=1

∣∣∣rdij − rd̂ij∣∣∣p
as the p-th power of the p-norm with the usual choices p = 2
obeying the squared error or p = 1 yielding the absolute error.
In the following we will use the latter option taking the short
hand notation ϑ̃X

(
D, D̂

)
= ϑ̃X

(
1,D, D̂

)
.



Figure 1. Visualization of the dissimilarity matrices for the Euclidean distance
(DE ) a) and the RBF-dissimilarity (DRBF ) b) regarding the sugar dataset
using 100 data points per class. Although these matrices look different the
respective rank matrices (RdE ) and (DdRBF ) depicted in c) and d) are
equal.

To be independent of the number NX of data we introduce
the normalization

ϑX

(
D, D̂

)
=
ϑ̃X

(
D, D̂

)
cX

(6)

with

cX =

{
4
(
NX
2 − 1

)
NX
2 −

(
NX
2 + 1

)
, if NX is even

4
(
NX−1

2 − 1
)
NX−1

2 , if NX is odd

as the normalization constant. We denote ϑX
(
D, D̂

)
as the

absolute rank equivalence measure (ARE).
Thus, the ARE measure ϑX (DE ,DRBF ) of the distance

matrices given in Fig.1 is zero, which underlines the previous
observation of equal rank matrices for the sugar dataset.

B. Variants of the Absolute Rank Equivalence Measure
So far, the ARE measure takes all data points of the set X

into account. This is maybe too restrictive. In the following we
present variants of the ARE measure, which might be useful
for specific tasks.

Considering the frequently applied k-nearest-neighbor clas-
sifier, it would be desirable to compare dissimilarities on this
level. Therefore, we propose for this case the k-ARE measure
involving only the first k ranks. It is calculated as

ϑ̃X,k

(
D, D̂

)
=

NX∑
i

NX∑
j

γk(i,j) (7)

with

γk(i,j) =


∣∣∣rdij − rd̂ij∣∣∣ if rdij < k

0 otherwise.

The normalization from (6) has to be adapted to

ϑX,k

(
D, D̂

)
=
ϑ̃X,k

(
D, D̂

)
cX,k

(8)

with
cX,k = Nx · k2

as the new normalization constant.
A class dependent variant of the k-ARE is obtained by

ψX,k

(
D, D̂

)
=

∑
i

∑
j τk(i,j)

cX,k

with

τk(i,j) =


∣∣∣rdij − rd̂ij∣∣∣ if rdij < k and c (xi) 6= c (xj)

0 otherwise.

where c (xi) denotes the class label of the data point xi. The
k-ARE measure considers only the rank difference rij if the
data points xi and xj belonging to difference classes.

III. APPLICATIONS

We demonstrate the application of the absolute rank equiv-
alence measure for two real world datasets. The first one
is a publicly available benchmark dataset that compiles the
reflectance spectra of sugar and sugar related compounds. Here
we investigate the behavior of different dissimilarities. The
second one is a set of laser-diffuse-light images of Salmonella
serovar colonies. For this dataset we investigate the parameter
dependent behavior in case of a parametrized dissimilarity.

A. Investigation of Different Dissimilarities for the Analysis
of the Sugar Dataset

The publicly available Sugar dataset is consist of reflectance
spectra of nine different sugars and sugar related compounds
and is described in [18]. A special feature for this dataset
is that the spectral information is not only acquired with
a single sensor, but with different sensors covering a wide
spectral range. Here we make only use of a subset of the
data, namely only data acquired by the Neo VNIR 1800
Sensor. The spectral information consists of 186 sampling
points equidistantly distributed over the range from 400 to
1000nm wavelength and normalized according to the l1-norm.
Although the spectra are obtained from 9 different compounds,
the classification is reduced to a three class problem only
considering the three main classes sugar esters, sugar alcohols
and sugars.

The dissimilarities in consideration for this dataset are
depicted in Tab.I. The resulting dissimilarity matrices are
depicted in Fig.2 whereas the respective rank matrices are
visualized in Fig.3. We already know from Fig.1 that the Eu-
clidean distance dE and the RBF-dissimilarity dRBF generate
the same ranks. Further, we observe similar behavior for the
Euclidean distance dE and the Cauchy-Schwarz-divergence
dCS . This observation is verified by the ARE measures given



dissimilarity measure formula

Euclidean distance dE (x, y) =
√∑n

i=1 |[x] i − [y] i|2

l1-distance dl1 (x, y) =
∑n
i=1 |[x] i − [y] i|

lmax-distance dlmax (x, y) = maxi=1,...,n |[x] i − [y] i|

Sobolev distance dsob(x, y) =
1
2
dE (x, y) + 1

2
dE (x′, y′) with z′ = dz

dt

RBF -distance dRBF,σ (x, y) = 1− exp

(
−d2E(x,y)

σ

)
Pearson correlation dPears (x, y) = 1−

∑n

i=1([x]i−µx)([y]i−µy)√∑n
i=1([x]i−µx)2

√∑n
i=1([y]i−µy)

2

Spearmann correlation dspear (x, y) = 1−
(
cov(rg(x),rg(y))
σrg(x)σrg(y)

)2

with rg (z) is the Euclidean dissimilarity rank of z

Cauchy-Schwarz-divergence dCS (x, y) = dγ=1 (x, y)

Table I
DISSIMILARITIES USED FOR THE SUGAR DATASET. HERE [x]i DENOTES THE iTH DIMENSION OF THE n-DIMENSIONAL VECTOR x.

Figure 2. Visualization of the dissimilarity matrices for the sugar dataset
using 100 data points per class.

Figure 3. Visualization of the rank matrices for the sugar dataset using 100
data points per class.



k-NN stdv MGLVQ stdv λ̂j λj

d1 = dE 81.2 ±0.6 81.1 ±2.4 0.120 0.315
d2 = dl1 81.6 ±0.3 82.0 ±1.6 0.104 0.293
d3 = dlmax 74.9 ±1.2 71.3 ±3.9 0.018 0.002
d4 = dSob 74.6 ±2.2 72.0 ±3.5 0.066 0.126
d5 = dRBF 81.2 ±0.6 80.5 ±2.1 0.073 −
d6 = dPears 79.4 ±1.0 76.8 ±3.0 0.033 0.100
d7 = dSpear 72.7 ±1.1 74.8 ±2.6 0.066 0.168
d8 = dCS 81.2 ±0.6 80.8 ±2.0 0.521 −

dλ̂ 80.1 ±1.1 82.6 ±2.0
dλ 79.6 ±1.8 82.5 ±1.9

Table II
SUGAR DATASET: CLASSIFICATION ACCURACIES IN % OBTAINED BY
k-NN WITH k = 3 AND MGLVQ FOR THE USED DISSIMILARITIES AS
WELL AS FOR THE LINEAR COMBINATIONS OF ALL DISSIMILARITIES
dλ̂ (x, y) =

∑
j λ̂jdj (x, y) AND OF THE REMAINING DISSIMILARITIES

dλ (x, y) =
∑
j λjdj (x, y). THE NORMALIZED LINEAR COMBINATION

COEFFICIENTS λj ≥ 0 AND λ̂j ≥ 0 WERE DETERMINED BY GRADIENT
DESCENT LEARNING, SEE TEXT.

in Fig.4. Hence, the RBF -distance can be dropped in this
application.

Figure 4. Visualization of ARE measures of the sugar dataset.

In the next step we compared the remaining dissimilarities
regarding their behavior when applied in a k-nearest neighbor
classifier and a median generalized learning vector quantizer
(MGLVQ) [19]. The results achieved for 10 runs with random
50% : 50%-splits are given in Tab.II. For the MGLVQ only one
prototype per class was used. Further, we trained a MGLVQ
using a linear combination dλ (x, y) =

∑
j λjdj (x, y) of

all remaining dissimilarities as dissimilarity measure where
the coefficients λj ≥ 0 were determined by (stochastic)
gradient descent learning of the combined measure in MGLVQ
according to [20] and normalized such that

∑
j λj = 1. The

resulting combined dissimilarity dλ (x, y) was also applied
for the k-NN. The results are depicted in Tab.II. We can
see that the linear combination of the remaining different
dissimilarities leads to an improvement of the classification

accuracy. A linear combination of all dissimilarities does not
yield a further improvement as we learn from Tab.II. Thus, the
preselection of dissimilarities using the ARE-measure delivers
a set of dissimilarities with different characteristics to be
applied for best classification performance.

B. Investigation of a Parametrized Dissimilarity for the Anal-
ysis of Salmonella Serovars Images

The set of Laser-Diffuse-Light-Images (LDL-images) of
Salmonella serovars colonies was This dataset was already in-
vestigated and described in detail in [19]. In particular, the set
provides images from three salmonella types Salmonella Bran-
denburg (SB), Salmonella Enteritidis (SE), and Salmonella
Typhimurium (ST). The task is to distinguish serovars based
on the structure of the colonies, see Fig.5.

Figure 5. LDL-images of bacteria colonies of Salmonella serovars:
Salmonella Brandenburg, Salmonella Enteritidis, and Salmonella Thy-
phimurium (from left to right).

The raw image data of the dataset were manually centered.
After normalization and calibration the gray-scale-images are
of size 128 × 128, which are taken as matrices. Overall, the
dataset consists of 65 SB-samples, 48 SE-samples and 50 ST-
samples. Here we used the images as grey-scale images, which
are compared using the γ-divergence

dγ (x, y) =

log

(
(
∑n
i=1[x]

γ+1
i )(

∑n
i=1[y]

γ+1
i )

γ∑n
i=1[x]i[y]

γ
i

)
γ (γ + 1)

(9)

with the parameter γ ≥ 0 [21], [7]. In the limit γ ↘ 0
the γ-divergence becomes the Kullback-Leibler-divergence
whereas for γ = 1 the Cauchy-Schwarz-divergence is obtained
[5]. Moreover, the γ-divergence is not symmetric. In the
experiment we varied the γ-parameter between 1 and 5 with
∆γ = 0.1. The resulting ARE-matrix is visualized in Fig.6.
We can detect in this visualization several blocks indicating
similar behavior for the respective γ-divergences as dissim-
ilarity measure. Therefore we selected for the classification
task a representative γ-value for each block to be used for γ-
divergences and obtain 9 different γ values instead of 41. As
an additional dissimilarity we also used the Euclidean distance
dE as reference. Again we applied a MGLVQ and a k-NN for
classification learning regarding each dissimilarity. As before,
we also learned a linear combination dλ of all 9 divergences
and dE by means of stochastic gradient descent optimization
in MGLVQ. The results are depicted in Tab.III. Here the k-
NN can not benefit from the linear combination of the γ-
divergences whereas MGLVQ again performs better when the
linear combination of the divergences is applied.



Figure 6. Visualization of the k-ARE measure matrix (k = 1) for different
γ-divergences of the Salmonella dataset. It is similar to the class dependent
k-ARE measure.

k-NN stdv MGLVQ stdv λj

d1 = dE 76.5 ±4.0 83.3 ±3.4 0.014
d2 = dγ=1 76.5 ±4.0 83.6 ±3.3 0.186
d3 = dγ=1.25 76.4 ±3.8 82.5 ±5.2 0.016
d4 = dγ=1.5 76.3 ±4.1 82.3 ±5.3 0.017
d5 = dγ=1.75 76.2 ±4.2 83.4 ±5.3 0.017
d6 = dγ=2.0 76.5 ±4.2 83.1 ±2.4 0.079
d7 = dγ=3.0 77.0 ±4.3 82.9 ±5.3 0.139
d8 = dγ=3.5 77.1 ±4.3 83.6 ±3.2 0.154
d9 = dγ=4.5 77.1 ±4.3 81.2 ±5.9 0.378

dλ 76.5 ±4.0 86.0 ±2.7
Table III

SALMONELLA DATASET: CLASSIFICATION ACCURACIES IN % OBTAINED
BY k-NN WITH k = 3 AND MGLVQ FOR THE USED DISSIMILARITIES AS
WELL AS FOR THE LINEAR COMBINATION dλ (x, y) =

∑
j λjdj (x, y) OF

ALL DISSIMILARITIES.

IV. CONCLUSIONS

In this paper we introduced a measure to compare (dis-)
similarities regarding their topological properties for a given
dataset. This allows to identify relevant dissimilarity measures
for classification and cluster learning algorithms providing
different information. Thus, time consuming learning runs with
different dissimilarity measures can be avoided in advance.
The approach is based on the definition of rank equivalence
of dissimilarities. This rank equivalence can be seen as an
degree of equivalence of the generated topological structures
in the data by means of the compared dissimilarities.
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