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Strategy Competition Dynamics of Multi-Agent
Systems in the Framework of Evolutionary

Game Theory
Jianlei Zhang , Member, IEEE, and Ming Cao, Senior Member, IEEE

Abstract—There is the recent boom in investigating the con-1

trol of evolutionary games in multi-agent systems, where personal2

interests and collective interests often conflict. Using evolution-3

ary game theory to study the behaviors of multi-agent systems4

yields an interdisciplinary topic which has received an increasing5

amount of attention. Findings in real-world multi-agent systems6

show that individuals have multiple choices, and this diversity7

shapes the emergence and transmission of strategy, disease, inno-8

vation, and opinion in various social populations. In this sense,9

the simplified theoretical models in previous studies need to10

be enriched, though the difficulty of theoretical analysis may11

increase correspondingly. Here, our objective is to theoretically12

establish a scenario of four strategies, including competition13

among the cooperatives, defection with probabilistic punishment,14

speculation insured by some policy, and loner. And the possible15

results of strategy evolution are analyzed in detail. Depending on16

the initial condition, the state converges either to a domination17

of cooperators, or to a rock-scissors-paper type heteroclinic cycle18

of three strategies.19

Index Terms—Game theory, multi-agent system, evolution20

dynamics.21

I. INTRODUCTION22

THERE is burgeoning study in the networked systems23

and control theory in applications ranging from dis-24

tributed robotics to epidemic control and decision making of25

humans [1]–[3]. When the agents have competing objectives,26

as is often the case, each agent must consider the actions of her27

competitors; in such cases single-objective optimization meth-28

ods fail. Especially, situations in which the private interest can29

be at odds with the public interest constitute an important class30

of societal problems. Evolutionary game theory is an interdis-31

ciplinary mathematical tool which seems to be able to embody32

several relevant features of the problem and, as such, is used33
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in much cooperation-oriented research. In particular, the oft- 34

cited public goods game [4]–[7] is a paradigm example for 35

investigating the emergence of cooperation in spite of the fact 36

that self-interest seems to dictate defective behavior. 37

As a cross-cutting topic, many solutions for this multi- 38

agent cooperative dilemma in multi-agent systems have been 39

discussed [8], [9]. The theory of kin selection focuses on 40

cooperation among individuals that are genetically closely 41

related, whereas theories of direct reciprocity focus on the 42

selfish incentives for cooperation in bilateral long-term inter- 43

actions [10]–[13]. The theories of indirect reciprocity and 44

costly signalling indicate how cooperation in larger groups can 45

emerge when the cooperators can build a reputation [14], [15]. 46

Current research has also highlighted two factors boosting 47

cooperation in public goods interactions, namely, punishment 48

of defectors [16], [17] and the option to abstain from the joint 49

enterprise. Voluntary participation [18] allows individuals to 50

adopt a risk-aversion strategy, termed loner. A loner refuses 51

to participate in unpromising public enterprises and instead 52

relies on a small but fixed payoff. 53

For the multi-agent systems, the individual heterogeneity 54

and biological or social diversity are also well-known phe- 55

nomena in nature [19], [20]. It is intriguing to investigate 56

whether and how biodiversity affects the emergence and trans- 57

mission of strategy, disease, innovation, opinion and so on. 58

The potential difficulties brought by individual heterogene- 59

ity in mathematical modeling, raise challenges for existing 60

theoretical models which only consider relatively simple (in 61

strategy types, decision-making modes, etc) agents in games. 62

However, this is an unavoidable direction and many more stud- 63

ies concerning with the individual heterogeneity or diversity, 64

in the framework evolutionary game theory, are expected to 65

appear in the near future. Only in this way could we gain more 66

insight into a series of perplexing puzzles about cooperative 67

phenomena in the multi-agent systems. 68

In this line of research, based on the punishment in the strat- 69

egy competition [21], [22], our previous work [23] goes a step 70

further by proposing another behavior type named as specula- 71

tion. Results indicate scenarios where speculation either leads 72

to the reduction of the basin of attraction of the cooperative 73

equilibrium or even the loss of stability of this equilibrium, 74

if the costs of the insurance are lower than the expected fines 75

faced by a defector. 76

Further, agents often have multiple choices in decision mak- 77

ing due to the individual personality, especially when facing 78

the potential punishment if defecting. For example, resolute 79

defectors will persist in their defection strategy, though tak- 80

ing the risk of being punished with a probability. Speculators 81

incline to buy an insurance policy covering the costs of 82

punishment when caught defecting. While timid loners will 83
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conservatively obtain an autarkic income independent of the84

other players’ decision. These mentioned choices can better85

represent the possible attempts to raise money for public goods86

in complicated real-life situations. With this formulation, as an87

extension of our previous work proposing speculation [23], the88

fourth strategy (i.e., loner, a player can refuse to participate89

and get some small but fixed income) is also provided for the90

players. As mentioned, it is based on the assumption that play-91

ers can voluntarily decide whether to participate in the joint92

game or not.93

So altogether we consider four behavior types, which enrich94

the model and meanwhile raise the difficulty of theoretical95

analysis. (a) The cooperators join the group and to contribute96

their effort. (b) The defectors join, but do not contribute; more-97

over, defectors are caught with a certain probability and a fine98

is imposed on them when caught. Here we are less interested99

in the specific establishment of an effective system of pun-100

ishment, but rather in the two additional options (speculation101

and loner) found in several systems. To be more specific,102

we consider the public goods game with an external punish-103

ment system as indicated above. (c) The speculators purchase104

an insurance policy covering the costs of punishment when105

caught defecting. It means that by paying a fixed cost for106

their insurance policy, speculators can defect without paying107

any fine from punishment. (d) The loners are unwilling to join108

the game, but prefer to rely on a small but fixed payoff. By109

means of a theoretical approach, we investigate the joint evo-110

lution of multiple strategies and the stability of the evolving111

system.112

II. PROBLEM FORMULATION113

In a typical public goods game (PGG) played in interaction114

groups of size N, each player receives an endowment c and115

independently decides how much of it to be contributed to a116

public goods system. Then the collected sum is multiplied by117

an amplification factor r (1 < r < N) and is redistributed118

to the group members, irrespective of her strategy. The max-119

imum total benefit will be achieved if all players contribute120

maximally. In this case each player receives rc, thus the final121

payoff is (r − 1)c. Players are faced with the temptation of122

taking advantage of the public goods without contributing. In123

other words, any individual investment is a loss for the player124

because only a portion r/N < 1 will be repaid. Consequently,125

rational players invest nothing-hence a collective dilemma126

occurs.127

This brief is based on the PGG played in interaction groups128

of size N, consisting of by cooperators, defectors, speculators,129

and loners. To be precise, each participant (except loners) gains130

an equal benefit rcxc (c > 0) which is proportional to the131

fraction of cooperators (xc, 0 ≤ xc ≤ 1) among the players.132

Cooperators pay a fixed cost c to the public goods. Defectors133

contribute nothing, but may be caught and fined by α (α > 0).134

Speculators neither contribute to common goods nor pay a135

fine when caught, instead they pay an amount λ (λ > 0) to136

the insurance policy. Loners obtain a fixed pay-off σ (0 < σ )137

from a solitary pursuit without participating and contributing.138

Assuming for theoretical analysis, from time to time, sam-139

ple groups of N such players are chosen randomly from a140

very large, well-mixed system. Notably, the probability that141

two players in large populations ever encounter again can be142

neglected.143

Within such a group, if Nc (0 ≤ Nc ≤ N) denotes the144

number of cooperators and Nl (0 ≤ Nl ≤ N) is the number of145

loners among the public goods players, the net payoffs of the146

four strategies are respectively given by 147

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pc = rcNc
N−Nl

− c

Pd = rcNc
N−Nl

− α

Ps = rcNc
N−Nl

− λ

Pl = σ.

(1) 148

In this game, each unit of investment is multiplied by r (0 < 149

r < N) and the product is distributed among all participants 150

(except loners) irrespective of their strategies. The first term 151

in the expression represents the benefit that the agent obtains 152

from the public goods, while the second term denotes cost. 153

We first derive the probability that n of the N sampled indi- 154

viduals are actually willing to join the public goods game. In 155

the case n = 1 (no co-player shows up) we assume that the 156

player has no other option than to play as a loner, and obtains 157

payoff σ . This happens with probability xN−1
l . Here, xl is the 158

fraction of loners. For a given player (C, D or S) willing to 159

join the public goods game, the probability of finding, among 160

the N −1 other players in the sample, n−1 co-players joining 161

the group (n > 1), is given by 162

(
N − 1

n − 1

)

(1 − xl)
n−1(xl)

N−n. (2) 163

The probability that m of these players are cooperators is 164

(
n − 1

m

)

(
xc

xc + xd + xs
)m(

xd + xs

xc + xd + xs
)n−1−m. (3) 165

where xc, xd, xs respectively denote the fractions of coopera- 166

tors, defectors and speculators in the population. 167

For simplicity and without loss of generality, we set the cost 168

c of cooperation equal to 1. In the above case, the payoff for 169

a defector is rm/n−α, while the payoffs for a cooperator and 170

a speculator are respectively specified by r(m + 1)/n − 1 and 171

rm/n − λ. Hence, the expected payoff for a defector in such 172

a group is: 173

(
rm

n
− α)

n−1∑

m=0

(
n − 1

m

)

(
xc

1 − xl
)m(1 − xc

1 − xl
)n−m−1

174

= r

n
· (n − 1)

xc

1 − xl
− α. 175

The payoff of a cooperator in a group of n players is: 176

[
r(m + 1)

n
− 1]

n−1∑

m=0

(
n − 1

m

)

(
xc

1 − xl
)m(1 − xc

1 − xl
)n−m−1

177

= r

n
· (n − 1)

xc

1 − xl
+ r

n
− 1. 178

The payoff of a speculator in a group of n players is: 179

(
rm

s
− λ)

N−1∑

m=0

(
n − 1

m

)

(
xc

1 − xl
)m(1 − xc

1 − xl
)n−m−1

180

= r

n
· (n − 1)

xc

1 − xl
− λ. 181

The payoff of a loner is the constant value of σ . 182

Then, the expected payoff for a defector in the population is, 183

Pd = σxN−1
l +

N∑

n=2

[
r

n
· (n − 1)

xc

1 − xl
− α]

(
N − 1

n − 1

)

184

(1 − xl)
n−1(xl)

N−n
185

= σxN−1
l + rxc

1 − xl
[1 − 1 − xN

l

N(1 − xl)
] − α(1 − xN−1

l ). (4) 186
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Fig. 1. The evolution dynamics results of T = (C, D, L), where in the absence
of speculation. (1.1): r < 2−2α. (1.2): r > 2−2α; and (1.3): 1−r/N−α < 0.
Parameters: N = 5, σ = 0.3, and r = 1.6, α = 0.1 for (1.1); r = 3, α = 0.1
for (1.2); r = 3, α = 0.5 for (1.3). Open dots are unstable equilibrium points
and closed dots are stable equilibrium points. Three corners represent a rock-
scissors-paper type heteroclinic cycle if 1 − r/N − α > 0 (cases 1.1 and 1.2)
while full-C is a global attractor if 1 − r/N − α < 0 (case 1.3).

Fig. 2. The evolution dynamics results of T = (C, D, S), where in the
absence of defection. We consider six cases, which are discussed in cases 2.1
till 2.3 in the upper panel of Fig. 2. Fig. 2 focuses on the situation λ−α > 0
implying that the fine for defectors is higher than the costs of cooperation.
Lower panels of Fig. 2 considers the opposite case λ−α < 0, where defection
is the dominating strategy. Results show that there is always a global attractor
in the system, and the outcome of the game dynamics depends on model
parameters. Parameters: N = 5, r = 3, σ = 0.3, and α = 0.1, λ = 0.2 for
(2.1); α = 0.1, λ = 0.8 for (2.2); α = 0.5, λ = 0.8 for (2.3); α = 0.1, λ = 0.2
for (2.4); α = 0.8, λ = 0.5 for (2.5); α = 0.8, λ = 0.1 for (2.6).

In the continuous time model, the evolution of the fractions187

of the four strategies proceeds according to188

ẋi = xi(Pi − P̄), (5)189

where i can be c, d, s, l, Pi is the payoff of strategy i, and190

P̄ = xcPc + xdPd + xsPs + xlσ .191

III. THEORETICAL ANALYSIS192

We firstly focus on the replicator dynamics starting from193

a three-strategy state in the population, then we pay atten-194

tion to analyzing the output when all the four strategies195

initially exist in the population. For the replicator dynamics196

of three-strategy evolution, we comprehensively consider four197

scenarios depicted in Figs. 1-4 as follows. The advantage of198

one strategy over another depends on the payoff difference199

between them, hence200

Pd − Pc =
N∑

n=2

[1 − r

n
− α]

(
N − 1

n − 1

)

(1 − xl)
n−1(xl)

N−n
201

= 1 − α + (r − 1 + α)xN−1
l − r

N

1 − xN
l

1 − xl
, (6)202

Pd − Ps =
N∑

n=2

[λ − α]

(
N − 1

n − 1

)

(1 − xl)
n−1(xl)

N−n
203

= (λ − α)(1 − xN−1
l ), (7)204

Fig. 3. The evolution dynamics results of T = (C, S, L), where in the absence
of speculation. (3.1): r < 2−2λ. (3.2): r > 2−2λ; and (3.3): 1−r/N−λ < 0.
Parameters: N = 5, σ = 0.3, and r = 1.6, λ = 0.1 for (3.1); r = 3, λ = 0.1
for (3.2); r = 3, λ = 0.5 for (3.3). Three corners here represent a rock-
scissors-paper type heteroclinic cycle if 1 − r/N − λ > 0 (cases 3.1 and 3.2)
while pure cooperation is a global attractor if 1 − r/N − λ < 0 (case 3.3).

Fig. 4. The evolution dynamics results of T = (D, L, S) where in the absence
of cooperation.(4.1) resulting game dynamics in the absence of speculation,
where pure loners is the only global attractor in the system. Parameters: N = 5,
r = 3, σ = 0.3, and α = 0.4, λ = 0.1 for (3); α = 0.4, λ = 0.1 for (4.1);
α = 0.1, λ = 0.4 for (4.2).

Ps − Pc = 1 − λ + (r − 1 + λ)xN−1
l − r

N

1 − xN
l

1 − xl
. (8) 205

In the above calculations, N > 1, 1 < r < N and α > 0. The 206

sign of Pi − Pj in fact determines whether it pays to switch 207

from cooperation to defection or vice versa, Pi −Pj = 0 being 208

the equilibrium condition, where i, j can be strategy C, D, S, 209

and L. 210

We now proceed to the study of evolutionary dynamics 211

when λ �= α where four strategies coexist in the population; 212

the point in the phase space corresponding to such a state is, 213

referred to as an interior point. We make the following three 214

assumptions and want to show the results that at least one 215

strategy will become extinct with the evolution of the system 216

initialized from an interior point. 217

Theorem 1: If λ �= α, at least one strategy will become 218

extinct with the evolution of the system initialized from an 219

interior point. Here, an interior point means that the fraction 220

of every strategy is larger than zero. 221

Proof: We now analyze the system in different situations. 222

(1) When λ �= α, supposing λ > α (i.e., Pd > Ps), when 223

xl �= 0. We suppose that there is a closed set, meaning that the 224

subsequent evolving state of each initial state in this set also 225

belongs to this set. So xc > 0, xd > 0, xs > 0 and xl > 0 in 226

this closed set. 227

(1.1) We first take one point (x∗
c , x∗

d, x∗
s , x∗

l ) in this closed 228

set such that x∗
c > 0, x∗

d > 0, x∗
s > 0, x∗

c > 0, and ẋ∗
c = ẋ∗

d = 229

ẋ∗
s = ẋ∗

l = 0, thus 230

{
ẋ∗

d = x∗
d(p

∗
d − p̄∗)

ẋ∗
s = x∗

s (p
∗
s − p̄∗). (9) 231

Herein, the result ẋ∗
d = ẋ∗

s = 0 needs ṗ∗
d = p̄∗ = ṗ∗

s , which 232

contradicts with ṗ∗
d − ṗ∗

s > 0. Therefore we can safely get the 233

conclusion that there is no interior stable point. 234

(1.2) We next assume that the interior domain is a limit 235

cycle. In this case, the four strategy players will gain the 236

same average payoffs driven by the replicator equation, 237
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where p̄c = p̄d = p̄s = p̄l. However, p̄d = p̄s contradicts with238

pd > ps, indicating that the closed set is not a limit cycle.239

(1.3) We then verify whether the interior domain contains240

chaotic solutions, where also xc > 0, xd > 0, xs > 0, xl > 0.241

By introducing the fraction of defections in a population242

consisting of defectors and speculators, f = xd
xd+xs

, thus243

ḟ = (
xd

xd + xs
)′ = ẋdxs − xdẋs

(xd + xs)2
= xdxs(pd − ps)

(xd + xs)2
> 0. (10)244

Then, limt→∞(
xd

xd+xs
) = 1 and xs → 0.245

The above mentioned results suggest that, when λ > α there246

is no such a closed set, in which the evolving state of each247

initial state which consist of these four strategies in this set248

also belongs to this set.249

(2) When λ < α and according to the results in (1), there250

is no internal domain.251

(3) When λ = α and thus pd = ps, the four-strategy system252

was reduced to the simplex T = (C, D, L) or T = (C, S, L).253

We will discuss this situation in the following.254

Summing up the above dynamics, we can safely get the255

following conclusions: λ = α reduce the system to a three-256

strategy game, and λ �= α will lead to the distinction of at257

least one strategy.258

A. Scenario 1: The Corners of the Simplex T = (C, D, L)259

Theorem 2: If r > 2 − 2α holds, there exists a threshold260

value of xl in the interval (0, 1), above which Pd − Pc < 0.261

Proof: Here, we employ the function G(xl) = (1− xl)(Pd −262

Pc) which has the same roots as Pd − Pc. For xl ∈ (0, 1),263

G(xl) = (1 − xl)(Pd − Pc)264

= (1 − r

N
− α) − (1 − α)xl + (r − 1 + α)xN−1

l265

+ (
r

N
+ 1 − α − r)xN

l , (11)266

G′(xl) = (α − 1) + (N − 1)(r − 1 + α)xN−2
l267

+ N(
r

N
+ 1 − α − r)xN−1

l . (12)268

Note that G(1) = G′(1) = 0,269

G′′(1) = (N − 1)(N − 2)(r − 1 + α)xN−3
l270

+ N(N − 1)(
r

N
+ 1 − α − r)xN−2

l , (13)271

G′′(1) = (N − 1)(2 − 2α − r). (14)272

We have273

G(xl) 
 G(1) + G′(1)(z − 1) + 1

2
G′′(1)(z − 1)2

274

= 1

2
(N − 1)(2 − 2α − r)(1 − xl)

2. (15)275

For r > 2 − 2α, limxl→1− G(xl) < 0,276

G′′(xl) = xN−3
l (N − 1)[(N − 2)(r − 1 − α)277

+ xl(r + N − Nα − Nr). (16)278

Since G′′(xl) changes sign at most once in the interval (0, 1),279

we claim that there exists a threshold value of xl in the interval280

(0, 1), above which Pd − Pc < 0.281

From the above analysis, we get282

{
G(xl) = (1 − xl)(Pd − Pc)
G(0) = 1 − r

N − α

G(1) = 0.
(17)283

As illustrated in Fig. 1, the game dynamics takes on 284

three qualitatively different cases, which will be discussed as 285

follows. 286

Case 1.1 (1 − r/N − α > 0, i.e., G(0) > 0): 287

lim
xl→1− G(xl) = 1

2
(N − 1)(2 − 2α − r)(1 − xl)

2. (18) 288

When r < 2 − 2α, G(xl) > 0, xl ∈ (0, 1), the three cor- 289

ners represent a rock-scissors-paper type heteroclinic cycle, 290

and there is no stable equilibrium of the game dynamics in 291

this case. 292

Case 1.2 (1 − r/N − α > 0, r > 2 − 2α, G(1−) > 0): 293

the three corners represent a heteroclinic cycle. It is a center 294

surrounded by closed orbits. Being similar to case 1.1, there 295

is no stable equilibrium of the game dynamics in this case. 296

Case 1.3 (1 − r/N − α < 0, i.e., r > 2 − 2α): In this case, 297

for all xs, pure speculation (S) and pure defection (D) are both 298

unstable equilibria of the game dynamics. The cooperation 299

equilibrium (C) is stable and in fact a global attractor. 300

Summarizing the three cases in this scenario corresponding 301

to the simplex T = (C, D, L), we can conclude that the three 302

corners represent a rock-scissors-paper type heteroclinic cycle 303

if 1− r/N −α > 0 (cases 1.1 and 1.2) while pure cooperation 304

is a global attractor if 1 − r/N − α < 0 (case 1.3). 305

Proposition 1: When T = (C, D, L), under the replicator 306

dynamics of (6.5), it holds that 307

if 1 − r/N − α > 0 and r < 2 − 2α, there is no inner fixed 308

point in T; 309

if 1 − r/N −α > 0 and r > 2 − 2α, there is one inner fixed 310

point in T; 311

if 1 − r/N − α < 0, full-C is only stable fixed point in T . 312

Proof: When r > 2−2α, there exists a fixed point xl ∈ (0, 1) 313

that Pd = Pc. Since we can get the only xc and xd = 1−xl−xc, 314

hence there is one inner fixed point in T . If 1 − r/N − α > 0 315

and r < 2 − 2α, Pd > Pc for all xl ∈ (0, 1), so there is no 316

fixed point in T . If 1 − r/N − α < 0, we have r > 2 − 2α, 317

(N > 2). Then it must be true that Pc > Pd, so full-C is only 318

stable fixed point in T . 319

B. Scenario 2: The Corners of the Simplex T = (C, D, S) 320

⎧
⎨

⎩

Pd − Pc = 1 − α − r
N

Pd − Ps = λ − α
Pc − Ps = λ + r

N − 1.
(19) 321

Case 2.1 (λ−α > 0, 1−α−r/N > 0 and 1−λ−r/N > 0): 322

Here, pure cooperation and pure speculation are both unstable 323

equilibria of the game dynamics. Full defection equilibrium 324

(D) is stable and in fact a global attractor. 325

Case 2.2 (λ−α > 0, 1−α−r/N > 0 and 1−λ−r/N < 0): 326

In this case, pure cooperation and pure speculation are both 327

unstable equilibria of the game dynamics. Pure defection equi- 328

librium (D) is stable and a global attractor. The difference 329

between case 2.1 and case 2.2 is that when there are only 330

cooperators and speculators in the population, pure coopera- 331

tion is the attractor in case 2.2 while pure speculation is the 332

attractor in case 2.1. 333

Case 2.3 (λ−α > 0, 1−α−r/N < 0, and 1−λ−r/N < 0): 334

Herein, pure defection and pure speculation are both unstable 335

equilibria of the game dynamics. Pure cooperation is a stable 336

and global attractor. 337

Case 2.4 (λ−α < 0, 1−α−r/N > 0, and 1−λ−r/N > 0): 338

In this case, pure speculation is the only stable and global 339

attractor. 340
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Case 2.5 (λ−α < 0, 1−α−r/N < 0, and 1−λ−r/N < 0):341

Pure cooperation is thus the only stable and global attractor.342

Case 2.6 (λ−α < 0, 1−α−r/N < 0, and 1−λ−r/N > 0):343

Pure speculation is the only stable and global attractor. The344

difference between case 2.6 and 2.4 is that when the population345

consists of only cooperators and defectors, pure cooperation346

is the attractor in case 2.6 while pure defection is the attractor347

in case 2.4.348

Proposition 2: When T = (C, D, S), under the adopted349

replicator dynamics, it holds that350

if λ − α > 0 and 1 − α − r/N > 0: full-D is only stable351

fixed point in T;352

if 1 − α − r/N < 0 and 1 − λ − r/N < 0: full-C is only353

stable fixed point in T;354

if λ − α < 0 and 1 − λ − r/N >: full-S is only stable fixed355

point in T;356

Proof: When xl = 0, if 1 − α − r/N > 0, Pd > Pc; if357

λ − α > 0, Pd > Ps, therefore if xd > 0, Pd > P̄. That means358

full-D (xd = 1) is only stable fixed point in T . When xl = 0,359

if 1 − α − r/N <, Pc > Pd; if 1 − λ − r/N < 0, Pc > Ps,360

therefore if xc > 0, Pc > P̄. That means full-C (xc = 1) is361

only stable fixed point in T . When xl = 0, if λ − α < 0,362

Ps > Pd; if 1 − λ − r/N > 0, Ps > Pc, therefore if xs > 0,363

Ps > P̄. That means full-S (xs = 1) is only stable fixed point364

in T .365

C. Scenario 3: The Corners of the Simplex T = (C, L, S)366

It is easily observed that xl = 0 leads to Pc−Ps = λ−1 < 0.367

Thus, the three corners represent a rock-scissors-paper type368

heteroclinic cycle. There is no stable equilibrium in this case.369

Proposition 3: When T = (C, S, L), under the adopted370

replicator dynamics, it holds that if 1 − r/N − λ > 0 and371

r < 2−2λ, there is no inner fixed point in T; if 1−r/N−λ > 0372

and r > 2 − 2λ, there is one inner fixed point in T; if373

1 − r/N − λ < 0, full C is only stable fixed point in T .374

Proof: By using λ takes the place of α, we can get the375

similar results with proposition 1.3.376

D. Scenario 4: The Corners of the Simplex T = (D, L, S)377

Case 4.1 (λ − α < 0): In this case, pure loners is the only378

stable and in fact the only global attractor.379

Case 4.2 (λ−α > 0): Still, pure loners remains the only sta-380

ble and in fact the only global attractor. The difference between381

case 4.1 and 4.2 is that when there are only speculators and382

defectors in the population, pure speculation is the attractor in383

case 4.1 while pure defection is the attractor in case 4.2.384

Summarizing the two cases in scenario 4 corresponding to385

the simplex T = (C, D, S), we can conclude that pure-L is the386

only global attractor in the system.387

Proposition 4: When T = (S, D, L), under the replicator388

dynamics of (6.5), it holds that full-L is only stable fixed point389

in T .390

Proof: When xc = 0, Pl −Pd = (α+σ)(1−NN−1
l ) > 0 and391

Pl − Ps = (λ + σ)(1 − NN−1
l ) > 0, therefore full-L (xl = 1) is392

only stable fixed point in T .393

IV. CONCLUSION394

How to effectively coordinate the cooperation between395

agents with conflicts of interest is a hot topic, and its solu-396

tions can be applied to a wide range of applications. For such a397

biology-inspired topic, only when individual heterogeneity and398

diversity are taken into account in theoretical modeling can the399

core of the problem be better addressed. In the face of possi- 400

ble punishment and loss of benefits, the individual’s strategy 401

choices show diversity. Here, we extend the theoretical anal- 402

ysis to a model in which four strategies coexist, and they are 403

respectively derived from actual behaviors in real world. A the- 404

oretical explanation about the evolutionary fate of the system 405

is provided. An interesting future direction would be to address 406

whether the presence of more strategy options altogether affect 407

the dynamics of behaviors in multi-agent systems. 408
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