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Detecting chirality in two-terminal electronic devices

Xu Yang,1, ∗ Caspar H. van der Wal,1 and Bart J. van Wees1

1Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
(Dated: December 24, 2019)

The chirality-induced spin selectivity (CISS) effect concerns the interconversion of electronic
charge and spin currents. In two-terminal (2T) devices containing a chiral (molecular) component
and a ferromagnet, CISS has been detected as magnetoresistance (MR) signals, which, however, is
forbidden by Onsager reciprocity in the linear response regime. Here, by unifying the description for
coupled charge and spin transport in magnetic and chiral spin–charge converters, we uncover an ele-
mentary mechanism that breaks reciprocity and generates MR for nonlinear response. It requires (a)
energy-dependent transport, and (b) energy relaxation in the device. The sign of the MR depends
on the chirality, the charge carrier type, and the bias direction. Additionally, our formalism reveals
how CISS can be detected in the linear response regime in magnet-free 2T devices, either by forming
a chirality-based spin-valve using two or more chiral components, or by Hanle spin precession in
devices with a single chiral component.

Chirality is discovered to induce surprisingly efficient
interconversion between electronic charge and collinear
spin currents, and the effect is termed chirality-induced
spin selectivity (CISS) [1, 2]. It has great potential for fu-
ture applications in nano-electronics and spintronics [3],
and benefits chemistry by enabling an electronic method
to distinguish and even separate chiral enantiomers [4].
One would naturally assume that this spin-polarizing ef-
fect can be electrically measured by connecting a fer-
romagnet (FM) to a chiral component (single molecule,
assembly of molecules, or solid-state system) in a two-
terminal (2T) geometry, such that a charge current in-
duces a spin accumulation by flowing through the chiral
component, which is subsequently detected by the FM as
a charge voltage. In analogy to a conventional spin valve,
this charge voltage shall change upon reversing the FM
magnetization direction, producing a magnetoresistance
(MR) signal. Such a (bias-dependent) MR has indeed
been reported and is widely used as a proof of CISS [5–9].
However, according to Onsager reciprocity, which arises
from fundamental microscopic reversibility, a 2T MR is
forbidden in the linear response regime, because chirality
is invariant under time reversal [10–12].

Theories have mainly focused on understanding how
CISS can be generated in a chiral component [13–18], but
have overlooked whether it can be detected using a 2T
electronic device. The restriction imposed by reciprocity
was only pointed out very recently [19, 20], and therefore
it requires theories beyond the linear response regime for
possible explanations of the experimentally observed 2T
MR signals.

Here we uncover that a MR can arise from the breaking
of Onsager reciprocity in the nonlinear regime. When the
conditions for generating CISS in the chiral component
are fulfilled, the emergence of the 2T MR requires two
key ingredients: (a) energy-dependent electron transport
due to, for instance, tunneling or thermally activated con-
duction through molecular orbitals; and (b) energy relax-
ation due to inelastic processes. Note that there exists an

interesting parallel in chemistry, which enables absolute
asymmetric synthesis under the lone influence of a mag-
netic field or magnetization in the nonlinear regime (de-
tails see Supplementary Information A [SI.A]) [4, 21, 22].

Below, before demonstrating the emergence of MR in
the nonlinear regime in 2T CISS geometries, we will first
introduce a matrix formalism unifying the description of
a chiral component and a FM tunnel junction/interface
(FMTJ) as spin–charge converters. Afterwards, we will
review several generic 2T geometries and reveal a chiral
spin valve built without magnetic materials.

A UNIFIED FORMALISM FOR COUPLED
CHARGE AND SPIN TRANSPORT

In the presence of spin–charge conversion, either due to
time-reversal invariant spin-orbit effects such as CISS, or
by breaking the time-reversal symmetry such as in a FM,
the description of a generic 2T device must include not
only the charge voltages as driving forces for charge and
spin transport, as in the (spin-resolved) Landauer for-
mula, but also the build-up of spin accumulations and the
resulting charge and spin currents (details see SI.B) [23].
We take these into account using a transport matrix for-
malism.

Spin–charge conversion in a chiral component

CISS describes that a charge current through a chi-
ral component produces collinear spin currents, as a re-
sult of spin-orbit interaction and the absence of space-
inversion symmetry. Further symmetry considerations
require that the sign of the spin currents must depend
on the direction of the charge current and the (sign of)
chirality. Note that the generation of such an effect re-
quires a nonunitary transport mechanism inside the chi-
ral component [24, 25], which we assume to be present
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(details see SI.C). In an ideal case, as illustrated in Fig. 1,
this directional, spin-dependent electron transport effec-
tively allows only one spin orientation, say, parallel to
the electron momentum, to transmit through the chiral
component, and reflects and spin-flips the other [19]. The
spin-flip reflection prevents a net spin current in and out
of electrodes at thermodynamic equilibrium [26].

𝜇𝐿→

𝜇𝐿←

𝜇𝑅→

𝜇𝑅←

𝐼

−𝐼𝑠𝐿 𝐼𝑠𝑅

𝜇𝐿→

𝜇𝐿←

𝜇𝑅→

𝜇𝑅←

𝐼
−𝐼𝑠𝐿 𝐼𝑠𝑅

𝜇𝐿→

𝜇𝐿←

𝜇𝑅→

𝜇𝑅←

FIG. 1. Illustration of CISS (ideal case). The directional elec-
tron transmission is spin-selective, and the unfavored spin is
flipped and reflected. The chiral component is indicated by
the blue helix, and is assumed to favor the transmission of
electrons with spin parallel to momentum. The electrons on
both sides (L and R) of the chiral component are labeled
with their spin-specific (→ or ←) electrochemical potentials
µL(R)→(←). At thermodynamic equilibrium, any net charge
or spin current in and out of electrodes is forbidden, but when
biased, the chiral structure supports a charge current I and
spin currents on both sides IsL and IsR. The positive currents
are defined as right-to-left, i.e. when the (spin-polarized) elec-
trons flow from left to right.

We first describe the directional electron transmission
(T) and reflection (R) in a generalized chiral component
using spin-space matrices introduced in Ref. 19. For
right-moving (subscript B) electrons coming from the
left-hand side of the component

TB =

(
t→→ t←→
t→← t←←

)
, RB =

(
r→→ r←→
r→← r←←

)
, (1)

where the matrix elements are probabilities of an elec-
tron being transmitted (t) or reflected (r) from an initial
spin state (first subscript) to a final spin state (second
subscript). For left-moving electrons, the corresponding
matrices are the time-reversed forms of the above (details
see SI.D).

We extend the above coupled charge and spin trans-
port by converting the spin-space matrices to transport
matrices that link the thermodynamic drives and re-
sponses in terms of charge and spin. We define (charge)
electrochemical potential µ = (µ→ + µ←)/2 and spin ac-
cumulation µs = (µ→−µ←)/2, as well as charge current
I = I→+I← and spin current Is = I→−I←. A subscript
R or L is added when describing the quantities on a spe-
cific side of the component. With these, for a generalized
case of Fig. 1, we derive (details see SI.D)




I
−IsL
IsR


 = −Ne

h




t s s
Prr γr γt
Ptt γt γr





µL − µR
µsL
µsR


 , (2)

where N is the number of (spin-degenerate) channels, e is
elemental charge (positive value), and h is the Planck’s
constant. We name the 3 × 3 matrix the charge–spin
transport matrix T . All its elements are linear combina-
tions of the spin-space T and R matrix elements, and rep-
resent key transport properties of the chiral component.
For example, t is the (averaged) transmission probability,
r is the reflection probability (note that t+r = 2 because
we have treated the two spins separately), Pt and Pr are
the CISS-induced spin polarizations of the transmitted
and reflected electrons, respectively. An electrochemical
potential difference µL − µR = −eV is provided by an
bias voltage V .

This matrix equation fully describes the coupled charge
and collinear spin transport through a (nonmagnetic) chi-
ral component, which is subject to Onsager reciprocity in
the linear response regime. This requires Tij(H,M) =
Tji(−H,−M), where H is the magnetic field and M is
the magnetization [10]. This then gives Ptt = Prr = s.
In later discussions we will connect the R-side of the chi-
ral component to an electrode (reservoir), where µsR = 0
and IsR is irrelevant. The T matrix then reduces to a
2× 2 form (details see SI.D)

(
I
−IsL

)
= −Ne

h

(
t Ptt
Ptt γr

)(
µL − µR
µsL

)
. (3)

Note that t and γr do not depend on the (sign of) chiral-
ity, while Pt changes sign when the chirality is reversed.

Spin–charge conversion in a FMTJ

To calculate the coupled charge and spin transport in
a generic 2T circuit where an (achiral) ferromagnet is
also present, we need to derive a similar T matrix for a
FMTJ. A FM breaks time-reversal symmetry and pro-
vides a spin-polarization PFM to any outflowing charge
current. Based on this, we obtain for the R-side of the
FMTJ (details see SI.E)

(
I
IsR

)
= −N

′e
h

(
T −PFMT

PFMT −T

)(
µL − µR
µsR

)
, (4)

where N ′ is the number of (spin-degenerate) channels,
and T is the electron transmission probability accounting
for both spins.

The matrix T here also satisfies Tij(H,M) =
Tji(−H,−M), where a reversal of M corresponds to
a sign change of PFM .
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ORIGIN OF MR – ENERGY-DEPENDENT
TRANSPORT AND ENERGY RELAXATION

No MR in the linear response regime

We model a generic 2T MR measurement geometry
using Fig. 2(a). A FM and a chiral component are con-
nected in series between two spin-unpolarized electrodes
(L and R), and the difference between their electrochem-
ical potentials µL − µR = −eV drives charge and spin
transport. We introduce a node between the FM and
the chiral component, which is characterized by an elec-
trochemical potential µ and a spin accumulation µs. It
preserves the spin but relaxes the energy of electrons to a
Fermi-Dirac distribution due to inelastic processes (e.g.
electron-phonon interaction).

By adapting Eqn. 3 and Eqn. 4 in accordance with the
notations in Fig. 2(a), and applying continuity condition
in the node for both the charge and spin currents, we
derive the 2T conductance for the linear response regime
(details see SI.F)

G2T = G2T

(
P 2
FM , P

2
t

)
, no PFMPt term. (5)

It depends on the polarizations PFM and Pt only to sec-
ond order, and does not depend on their product PFMPt.
Therefore, the 2T conductance remains unchanged when
the sign of either PFM or Pt is reversed by the reversal
of either the FM magnetization direction or the chiral-
ity. This result again confirms the vanishing MR in the
linear response regime, as strictly required by Onsager
reciprocity [19].

This vanishing MR can be understood as a result of
two simultaneous processes. First, by the conventional
description, the charge current through the chiral com-
ponent drives a collinear spin current and creates a spin
accumulation in the node (spin injection by CISS), which
is then detected as a charge voltage by the FM (spin de-
tection by FM). This charge voltage indeed changes upon
the FM magnetization reversal. However, this is always
accompanied by the second process, where it is the FM
that injects a spin current, and the Onsager reciprocal
of CISS detects it as a charge voltage. This voltage also
changes upon the FM magnetization reversal. In the lin-
ear regime, the two processes compensate each other, and
the net result is a zero MR.

Emergence of MR in nonlinear regime

The key to inducing MR is to break the balance be-
tween the two processes, which can be done by using
electrons at different energies for spin injection and spin
detection. This requires the presence of energy relax-
ation inside the device, and it also needs the transport to
be energy-dependent in at least one of the spin–charge
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Bias voltage (V)

FIG. 2. Origin of MR in a generic 2T circuit. (a). A 2T cir-
cuit containing a FM and a chiral component, connected by
a node. The chiral component is assumed to favor the trans-
mission of electrons with spin parallel to momentum. (b),(c).
Schematic energy diagrams of tunneling at the FMTJ under
forward [(b)] and reverse [(c)] biases. The energy-dependent
tunnel transmission T (ε) is sketched in blue, and the tun-
nel current affected by the spin accumulation µs is illustrated
by the color-shaded areas (cyan and orange). (d). Example
I-V curves considering the nonlinear mechanism of (b)-(c),
while keeping the transmission through the chiral component
constant (details see SI.G). Note that positive bias voltage
corresponds to the reverse bias scenario depicted in panel (c).
The MR ratio, defined as (I+ − I−)/(I+ + I−), is plotted in
inset. Here the subscript + or − denotes the corresponding
sign of PFM , with PFM > 0 corresponding to a spin-right po-
larization for the injected electrons. The dashed line marks
zero MR.
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converters. Note that the energy relaxation is crucial
for generating MR, because Onsager reciprocity, which
holds at each energy level, would otherwise prevent a
MR even in the nonlinear regime despite the energy-
dependent transport. We illustrate the emergence of MR
using two types of energy dependence, (a) quantum tun-
neling through the FMTJ, and (b) thermally activated
conduction through molecular orbitals.

The asymmetric spin injection and spin detection in a
FMTJ was previously discussed by Jansen et al. for a FM
coupled to a semiconductor [27], and here we generalize
it for our system. The energy diagrams for this tunneling
process are sketched in Fig. 2(b)-(c) for opposite biases.
The bias opens up an energy window ∆µ = µL − µ,
and the electrons within this energy window contribute
to the total charge current I. The energy distribution
of the tunneling electrons follows the energy dependence
of the tunnel transmission probability T (ε) (blue curve).
Therefore, the electrons that contribute the most to the
tunnel current I are those at the highest available energy,
which are at µL in the FM under forward bias, and are
at the spin-split electrochemical potentials µ± µs in the
node under reverse bias.

The spin injection process concerns the spin current Is,
which is generated by the charge current I through the
FMTJ with spin polarization PFM (we assume no energy
dependence for PFM ). The total charge current consists
of electrons at all available energies and is proportional
to the energy integral of T (ε) over the entire energy win-
dow ∆µ. It is therefore symmetric for opposite biases
(assuming µs � ∆µ). In contrast, the spin detection
process concerns the spin accumulation µs, which is only
relevant to electrons at the highest energy in the node µ
(Fermi level). The transmission probability at this en-
ergy, hence the detected current due to µs, is not sym-
metric for opposite biases and increases monotonically as
the bias becomes more reverse. Effectively, the spin accu-
mulation describes the deficit of one spin and the surplus
of the other (as indicated by the orange- and blue-shaded
areas), and therefore drives an additional charge current
which is proportional to the area difference between the
two color-shaded regions under the T (ε) curve. This area
difference is not symmetric for opposite biases.

The different bias dependences for spin injection and
detection break Onsager reciprocity for nonlinear re-
sponse. This is also shown by the different off-diagonal
terms in the nonlinear transport equation (details see
SI.G)



I

Is


 = −N

′e
h




T |µL
µ −PFMT |ε=µ

PFMT |µL
µ −T |ε=µ





µL − µ

µs


 ,

(6)
where T |µL

µ = [1/(µL − µ)]
∫ µL

µ
T (ε)dε is the averaged

transmission over the energy window ∆µ = µL − µ, and
T |ε=µ is the transmission evaluated at the Fermi level

of the node ε = µ. In the linear response regime, when
µL ≈ µ, this equation returns to Eqn. 4.

The tunnel I-V and the MR due to this mechanism are
illustrated in Fig. 2(d) using realistic circuit parameters
(details see SI.I). The MR ratio reaches nearly 10 % at

(c)

𝜇
𝜇 + 𝜇𝑠

𝜖 = 0

Node Molecule Electrode

𝜇𝑅

LUMO

HOMO

𝜖𝐿𝑈

−𝜖𝐻𝑂

Δ𝜇

2

−
Δ𝜇

2

𝜖
𝐹(𝜖, 𝜇)

𝜇 − 𝜇𝑠

(b)

(a)

LUMO

HOMO

Bias voltage (V)

Bias voltage (V)

FIG. 3. Generating MR by thermally activated conduction
through molecular orbitals. (a). Schematic energy diagram of
resonant transmission through molecular orbitals in a chiral
component (molecule). The LUMO and HOMO levels and
the bias-dependent electrochemical potentials are labeled, and
the energy- and bias-dependent Fermi-Dirac function F (ε, µ)
is sketched in blue. (b)-(c). Example I-V curves and MR
(inset) due to the resonant transmission through the LUMO
[(b)] and the HOMO [(c)], for the same device geometry as in
Fig. 2(a) but with the transmission of the FMTJ set constant.
The chiral molecule is assumed to favor the transmission of
electrons with spin parallel to momentum.
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large biases, but strictly vanishes at zero bias. Notably,
the MR is positive under positive bias voltage (corre-
sponds to reverse bias as in Fig. 2(c)), and it reverses
sign as the bias changes sign.

The non-reciprocal spin injection and detection can
also arise from the nonlinear transport through the chiral
component. In principle, this could also be due to tun-
neling, but we focus here on another aspect, the Fermi-
Dirac distribution of electrons. This is negligible when
the transmission function T (ε) is smooth, as for the case
of tunneling (thus we have assumed zero temperature for
deriving Eqn. 6), but it becomes dominant when electron
(or hole) transmission is only allowed at certain discrete
energy levels or energy bands that are away from Fermi
level, as for the case of conduction through molecular
orbitals or through energy bands in semiconductors. We
illustrate this in Fig. 3(a) considering the resonant trans-
mission through the LUMO (lowest unoccupied molecu-
lar orbital) and the HOMO (highest occupied molecular
orbital) of a chiral molecule (details see SI.H). For spin in-
jection, the generated spin current is proportional to the
total charge current, which depends on the electrochem-
ical potential difference between the node and the right
electrode, and is symmetric for opposite biases. In com-
parison, for spin detection, the spin-split electrochemical
potentials in the node µ±µs induce unequal occupations
of opposite spins at each MO, depending on the MO po-
sition with respect to the node Fermi level µ, and it is not
symmetric for opposite biases. This different bias depen-
dence breaks Onsager reciprocity for nonlinear response,
and gives rise to MR.

We consider the transmission through either only the
LUMO or only the HOMO, and their example I-V curves
and MR ratios are plotted in Fig. 3(b)-(c), respectively
(details see SI.I). The MR ratio is able to reach tens of
percent even at relatively small biases, and changes sign
as the bias reverses. Remarkably, the bias dependence
of the MR is opposite for LUMO and HOMO, implying
that the nature of the charge carrier type, i.e. electrons
or holes, codetermines the sign of the MR. Again, the
MR strictly vanishes as the bias returns to zero (linear
response regime). An overview of the signs of MR is given
in SI.J.

CHIRAL SPIN VALVE

In the linear response regime, the coupled charge and
spin transport at the FMTJ is described by an antisym-
metric matrix (opposite off-diagonal terms), and for a
chiral component the matrix is symmetric. The symme-
tries of these matrices are directly required by Onsager
reciprocity, and have consequences when considering 2T
circuits containing two generic spin–charge converting
components, as illustrated in Fig. 4. As long as one of the
two components is ferromagnetic (antisymmetric matrix)

and the other is not (symmetric matrix), a 2T MR sig-
nal is forbidden in the linear response regime (Fig. 4(a)).
The restriction is however not in place if both matrices
have the same symmetry. An example is the well-known
conventional spin valve, as shown in Fig. 4(b), where two
FMs are connected in series. Both FMs are described
by antisymmetric matrices, and the magnetization rever-
sal of one FM indeed changes the 2T conductance in the
linear response regime.

A less obvious outcome of this symmetry considera-
tion is that a combination of two chiral structures (both
described by symmetric matrices) can also form a spin
valve that operates in the linear response regime, pro-
vided that at least one of them can switch chirality, such
as a molecular rotor [28]. This is illustrated in Fig. 4(c)-
(d), with example I-V curves in Fig. 4(f). The geometry
already produces a nonzero chirality-reversal resistance
(CRR, see figure caption for definition) ratio in the lin-
ear response regime, which is further enhanced to tens of
percent as the bias increases.

Finally, we introduce an experimental geometry that
can directly probe the spin injection caused by a single
chiral component. As shown in Fig. 4(e), the chiral com-
ponent is connected to a nonmagnetic tunnel barrier via
a node. Through CISS, a charge current creates a spin
accumulation in the node (even in the linear response
regime), which can then be suppressed using a perpendic-
ular magnetic field due to Hanle spin precession. This re-
sults in a magnetic-field-dependent 2T conductance, and
Fig. 4(g) shows the I-V curves for zero magnetic field
(blue solid curve) and for when the field fully destroys
the spin accumulation (black dashed curve). The corre-
sponding MR (inset) for this geometry is nonzero in the
linear response regime, and can be enhanced by increas-
ing bias.

DISCUSSION

We have explained that energy-dependent charge
transport combined with energy relaxation provide a fun-
damental mechanism that breaks the Onsager reciprocity
in the nonlinear regime, and therefore generates a MR
signal in a 2T circuit containing a ferromagnet and a chi-
ral component. We separately discussed two sources of
energy dependence, tunneling at the FMTJ and the ther-
mally activated resonant transmission through molecular
orbitals in a chiral component. In experimental con-
ditions, the two effects can be simultaneously present.
Also, the exact bias dependence may vary depending on
the device details, for example, due to the presence of
Schottky barriers or due to conduction through valence
and conduction bands.

We have assumed that the conduction mechanisms in
each separate circuit component are not changed when
building them together into one device, so that the over-
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(f)
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𝜇𝐿 𝜇𝑅
𝜇𝑠(𝐵⊥)

(e)

Barrier

𝑩

C
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R
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%
)

M
R

Bias voltage (V)

Bias voltage (V)

D

D + D

1L + D

D
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L

FIG. 4. Generic 2T spin-valve device geometries with the symmetry of the charge–spin transport matrix labeled for each
component. (a). The aforementioned FM–chiral geometry where MR signals are strictly forbidden in the linear response
regime. (b). A FM–FM geometry, as in a conventional spin valve, where MR signals are allowed in the linear regime. (c),(d).
A chiral–chiral geometry for using the same [(c)] and opposite [(d)] chiralities, as marked by color and labeled with d or l
(here we assume the d-chiral component favors the transmission of electrons with spin parallel to momentum, and the l-chiral
component favors the anti-parallel ones), where the spin-valve effect can be achieved, even in the linear regime, by reversing the
chirality of one component. (e). A geometry for directly probing the spin accumulation generated by a single chiral component.
The perpendicular magnetic field B suppresses spin accumulation in the node via Hanle spin precession. (f). Example I-V
curves for a chiral—chiral spin valve, with the two curves representing the geometries in panel (c) and (d) respectively. The
corresponding chirality-reversal resistance (CRR) ratio, as defined by CRR = (Idd− Ild)/(Idd + Ild) (the two subscripts refer to
the chiralities of the two chiral components), is plotted in the inset. (g). Example I-V for the geometry in panel (e), calculated
for cases with µs either fully or not-at-all suppressed by Hanle precession. The corresponding MR is shown in inset, which is
defined as the difference of the two curves divided by their sum.

all conduction is (phase) incoherent. In practice, co-
herent conduction mechanisms, such as direct tunneling
from the FM into a MO of the chiral molecule, may also
be present. Assuming fully incoherent conduction, the
chirality-based spin valve geometry (Fig. 4(c-d)) resem-
bles a conventional CPP GMR device [29], while if co-
herent tunneling dominates, it is comparable to a TMR
device [30].

Finally, we draw attention to the sign of the nonlin-
ear MR, which depends on the dominating nonlinear el-
ement, the bias direction, the charge carrier type, and
the (sign of) chirality, as summarized in SI.J. We have
plotted the MR as a function of bias while assuming the
chirality and the charge carrier type remain unchanged.
However, in experimental conditions, it is possible that
the charge carrier type switches when the bias is reversed,
and consequently the MR can have the same sign for op-
posite biases. Such a bias-even MR is indeed in agree-

ment with most experimental observations [5, 6, 8, 9].
The observations concerning the vanishing MR in the
linear regime is however unclear, since for experiments
where a linear regime can be identified, some do report
a vanishing MR [8], while some do not [31]. This thus
requires further investigation.
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man, “Helicenesa new class of organic spin filter,” Ad-
vanced Materials 28, 1957–1962 (2016).

[9] Zouti Xie, Tal Z Markus, Sidney R Cohen, Zeev Vager,
Rafael Gutierrez, and Ron Naaman, “Spin specific elec-
tron conduction through DNA oligomers,” Nano Letters
11, 4652–4655 (2011).

[10] Lars Onsager, “Reciprocal relations in irreversible pro-
cesses. II.” Physical Review 38, 2265 (1931).
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Finkelstein-Shapiro, Bertrand Berche, and Vladimiro
Mujica, “Continuum model for chiral induced spin se-
lectivity in helical molecules,” The Journal of Chemical
Physics 142, 194308 (2015).

[15] Ai-Min Guo and Qing-Feng Sun, “Spin-selective trans-
port of electrons in DNA double helix,” Physical Review
Letters 108, 218102 (2012).
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A. COMPARISON TO ABSOLUTE ASYMMETRIC (CHEMICAL) SYNTHESIS

Absolute asymmetric synthesis refers to chemical reactions that yield chiral products with a net enantiomeric excess
starting from achiral or racemic reactants. Generally, it requires the presence of a truly chiral external influence, which,
according to Barron [S1], is a physical quantity that can appear in two degenerate forms (e.g. opposite signs of one
physical quantity, or parallel and anti-parallel alignments of two vectors), which are interconverted by space-inversion
but not time-reversal. Following this, the lone influence of a magnetic field, which reverses sign under time-reversal
but not space-inversion, is not truly chiral, and therefore should not induce absolute asymmetric synthesis.

Just like Onsager reciprocity, this true-chirality consideration is based on microscopic reversibility, and therefore
is only strict in the linear response regime (in the vicinity of thermodynamic equilibrium). Barron later pointed out
that [S2], in a chemical reaction that would yield a racemic mixture (of enantiomers), the presence of a magnetic
field allows different reaction rates toward opposite enantiomers. This creates an enantiomeric excess away from
equilibrium, which should eventually disappear as the system returns to equilibrium. However, if the nonequilibrium
enantiomeric excess is amplified, for example by self-assembly or crystallization, absolute asymmetric synthesis is
induced, and this was later demonstrated experimentally [S3, S4].

This shows that a time-reversal-breaking influence (the magnetic field), albeit not being truly chiral, can distinguish
and separate enantiomers away from thermodynamic equilibrium. By the same token, in the 2T circuit we discuss,
the FM breaks time reversal symmetry and can therefore indeed distinguish enantiomers away from equilibrium, i.e.
in the nonlinear regime. Therefore, the nonlinear conductance of the 2T circuit may depend on the chirality of the
circuit component, as well as the magnetization direction of the FM.

B. BEYOND THE LANDAUER FORMULA

The Landauer formula describes the electrical conductance of a conductor using its scattering properties. Particu-
larly, it expresses conductance in terms of transmission probabilities between electrodes, but does not require the use
of reflection probabilities. Moreover, it considers that the charge (and spin) transport are solely driven by a charge
bias, and neglects possible spin accumulations in the circuit. For a 2T device, it allows two independent parameters
(charge and spin transmission probability) for the description of coupled charge and spin transport.

We point out here that, a full description of the coupled charge and spin transport must extend beyond the
conventional spin-resolved Landauer formula, and include also the (spin-flip) reflection terms and the build-up of spin
accumulations, which also act as driving forces of the transport. This point was also earlier raised for a FM–normal
metal system [S5]. Following this, we need to characterize the (twofold rotationally symmetric) chiral component
using four independent parameters, see the matrix in Eqn. S13, contrasting to the two parameters mentioned earlier.

C. NONUNITARITY FOR GENERATING CISS AND INELASTIC PROCESSES FOR GENERATING MR

The generation of CISS requires the presence of nonunitary effects inside the chiral component, because the Kramers’
degeneracy would otherwise require equal transmission probabilities for opposite spin orientations [S6, S7]. These
nonunitary effects break the phase information of a transmitting electron, but does not necessarily alter its energy.

The presence of these nonunitary effects only allows the generation of CISS, but does not guarantee the generation
of a 2T MR. These nonunitary effects do not (necessarily) break the Onsager reciprocity, and therefore a 2T MR
is still forbidden in the linear response regime. Even when considering energy-dependent transport in the nonlinear
regime (|eV | > kBT ), since at each energy level the Onsager reciprocity still holds, a 2T MR cannot arise.

The emergence of MR, as we discussed, requires energy relaxation in the device. These relaxation processes not only
break the phase information, but also alter the energy of the electrons, and rearrange them according to Fermi-Dirac
distribution. We have assumed that they do not change the spin orientation of the electrons. In principle, we can
also include spin relaxation in the node, which we expect to reduce the MR without changing its sign.
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D. SPIN AND CHARGE TRANSPORT IN A NONMAGNETIC CHIRAL COMPONENT

In the main text we introduced the spin-space transmission and reflection matrices for the right-moving electrons
in a (nonmagnetic) chiral component (Eqn. ??)

TB =

(
t→→ t←→
t→← t←←

)
, RB =

(
r→→ r←→
r→← r←←

)
. (S1)

For the left-moving electrons, the matrices are the time-reversed form of the above

TC =

(
t←← t→←
t←→ t→→

)
, RC =

(
r←← r→←
r←→ r→→

)
. (S2)

Note that these matrices are not suitable for describing magnetic components where time-reversal symmetry is not
preserved, and we have assumed the chiral component is symmetric (i.e. a twofold rotational symmetry with axis
perpendicular to the electron pathway, this ensures that for oppositely moving electrons, the spin polarization only
changes sign).

We use spin-space column vector to describe electrochemical potentials and currents on both sides of the molecule,
and following Ref. S8 we have

(
IL→
IL←

)
= −Ne

h

[
(I− RB)

(
µL→
µL←

)
− TC

(
µR→
µR←

)]
, (S3a)

−
(
IR→
IR←

)
= −Ne

h

[
(I− RC)

(
µR→
µR←

)
− TB

(
µL→
µL←

)]
, (S3b)

where N is the number of spin-degenerate channels.
We define charge electrochemical potential µ = (µ→ + µ←)/2 and spin accumulation µs = (µ→ − µ←)/2, as well as

charge current I = I→+ I← and spin current Is = I→− I←. We will describe both charge and spin in electrical units.
Following these definitions, we have

I = IL→ + IL← = IR→ + IR←, (S4a)

IsL = IL→ − IL←, (S4b)

IsR = IR→ − IR←, (S4c)

µL = (µL→ + µL←)/2, (S4d)

µR = (µR→ + µR←)/2, (S4e)

µsL = (µL→ − µL←)/2, (S4f)

µsR = (µR→ − µR←)/2. (S4g)

Combining Eqn. S3 and Eqn. S4, we can derive




I
−IsL
IsR


 = −Ne

h




t s s
Prr γr γt
Ptt γt γr





µL − µR
µsL
µsR


 , (S5)

which is Eqn. ?? in the main text, and µL − µR = −eV is induced by a bias voltage V . The matrix elements are

t = t→→ + t→← + t←→ + t←←, (S6a)

r = r→→ + r→← + r←→ + r←← = 2− t, (S6b)

γt = t→→ − t→← − t←→ + t←←, (S6c)

γr = r→→ − r→← − r←→ + r←← − 2, (S6d)

Pt = (t→→ − t→← + t←→ − t←←)/t, (S6e)

Pr = (r→→ − r→← + r←→ − r←←)/r, (S6f)

s = t→→ + t→← − t←→ − t←← (S6g)

= −r→→ − r→← + r←→ + r←←. (S6h)
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For r = 2− t and the two expressions of s, we have used the condition of charge conservation

t→→ + t→← + r→→ + r→← = 1, (S7a)

t←→ + t←← + r←→ + r←← = 1. (S7b)

Among the above matrix elements, Pt, Pr, and s change sign when the chirality is reversed. For achiral components
where there is no spin selective transport, we have Pt = Pr = s = 0, and the transport matrix is symmetric.

Note that in Eqn. ?? we have defined the vector of currents (thermodynamic response) using −IsL and IsR, so
that the transport matrix is symmetric in the linear response regime. Following this, as shown in Fig. ??, the chiral
component acts as a source (or sink) of spin currents when biased.

We can rewrite γt and γr as transmission-dependent quantities

γr = r − (Prr + s)/ηr − 2 = −t− (Prr + s)/ηr, (S8a)

γt = −t+ (Ptt+ s)/ηt, (S8b)

where

ηr =
r←→ − r→←
r←→ + r→←

, (S9a)

ηt =
t→→ − t←←
t→→ + t←←

, (S9b)

are quantities between ±1 and change sign under chirality reversal.

Next, for chiral components where Pt, Pr, and s are nonzero, the Onsager reciprocity requires the 3× 3 matrix to
be symmetric [S9], which gives

Ptt = Prr = s, (S10)

and therefore

t→← = t←→, (S11a)

r→→ = r←←, (S11b)

t→→ − t←← = r←→ − r→←. (S11c)

These expressions show that, for any finite Pt (spin polarization of transmitted electrons), Pr (spin polarization of
reflected electrons) must also be nonzero, which then requires the presence of spin-flip reflections [S8]. This is again in
agreement with the fundamental considerations based on zero charge and spin currents in electrodes at equilibrium.

Further, we obtain

γr = −(1 + 2Pt/ηr)t, (S12a)

γt = −(1− 2Pt/ηt)t. (S12b)

which allows us to rewrite the transport matrix equation in terms of t




I
−IsL
IsR


 = −Ne

h




t Ptt Ptt
Ptt −(1 + 2Pt/ηr)t −(1− 2Pt/ηt)t
Ptt −(1− 2Pt/ηt)t −(1 + 2Pt/ηr)t





µL − µR
µsL
µsR


 . (S13)

Note that Pt, ηt, and ηr all change sign when the chirality is reversed, and t, Pt/ηt, and Pt/ηr are always positive.

In later discussions we connect the right-hand side of the nonmagnetic component to an electrode (see Fig. ??(a))
where the spin accumulation µsR is zero and the spin current IsR is irrelevant. This reduces the matrix equation to

(
I
−IsL

)
= −Ne

h

(
t Ptt
Ptt −(1 + 2Pt/ηr)t

)(
µL − µR
µsL

)
, (S14)

which is equivalent to Eqn. ??.
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E. SPIN AND CHARGE TRANSPORT AT AN ACHIRAL FERROMAGNETIC TUNNEL
JUNCTION/INTERFACE

In a FM, time-reversal symmetry is broken and the Kramers degeneracy is lifted. The FMTJ provides a spin
polarization to any current that flows through, and reciprocally, it generates a charge voltage upon a spin accumulation
at its interface. In terms of spin and charge transport, the FMTJ allows different conductances for electrons with
opposite spins, and the difference depends on the spin polarization PFM . Inside the FM spin relaxation is strong and
the spin accumulation is considered zero. For our discussions, the FM is always connected to the left of the node,
we thus only consider the R interface of the FM with a spin accumulation µsR. Following the discussion provided in
Ref. S10, the spin-specific currents on the R-side are therefore

I→ = −1

e
G→[µL − (µR + µsR)], (S15a)

I← = −1

e
G←[µL − (µR − µsR)], (S15b)

where G→(←) is the spin-specific tunnel conductance. We define the total conductance GFM = G→ + G← and FM
spin-polarization PFM = (G→ − G←)/(G→ + G←). We also introduce a transmission coefficient T (0 6 T 6 2) to
distinguish GFM from ideal transmission. The charge and spin currents on the R interface of the FM can thus be
written as

(
I
IsR

)
= −N

′e
h

(
T −PFMT

PFMT −T

)(
µL − µR
µsR

)
, (S16)

where N ′ is the number of spin-degenerate channels in the FMTJ.
This matrix gives the spin and charge response of the FMTJ, and unlike for a chiral molecule, this matrix ful-

fills the Onsager reciprocity by being antisymmetric (opposite off-diagonal terms), because upon magnetic field and
magnetization reversal, the FM spin polarization PFM changes sign [S9].

F. SPIN AND CHARGE TRANSPORT IN A GENERIC 2T CIRCUIT

We consider a generic 2T circuit like the one shown in Fig. ??(a). Our goal here is to derive the quantities I, µ,
and µs as a function of 2T bias µL − µR. We rewrite the transport matrices into conductance matrices, and obtain
for the left and right side of the node

(
I
Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (S17a)

(
I
−Is

)
= −1

e

(
g1 g2

g3 g4

)(
µ− µR
µs

)
. (S17b)

At steady state the continuity condition requires the currents I and Is are equal for both equations. This condition
allows us to derive

µ = µR +
G3(G2 − g2)−G1(G4 + g4)

f
(µL − µR)

= µL −
g3(g2 −G2)− g1(G4 + g4)

f
(µL − µR) ,

(S18a)

µs =
(G3/G1 + g3/g1)G1g1

f
(µL − µR) , (S18b)

I =
G1g2g3 + g1G2G3 −G1g1(G4 + g4)

f
(µL − µR) , (S18c)

where the coefficient f is

f = (G3 − g3)(G2 − g2)− (G1 + g1)(G4 + g4). (S19)

Notably, f depends on (G3−g3)(G2−g2), and for our linear-regime example using a FM with G2 = −G3 and a chiral
component with g2 = g3, f only depends on g2

3−G2
3, which does not change when either the FM magnetization or the
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chirality is reversed. Moreover, the charge current I only depends on g2
3 and G2

3, and therefore remains unchanged
under magnetization or chirality reversal. In contrast, the spin accumulation µs depends on G3 and g3, and the charge
distribution indicated by µ depends on G3g2 or g3G2. Both µs and µ therefore indeed change upon magnetization or
chirality reversal, and can be detected using three-terminal or four-terminal measurement.

If the two circuit components would both be FM (antisymmetric G and g matrices) or both be chiral (symmetric
G and g matrices), then the coefficient f contains the cross products G3g2 and G2g3, and therefore gives rise to a 2T
current that does change upon magnetization or chirality reversal.

G. RECIPROCITY BREAKING BY ENERGY-DEPENDENT TUNNELING

Here we derive the energy dependence of the charge and spin tunneling through the FM interface following the
discussion of Jansen et al. [S10], and derive the subsequent nonlinear coupled charge and spin transport equations.

Consider a biased symmetric rectangular tunnel barrier with height Φ and width w between the FM and the node,
as shown in Fig. S1. The reference energy ε = 0 is chosen as the average of µL and µ, so that the average barrier
height does not change with bias. The bias voltage V = −∆µ/e is applied, so that µL = ∆µ/2, µ = −∆µ/2,
µ→ = −∆µ/2 + µs, and µ← = −∆µ/2 − µs. For simplicity, we assume the barrier height (evaluated at the center
of the tunnel barrier) is constant, the tunneling is one dimensional, and the electrostatic potential drop across the
tunnel barrier is exactly −eV .

𝜇𝐿 

𝜇 
𝜇→ 

𝜇← 

𝜖 = 0 

Φ 

𝜖 

Δ𝜇

2
 

𝜇𝑠 

−
Δ𝜇

2
 

FM Node Barrier 

FIG. S1. Energy diagram of the tunnel barrier at the ferromagnet interface. Details see text.

The energy-dependent electron transmission function is

T (ε) = 2 exp
(
−β (Φ− ε)1/2

)
, (S20)

where β = 2w
√

2m/~2, with m being the (effective) electron mass and ~ the reduced Planck’s constant.

The total transmitted current is an energy-integral of two energy-dependent functions: (1). the transmission
function T (ε), and (2) the voltage-dependent Fermi-Dirac distribution functions in both electrodes. The two parts
dominate at different bias regimes with respect to the thermal activation energy kBT , where kB is the Boltzmann
constant and T is temperature. For tunneling, typically we have |eV | � kBT , and therefore we assume zero temper-
ature for convenience. The Fermi-Dirac distribution functions then become Heaviside step functions with the step at
µL for the left electrode and at µ→ and µ← for the two spin species in the node.
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Assuming PFM does not depend on energy, the energy-integrated tunnel current for each spin species through the
FMTJ is

I→(∆µ, µs) = −N
′e
h

1 + PFM
2

∫ µL

µ→

T (ε) dε, (S21a)

I←(∆µ, µs) = −N
′e
h

1− PFM
2

∫ µL

µ←

T (ε) dε. (S21b)

The range of the integrals can be rewritten as

for I→ :

∫ µL

µ→

dε =

∫ µL

µ

dε−
∫ µ→

µ

dε, (S22a)

for I← :

∫ µL

µ←

dε =

∫ µL

µ

dε+

∫ µ

µ←

dε. (S22b)

We denote the two integrals on the right-hand side of the expressions I
(1)
→(←) and I

(2)
→(←) respectively, so that we have

I→ = I(1)
→ + I(2)

→ and I← = I(1)
← + I(2)

← . The first integral I
(1)
→(←) depends on the electrochemical potential difference

across the barrier, ∆µ, and thus describes the bias-induced transport. In contrast, the second integral I
(2)
→(←) depends

on µ and µs in the node, and it vanishes when µs = 0, and therefore it describes the spin-accumulation-induced
correction to the first integral. We will treat the two integrals separately.

The bias-induced charge and spin currents are

I(1) = I(1)
→ + I(1)

←

= −N
′e
h

∫ µL

µ

T (ε) dε

= −N
′e
h

(
T |µL
µ

)
∆µ,

(S23a)

I(1)
s = I(1)

→ − I(1)
←

= −N
′e
h

PFM

∫ µL

µ

T (ε) dε

= −N
′e
h

(
PFM T |µL

µ

)
∆µ,

(S23b)

where the averaged transmission within the bias window is defined as

T |µL
µ =

1

∆µ

∫ µL

µ

T (ε) dε. (S24)

Note that when ∆µ changes sign, the integral changes sign too, and therefore T |µL
µ is an even function of ∆µ.

For the spin-accumulation-induced currents, we have

I(2) = I(2)
→ + I(2)

←

= −N
′e
h

[
−1 + PFM

2

∫ µ→

µ

T (ε)dε+
1− PFM

2

∫ µ

µ←

T (ε)dε

]

≈ −N
′e
h

(−PFMT |ε=µ) · µs,

(S25a)

I(2)
s = I(2)

→ − I(2)
←

= −N
′e
h

[
−1 + PFM

2

∫ µ→

µ

T (ε)dε− 1− PFM
2

∫ µ

µ←

T (ε)dε

]

≈ −N
′e
h

(−T |ε=µ) · µs,

(S25b)
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where the approximation is taken under the assumption that µs � ∆µ, so that T (ε) is approximately a constant
within the energy range from µ← to µ→, and thus they are evaluated at ε = µ = −∆µ/2. The energy dependence of

I(2) and I
(2)
s follows that of T (ε) (Eqn. S20).

We can now rewrite Eqn. S23 and Eqn. S25 into matrix form



I

Is


 = −N

′e
h




T |µL
µ −PFMT |ε=µ

PFMT |µL
µ −T |ε=µ





µL − µ

µs


 , (S26)

which is Eqn. ?? in the main text. The different off-diagonal terms demonstrate the breaking of Onsager reciprocity in
the nonlinear regime, since one of them depends on the integral of the transmission function, while the other depends
on the transmission function itself. In the linear response regime (µL ≈ µ), the two terms differ only by sign.

We write

(
I
Is

)
= −1

e

(
G1 G2

G3 G4

)(
µL − µ
µs

)
, (S27)

so that the matrix elements represent conductance, where G2 = (N ′e2/h) · (−PFMT |ε=µ) and G3 = (N ′e2/h) ·
(PFMT |µL

µ ). In Fig. S2, we plot G2 and G3 as a function of bias across the FMTJ ((µL − µ)/e) for PFM = −0.5 and
N ′ = 1000, values that are used to calculate the I-V curves in Fig. ??(d) (for other parameters see later in SI.I).

FIG. S2. Bias dependence of the off-diagonal elements of the conductance matrix describing tunneling through the FMTJ.

Note that G2 = −G3 at zero bias, as required by Onsager reciprocity in the linear response regime. The breaking
of reciprocity in the nonlinear regime is exhibited by the unequal absolute values of G2 and G3 away from zero bias.
Here G2 is increases monotonically with decreasing bias, while G3 is symmetric in bias and is minimum at zero bias.

H. RECIPROCITY BREAKING BY THERMALLY ACTIVATED RESONANT TRANSMISSION
THROUGH MOLECULAR ORBITALS

We discuss here the effect of the Fermi-Dirac distribution of electrons using resonant transmission through discrete
molecular orbitals (levels), specifically the lowest-unoccupied molecular orbital (LUMO) and the highest-occupied
molecular orbital (HOMO). This is illustrated in Fig. S3. We assume here the LUMO and HOMO levels are fixed
at energies εLU and −εHO respectively (εLU , εHO > 0), with ε = 0 defined as the average of the two (charge)
electrochemical potentials on both sides of the molecule. The nonlinearity is now assumed to be fully due to the
Fermi-Dirac distribution F (ε, µ), which is different for the node and the electrode, and is also different for the two
spin species in the node when a spin accumulation is considered.
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𝜇 
𝜇 + 𝜇𝑠 

𝜖 = 0 

Node Molecule Electrode 

𝜇𝑅 

LUMO 
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2
 

−
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2
 

𝐼 
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𝜇𝑅← 

𝜖 
𝐹(𝜖, 𝜇) 

𝜇 − 𝜇𝑠 

FIG. S3. Energy diagram of the electron transmission through molecular levels.

Consider the geometry in Fig. S3, at a given bias ∆µ and a spin accumulation µs in the node, the spin-specific
Fermi-Dirac functions for the two spin species in the node are

FL→(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2−µs

kBT

)
+ 1

, (S28a)

FL←(ε,∆µ, µs) =
1

exp
(
ε−∆µ/2+µs

kBT

)
+ 1

, (S28b)

where we used subscript L to denote the node because its located on the left side of the molecule.
The Fermi-Dirac function in the node (neglecting the spin accumulation) and in the right electrode are

FL(ε,∆µ) =
1

exp
(
ε−∆µ/2
kBT

)
+ 1

, (S29a)

FR(ε,∆µ) =
1

exp
(
ε+∆µ/2
kBT

)
+ 1

. (S29b)

We model the resonant transmission through the molecular orbitals as energy-dependent transmission probability
t(ε) that is only nonzero at the LUMO and the HOMO levels, which it is described by

t(ε) = tLUδ(ε− εLU ) + tHOδ(ε+ εHO), (S30)

where tLU and tHO are the transmission probabilities through the LUMO and the HOMO, respectively, and δ(ε) is a
Dirac delta function.

An exact calculation should separately address the two spin orientations separately, but for our assumption of
µs � ∆µ, we will directly start from the linear-regime equation of coupled charge and spin transport (Eqn. S14)

(
I
−IsL

)
= −Ne

h

(
t Ptt
Ptt −(1 + 2Pt/ηr)t

)(
µ− µR
µs

)
. (S31)

This gives the charge current I

I = −Ne
h

[t(µL − µR) + Ptt(µL→ − µL←)/2] , (S32)

where we used µL→ = µ+ µs and µL← = µ− µs.
At finite temperature, the two terms in the square bracket on the right-hand side of the equation should each

be replaced by an energy-integral of the electron transmission function modified by the voltage- and temperature-
dependent Fermi-Dirac distributions in both electrodes. We denote the two terms I(1) and I(2), and the first term
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is

I(1) =

∫ ∞

−∞
t(ε) [FL(ε,∆µ)− FR(ε,∆µ)] dε

= tLU [FL(εLU ,∆µ)− FR(εLU ,∆µ)]

+ tHO [FL(−εHO,∆µ)− FR(−εHO,∆µ)] .

(S33)

We denote

Fε(∆µ) =
1

∆µ
[FL(ε,∆µ)− FR(ε,∆µ)] , (S34)

to highlight the transmission at energy ε and under bias ∆µ. In this manner, we can write

I(1) = [tLU FεLU
(∆µ) + tHO F−εHO

(∆µ)] ∆µ. (S35)

Similarly, at finite temperature, the second term I(2) becomes

I(2)

=
Pt
2

(tLU [FL→(εLU ,∆µ, µs)− FL←(εLU ,∆µ, µs)]

+ tHO [FL→(−εHO,∆µ, µs)− FL←(−εHO,∆µ, µs)]).

(S36)

We define

F ′L,ε(∆µ)

=
1

2µs
[FL→(ε,∆µ, µs)− FL←(ε,∆µ, µs)]

≈∂[FL(ε,∆µ)]

∂∆µ
,

(S37)

where the approximation is taken under the assumption of µs � ∆µ.
With this, we have

I(2) = Pt
[
tLU F ′L,εLU

(∆µ) + tHO F ′L,−εHO
(∆µ)

]
µs. (S38)

Similarly, the expression of −IsL at finite temperature can also be derived from the linear regime expression. The
nonlinear coupled spin and charge transport equation, due to the thermally activated resonant transmission via the
LUMO and the HOMO levels, is therefore
(

I
−IsL

)
= −Ne

h

(
tLU FεLU

(∆µ) + tHO F−εHO
(∆µ) Pt[tLU F ′L,εLU

(∆µ) + tHO F ′L,−εHO
(∆µ)]

Pt[tLU FεLU
(∆µ) + tHO F−εHO

(∆µ)] −(1 + 2Pt/ηr) [tLU F ′L,εLU
(∆µ) + tHO F ′L,−εHO

(∆µ)]

)(
µ− µR
µs

)
,

(S39)
where we have assumed Pt, ηr do not depend on energy.

The breaking of reciprocity arises from the different forms of the off-diagonal terms of the transport matrix. While
the bottom-left term scales with the electron occupation function, the top-right terms scales with its derivative. In
the linear response regime, the two terms are equal and Onsager reciprocity is present.

If required, this nonlinear form can be easily extended to the 3 × 3 matrix for a generalized situation considering
also a spin accumulation µsR on the right-hand side of the molecule. Then the third column will be modified similarly
to the second column using the derivative of the electron occupation function in the right electrode FR(ε,∆µ).

Similar to the FMTJ, we can write the above equation into
(
I
−Is

)
= −1

e

(
g1 g2

g3 g4

)(
µ− µR
µs

)
, (S40)

where the matrix elements represent conductances. We plot the off-diagonal terms as a function of bias ((µ− µR)/e)
for transmission only through the LUMO level (tLU = 1, tHO = 0, εLU = 0.6 eV) for Pt = 0.85 and N = 1000, as
shown in Fig. S4.

Note that g2 = g3 at zero bias, as required by Onsager reciprocity in the linear response regime. The reciprocity is
broken as bias shifts away from zero, and the two conductances are no longer equal. Here g2 increases monotonically
with bias, while g3 is bias-symmetric and reaches minimum at zero bias.
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FIG. S4. Bias dependence of the off-diagonal elements of the conductance matrix describing thermally activated conduction
through the LUMO.

I. PARAMETERS FOR EXAMPLE I-V CURVES

(1) For calculating the I-V curves in Fig. ??(d) we have used the following parameters: Energy dependent FM
tunnel transmission T (ε) for a tunnel barrier with height Φ = 2.1 eV, and width w = 1.0 nm. The number of channels
are set as N ′ = 1000 and N = 5000, the values are chosen taking into account the device length scale. For example,
if using Ni as FM, when assuming each atom provides one channel, N ′ = 1000 corresponds to roughly an area of
100 nm2. The transmission through the chiral component is set linear and uses the same transmission value as the
FM tunnel barrier at zero bias. The polarization values are PFM = ±0.5, Pt = 0.85, and the quantity ηr is set as
ηr = 0.9. The same parameters are used to obtain the conductances in Fig. S2.

(2) For calculating the I-V curves in Fig. ??(b-c) we have used the following parameters: Temperature at 300 K,
the LUMO level at εLU = 0.6 eV, and the HOMO level at −εHO = −0.6 eV. For Fig. ??(b), the LUMO transmission
tLU = 1 and the HOMO transmission tHO = 0, while for Fig. ??(c) the two values are interchanged. The number of
channels are set as N ′ = 1000 and N = 200. The transmission through the FM tunnel barrier is set linear and uses the
same transmission value as the FM tunnel barrier in case (1) at zero bias. The polarization values are PFM = ±0.5,
Pt = 0.85, and the quantity ηr is set as ηr = 0.9. The same parameters are used to obtain the conductances in Fig. S4.

(3) For the chiral spin valve in Fig. ??(f), we use the same tunnel transmission function and the same barrier
parameters as in case (1) for both chiral components (both nonlinear), and do not consider the thermally activated
molecular level transmission. The number of channels are set as N ′ = 1000 and N = 20000. The first chiral component
has polarization ±0.5, and the second one 0.85, both have ηr = 0.9.

(d) For the example in Fig. ??(g), the tunnel barrier uses the same parameters as the FMTJ in case (1), but has
zero polarization. The chiral component transmission is set linear and uses the same set of parameters as in case (1).
The dashed curve is obtained by forcing µs = 0 for all bias values.

J. SIGN OF THE NONLINEAR 2T MR

We summarize here, separately for the two nonlinear mechanisms, how the sign of the MR depends on the chirality,
the charge carrier type, and the bias direction. First of all, we define the MR for the device in Fig. ??(a) following

MR =
I+ − I−
I+ + I−

× 100%, (S41)

where I+ represents the charge current measured with the FM polarization PFM > 0, which corresponds to a spin-
right polarization of the injected electrons, and I− corresponds to the current measured when the FM generates a
spin-left polarization.
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For the bias direction, we describe it in terms of electron movement direction (opposite to charge current) with
respect to the circuit components. For example, in Fig. ??(a), the positive bias voltage corresponds to an electron
movement from the chiral component (CC) to the FMTJ.

For the (sign of) chirality, we label it as d and l. Here we (arbitrarily) assume that a d-chiral component favors the
transmission of electrons with spins parallel to the electron momentum, while a l-chiral component favors the anti-
parallel. The exact correspondence between the chirality and the favored spin orientation depends on the microscopic
details of the spin orbit interaction.

According to these definitions, the sign of the MR is summarized in the following tables.

TABLE SI. Summary of the sign of MR for nonlinear tunneling through FMTJ

chirality electron direction carrier type MR

d CC to FMTJ electron +

l CC to FMTJ electron -

d FMTJ to CC electron -

l FMTJ to CC electron +

TABLE SII. Summary of the sign of MR for nonlinear transmission through molecular orbitals

chirality electron direction carrier type MR

d CC to FMTJ electron +

l CC to FMTJ electron -

d FMTJ to CC electron -

l FMTJ to CC electron +

d CC to FMTJ hole -

l CC to FMTJ hole +

d FMTJ to CC hole +

l FMTJ to CC hole -

∗ xu.yang@rug.nl
[S1] Laurence D Barron, “True and false chirality and absolute asymmetric synthesis,” Journal of the American Chemical

Society 108, 5539–5542 (1986).
[S2] L D Barron, “Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: a new

kinetic principle based on the breakdown of microscopic reversibility,” Chemical Physics Letters 135, 1–8 (1987).
[S3] N Micali, H Engelkamp, P G van Rhee, P C M Christianen, L Monsù Scolaro, and J C Maan, “Selection of supramolecular
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