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a b s t r a c t

This paper investigates the control of flow networks, where the control objective is to regulate the
measured output (e.g. storage levels) towards a desired value. We present a distributed controller that
dynamically adjusts the inputs and flows, to achieve output regulation in the presence of unknown
constant disturbances, while satisfying given input and flow constraints. Optimal coordination among
the controllers minimizing a suitable cost function of the inputs at the nodes, is achieved by
exchanging information over a communication network. Exploiting an incremental passivity property,
the desired steady state is proven to be globally asymptotically attractive under the closed loop
dynamics. Two case studies (a district heating system and a super-conducting DC network) show the
effectiveness of the proposed solution.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Flow networks (also known as distribution or transportation
networks) consist of edges that are used to model the exchange
of material (flow) between the nodes. The design and regula-
tion of these networks received significant attention due to its
many applications, including supply chains (Alessandri, Gaggero,
& Tonelli, 2011), heating, ventilation and air conditioning (HVAC)
systems (Gupta, Kar, Mishra, & Wen, 2015), data networks (Moss
& Segall, 1982), traffic networks (Coogan & Arcak, 2015; Iftar,
1999) and compartmental systems (Blanchini, Franco, Giordano,
Mardanlou, & Montessoro, 2016; Como, 2017). If the considered
objective is static, the study of flow networks has a long his-
tory within the field of network optimization (Rockafellar, 1984).
Many practical networks must on the other hand react dynami-
cally on changes in the external conditions such as a change in
the demand. In these cases continuous feedback controllers are
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required, that dynamically adjust inputs at the nodes and the
flows along the edges, and the design of such controllers is the
subject of this work.

Since flow networks are ubiquitous in engineering systems,
many solutions have been proposed to coordinate them, exploit-
ing methodologies from e.g. passivity (Arcak, 2007) and model
predictive control (Koeln & Alleyne, 2017). We focus on flow net-
works where the nodes can store the considered material (Kot-
nyek, 2003). A common objective in such networks is that the
stored material needs to be regulated towards desired setpoints,
despite the presence of an unknown demand. This is commonly
achieved by actively controlling the flows on the edges (Bürger
& De Persis, 2015; Wei & van der Schaft, 2013; Xiang, Li, & Hill,
2017) using dynamic flow controllers. These controllers on the
edges generally provide a form of integral action, that shows
some benefits over networks lacking these dynamics. For exam-
ple, the presence of an integral action permits the achievement
of output regulation, in contrast to approximate regulation (Gior-
dano, 2016). Furthermore, in most cases, the capacity of the edges
is constrained, requiring careful design of the flow controllers.
Naturally, the control of flows only permits to distribute the ma-
terial within the network. In case there is no possibility to adjust
the input to the network, a necessary requirement for stability is
that all uncontrollable inflows and outflows sum to zero (Wei,
2016). Since this is generally not the case, additional control-
lable inputs are required that might have their own capacity
constraints.

1.1. Literature review and main contributions

In this work we focus on flow networks, where at various
nodes, an unknown amount of material (disturbance) is supplied

https://doi.org/10.1016/j.automatica.2019.02.046
0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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to, or extracted from, the network. Despite these disturbances,
we require the various storage levels at the nodes (or an ‘output
function’ thereof) to be regulated towards desired values. We
aim at achieving this so-called output regulation, by optimally
allocating the required inputs among the nodes that possess a
controllable external input. Here, only a subset of the nodes is as-
sumed to have a controllable input, where a cost function relates
the provided input to associated costs. We particularly propose a
distributed control solution to enhance robustness to failures and
to improve the scalability. Furthermore, the proposed solution re-
spects capacity constraints that the inputs and flows might have.

Although various of these aspects have been addressed before,
the way how we incorporate them within a coherent approach is
new. We elaborate on some specific contributions below.

(i) In flow networks it is desirable to meet certain optimality
criteria, prescribing e.g. the optimal flows within the network
and the optimal inputs to the network. Examples of the former
include a ‘maximum flow’, ‘quickest flow’ or ‘minimum cost flow’,
and achieving them received a considerable amount of attention
in the past (see Kotnyek (2003), Skutella (2009) and references
therein). On the other hand, when optimal inputs are considered,
costs are often associated with the amount of generated input
(materials), and optimization thereof has been studied thoroughly
within the setting of smart (electricity) grids (Trip, Bürger, & De
Persis, 2016). In this paper we apply this idea to general flow
networks (Scholten, De Persis, & Tesi, 2016), where only a subset
of the nodes can generate an input. A communication network
then connects the various nodes, where relevant information on
the costs is exchanged.

(ii) The distributed controllers are designed to enjoy certain pas-
sivity properties. That passivity plays an outstanding role in the
coordination of systems is well recognized (Arcak, 2007). Particu-
larly, incremental passivity (Pavlov & Marconi, 2008) has been ex-
ploited to analyse the stability of flow networks (see, e.g. Bürger
and De Persis (2015) and (Bürger, De Persis, & Allgöwer, 2015)).
To prove asymptotic convergence to the desired state, generally,
some form of strict output passivity (e.g. as a result of damping)
is required. The considered flow networks in this work do not
enjoy this property, due to the preservation of the material,
making the controller design more challenging. We propose a
‘dynamic extension’ of previously considered integral-type con-
trollers, to ensure convergence to a point, preventing the network
to converge to a limit cycle, exhibiting oscillations. Although
the approach is tailored to the system at hand, the design of-
fers new perspectives on similar systems lacking dissipation. In
case physical considerations forbid this dynamic extension, global
convergence to the desired output can be achieved by carefully
selecting nodes that have a controllable input. This selection is
related to the zero forcing set of the underlying graph of the net-
work (Monshizadeh, Zhang, & Camlibel, 2014; Trefois & Delvenne,
2015), and this work provides an interesting link between zero
forcing sets and LaSalle’s invariance principle.

(iii) The optimal control of flow networks considered in this pa-
per was first tackled in Bauso, Blanchini, Giarr, and Pesenti (2013).
To be specific, Bauso et al. (2013) proposed a distributed static
state feedback control to practically stabilize the flow network,
possibly in the presence of time-varying disturbances. Namely,
the control in Bauso et al. (2013) guarantees convergence of the
state to an ε-neighbourhood of the origin by suitably tuning a
gain γ that is computed solving linear programmes depending
on the convex and compact set to which the disturbance vector
belongs or on the constrained set of the control inputs (depending
on whether or not the optimal input has components strictly in
the interior of the feasibility set (Bauso et al., 2013, Subsection
3.1)). Moreover, the control input, is shown to converge to the

optimal solution of a constrained quadratic problem that mini-
mizes the costs associated with both the flow at the edges and
the supplied material at the nodes. The problem of uniform global
stabilization of a more general class of nonlinear compartmental
models has been studied in Blanchini et al. (2016). In that paper,
the state-input equilibrium pair is assumed given and the prob-
lem of regulating the state to a prescribed steady state value is
not considered.

In our contribution we are interested to asymptotically regulate
the state to a prescribed set-point in spite of unknown constant
disturbances, while fulfilling constraints on the magnitude of
both the flows and control inputs at the nodes, and forcing
the latter to converge to the minimum of a linear quadratic
cost function. The latter feature is relevant to those networks
where transportation costs are negligible compared to the costs
associated with the control at the nodes. To achieve the desired
regulation goal, we propose dynamical feedback controllers that
adjust the flow at the edges and the controllable external inputs.
This is contrast with the majority of studies on compartmental
systems (see the next paragraph for some exceptions), where
flows and external control inputs are typically static maps of the
states, see e.g., Como (2017).

Setpoint regulation for (linear) compartmental systems has
been studied before in Ahn, Kim, Lim, Lee, and Oh (2017) and Lee
and Ahn (2015), but our approach is different. In the afore-
mentioned works, the flows are adjusted by properly altering
the system parameters of the network via projected (hence,
discontinuous) integral controllers, whereas we consider here
the parameters constant and dynamically adjust the flows at the
edges and the in/outflow at some nodes, which allows us to
enforce constraints on the flows. On the other hand, the approach
in Ahn et al. (2017) leads to a closed-loop system which is a
linear time-varying compartmental system, whose property can
be exploited to show positivity of the system’s states. Differently
from Ahn et al. (2017), our controllers at the node exchange
information to guarantee convergence to an optimal steady state.
Another difference with respect to Ahn et al. (2017) is that in our
model no term modelling state-dependent outflows is present,
making our control design useful for those networks that are
not strictly output passive. Various other control problems for
compartmental systems are collected in the monograph (Haddad,
Chellaboina, & Hui, 2010).

1.2. Outline

The paper is structured as follows. In Section 2 we introduce
the considered flow network model. Next, in Section 3, we state
our control objective of optimal output regulation and discuss
various constraints under which the control objective should
be achieved. In Section 4 we propose a distributed controller
and study the feasibility of the control problem in more detail.
Exploiting incremental passivity properties of the network and
the controllers, the stability analysis of the closed loop system
is carried out in Section 5. In Section 6, we study two modifica-
tions to the controlled flow network, widening the scope of this
work. Two case studies are presented in Section 7. Finally, the
conclusions and future directions are given in Section 8.

1.3. Notation

Let 0 be the vector of all zeros of suitable dimension and let
1n be the vector containing all ones of length n. The ith element
of vector x is denoted by xi or, if it enhances the readability, by
[x]i. We define R(f ) to be the range of function f (x). A steady
state solution to system ẋ = f (x), is denoted by x, i.e. 0 = f (x).
In case the argument of a function is clear from the context, we
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Table 1
Description of various symbols.

Symbol Description

G Graph of the network
V Set of nodes
Ve Set of nodes with controllable external input
E Set of edges
B Incidence matrix of the network
E Indicator matrix of controllable external inputs
T⋆ Constant (gain) matrix
Lcom Laplacian matrix of the communication graph
Q Quadratic cost matrix
r Linear cost vector
x Storage / inventory level
y Output (y = h(x))
y Desired output
d Disturbance / demand
u Controllable external input (u = g(θ ))
u Optimal input
λ Flows on the edges (λ = f (µ))
ξ Auxiliary flow controller state
φ Auxiliary input controller state

occasionally write f (x) as f (·). Let A ∈ Rn×m be a matrix, then
im(A) is the image of A and ker(A) is the kernel of A. In case
A is a positive definite (positive semi-definite) matrix, we write
A ∈ R

n×n
>0 (A ∈ R

n×n
≥0 ). Lastly, we denote the cardinality of a set

V as |V|. For convenience we provide, in Table 1, an overview of
some important symbols appearing in this work.

2. Flow networks

In this paper we consider a network of physically intercon-
nected undamped dynamical systems. The topology of the system
is described by an undirected graph G = (V, E), where V =

{1, . . . , n} is the set of nodes and E = {1, . . . ,m} is the set of
edges connecting the nodes. We represent the topology by its
corresponding incidence matrix B ∈ Rn×m, where the entries of
B are defined by arbitrarily labelling the ends of the edges in E
with a ‘+’ and a ‘–’, and letting

bik =

⎧⎨⎩
+1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k
0 otherwise.

Let Ve ⊆ V be the set of actuated nodes that are controlled by an
external input and let |Ve| = p. We define

ei =

{
1 i ∈ Ve

0 otherwise.
(1)

The dynamics of node i ∈ V are given by1

Txi ẋi(t) = −

∑
k∈Ei

Bikλk(t) + eiui(t) − di (2a)

yi(t) = hi(xi(t)), (2b)

where xi(t) is the storage (inventory) level, ui(t) the control input,
Txi ∈ R>0 a constant,2 di is a constant unknown disturbance
and yi = hi(xi) the measured output with hi(·) a continuously
differentiable and strictly increasing function. Moreover, Ei is the

1 Here and throughout this work we do not require that any of the appearing
functions is identical to another, e.g. it is permitted that hi ̸= hj for i ̸= j.
2 Usually we have Txi = 1 in the classical flow networks, where a material

is transported. See however Section 7.2 for an example where Txi ̸= 1.

set of edges connected to node i and λk(t) is the flow on edge k.
We can represent the complete network compactly as3

Txẋ = −Bλ + Eu − d (3a)

y = h(x), (3b)

where Tx ∈ R
n×n
>0 , B ∈ Rn×m, λ ∈ Rm, u ∈ Rp and d ∈ Rn. Without

loss of generality we assume that only the first p nodes have a
controllable external input, i.e. {1, . . . , p} = Ve, and consequently
E ∈ Rn×p is of the form

E =

[
Ip×p

0(n−p)×p

]
. (4)

Furthermore, y ∈ Rn and h(x) ∈ Rn of which the ith component is
given by hi(xi). Throughout this work we will study the control of
the inputs to the nodes and the control of the flows on the edges.
We make two basic assumptions on the network that allows us
to formulate the control objectives explicitly in the next section.
First, in order to guarantee that each node can be reached from
anywhere in the graph we make the following assumption on the
topology:

Assumption 1 (Connectedness). The graph G is connected.

Second, to compensate for the disturbances to the network,
we assume that at least one node has a controllable external
input, i.e. p ≥ 1. An immediate consequence of Assumption 1 is
that

[
B E

]
is full row rank. Particularly, we will use the fact

that the pseudoinverse of
[
B E

]
constitutes a right inverse.

3. Optimal regulation with input and flow constraints

In this section we discuss two control objectives and the
various input and flow constraints under which the objectives
should be reached. We start with discussing the two objectives.
The first objective is concerned with the output y = h(x) in (3),
at steady state.

Objective 1 (Output Regulation). Let y be a desired constant set-
point, then the output y = h(x) of (3) asymptotically converges to y,
i.e. limt→∞ ∥h(x(t)) − y∥ = 0.

Since the function hi(xi) is invertible, a desired output yi at
node i, prescribes the associated steady state value xi = h−1

i (yi)
for all i ∈ V . However, note that we do not assume the function
hi(xi) to be known in the remainder of this work. To ensure
feasibility of Objective 1, the following assumption is made:

Assumption 2 (Feasible Setpoint). The desired setpoint y satisfies
yi ∈ R(hi) for all i ∈ V.

At a state where x is constant and satisfies h(x) = y system
(3a) necessarily satisfies

0 = − Bλ + Eu − d. (5)

Premultiplying (5) with 1Tn results in

0 = 1
T
nEu − 1

T
nd = 1

T
pu − 1

T
nd = 0, (6)

such that at a steady state the total input to the network needs to
be equal to the total disturbance. If there are two or more inputs
to the network (i.e. p ≥ 2), it is natural to wonder if the total
input can be coordinated optimally among the nodes. To this end,
we assign a strictly convex linear-quadratic cost function Ci(ui) to

3 For the sake of simplicity, the dependence of the variables on time t is
omitted in most of the remainder this paper.
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each input of the form Ci(ui) =
1
2qiu

2
i + riui + si, with qi ∈ R>0

and ri, si ∈ R. The total cost can be expressed as

C(u) =

∑
i∈Ve

Ci(ui) =
1
2
uTQu + rTu + s, (7)

where Q = diag(q1, . . . , qp), r = (r1, . . . , rp)T and s =
∑

i∈Ve
si.

Minimizing (7), while satisfying the equilibrium condition (5),
gives rise to the following optimization problem:

minimize
u,λ

C(u)

subject to 0 = −Bλ + Eu − d.
(8)

It is possible to explicitly characterize the solution to (8) and we
do so in the following lemma:

Lemma 1 (Solution to Optimization Problem (8)). The solution to
(8) is given by

u = Q−1(κ − r), (9)

where κ = ET 1n1Tn
1TpQ−11p

(d + EQ−1r).

Proof. The proof follows standard arguments from convex opti-
mization and from realizing (Trip et al., 2016, Lemma 4) that the
constraint in (8) can be equivalently replaced by (6). ■

An immediate consequence of Lemma 1 is that the so-called
marginal costs ∂Ci(ui)

∂ui
= qiui + ri are identical for all i ∈ Ve when

computed at the solution to (8). This observation motivates
the addition of a consensus term in the controllers at the nodes
(Eq. (13)). A possible value of λ, associated with the optimal input
u, can be obtained following Footnote 5. Restricting the cost func-
tion C(u) to depend on the input u only and not on λ is needed
to obtain the expression ū in Lemma 1 for which we can design
dynamic controllers whose outputs asymptotically converge to
the optimal values. For static controllers that practically stabilize
the network while minimizing a cost function of both u and λ we
refer the reader to Bauso et al. (2013). We are now ready to state
the second control objective.

Objective 2 (Optimal Feedforward Input). The input at the nodes
asymptotically converges to the solution to (8), i.e. limt→∞ ∥u(t) −

u∥ = 0, with u as in (9).

We now turn our attention to possible constraints on the con-
trol inputs u and λ under which the objectives should be reached.
First, in physical systems the input u is generally constrained by
a minimum value (often zero, preventing a negative input) and a
maximum value, representing e.g. a production capacity.

Constraint 1 (Input Limitations). The inputs at the nodes satisfy

u−

i < ui(t) < u+

i for all i ∈ Ve and all t ≥ 0, (10)

with u−

i , u+

i ∈ R being suitable constants.

Second, the flows on the edges are often constrained to be
unidirectional and to be within the capacity of the edges.

Constraint 2 (Flow Capacity). The flows on the edges satisfy

λ−

k < λk(t) < λ+

k for all k ∈ E and all t ≥ 0, (11)

with λ−

k , λ+

k ∈ R being suitable constants.

Note that physical limitations and safety requirements de-
mand that the constraints should be satisfied for all time and not
only at steady state.

In many applications it is desirable to have a distributed con-
trol architecture where controllers rely only on local information

Fig. 1. The controller that is located at the edge k has access to the regulation
error of its adjacent nodes, hi(xi)−yi and hj(xj)−yj , where i, j are the two nodes
connected by the edge k, as well as to the term fk(µk)− ξk which only depends
on local control variables. Using these measurements as inputs, the controller
generates the flow rate λk on the edge.

to decrease communications, to increase robustness and to im-
prove the scalability of the control scheme. We therefore require
that the controllers to be designed, only depend on information
available from adjacent nodes in the physical flow network or
adjacent nodes in a digital communication network that is de-
ployed to ensure optimality (see the next section). This leads to
the following design problem:

Problem 1 (Controller Design Problem). Design distributed con-
trollers that regulate the external inputs u at the nodes and the
flows λ on the edges, such that Objectives 1 and 2 are achieved,
while satisfying Constraints 1 and 2.

4. Controller design

4.1. Flow controller

We design a controller that regulates the flows on the edges,
aiming at consensus in the error y−y (balancing), while obtaining
a useful passivity property of the resulting closed loop system
when interconnected with (3). Consider the following controller:

Tµµ̇ = BT (h(x) − y) − (f (µ) − ξ )
Tξ ξ̇ = f (µ) − ξ

λ = f (µ), (12)

where Tµ, Tξ ∈ R
m×m
>0 are diagonal matrices with strictly positive

entries, µ, ξ ∈ Rm and the mapping f (·) : Rm
→ Rm, with

f (µ) = (f1(µ1), . . . , fm(µm))T , has suitable properties discussed
in Assumptions 4 and 5. Moreover, B is the incidence matrix
reflecting the topology of the physical network, which implies
that the flow controller on edge k only requires information from
its adjacent nodes (see also Fig. 1). Note that the term [BT (h(x)−
y)]k determines the difference in the output error of the two
nodes adjacent to edge k ∈ E . The controllers at the edges (12)
are designed to induce a suitable passivity property when inter-
connected to the process (3), as shown in Lemma 3 in the next
section. Furthermore, as will be discussed in Section 5, particu-
larly in Remark 2, the state ξ is introduced to prove convergence
to a constant flow, preventing oscillations and compensating for
the lack of damping in the process dynamics (3).

4.2. Controller at the nodes

Next, we design an input controller ui at each node i that
adjusts the external input to the network. Inspired by the result
in Trip and De Persis (2017), where a similar control problem
is considered in the setting of power networks, we propose the
controller

Tθ θ̇ = − ET (h(x) − y) − (g(θ ) − φ)

Tφ φ̇ = g(θ ) − φ − QLcom(Qφ + r)

u = g(θ ), (13)
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Fig. 2. Example of a flow network including a communication graph. The
depicted communication graph is undirected, satisfying Assumption 3. At every
node i the controller has access to the local regulation error hi(xi)−yi and to the
term gi(θi)−φi , which depends on the node local control variables. Furthermore,
node i receives information on the marginal costs qjφj + rj from the controllers
located at the adjacent nodes and connected via the communication network.

where Tθ , Tφ ∈ R
p×p
>0 are diagonal matrices with strictly positive

entries, θ, φ ∈ Rp and the mapping g(·) : Rp
→ Rp, with

g(θ ) = (g1(θ1) . . . gp(θp))T , has suitable properties discussed in
Assumptions 4 and 5. Moreover, Lcom is the Laplacian matrix
reflecting the communication topology (see also Fig. 2). Similarly
to the controller at the edges, controllers (13) are designed to
enjoy a passivity property so that, when interconnected with
the process (3) and the controllers (12) in a power preserving
manner, passivity of the closed-loop system is preserved and
stability can be inferred. Moreover, the consensus term enabled
by the communication Laplacian Lcom ensures that, at steady
state, a consensus is obtained in the marginal costs, i.e. Qg(θ )+r ∈

im(1p). In order to guarantee that all marginal costs converge
to the same value we make the following assumption on the
communication network.

Assumption 3 (Communication Network). The graph reflecting the
communication topology is balanced4 and strongly connected.

An immediate consequence of Assumption 3 is that Lcom is
a positive semi-definite matrix and φT Lcomφ = 0 if and only if
φ ∈ im(1p). Again, we introduced an additional state φ, to ensure
convergence to a constant point, whereas the term [ET (h(x)−y)]i
provides an integral action to reduce the output error at the node
i ∈ Ve.

Remark 1 (Local and Exchanged Information). According to (13),
every controller at node i ∈ Ve, measures yi = hi(xi) and
compares it with the desired set point yi. Information on the
marginal costs (qiφi + ri) is exchanged among neighbours over
a communication network with a topology described by Lcom.
Controller (13) is therefore fully distributed. The output gi(θi) is
chosen to satisfy Constraint 1, and is discussed in more detail in
the next subsection.

4.3. Feasibility of the control problem

To ensure feasibility of the controller design problem, we
impose two assumptions on the controllers (12) and (13). The first
assumption guarantees that the controllers are able to generate
a (feedforward) control signal, that is required to attain a steady
state of the system.

Assumption 4 (Attainability of the Steady State). Consider func-
tions fk(µk) and gi(θi), in respectively (12) and (13). Let u be as in
(9). There exists5 an ω ∈ Rm, such that [B†(Eu−d)+(I−B†B)ω]k ∈

R(fk) for all k ∈ E . Furthermore, ui ∈ R(gi) for all i ∈ Ve.

4 A directed graph is balanced if the (weighted) in-degree is equal to the
(weighted) out-degree of every node.
5 If Bλ = Eu − d has any solution λ, then all solutions are given by

λ = B†(Eu − d) + (I − B†B)ω, for an arbitrary vector ω ∈ Rm , where B† denotes
the Moore–Penrose pseudoinverse of B. The existence of a solution λ is shown
in the proof of Lemma 2.

Moreover, the controllers (12) and (13) can be designed to
satisfy constraints (10) and (11), by properly selecting f (µ) and
g(θ ). Since λ = f (µ) and u = g(θ ), the following assumption is
sufficient to ensure that the inputs and flows do not exceed their
limitations.

Assumption 5 (Controller Outputs). Functions fk(·) and gi(·), in
respectively (12) and (13), are continuously differentiable, strictly
increasing and satisfy

R(fk) = (λ−

k , λ+

k )

R(gi) = (u−

i , u+

i ),
(14)

for all k ∈ E and all i ∈ Ve.

The property of fk(µk) and gi(θi) being continuously differen-
tiable and strictly increasing functions, is exploited within the
various proofs to establish the global convergence properties, and
ensures e.g. the existence of an inverse function.

Before we analyse the stability of the system we investigate
the properties of the steady state. To do so, we write system (3)
in closed loop with controllers (12) and (13), obtaining

Txẋ = − Bf (µ) + Eg(θ ) − d

Tµµ̇ = BT (h(x) − y) − (f (µ) − ξ )

Tξ ξ̇ = f (µ) − ξ (15a)

Tθ θ̇ = − ET (h(x) − y) − (g(θ ) − φ)

Tφ φ̇ = g(θ ) − φ − QLcom(Qφ + r). (15b)

Any equilibrium of system (15) satisfies

0 = −Bf (µ) + Eg(θ ) − d (16a)

0 = BT (h(x) − y) − (f (µ) − ξ ) (16b)

0 = f (µ) − ξ (16c)

0 = −ET (h(x) − y) − (g(θ ) − φ) (16d)

0 = (g(θ ) − φ) − QLcom(Qφ + r). (16e)

We will now show that under Assumptions 1–5 there exists at
least one solution to (16) and all solutions (16) satisfy the control
objectives.

Lemma 2 (Equilibria). Let Assumptions 1–4 hold. Then, there exists
an equilibrium (x, µ, ξ, θ, φ) of system (15). Moreover, any equilib-
rium is such that h(x) = y and g(θ ) = u, where u is the optimal
control input given by (9).

Proof. To prove the statement, we first show that at least one
equilibrium of system (15) exists. By Assumption 4, u ∈ R(g),
and we set θ = g−1(u). Also, we set φ = u. Bearing in mind
that Qu + r ∈ im(1p), we have that (16e) holds. Furthermore,
by definition, u satisfies 1Tn(Eu − d) = 0. Since the graph is
connected (Assumption 1) and im(B) = (ker(BT ))⊥ = (im(1n))⊥,
we have that Eu − d ∈ im(B). For this reason, there exists a
λ satisfying −Bλ + Eu − d = 0, and any solution is given by
λ = B†(Eu − d) + (I − B†B)ω, for an arbitrary vector ω ∈ Rm.
By Assumption 4, there exists at least one ω such that λ ∈ R(fk).
Taking such a λ, setting ξ = λ and µ = f −1(λ), shows that (16a),
(16c) hold. Since y ∈ R(h) (Assumption 2), setting x = h−1(y)
shows (16b) and (16d). Hence, there exists a state (x, µ, ξ, θ, φ)
that satisfies Eqs. (16) and is therefore an equilibrium of (15).

Next, we show that any equilibrium (x, µ, ξ, θ, φ) necessarily
satisfies h(x) = y and g(θ ) = u, where u is the optimal control
input given by (9). From (16c), ξ = f (µ) holds and we will show
that this implies that necessarily h(x) = y. By (16e), bearing
in mind that Lcom is the Laplacian of a balanced and strongly
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connected graph (Assumption 3), we have that 1TpQ
−1(g(θ ) −

φ) = 0. This, together with (16d), implies that 1TpQ
−1ET (h(x) −

y) = 0. By (16b) and ξ = f (µ), we also have BT (h(x) − y) = 0.

Hence,
[
1TpQ

−1ET

BT

]
(h(x)−y) = 0. We now prove that necessarily

h(x) − y = 0. Suppose, ad absurdum, that there exists v ̸= 0 such

that
[
1TpQ

−1ET

BT

]
v = 0. By Assumption 1, it follows that v = 1nv∗

with v∗ a scalar. Then 1TpQ
−1ET1nv∗ = 0, which is, by definition

of E in (4) and the fact that p ≥ 1, equivalent to 1TpQ
−11pv∗ = 0.

This implies that v∗ = 0, contradicting that v = 1nv
∗

̸= 0.
Hence, necessarily h(x) − y = 0 and by strict monotonicity of
h(·), we must have that x = h−1(y). Since h(x) = y, it follows
from (16d) that g(θ ) = φ, and by strict monotonicity of g(θ ), that
θ = g−1(φ). Moreover, from (16e) we obtain that Lcom(Qφ + r) =

0, and since the communication graph is strongly connected due
to Assumption 3, we have that Qφ + r ∈ im(1p). Since 1TnB = 0,
we obtain from (16a) that 1Tn(Eg(θ ) − d) = 0. Bearing in mind
that u satisfies Qu + r ∈ im(1p) and 1Tn(Eu − d) = 0, we have
consequently that g(θ ) = φ = u, with u as in (9). ■

As a consequence of Lemma 2 we have that if Assumptions 1–4
hold, system (15) is equivalent to

Txẋ = − B(f (µ) − f (µ)) + E(g(θ ) − g(θ ))

Tµµ̇ = BT (h(x) − h(x))

− ((f (µ) − f (µ)) − (ξ − ξ ))

Tξ ξ̇ = (f (µ) − f (µ)) − (ξ − ξ )

(17a)

Tθ θ̇ = − ET (h(x) − h(x))

− (g(θ ) − g(θ )) + (φ − φ)

Tφ φ̇ = (g(θ ) − g(θ )) − (φ − φ)

− QLcomQ (φ − φ),

(17b)

a form that will be exploited in the stability analysis.

5. Stability analysis

In this section we analyse the stability of the closed-loop
system (15). The analysis is foremost based on LaSalle’s invari-
ance principle and exploits useful properties of interconnected
incrementally passive systems. To facilitate the discussion, we
first recall the following definition:

Definition 1 (Incremental Passivity). System ẋ = f (x, u), y =

h(x), x ∈ X , X the state space, u, y ∈ Rn, is incrementally
passive6 with respect to a constant triplet (x, u, y) satisfying
0 = f (x, u), y = h(x), if there exists a continuously differentiable
and radially unbounded function V (x, x) : X → R, such that
for all x ∈ X , u ∈ Rm and y = h(x), y = h(x) it holds that
V̇ (·) =

∂V
∂x f (x, u) ≤ (y − y)T (u − u).

We now proceed with establishing the incremental passivity
property of (15a), that is the proposed flow controller (12) ren-
ders the network dynamics (3) incrementally passive with respect
to the input Eg(θ ) and output h(x).

6 With some abuse of terminology, we state the incremental passivity
property with respect to a steady state solution. This is in contrast to the ‘usual’
definition where the incremental passivity property holds with respect to any
solution (Pavlov & Marconi, 2008). Note that the incremental passivity property
might hold with respect to multiple/all steady state solutions.

Lemma 3 (Incremental Passivity of (15a)). Let Assumptions 1–4
hold. System (15a) with input Eg(θ ) and output h(x) is incrementally
passive with respect to the constant (x, µ, ξ ) satisfying (16a)–(16c).
Namely, the radially unbounded storage function V1(x, x, µ, µ, ξ, ξ )
satisfies

V̇1(·) = (h(x) − h(x))TE(g(θ ) − g(θ ))

− (f (µ) − ξ )T (f (µ) − ξ ),
(18)

along the solutions to (15a).

Proof. Consider the storage function

V1(x, x, µ, µ, ξ, ξ ) =

∑
i∈V

Txi

∫ xi

xi

hi(y) − hi(xi)dy

+

∑
k∈E

Tµk

∫ µk

µk

fk(y) − fk(µk)dy

+
1
2
(ξ − ξ )TTξ (ξ − ξ ).

Since hi(xi) and fk(µk) are strictly increasing functions, the incre-
mental storage function V1(·) is radially unbounded. Furthermore,
bearing in mind that f (µ) = ξ , V1(·) indeed satisfies (18) along
the solutions to (15a), or equivalently along the solutions to
(17a). ■

We now prove a similar result for (15b), that is the controller
(13) is incrementally passive with respect to the input −h(x) and
output Eg(θ ).

Lemma 4 (Incremental Passivity of (15b)). Let Assumptions 1–4
hold. System (15b) with input −h(x) and output Eg(θ ) is incremen-
tally passive with respect to (θ, φ) satisfying (16d)–(16e). Namely,
the radially unbounded storage function V2(θ, θ, φ, φ) satisfies

V̇2(·) = − (g(θ ) − φ)T (g(θ ) − φ)

− (φ − φ)TQLcomQ (φ − φ)

− (g(θ ) − g(θ ))TET (h(x) − h(x)),

(19)

along the solutions to (15b).

Proof. Consider the storage function

V2(θ, θ, φ, φ) =

∑
i∈V

Tθi

∫ θi

θ i

gi(y) − gi(θ i)dy

+
1
2
(φ − φ)TTφ(φ − φ).

(20)

Note that since gi(θi) is a strictly increasing function, the incre-
mental storage function V2(·) is radially unbounded. Furthermore,
since g(θ ) = φ, V2(·) indeed satisfies (19) along the solutions to
(15b), or equivalently along the solutions to (17b). ■

Exploiting the previous lemmas, we are now ready to prove
the main result of this paper.

Theorem 1 (Solving Problem 1 for System (3)). Let Assumptions 1–5
hold. The solutions to system (3), in closed loop with (12) and (13),
globally converge to a point in the set

Υ1 =

⎧⎨⎩x, µ, ξ, θ, φ

⏐⏐⏐⏐⏐⏐
B(f (µ) − f (µ)) = 0,
B(ξ − ξ ) = 0,
x = x, θ = θ, φ = φ

⎫⎬⎭ , (21)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ ) = u,
with u the optimal input given by (9). Moreover, u = g(θ ) and
λ = f (µ) satisfy constraints (10) and (11) for all t ≥ 0. Therefore,
controllers (12) and (13) solve Problem 1 for the flow network (3).
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Proof. Satisfying constraints (10) and (11) for all t ≥ 0 follows
from the design of g(θ ) and f (µ) and Assumption 5. Let

V (·) = V1(x, x, µ, µ, ξ, ξ ) + V2(θ, θ, φ, φ), (22)

with V1(·) and V2(·) given in Lemma 3 and Lemma 4, respectively.
Consequently, V (·) satisfies

V̇ (·) = − (φ − φ)TQLcomQ (φ − φ)

− (g(θ ) − φ)T (g(θ ) − φ)

− (f (µ) − ξ )T (f (µ) − ξ ),

(23)

along the solutions to (15). From (23) we have that V̇ (·) ≤ 0, and
since V (·) is radially unbounded, the solutions to (15) approach
the largest invariant set contained entirely in the set S1, where
V̇ (·) = 0. This set is characterized by

S1 =

{
x, µ, ξ, θ, φ

⏐⏐⏐⏐ φ = g(θ ), ξ = f (µ),
Q (φ − φ) ∈ im(1)

}
, (24)

where Q (φ + φ) ∈ im(1p) follows from Assumption 3. On the
set S1, system (15) therefore satisfies

Txẋ = − B(f (µ) − f (µ)) + E(φ − φ) (25a)

Tµµ̇ = BT (h(x) − h(x)) (25b)

Tξ ξ̇ = 0 (25c)

Tθ θ̇ = − ET (h(x) − h(x)) (25d)

Tφ φ̇ = 0. (25e)

Due to (24), (25c) and (25e) we have that

µ̇ =

(
∂ f (µ)
∂µ

)−1

ξ̇ = 0 (26)

θ̇ =

(
∂g(θ )
∂θ

)−1

φ̇ = 0. (27)

where we note that ∂ f (µ)
∂µ

̸= 0 and ∂g(θ )
∂θ

̸= 0. It follows now from
(25b), (25d), (26) and (27) that[

BT

−ET

]
(h(x) − h(x)) = 0. (28)

We recall that
[
B −E

]T
has full column rank and therefore has

a left inverse. As a result, we have that necessarily h(x)−h(x) = 0,
i.e. h(x) = y. By strict monotonicity of h(x), it follows that on the
invariant set x = x and that ẋ = 0.

Premultiplying both sides of (25a) by 1Tp , yields 0 = 1Tp (φ −φ)
and since Q (φ − φ) ∈ im(1p), where Q is a diagonal matrix
with only strictly positive entries, it follows that on the set where
V̇ = 0 necessarily φ = φ. From (24) and (25a) it therefore follows
that B(f (µ)− f (µ)) = 0 and B(ξ − ξ ) = 0. Moreover, since on the
set S1, φ = g(θ ) and φ = g(θ ), we also have that g(θ ) = g(θ ) = u
(see also Lemma 2). Consequently, system (15) indeed approaches
the set Υ1, where h(x) = y and where u = g(θ ) = g(θ ) = u, with
u the optimal input given by (9). To prove convergence to a point
in the set Υ1, we note that Υ1 consists of equilibria of (15). Since
the incremental storage function V (·) can be defined with respect
to any equilibrium in Υ1, and since V (·) ≤ 0, every point in Υ1 is a
Lyapunov stable equilibrium of system (15). Consequently, every
positive limit set associated with any solution to system (15)
consists of Lyapunov stable equilibria. It then follows by Haddad
and Chellaboina (2008, Theorem 4.20) that this positive limit set
is a singleton, which proves convergence to a point. ■

Remark 2 (Avoiding Oscillations). In the proof of Theorem 1, we
exploited the dynamics of the additional control variables ξ and

φ to conclude that on the invariant set µ̇ = θ̇ = 0. It is natural to
wonder if these additional controller states are essential to obtain
the convergence result of Theorem 1. Therefore, we compare (12)
and (13) with controllers of the form

Tµµ̇ = BT (h(x) − y)

λ = f (µ)
(29)

Tθ θ̇ = − QLcom(Qg(θ ) + r) − (h(x) − y)

u = g(θ ),
(30)

as both (12)–(13) and (29)-(30) admit a steady state where h(x) =

y and g(θ ) = u. However, in contrast to (15), for which we have
proven global convergence to the desired state, system

Txẋ = − Bf (µ) + Eg(θ ) − d

Tµµ̇ = BT (h(x) − y)

Tθ θ̇ = − QLcom(Qg(θ ) + r) − (h(x) − y),

(31)

can converge (depending on E and Q ) to a limit cycle exhibiting
oscillatory behaviour as has been shown in Scholten et al. (2016).
To illustrate this claim, consider the linear case, where f (µ) = µ,
g(θ ) = θ and h(x) = x. Introducing x̃ = x−x, µ̃ = µ−µ, θ̃ = θ−θ ,
and assuming E = I , Q = qI with q ∈ R, system (31) is written
as⎡⎢⎣ ˙̃x

˙̃µ
˙̃
θ

⎤⎥⎦ =

⎡⎣ 0 −B I
BT 0 0
−I 0 −q2Lcom

⎤⎦⎡⎣ x̃
µ̃

θ̃

⎤⎦ . (32)

It can be readily confirmed that the solution to (32), with initial
conditions x̃(0) = 0, µ̃(0) = 0, and θ̃ (0) = 1n, is given by
x̃(t) = 1n sin(t), µ̃(t) = 0, θ̃ (t) = 1n cos(t), which indeed clearly
exhibits oscillatory behaviour.

6. Physical flow dynamics

In the previous discussion we focussed on the design of dy-
namical flow controllers. On the other hand, flows in networks
might follow from underlying physical principles that are not
accurately described by (12). An important example is the case
where the flow λk directly depends on the states xi of its ad-
jacent nodes. This is common in e.g. compartmental systems
(see e.g. Bauso et al. (2013), Blanchini et al. (2016) and Como
(2017)). Another example is when a change of λ is induced by
the dynamics of the system, instead of a controller that is up to
design. We discuss in Section 6.2 an important example where
the flow dynamics are induced by ‘potential differences’. First
we discuss how certain compartmental systems fit within the
presented setting.

6.1. Compartmental systems

Since (3) shows similarities with those in compartmental sys-
tems, it is natural to wonder how these models are related.
Compared to (3), compartmental systems have additional terms
that model state dependent inflows, outflows and flows between
nodes. In this section we incorporate such terms in our frame-
work by augmenting (3), resulting in

Txẋ = Ψ (x) − Bλ + Eu − d (33a)

y = h(x), (33b)

where Ψ (x) = −Bcγ (BT
c h(x)) − Ecη(ET

c h(x)). Here, Bc is the inci-
dence matrix of a (not necessarily connected) graph Gc = (V, Ec),
representing the interconnection of the compartments (Blanchini
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et al., 2016). Moreover, the set of nodes that have a state de-
pendent inflow/outflow is given by Vc ⊆ V , with cardinality
pc := |Vc |. Matrix Ec ∈ Rn×pc is used to indicate the locations
of the pc state dependent inflows/outflows and its entries are
defined as

(ec)ik =

{
1 if the kth flow is located at node i
0 otherwise.

Let l := |Ec |. The mapping γ : Rl
→ Rl is given by γ (a) =

(γ1(a1) . . . γl(al))T , with a = BT
c h(x), ak = [BT

c h(x)]k and γk(ak)
nondecreasing and continuously differentiable for all k ∈ Ec . The
term Bcγ (BT

c h(x)) models the flow between nodes as a result of
potential differences. The mapping η : Rec → Rec is given by
η(b) = (η1(b1) . . . ηec (bec ))

T , with b = ET
c h(x), bi = [ET

c h(x)]i
and ηi(bi) is nondecreasing and continuously differentiable for all
i ∈ Vc . The term Ecη(ET

c h(x)) models the inflow to or the outflow
from the system, at a node, proportionally to the potential at the
corresponding node (Riaza, 2017).

Remark 3 (Interpretation of Ψ (x)). System (33) models a com-
partmental system with additional actuated edges (e.g . flows
controlled by a pump) and actuated inputs. The actuation allows
us to achieve output regulation and an optimal coordination
of the inputs among the nodes, in the presence of unknown
disturbances. In absence of such actuation, most works on com-
partmental systems relied on some form of proportional control
to achieve practical stabilization (Bauso et al., 2013) or uniform
global stabilization (Blanchini et al., 2016; Como, 2017) of the
origin. In this work, since we are interested in regulating the
outputs to desired setpoints in spite of unmeasured constant
disturbances and with optimal steady state control inputs at the
nodes, we rely on a more complex control structure and, in
contrast to Bauso et al. (2013), we do not minimize possible
costs associated with the flows. In some cases, the flow on an
edge is proportional to the potential of one of its adjacent nodes
(e.g. the flow from a reservoir to another due to gravity). We do
not consider this case here and leave the corresponding analysis
to a future work.

The optimal control allocation problem (8) now becomes

minimize
u,λ

C(u)

subject to 0 = Ψ (x) − Bλ + Eu − d,
(34)

where again xi = h−1
i (yi) for all i ∈ V . Similar to Lemma 1, the

following can be immediately shown:

Lemma 5 (Solution to Optimization Problem (34)). The solution to
(34) is given by

û = Q−1(κ̂ − r), (35)

where κ̂ = ET 1n1Tn
1TpQ−11p

(d̂ + EQ−1r), and d̂ = d + Ecη(ET
c h(x)).

Due to the new network dynamics (33) and optimal control
input û in the network, Assumption 4 needs to be revisited.

Assumption 6 (Attainability Revisited). Consider functions fk(·)
and gi(·), in respectively (12) and (13). Let û be as in (35). There
exists an ω ∈ Rm, such that [B†(Ψ (x) + Eû − d) + (I − B†B)ω]k ∈

R(fk) for all k ∈ E . Furthermore, ûi ∈ R(gi) for all i ∈ Ve.

With the assumption above, we can prove, similarly as
Lemma 2, the existence of a steady state for system (12), (13),
(33). The argumentation is along the lines of the proof of Lemma 2
and we omit the details. We can now prove the following result:

Theorem 2 (Solving Problem 1 for System (33)). Let Assumptions 1
– 3 and 5–6 hold. The solutions to system (33), in closed loop with
(12) and (13), globally converge to point in the set

Υ2 =

⎧⎨⎩x, µ, ξ, θ, φ

⏐⏐⏐⏐⏐⏐
B(f (µ) − f (µ)) = 0,
B(ξ − ξ ) = 0,
x = x, θ = θ, φ = φ

⎫⎬⎭ , (36)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ ) = û,
with û given by (35). Moreover, u = g(θ ) and λ = f (µ) satisfy
constraints (10) and (11) for all t ≥ 0. Therefore, controllers (12)
and (13) solve Problem 1 for the flow network (33).

Proof. First, the fulfilment of the constraints (10) and (11) for all
t ≥ 0 is guaranteed by the design of the controllers. Second,
a straightforward adjustment of the arguments of Theorem 1
shows that the same incremental storage function (22), used in
Theorem 1, now satisfies

V̇ (·) = (h(x) − h(x))T (Ψ (x) − Ψ (x))

− (φ − φ)TQLcomQ (φ − φ)

− (g(θ ) − φ)T (g(θ ) − φ)

− (f (µ) − ξ )T (f (µ) − ξ ),

(37)

along the solutions to (33) in closed loop with (12) and (13). We
continue by showing that the additional term in V̇ (·) (comparing
with the expression of V̇ (·) in (23)) satisfies (h(x)− h(x))T (Ψ (x)−
Ψ (x)) ≤ 0. In fact, since γ (·) and η(·) are componentwise increas-
ing mappings and by application of Hadamard’s lemma we have
that7

(h(x) − h(x))T (Ψ (x) − Ψ (x)) (38)

= − (h(x) − h(x))TBc(γ (BT
c h(x)) − γ (BT

c h(x)))

− (h(x) − h(x))TEc(η(ET
c h(x)) − η(ET

c h(x)))

= − (h(x) − h(x))TBcΓ
b(x)BT

c (h(x) − h(x))

− (h(x) − h(x))TEcΓ e(x)ET
c (h(x) − h(x)) ≤ 0,

where Γ b(x) and Γ e(x) are diagonal matrices with entries

Γ b
kk(x) =

∫ 1

0

∂γk(yk)
∂yk

⏐⏐⏐⏐
yk=τ (χb

k (x)−χb
k (x))+χb

k (x)
dτ (39)

Γ e
ii (x) =

∫ 1

0

∂ηi(yi)
∂yi

⏐⏐⏐⏐
yi=τ (χe

i (x)−χe
i (x))+χe

i (x)
dτ , (40)

with χb
k (x) = [BT

c h(x)]k and χ e
i (x) = [ET

c h(x)]i. Note that Γ b
kk(x),

Γ e
ii (x) ≥ 0 for any x, since γk(·) and ηi(·) are increasing functions

for all k ∈ Ec and all i ∈ Vc . Therefore, V (·) satisfies

V̇ (·) ≤ − (φ − φ)TQLcomQ (φ − φ)

− (g(θ ) − φ)T (g(θ ) − φ)

− (f (µ) − ξ )T (f (µ) − ξ ),

(41)

along the solutions to (33) in closed loop with (12) and (13). Note
that expression (41) is identical to (23), that is used to prove
Theorem 1. Similar to the proof of Theorem 1, we can argue that
x = x, by exploiting the relations (25b)–(25e). Therefore, on the
invariant set where V̇ (·) = 0,

Txẋ = Ψ (x) − Ψ (x) − B(f (µ) − f (µ)) + E(φ − φ), (42)

reduces to (25a), such that system (33) in closed loop with (12)
and (13), is on the invariant set identical to (25). From here, the
proof follows the same steps as the proof of Theorem 1. ■

7 According to Hadamard’s lemma, one can write γ (z) − γ (z) = Γ (z)(z − z),
where Γi(z) ≥ 0 if γi(z) is an increasing function. A similar argument applies
to the mapping η.
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6.2. Potential induced flow dynamics

In this subsection we study a network where the flow dynam-
ics are given by the following expression:

Tµµ̇ = BT (h(x) − y)

λ = f (µ),
(43)

that has been studied in the context of networked systems in
e.g. Bürger et al. (2015), Bürger, Zelazo, and Allgöwer (2014) and
van der Schaft and Wei (2012). Also, it describes the behaviour of
inductive lines in an electric network (see also the case study on
a super-conducting DC network in Section 7.2).

The dynamics (43) coincide with (12), if one neglects the
terms depending on the now missing state ξ . In fact, (43) can
generate the same steady state output as (12) and also shares an
incremental passivity property. However, as we pointed out in
Remark 2, the state ξ is essential to derive the convergence result
in Theorem 1. On the other hand, by carefully selecting nodes
that have a controllable external input, the controllers (13) and
(43) still solve Problem 1 for the flow network (3). This choice is
based on the notion of a zero forcing set (see e.g., Hogben (2010),
Monshizadeh et al. (2014), Trefois and Delvenne (2015)), which
we review next.

Consider the graph G and let us initially colour each of its
nodes either black or white. The colour of the nodes then changes
according to the following colouring rule:

Graph colouring rule If node i is coloured black and has exactly
one neighbour j which is white, then the colour of node j is changed
to black.

Let V0 ⊆ V be the set of nodes which are initially coloured
black, while the remaining ones are white, and let C(V0) be the set
of black nodes obtained by applying the colour changing rule until
no more changes are possible. A zero forcing set is then defined
as:

Definition 2 (Zero Forcing Set). If V0 ⊆ V satisfies C(V0) = V then
V0 is a zero forcing set for G.

We now make a connection between a zero forcing set and the
set Ve of nodes that have actuation (i.e., all nodes that correspond
to the rows of E that contain a non-zero entry).

Assumption 7 (Ve is a Zero Forcing Set). The set Ve is a zero forcing
set for G.

An example of a zero forcing set is provided previously in
Fig. 2, where the black nodes indeed form a zero forcing set for
the physical network.

We are now ready to state the second result of this section.

Theorem 3 (Solving Problem 1 with (43)). Let Assumptions 1–5 and
7 hold. The solutions to system (3), in closed loop with the controllers
(13) and (43), globally converge to a point in the set

Υ3 =

{
x, µ, θ, φ

⏐⏐⏐⏐ B(f (µ) − f (µ)) = 0,
x = x, θ = θ, φ = φ

}
, (44)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ ) = u,
with u given by (9). Moreover, u = g(θ ) and λ = f (µ) satisfy
constraints (10) and (11) for all t ≥ 0. Therefore, controllers (13)
and (43) solve Problem 1 for the flow network (3).

Proof. Following the argumentation of the proof of Theorem 1,
using the same incremental storage function (22), allows us to
conclude that the solutions to the system (3), (13), (43) approach

the largest invariant set contained in the set where V̇ (·) = 0. This
set, where V̇ (·) = 0, is now characterized by

S3 =
{
x, µ, θ, φ

⏐⏐φ = g(θ ),Q (φ − φ) ∈ im(1p)
}
. (45)

System (3), (13), (43) satisfies on this set

Txẋ = − B(f (µ) − f (µ)) + E(φ − φ) (46a)

Tµµ̇ = BT (h(x) − h(x)) (46b)

0 = − ET (h(x) − h(x)) (46c)

Tφ φ̇ = 0. (46d)

We now prove by induction that hi(xi) = hi(xi) for all i ∈ V . To
this end, let us define the sequence of sets of nodes Vk ⊆ V , with
k ∈ N≥0, having the properties:

(i) Vk is a zero forcing set;
(ii) on the largest invariant set for (3), (13), (43) contained in

S3, it holds that hi(xi) = hi(xi) for all i ∈ Vk.
Let the cardinality of Vk be denoted by nk. In order to show

that hi(xi) = hi(xi) for all i ∈ V we will prove that there exists an
index k such that nk = n, where Vk satisfies properties (i) and (ii).
Recall that |V| = n.

First, we note that Assumption 7 and (46c) imply that Ve
satisfies properties (i) and (ii). For this reason, we can set V0 := Ve
and n0 := p > 0 that satisfies properties (i) and (ii). If n0 = n,
then k = 0, otherwise n0 < n and we proceed as follows.

For a k ∈ N≥0, we consider a set of nodes Vk of cardinality
0 < nk < n satisfying properties (i) and (ii) above. We will
show that this implies that there exists a set of nodes Vk+1 that
satisfies properties (i) and (ii) with nk < nk+1. Let us define

B(k)
=

[
BB(k)

BW(k)

]
, where the matrices BB(k)

∈ Rnk×m and BW(k)
∈

R(n−nk)×m are obtained by collecting from B the rows indexed by
Vk and V\Vk, respectively. Note that B(k) is obtained from B by
reordering of the rows, and that BB(k) and BW(k) are the rows
of B corresponding to the black and white nodes, respectively.
Similarly, for any vector χ ∈ Rn let χB(k)

∈ Rnk and χW(k)
∈

Rn−nk be obtained by collecting from χ the elements indexed
by Vk and V\Vk respectively. We note that, by property (ii), on
the largest invariant set, the set Vk fulfils (h(x) − h(x))B(k)

= 0.
More explicitly, hi(xi) − hi(xi) = 0 for all i ∈ Vk. By the strict
monotonicity of hi(xi), it follows that on the invariant set xi = xi
for all i ∈ Vk. Since d

dt (φ − φ) = 0 due to (46d), on the invariant
set we have, by (46a) and (46b), that

Tx

[
0

ẍW(k)

]
= −B(k) ∂ f (µ)

∂µ
B(k)T

[
0

(h(x) − h(x))W(k)

]
,

from which it follows that

0 = −BB(k) ∂ f (µ)
∂µ

BW(k)T (h(x) − h(x))W(k). (47)

Note that BB(k) ∂ f (µ)
∂µ

BW(k)T is the right-upper block of the Laplacian

matrix B(k) ∂ f (µ)
∂µ

B(k)T with strictly positive weight matrix, since
fk(µk) is strictly increasing, such that ∂ fk(µk)

∂µk
> 0 for all k ∈ E .

The non-zero entries in BB(k) ∂ f (µ)
∂µ

BW(k)T correspond to pairs of
exactly one black and one white node that are connected via an
edge. Therefore we have that each row i of BB(k) ∂ f (µ)

∂µ
BW(k)T (which

corresponds to a black node) contains a strictly negative number
at entry j if, and only if, node nk+j is a neighbour of the node i. By
assumption we have that Vk is a zero forcing set and that Vk ⊊ V ,
which implies that there exists at least one row of BB(k) ∂ f (µ)

∂µ
BW(k)T

which contains exactly one non-zero entry. Let Uk be the set in
which we collect the nodes that correspond to these rows and
define Vk+1 := Vk ∪Uk. From (47), we have that 0 = hi(xi)−hi(xi),
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for all i ∈ Uk and therefore for all i ∈ Vk+1. Moreover, since
Vk ⊂ Vk+1, and since we assume that Vk is a zero forcing set for
G, also Vk+1 is a zero forcing set for G. This concludes the proof
that there exists Vk+1 that satisfies properties (i) and (ii), with
nk+1 > nk.

Since the number of nodes is finite, in a finite number of
iterations k we arrive at a set Vk where nk = n, i.e. Vk coincides
with V and has the property that on the largest invariant set for
(3), (13), (43) contained in S3, 0 = hi(xi) − hi(xi) for all i ∈ V .
From here, omitting the variable ξ , the proof follows, mutatis
mutandis, the proof of Theorem 1, starting from the paragraph
below (25). ■

Remark 4 (Relaxing Assumption 7). In the case that f (µ) = µ and
h(x) = x, successive differentiations of (46c) yields

0 =

⎡⎢⎢⎢⎢⎢⎢⎣
−ET

ETY
−ETY 2

...

(−1)nETY n−1

⎤⎥⎥⎥⎥⎥⎥⎦
  

O

(h(x) − h(x)), (48)

where Y = T−1
x BT−1

µ BT . To conclude that h(x) = h(x), it is
sufficient that the matrix O has full column rank, i.e. the pair
(ET , Y ) is observable. Although, a similar argumentation can be
performed with the nonlinear mappings f (µ) and h(x), it does not
immediately lead to a simple criterion that permits to conclude
h(x) = h(x).

After separately discussing the particular modifications to the
flow network and controllers in Sections 6.1 and 6.2, we briefly
discuss the combination of both in the corollary below:

Corollary 1 (Combined Modifications). Let Assumptions 1– 3 and
5–7 hold. Consider the flow network (33) and let Vs ⊆ Vc be defined
as8

Vs = {i ∈ Vc |
ηi(yi)
∂yi

⏐⏐⏐
yi=[ETc h(x)]i

> 0}. (49)

If Ve∪Vs is a zero forcing set for G, then the solutions to system (33),
in closed loop with the controllers (13) and (43), globally converge
to a point in the set

Υ4 =

{
x, µ, θ, φ

⏐⏐⏐⏐ B(f (µ) − f (µ)) = 0,
x = x, θ = θ, φ = φ

}
, (50)

where λ = f (µ) is a constant, h(x) = y and where u = g(θ ) =

u, with u given by (9). Therefore, controllers (13) and (43) solve
Problem 1 for the flow network (33).

Proof. Following a similar argumentation as in the proof of Theo-
rem 3, xi = xi for all i ∈ Ve. Moreover, the dynamics (33) give rise
to an additional term in V̇ (·) in the same manner as in the proof
of Theorem 2 (see (38)), namely: −(h(x)−h(x))TEcΓ e(x)ET

c (h(x)−
h(x)) < 0. Consequently, on the largest invariant set where V̇ (·) =

0, also xi = xi for all i ∈ Vs, since ηi(yi) is strictly increasing around
[ET

c h(x)]i, for all i ∈ Vs. From here the proof continues along the
lines of the proof of Theorem 3. ■

8 In Theorem 2, we only required ηi(yi) to be nondecreasing for all i ∈ Vc ,
i.e. ∂ηi(yi)

∂yi
≥ 0.

Fig. 3. (a) Topology of the considered heat network. The arrows indicate the
required flow directions in the heat network, while the dashed lines represent
the communication network used by the controllers. (b) A node in the district
heating network.

7. Case studies

To illustrate how physical systems can be regarded as a flow
network and to show the performance of the proposed controllers
we consider two case studies. The first case study considers a
district heating system, whereas the second case study considers
a super-conducting direct current (DC) network.

7.1. District heating system

Continuing our previous work in Scholten, De Persis, and Tesi
(2015), we consider a district heating system with a topology as
depicted in Fig. 3(a). Each node represents a producer, a consumer
and a stratified storage tank (see Fig. 3(b)). The storage tank
consists of a hot and a cold layer of water, both with variable
volumes. We denote the volume of the hot layer of water at node
i as xi (m3), which is also the measured output of the system,
i.e. hi(xi) = xi. The various nodes are interconnected via a pipe
network G. Following Scholten et al. (2015), the dynamics for
the hot layer can be derived by applying mass conservation laws
resulting in the following representation of the district heating
system: ẋ = −Bλ + u − d, where λk (m3/h) denotes the flow
through pipe k. Moreover, ui (m3/h) and di (m3/h) are respectively
the flow through the heat exchanger of the producer and the
consumer at node i. It is immediate to see that the district heating
system has identical dynamics as (3) if we set Tx = I . The
controllers (12) and (13) are therefore applicable and we study
the obtained closed-loop system.

We perform a simulation over a 40 h time interval in which
we evaluate the response to a change in demand at t = 12
and change in setpoint at t = 24. The cost functions of the
four producers are purely quadratic, i.e. s = r = 0. We take
Q = diag

(
10 9 7 6

)
. Initially the volume is x(0) =[

200 200 200 200
]T
, which is also to the setpoint x(t) for all

t < 24. The initial demand is given by d(t) =
[
30 30 30 30

]T
,

for all t < 12, which is increased to d(t) =
[
35 35 35 35

]T
,

for all t ≥ 12. The setpoint for the volume x(t) is increased at
t = 24 to x(t) =

[
210 210 210 210

]T
, for all t ≥ 24.

To guarantee uni-directional flows and positive production we
require λk > 0 and ui > 0, for all k, i ∈ {1, 2, 3, 4}. Due to capacity
constraints, we additional require them to be upper bounded by
14 m3/h and 52 m3/h, respectively. To enforce these constraints,
the output of the controllers is designed as

λk = fk(µk) = 7(tanh(µk) + 1)

ui = gi(θi) = 26(tanh(θi) + 1),
(51)

where tanh(·) is the hyperbolic tangent function. Finally, we let
Tµ = I , Tθ = I , Tφ = 0.005 · I and we set all the weights of Lcom to
10 and we let it be undirected which implies that Lcom is balanced.
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Fig. 4. Volumes, flows and productions of the district heating system during a
40 h period. The optimal production up as in (9) is indicated by dotted lines in
the lower plot.

The resulting response of the system can be found in Fig. 4,
where we can clearly see the effects of the increased demand
at t = 12 and change in setpoint at t = 24. More specifically,
in the upper plot we can see that the controllers indeed let
the volumes in the four storage tanks to converge towards the
desired setpoints of 200m3 (t < 24) and 210m3 (t ≥ 24). In the
middle plot we see that the flows in the pipes remain within the
constraint 0 < λk < 14 for all k ∈ {1, 2, 3, 4} throughout the
entire simulation. Finally, in the bottom plot, the production at
the four nodes is given, where the optimal production is denoted
by the dotted lines. We observe that the production converges
towards the optimal value u and satisfies 0 < ui < 52 for all
i ∈ {1, 2, 3, 4}, during the entire simulation period.

7.2. Super-conducting DC networks

As a second case study we consider super-conducting direct
current (DC) networks that have been studied in e.g. Davies,
Norman, Jones, Galloway, and Husband (2014), Doukas, Blatsi,
Milioudis, Labridis, Harnefors, and Velotto (2015), Johnson, Las-
seter, Alvarado, Divan, Singh, Chandorkar, and Adapa (1994) and
Xiao, Dai, Lin, Zhang, and Zhang (2013). Particularly, the so-called
‘high temperature super-conducting’ (HTS) DC networks have
received significant attention, as they provide means to transmit
power over long distances with negligible losses at higher tem-
peratures. For these networks it is noted that due to the absence
of line resistances, undesired oscillations might occur, requiring
tailored control schemes (Johnson & Hess, 1999). To illustrate the
application of our results, we consider a network of four terminals
(nodes) of which only terminals 2, 3 and 4 have a controllable
current injection. The corresponding circuit is provided in Fig. 5,
where Ci is the capacitance at terminal i, and Lk is the inductance
of line k. The overall network dynamics are given by

CV̇ = − Bµ + u − d

Lµ̇ = BTV ,
(52)

where V are the voltages at the terminals, µ are the currents
through the lines, d are uncontrollable current loads and u are the

Fig. 5. Topology of a super-conducting DC network with four terminals. We take
Ci = 80µF and Lk = 20mH for i, k ∈ {1, 2, 3, 4}.

controllable current injections. The first objective is to stabilize
the voltage at terminal i around its desired setpoint V i, which
is identical for each terminal. Therefore, BTV = BT (V − V ). The
second objective is to share the controllable current injections
equally among the terminals. Note that (52), is an example of
the model studied in Section 6.2, and that the set of nodes
with a controllable current injection is a zero forcing set for the
considered network. Therefore, Assumption 7 is satisfied and it
follows from Theorem 3 that asymptotic stability of the desired
state is guaranteed, if the controllers (13) are applied to control
the current injections. In this case study, the controllers (13) are
applied, with qi = 1, si = 0, ri = 0, Tθ i = 100, Tφi = 0.02,
for all i ∈ {1, 2, 3, 4}. The underlying communication network
is undirected and connects nodes 2–3 and 3–4, where each node
has a weight of 104. The desired voltage is V i = 245kV at all
terminals throughout the simulation. Initially, all di have a value
of 1kA. At t = 0.02s, the value of d2 is increased to 1.4kA,
whereas d3 is decreased to 0.8kA. To prevent low and high current
injections during the transient we require at all terminals that
1.2kA ≤ ui(t) ≤ 1.5kA is satisfied. To ensure this we let for
all i ∈ {2, 3, 4}, ui = gi(θi) = 1350 + 150 (tanh(θi) + 1) . The
response to the change in demand is given in Fig. 6, from where
we conclude that the voltages converge towards their set point
of 245kV , while u satisfies its constraints at all time.

8. Conclusions and future directions

We presented a distributed controller that dynamically ad-
justs the inputs and flows in a flow network to regulate the
measured output at the nodes towards the desired value. This is
achieved in presence of unknown constant disturbances to the
network. The use of nonlinear functions, bounding the controller
outputs, guarantees that the inputs and the flows stay within
their capacity limits. We only require that a subset of nodes
have a controllable input to obtain output regulation throughout
the complete network. Additionally, optimal coordination among
the inputs, minimizing a suitable cost function, is achieved by
exchanging information over a communication network. Based
on Lyapunov arguments and an invariance principle, we have
proven that the desired steady state is globally asymptotically
attractive. We emphasized the connection to compartmental sys-
tems and we provided two case studies (a district heating system
and a super-conducting direct current network) that show the
effectiveness of the proposed solution.

There are multiple interesting directions to extend the pre-
sented results. We briefly discuss a few of them. It is currently
assumed that the material can be instantaneously moved from
one node to another, without costs. Incorporating the possibility
to include a delay in this flow is desirable (Skutella, 2009), as
well as extending the considered optimization problem to include



152 S. Trip, T. Scholten and C. De Persis / Automatica 104 (2019) 141–153

Fig. 6. Voltages, current flows and current injections for a super-conducting
direct current network. The optimal production u as in (9) is indicated by dotted
lines in the lower plot.

flow costs. To cover an even larger class of physical systems, it is
worthwhile to include nodes that do not have storage capabili-
ties, which can be modelled by algebraic relations, leading to an
overall algebraic–differential system. Additionally, it is interesting
to incorporate nodes dynamics of higher dimension as is e.g.
discussed in Blanchini et al. (2016), as well as the possibility of
output regulation in the presence of time-varying disturbances.
Since the results are obtained without the common requirement
of strict output passivity of the nodes, it is worth exploring if
the proposed control structure can be applied to a wider class
of systems than the considered flow networks.
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