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a b s t r a c t 

The practical challenges posed by the seasonality of lead times have largely been ignored within the in- 

ventory control literature. The length of the seasons, as well as the length of the lead times during a sea- 

son, may demonstrate cyclical patterns over time. This study examines whether inventory control policies 

that anticipate seasonal lead-time patterns can reduce costs. We design a framework for characterizing 

different seasonal lead-time inventory problems. Subsequently, we examine the effect of deterministic 

and stochastic seasonal lead times within periodic review inventory control systems. We conduct a base 

case analysis of a deterministic system, enabling two established and alternating lead-time lengths that 

remain valid through known intervals. We identify essential building blocks for developing solutions to 

seasonal lead-time problems. Lastly, we perform numerical experiments to evaluate the cost benefits of 

implementing an inventory control policy that incorporates seasonal lead-time lengths. The findings of 

the study indicate the potential for cost improvements. By incorporating seasonality in length of seasons 

and length of lead times within the season into the control models, inventory controllers can make more 

informed decisions when ordering their raw materials. They need smaller buffers against lead-time vari- 

ations due to the cyclical nature of seasonality. Reductions in costs in our experiments range on average 

between 18.9 and 26.4% (depending on safety time and the probability of the occurrence of stock out). 

Therefore, inventory control methods that incorporate seasonality instead of applying large safety stock 

or safety time buffers can lead to substantial cost reductions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Lead-time seasonality is frequently encountered in the practi-

al context of supply chain management. Accounting for season-

lity entails benefits for customers while reducing costs incurred

n the supply chain through the introduction of opportunities for

nticipating future changes [1] . Seasonal lead times exhibit a cycli-

al pattern of variation over time. For example, seasonally chang-

ng weather conditions during an annual cycle may prompt lead

imes of differing lengths over the course of a year that are al-

ost identical during the following year. Cycles can also be quar-

erly, monthly, weekly, or even daily (e.g., rush hours). According to

he definition of seasonality of [2] , the essential characteristic of a

easonal time series is a systematic but not necessary identical or

egular repetition of a pattern over time. Thus, the question that

rises is what induces systematic patterns. 

To address this question, it is necessary to distinguish between

roblems related to transportation and suppliers, which are pri-

ary causes of seasonal lead times. Whereas, transportation, di-
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ectly influences lead-time length [3] , transportation time may

ary during different seasons. For example, [4] reports that in Swe-

en some roads are closed during the spring (thawing) season,

eading to longer lead times during these months, and [5] dis-

usses the effect of the climate and weather on access to water-

ays for transportation over the course of the year. Rain, snow,

rost, fog, droughts, and storms may also occur as seasonal weather

henomena that have a significant impact on transportation time.

herefore, the ability to predict the timing and impact of such con-

itions on transportation networks would enable seasonal lead-

ime patterns to be anticipated in advance. 

Forces of nature are not the only factors that generate sea-

onal lead-time patterns relating to transportation over the course

f a cycle. Holidays and other non-working days, such as week-

nds, may also result in a limited availability of required facili-

ies or personnel, which temporarily leads to longer transportation

ead times. While companies such as Amazon now offer same-day

elivery in many regions globally, Saturday or Sunday deliveries

ere initially unavailable in many areas, resulting in changing lead

imes during the week. Moreover, contracts with logistical service

roviders may lead to different lead-time lengths over the course

f the cycle. For example, Avebe, an internationally operating com-

any that manufactures starch products, transports items by ship

https://doi.org/10.1016/j.omega.2019.102162
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2019.102162&domain=pdf
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https://doi.org/10.1016/j.omega.2019.102162


2 J. Riezebos and S.X. Zhu / Omega 92 (2020) 102162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

o  

m  

m  

r  

e  

p

 

f  

p  

o  

t  

n  

p  

w  

i  

s  

o  

a  

a  

o  

i  

b  

t  

i  

p  

2

 

T  

k  

i  

o  

k  

i  

m  

c  

[  

e  

s  

t  

[  

t  

t  

t  

o  

c  

p  

i  

s

 

l  

h  

m  

r  

m  

c  

t  

o  

e  

u  

t  

a  

o  
every Monday from the Netherlands to Scandinavia, incurring a

transportation lead time of five days. On other working days of

the week, truck-based transport is available, which entails a trans-

portation time of just two days. These variations in lead times oc-

cur on a weekly basis. Hence, a seasonal lead-time pattern is gen-

erated through the combination of available transportation modes

and different lead times. 

A second causative factor contributing to seasonal lead times is

supply. Studies on multiple supplier issues (e.g. [6] ) have generally

entailed an assumption that supplier lead times differ because of

the geographical spread of the suppliers’ locations. A major reason

for maintaining this geographical spread of suppliers within fresh

food supply chains may be the limited timeframe for obtaining

supplies from each location, for example, because of the lengths of

the harvesting seasons or governmental regulations, such as closed

seasons for fishing or hunting. These limitations generate seasonal

availability of fresh food supplies within each location. A strategy

of sourcing fresh products from suppliers located in different areas

ensures continued supplies of these products. However, the lead

times differ in these locations, resulting in a discernable seasonal

lead-time pattern during the year. An illustrative example is a case

study of a tobacco company confronted with the problem of sea-

sonal lead times that is conducted by Riezebos [7] . 

Constraints relating to suppliers’ capacities are another supply-

related factor contributing to seasonal lead times. For make-to-

order products (i.e., products that cannot be stored in advance),

suppliers may decide to increase the lead time on a temporary ba-

sis during the high season to enhance their capacities to serve all

of their customers. Retailers that order items from make-to-order

furniture-producing companies face such seasonal lead-time pat-

terns. These companies therefore extend the lead time for some

of their products during holiday or high-peak seasons when they

face capacity constraints, and decrease it at the end of the season.

The retailer is able to anticipate this pattern because it is repeated

annually. 

Our review of the literature on inventory control relating to

variations in seasonal lead times reveals that seasonal lead times,

surprisingly, are not discussed in classical textbooks on inventory

control [8–11] . These textbooks focus narrowly on demand and/or

supply seasonality, and lead time variability in general. In journal

papers, various causes of lead-time variations have been discussed,

for example, dual sourcing [12] , outsourcing [13] , or stochasticity

[14] . However, similar patterns that are repeated at the onset of

new cycles have generally received little attention. The only excep-

tions that we encountered in our review are studies by Song et al.

[15,16] . Song and Zipkin [15] models variation in lead-time length

as an exogenous stationary process. Although the authors do not

explore seasonality in their study, their model could be applied in

an examination of specific seasonal lead-time patterns. Silver and

Zufferey [16] proposes a heuristic solution for a stochastic seasonal

lead-time pattern of a saw mill. We did not find any other papers

that examine non-stationary cyclic lead-time processes within the

reviewed literature. This gap is striking, as we would expect these

processes to be accounted for within inventory control policies in

case a substantial proportion of the total lead-time variance can be

attributed to seasonal patterns. Therefore, this study aims to ex-

plore the phenomenon of lead-time seasonality and how it can be

used for improving inventory control. 

We will explore the following ideas on how to benefit from sea-

sonal lead times. First, we will examine what families of seasonal

lead-time problems exist, as every family of problems might re-

quire specific solution approaches. Next, we will identify seasonal

shifts in lead time lengths over time in order to anticipate these

shifts. Anticipation may lead to either postpone ordering till the

new season has started or submit a larger order if the lead-time

length is expected to increase in the near future. The policy will
e developed for both deterministic and stochastic seasonal varia-

ions. Another idea is to reduce the required safety buffers in case

f stochastic variations of lead-time lengths. By developing new

ethods to anticipate seasonal shifts of lead-time lengths and si-

ultaneously using smaller safety buffers, it might be possible to

educe operational costs significantly. As this is the first paper that

xplores lead-time seasonality in inventory control, it will focus on

roviding a foundation for future research directions in this area. 

Section 2 presents a literature review. Section 3 proposes a

ramework to distinguish various families of seasonal lead-time

roblems. Section 4 identifies building blocks for developing meth-

ds to solve these issues on the smallest possible seasonal lead-

ime inventory control system, namely, a system with two alter-

ating lead-time lengths within a setting entailing deterministic

eriodic reviews. The results of this model yield key insights on

hen to order in advance and when to postpone ordering, accord-

ng to the particular seasonal lead-time pattern that is being ob-

erved. Extending the analysis to models entailing random lengths

f seasons, we obtain other key insights related to the occurrence

nd treatment of order crossovers. Section 5 presents a numerical

nalysis of the dimension of stochastic magnitude using the previ-

usly identified solution-building blocks. The results of our numer-

cal experiments indicate potential cost savings ranging on average

etween 18.9% and 26.4% when using inventory control methods

hat incorporate seasonality instead of applying traditional buffer-

ng methods using safety stock and safety time. The final section

resents our conclusions and offers suggestions for future research.

. Literature review on seasonal lead times 

Seasonal lead times are a special type of lead-time variation.

wo types of variations can be distinguished: changes that are

nown to occur (deterministic) and changes that are not known

n advance (stochastic). We begin this section with a discussion

f deterministic changes in lead times. If lead-time variations are

nown before they actually occur, their effects can be included

n a model of inventory control. Examples of inventory control

odels in which lead-time variations are known in advance in-

lude negotiable lead-time models [17] , multiple supplier models

18,19] , emergency models [20] , multiple sourcing models [21] , and

ndogenous lead-time inventory models [22] . However, the inclu-

ion of known lead-time changes may result in transient effects

hat constrain the development of optimal solutions. For example,

23] examines the effect of an anticipated lead-time change on the

iming of changes in the optimal order-up-to levels. It appears that

ransient effects are observable in case of future lead-time reduc-

ions, impeding the determination of the optimal time when the

rder-up-to-level should be reduced to accommodate the future

hange in lead-time length. Axsäter [23] notes that despite their

revalence in practice, due to processual changes and disruptions

n supplies, these transient effects have not been studied exten-

ively. However, [23] does not examine seasonal lead times. 

In addition to the above-mentioned deterministic models of

ead times, stochastic models of variations in lead-time lengths

ave also been developed. The underlying assumption in these

odels is that every order faces an uncertain lead-time length that

emains unknown up to the time of the order’s arrival [24–27] . In

any of the existing stochastic inventory models, lead times are

onsidered to be independent and identically distributed. One of

he insights emerging from stochastic models is that splitting an

rder into multiple smaller orders submitted to different suppli-

rs may be advantageous, as this reduces the expected lead time

p to the time of the first arrival of an order (deemed the effec-

ive lead time) [28–30] . However, as already pointed out by Hadley

nd Whitin [8] , such an assumption may lead to the occurrence of

rder crossovers, in which the sequence of orders does not match
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Table 1 

Comparison of literature on lead-time variability. 

Study Deterministic Stochastic Dynamic Seasonal 

Wright [17] x 

Zalkind [24] x 

Nevison and Burstein [25] x 

Zipkin [26] x 

Moinzadeh and Nahmias [18] x 

Harvey and Snyder [32] x x x 

Ramasesh et al. [28] x 

Song and Zipkin [15] x 

Tagaras and Vlachos [20] x 

Silver and Zufferey [16] x x 

Riezebos [7] x x 

Hayya et al. [31] x 

Huang and Kucukyavuz [27] x 

Wang and Tomlin [37] x 

Axsäter [23] x x 

Hayya et al. [38] x 

Jansen et al. [22] x 

Srinivasan et al. [39] x 

Fang et al. [40] x 

Riezebos and Zhu [19] x x 

Disney et al. [14] x 

Liu et al. [1] x 

Our paper x x x x 
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heir arrivals. Models that assume independent and identically dis-

ributed lead times generally ignore order crossovers because of

he associated complexities that hinder the discovery of optimal

olutions relating to these models [15] . Riezebos et al. [7,31] and

ore recently [14] have examined stochastic lead times and order

rossovers. Other scholars have applied heuristic solutions, consid-

ring the possibility of order crossovers [16] . 

Hybrid lead-time models entail stochastic as well as dynamic

omponents. This type of models is useful for modeling sea-

onal patterns using time series demand data. Harvey and Sny-

er [32] provides an overview of such models. Subsequently, Proi-

tti [33] draws a distinction between fixed (deterministic) seasonal

atterns and stochastic patterns in seasonal demand time series

odels. The pattern’s repetition over time is modelled using a de-

erministic component that changes over time according to the

dentified seasonal pattern, while the stochastic component mod-

ls the remaining variation during the seasons. Song and Zipkin

15] applies a slightly different approach by modelling the sup-

ly system as a discrete time Markov process. To prevent order

rossovers, Song and Zipkin [15] assumes that the moment of tran-

ition to a different state of the supply system (e.g., a different sea-

on) is known at the start of the previous season, but the length

f the lead time is a random variable that depends on the state

f the supply system (the season) and the length of the previous

ead time. These assumptions make it possible to model various

lasses of inventory control problems, but they do not encompass

he broad category of identifiable seasonal inventory control prob-

ems. 

We do not find any specific studies focusing on seasonal lead

imes within the inventory control literature. The only study that

xplicitly covers seasonal lead times [16] focuses on the practical

ontext of a saw mill that procured wet logs needed to be dried

efore being further processed. The drying time is modeled as a

tochastic lead time. Over the course of the year the average length

f the drying time changes because of weather conditions. There-

ore, for each period another distribution of the lead-time length is

sed. Silver and Zufferey [16] allows for some order crossovers in

he heuristic analysis, limiting the number of orders that cross over

imultaneously to three. The tabu search heuristic that they devel-

ped is not designed to explore the seasonal pattern itself because

f the complex situation of this saw mill. 
Demand seasonality has been studied extensively within the

orecasting literature. See [34] for an overview of the findings in

he previous 25 years. This literature has developed seasonal es-

imates for groups of items exhibiting similar seasonal patterns.

nsights derived from the field of forecasting have been applied

ithin studies on inventory control to forecast lead-time demands.

owever, Nielsen et al. [35] argues that the forecasting of lead-

ime lengths has been largely ignored, notwithstanding their influ-

nce on the bull whip effect [36] . 

In light of our review of the literature, summarized in Table 1 ,

e conclude that the seasonality of lead time variability has not

eceived sufficient attention within the literature. The next two

ections apply insights emerging from the literature on both de-

erministic and stochastic lead-time variations and the related field

f forecasting to develop a framework of seasonal lead-time vari-

tions ( Section 3 ) as well as guidelines on how to handle these

ariations ( Section 4 ). 

. Characterization of seasonal lead-time problems 

Lead-time seasonality implies variability but not necessarily

tochasticity. We distinguish several classes of stochastic lead-time

atterns by determining which parameters remain deterministic

following [33] ), consequently identifying seasonality in lead times.

e apply this notion of classes to develop a framework for char-

cterizing families of seasonal lead-time problems. Strategies de-

loyed for coping with lead-time seasonality may differ among

he families of problems. In this section, we describe how we de-

elop this framework using characteristics of lead-time data. We

rovide illustrative examples of companies that face seasonal lead-

ime problems relating to the identified classes. 

The first step entails the identification of the various parame-

ers of lead-time series data, as shown in Fig. 1 . Parameter L de-

otes the length of a lead time. Changes in substantial different

ead time lengths, observed over time, are represented in the fol-

owing time series: L j ; j = 1 , ..., N , where N denotes the number of

easons during a cycle ( N ≥ 2 ). Parameter I denotes the observed

eriodicity of this time series indicating that after a time interval

 j a lead-time change to length L j+1 can be observed. The sub-

equent interval lengths between lead-time changes also form a

ime series: I j : j = 1 , ..., N. The resulting time series �t : t = 1 , ..., n ,
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Fig. 1. Parameters of time series with seasonal lead times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Framework for characterizing seasonal lead-time problems. 
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where n denotes the total number of periods in the planning hori-

zon, needs to be examined in conjunction with t , that is, a time

series with fixed time periods to determine seasonality. 

We examine patterns that emerge for the dimensions of time

as well as magnitude relating to the lead-time data. The magni-

tude dimension reflects the length of the lead time L . This length

changes over time and a recurring pattern can be observed in the

sequence and heights of different lead-time lengths. The time di-

mension reflects the length of the time interval I during which a

specific lead time is available. It should be noted that each of these

parameters may be either stochastic or deterministic. 

The first step in our analysis entails identifying a cycle length T 

that is less then n , where n is the number of periods in the time

series The cycle length denotes the time span, following which a

seasonal lead-time pattern is repeated. The cycle length may be ei-

ther stochastic or fixed. Next, we determine the number of seasons

N and the length of seasons I j : j = 1 ..N. The number of seasons

during a cycle may be either stochastic or fixed. Thus, the parame-

ters constituting a seasonal lead time pattern, which can be either

stochastic or deterministic, are L j , I j , N, and T . Parameter L j is the

only one of these parameters that relates to magnitude; all of the

other parameters relate to time. 

Prior to attempting to identify patterns in the data, we find it

helpful to set up the scene and to characterize the type of seasonal

lead-time problems encountered with this setting. We also distin-

guish between stochastic and deterministic parameter settings for

the time and magnitude dimensions of the lead-time data. Accord-

ingly, we develop a two-by-two framework for analyzing seasonal

lead-time problems ( Fig. 2 ). 

If all of the parameters are deterministic, then the type of sea-

sonal lead-time problem is categorized as ‘all fixed’. For these de-

terministic patterns, the number of seasons N within a cycle is

fixed, and the cycle length T remains constant. While the length of

the seasonal intervals is also deterministic, the values may change

dynamically over time. However, these variations are known in ad-

vance and are not therefore stochastic in nature. Lead times are

similarly fixed but not constant, demonstrating predictable fluctua-

tions over time. This is the first class of seasonal patterns in which

both the magnitude and time dimensions of the time series are

deterministic, enabling accurate anticipation of the prevailing sea-

sonal patterns. 

Stochasticity may relate to either or both dimensions of time

or magnitude. If it only applies to magnitude, then although the
ead-time lengths are stochastic, the precise times when the lead

imes will change substantially are known in advance, as the be-

innings and endings of seasons of long or short lead times are

lready known. This class is termed ‘Random length, fixed timing’. 

If the time dimension is stochastic, then one or more of the

arameters N, I, or T will be stochastic. A discussion on possible

ombinations of these three parameters that may occur within this

lass of problems is pertinent. Given that the cycle length T gener-

lly follows from the characteristics of N and I, our focus here will

e on these latter two parameters. 

If N is fixed, the number of seasons that can be expected is

nown in advance, but if the length of the seasons I becomes

tochastic, the beginnings and endings of the various seasons be-

ome less easily discernable. For example, within the fashion in-

ustry, some years entail short summer seasons and long winter

easons while the reverse is the case for other years. Thus, the is-

ue of when the new season will be launched is not discernible in

dvance. 

If, however, N is stochastic, but I is fixed and known, the num-

er of seasons within a cycle is not constant, but the timing of

ead-time changes is known in advance. In this case, the lack of

ertainty relates to whether or not the new lead time will belong
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Fig. 3. Examples of seasonal lead-time problems. 
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o another season. This situation is practically encountered when,

or example, traditional seasons are sometimes skipped. [41] notes

hat the fashion industry typically entails four to five seasons an-

ually, whereas there may be only two seasons for seasonal items

or which year-round demand is more stable. 

Stochasticity of N and/or I is likely to be indicative of the

tochasticity of T , that is, the total cycle length, unless the ending

f the previous season has been predetermined in advance in light

f a known external factor, that results in the fixing of T . For exam-

le, within the fashion industry, it is well known that the launch

f the next haute couture cycle coincides with a time that marks a

ighlight in the year, such as immediately after the fashion week

42] . 

The ‘fixed length, random timing’ category entails stochastic-

ty in relation to the time dimension that may be accompanied

y deterministic lead-time lengths. In this case, problems are en-

ountered in cases where seasonality relates to lead-time changes,

he magnitudes of which are known in advance but the timings of

hich are uncertain. An example of this seasonal pattern is one in

hich a company switches to another supplier with a longer lead

ime at a point in time when its own supply is exhausted. 

The final ‘all random’ category that we distinguish entails

tochasticity in terms of both dimensions of time and magnitude.

lthough clear seasonal patterns may still be evident in this cat-

gory, they are less obvious and are more difficult to identify in

omparison of the other three categories. 

Fig. 3 depicts the framework to characterize seasonal lead-time

roblems. For example, the ordering problem relating to tobacco

eaves, analyzed by Riezebos (2006), is an example of an ‘all fixed’

easonal problem that is known in advance on a monthly basis

t the start and conclusion of harvest seasons in various regions

lobally. Accordingly, the time taken for the raw materials to be

eceived in the production facility is predetermined. Similarly, the

roblem of transporting potato starch (see Section 2 ) belongs to

he same category, as the day in the week associated with the lead

ime is known in advance. The case studies presented by Song and

ipkin (1996) also belong to this class of seasonal lead-time prob-

ems. 

The ‘fixed length and random timing’ problem class (shown in

ower right-hand corner of Fig. 3 ) is widely encountered within

he fashion industry, where there is a high degree of uncertainty

egarding the timing of lead-time changes [42,43] . Other examples

f industries where this problem is encountered are timber floating

n Scandinavia [44] and inland transport [5] . The latter industries

re strongly affected by the availability of waterways for trans-
ortation, which is contingent on weather conditions. Hence, the

ncertainty entailed in these examples mainly relates to the time

imension, while the magnitude remains relatively predictable. 

Examples of uncertainty relating to the magnitude dimension

an be found in make-to-order production activities. For exam-

le, a furniture manufacturer in the Netherlands, who builds furni-

ure according to customers’ requirements, knows in advance when

ong or short lead times can be offered to the customers, in light

f repetitive patterns of peak demand before the summer and the

on-availability of personnel during the summer vacation. How-

ver, the actual lead time that pertains to a customer depends on

he sequence of colors applied in the factory relating to those that

ave been ordered. Hence, while the timing of lead-time changes is

nown in advance, the lead-time lengths depend on the sequenc-

ng and demand for other colors. 

Shukla and Naim [45] presents an example of the all-random

lass lead-time seasonality in a coffee supply chain, although the

easonal patterns in that paper can mainly be attributed to en-

ogenous effects. Another example relates to customers’ orders

ubmitted to a small-scale producer of handicrafts who faces prob-

ems relating to limited capacity and work-load estimation. The is-

ue of stochasticity applies to these customers in terms of both

imensions of time and magnitude of the lead times, as predeter-

ined future changes associated with the lead times offered can-

ot be anticipated in advance. At the same time, there may be

ignificant disparities between the lead times that are offered and

hose that are realized. These disparities result from difficulties in

stimating creative processes. 

In light of our application of the above-discussed framework

o characterize seasonal lead-time problems, we now turn to the

s yet unanswered question of how to contend with the different

auses of seasonal lead-time variations. Knowing the root causes

nables the development of specific inventory-control models. In

he case of deterministic variations, future changes, either in the

iming or length of a lead-time change, can be anticipated. How-

ver, in the case of stochasticity, the main cause of seasonality may

elate to the magnitude and/or time dimensions. In the following

ection, we propose inventory-control policies that explicitly entail

he assumption of seasonal lead times. 

. Inventory models in deterministic magnitude dimension 

Our aim in this section is to identify building blocks for de-

eloping solutions that address seasonal lead-time problems re-

ating to the deterministic magnitude dimension, namely the ‘all

xed’ and ‘fixed length and random timing’ categories. The prob-

ems considered here are very elementary to enable the identifica-

ion of the effects of seasonality on lead times. However, valuable

heoretical and practical insights can be gained from this analysis. 

.1. Fixed lengths and the timing of seasonal lead times 

We develop a model for the ‘all fixed’ class of seasonal lead

imes within a periodic-review setting with integer-valued inter-

al and lead-time lengths and a review period length of 1. In this

odel, demand, lead times, and interval lengths are determinis-

ic, but could vary dynamically over time, which is a characteristic

eature of dynamic lot-size models. Our aim is to develop an opti-

al ordering policy for a repetitive cycle. Without incurring a loss

f generality, we confine our attention to problems entailing lead

imes that do not exceed the cycle time. 

Differences in lead times are essential aspects of seasonal lead-

ime problems. To explore their impact on cost performance, we

ntroduce two types of lead-time-related costs per item per pe-

iod: in-transit cost related to pipeline inventory and holding cost

elated to in-stock inventory. The in-transit cost is incurred from
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Table 1a 

Ordering policy for alternating lead times wherein L 1 < L 2 . 

Ordering interval Order size q t = 

∑ a 2 
n = a 1 D n mod T with a 1 and a 2 : 

From o1 To o2 From a 1 To a 2 

1 I 1 − 1 t + L 1 t + L 1 

I 1 I 1 I 1 + L 1 min { T + L 1 , 

I 1 + L 2 
} 

I 1 + 1 ( L 1 − L 2 ) mod T t + L 2 t + L 2 
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l  
the time of ordering up to the time of arrival of stock. Hence, this

cost is charged per period over the inventory position minus the

inventory level of that period. We calculate the inventory position

and inventory level at the end of the period (after accounting for

arrivals and demand). The in-transit and holding cost is computed

at the end of a period. Our key assumptions, aiming at gaining el-

ementary insights into the cyclical behavior of the inventory pol-

icy, are that stationary in-transit and holding cost per period is

known and stock outs are disallowed, as has been commonly re-

ported within the inventory literature (see [11,23] ). Given our focus

on the effect of seasonal lead times, we do not include ordering

and purchasing costs. In Section 6 , we propose extensions of our

model that include these costs. 

The following notations are included in this cyclical problem: 

q t order size in period t , t = 1,..., T 

p t inventory position at the end of period t 

il t inventory level at the end of period t 

D t demand in period t 

I j interval length of j th subcycle, j = 1,...,N 

T total cycle length (T = 

∑ N 
j=1 I j ) 

L j lead time length that holds in j th season 

t lead time that holds when ordering q t in period t 

c in-transit costs per period charged over the pipeline inventory,

i.e., ( ip t − il t ) 

h holding costs per period charged over inventory level il t (nor-

mally h > c ) 

We assume, without loss of generality, that L 1 = min 

j=1 ...N 
{ L j } , that

is, the cycle commences at the time when the shortest lead time

becomes available for ordering stock. For the brevity of the nota-

tions, we assume that the input parameters ( D t , L j , I j , N, etc . ) have

identical values for each cycle. This model can easily be extended

more generally to cases entailing different values during each cy-

cle. 

Lead-time lengths are expressed for each period t and each cy-

cle j. The relation between these two variables within a determin-

istic setting is expressed as �t = L j , where t satisfies 
∑ j−1 

l=1 
I l <

 ≤ ∑ j 

l=1 
I l , and �t = 

∑ N 
j=1 ( L j · 1 { ∑ j−1 

l=1 
I l < t ≤ ∑ j 

l=1 
I l } ) , where

1 { A } = 1 if A is true, else 0. 

The chronology of events that occur during each period is as

follows. At the beginning of each period, scheduled receipts arrive

for this period, following which the buyer may place a new order

in the current period. Consequently, a demand is generated for the

product during the period. At the end of the period, the inventory

position and level are recorded and the holding cost for this period

is calculated. 

An ordering policy stipulates the quantity of the stock to be or-

dered for each period of the cycle. Therefore, optimization entails

formulating an ordering policy that minimizes the total in-transit

cost and holding costs per cycle of length T : 

min 

q 1 ,..., q T 
c 

T ∑ 

t=1 

(i p t −i l t ) + h 

T ∑ 

t=1 

i l t (1)

s.t. i p t = i p t−1 + q t − D t , ∀ t = 1 ...T (2)

i l t = i p t −
∑ t 

i =1 
( q i · 1 { �i > t − i } ) , ∀ t = 1 ...T (3)

i l t ≥ 0 , ∀ t = 1 ...T (4)

i l L 1 = 0 . (5)

Eq. (1) shows that the main decision variables q 1 , ..., q T are de-

termined to minimize the sum of the cycle holding costs, where

in-transit costs are charged over the pipeline inventory per period

and holding costs are charged over the inventory level per period.

Eq. (2) provides a standard balance equation relating to the inven-

tory position. Eq. (3) indicates that the difference between the in-
entory level and the inventory position is the amount of already

ssued but not yet received orders. If orders placed in periods 1 to

have not yet been received, then their ordering time i , and lead

ime, �i , will exceed the current time t . The inventory level cannot

e allowed to become negative, as shown in Eq. (4) . Eq. (5) sub-

equently fixes the starting inventory level in the period just be-

ore an order with the smallest lead time in the system can arrive

t zero. We are able to prove that this setting can be established

ithout any loss of generality. 

.1.1. Base case model with two alternating lead times 

First, we analyze a base case that includes alternating lead

imes. For this case, we assume that one cycle comprises two in-

ervals. During the first interval I 1 , a lead-time length of L 1 is ap-

lied, and during the subsequent interval of length I 2 = T − I 1 , a

ead-time length of L 2 is applied, where L 1 < L 2 . We assume that

he interval lengths and the lead times are deterministic Table 1a . 

Table 1 presents the structure of the cyclical ordering policy.

uring each period t , q t is ordered in the interval [ o1 , o2 ] , as spec-

fied at the far right of Table 1 . For all other periods, q t = 0 . If

2 < o1 , the interval will be empty, and the specified order size

ill not be ordered. For a positive value of m, as per the definition

f the modulo operator, −m mod T ≡ ( T − m ) mod T . 

As Table 1 shows, because the lead time is short during interval

 1 , I 1 − 1 ] , the buyer should order the precise amount of the prod-

ct that is required for the period when the order is scheduled

o arrive. However, during period I 1 , because L 1 < L 2 , the following

wo scenarios should be considered: 

(a) If the first order, for which there is a long lead time in

the current cycle, is received before the first order associ-

ated with a short lead time in the next cycle, it becomes

necessary for the buyer to order an amount that is suffi-

cient to cover the demand that arises during the interval

[ I 1 + L 1 , I 1 + L 2 ] . 

(b) If the first order associated with a long lead time in the cur-

rent cycle is received after the arrival of the first order as-

sociated with a short lead time in the next cycle, the buyer

will need to order an amount that covers the demand gen-

erated during the interval [ I 1 + L 1 , T + L 1 ] . 

When t + L 2 ≤ T + L 1 , then the buyer will need to avail of the

ong lead time to fulfill the demand before the arrival of the first

rder with the short lead time. Accordingly, two possible outcomes

erived from Table 1 are obtained: 

i. L 1 mod T > ( I 1 + L 2 ) mod T , 

ii. L 1 mod T ≤ ( I 1 + L 2 ) mod T . 

The first outcome indicates that in period I 1 , the firm only

eeds to order a sufficient amount of stock to meet the demand

n the interval [ I 1 + L 1 , I 1 + L 2 ] . The second outcome indicates that

he time of arrival of the first order with a long lead time in the

urrent cycle occurs after the time of arrival of the first order with

 short lead time in the next cycle. Consequently, no orders asso-

iated with such a long lead time should be submitted. 

To give an illustrative example of Table 1 , we construct the fol-

owing numerical example entailing 12 monthly periods, using a
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ase study of a tobacco sourcing problem described by Riezebos

7] . In this example, a short lead time of one month exists for four

onths (periods 1 to 4). An ordering option with a long lead time

f three months, entailing several production stages, exists during

he remaining interval length of eight months (periods 5 to 12) in

he year. The demand per period is 100 units and the initial inven-

ory level is zero. The results are as follows. During periods 1 to 3,

n which the lead time is short, 100 units per period are ordered.

uring period 4, which is the last period when the short lead time

s available, 300 units are ordered. During periods 5 to 10, which

ntails a long lead time, 100 units per period are order. Finally, no

rder is placed during periods 11 to 12, as it is considered prefer-

ble to postpone the order and wait for the short lead-time option

o become available again. 

As indicated in Table 1 , an order-up-to policy is optimal. Even

f a backorder cost is incorporated into this model, the order-up-to

olicy remains optimal because of the convexity of the total cost

unction. 

The following insights are derived from his base model. During

eriods when the lead time is short, the exact amount of prod-

ct required for that period should be ordered with the exception

f the last period of the interval. During this last period, an or-

er should be placed in advance of subsequent periods, thereby

vailing of the shorter lead time and preventing the occurrence of

tock-outs caused by the longer lead time during these periods. Al-

hough ordering in advance increases the holding cost, this is nec-

ssary to fulfil the demand. For the periods in the interval with the

ong lead time, it is necessary to decide whether to order with a

ong lead time or to postpone the order to the next cycle, availing

f the short lead time. Postponement reduces the in-transit cost,

hile the holding cost remains the same. Depending on the length

f the long lead time, if the time of arrival of the current order is

o later than the time of arrival of the first order of the next cycle,

rders should be placed during the current period. Otherwise, it is

ost-efficient to postpone ordering. 

.1.2. Extension with multiple lead times 

The optimal ordering quantity for the model with multiple lead

imes (i.e., a cycle comprising N seasons) can now be computed.

irst, a forward procedure is applied to determine whether the ar-

ival period can be covered directly. If there is an ordering period

hose lead time enables the order to arrive during that arrival pe-

iod, then the arrival period can be covered directly. If there are

ore ordering periods that cover that arrival period, then the one

ith the smallest lead time is selected in order to reduce the in-

ransit cost, which results in a decrease in the total cost. 

Algorithm: Multiple lead times 

Step 1 (Forward loop). 

efine M = 1 + 

N 
max 

j=1 
L j 

For t = 1 , ..., T , calculate the best season for placing an order

hat will directly cover the demand during t: 

j∗ = arg max 
j=1 ,...,N 

( (
M − L j 

)

·1 

{ 

j−1 ∑ 

k =1 

I k < 1 + 

(
t − L j − 1 

)
mod T ≤

j ∑ 

k =1 

I k 

} ) 

. 

If the maximum exceeds 0, that is, one or more feasible or-

ering times exist, then the one with the smallest lead time

 j∗ (i.e., the one that maximizes M − L j ) is preferable, enabling

 1+( t−L j∗−1 ) mod T = D t and the demand in the arrival period t to be

overed directly by the order in period 1 + ( t − L j∗ − 1 ) mod T . The

ndicator variable is set to C t = 1 to cover this arrival period. 
If the maximum is 0, then there is no ordering moment that

irectly coincides with the arrival moment t , hence C t = 0 . Step 2

s performed to determine from what ordering moment that arrival

oment will be served indirectly. 

Step 2 (Backward loop). 

For t = T , ..., 1 do if C t = 0 : 

 u := t 

epeat t := t − 1 until C t = 1 

 l := t 

j∗ = arg max 
j=1 ,...,N 

( (
M − L j 

)

·1 

{ 

j−1 ∑ 

k =1 

I k < 1 + 

(
t l − L j − 1 

)
mod T ≤

j ∑ 

k =1 

I k 

} ) 

 1+ ( t l −L j∗−1 ) mod T = 

t u ∑ 

n = t l 
D n 

heorem 1. The above algorithm provides an optimal solution for

q. (1) . 

roof. For any given period t u , if

 { ∑ j−1 

k =1 
I k < 1 + ( t u − L j − 1 ) mod T ≤ ∑ j 

k =1 
I k } is equal to 1,

hen the demand in period t can be fulfilled by the order in period

1 + ( t u − L j − 1 ) mod T with a lead-time length of L j . Because the

alculation of the in-transit cost is based on the pipeline inventory,

he order with the shortest lead time is always preferable for min-

mizing the in-transit cost. On the one hand, when the maximum

s positive ( C t u = 1 ), the order with the shortest lead time L j∗,

equired to fulfil the demand in period t u is obtained. On the other

and, if a feasible lead-time option is not available for period t

 C t u = 0 ), then it is necessary to take a step backwards to find the

losest period t l for which at least one lead-time option available.

he shortest lead-time option available for period t l , enabling the

emand from period t l to period t u to be satisfied, is then used.

hus, we have q 1+( t l −L j∗−1 ) mod T = 

∑ t u 
n = t l D n . This completes the

roof. 

Next, we consider a model with three lead times. As shown in

ables 2 and 3 , there are two different scenarios for three intervals

er season: L 1 < L 2 < L 3 and L 1 < L 3 < L 2 . 

The following four cases can be derived from the seasonal or-

ering policy shown in Table 2: 

i. L 1 mod T < ( I 1 + L 2 ) mod T , 

ii. ( I 1 + L 2 ) mod T ≤ L 1 mod T < ( I 1 + I 2 + L 2 ) mod T , 

ii. ( I 1 + I 2 + L 2 ) mod T ≤ L 1 mod T < ( I 1 + I 2 + L 3 ) mod T , and 

iv. ( I 1 + I 2 + L 3 ) mod T ≤ L 1 mod T . 

In case (i), the order is placed immediately prior to the com-

encement of a lead-time change and covers the demand from

he current period to the period prior to the time of arrival of the

rst order with the changed lead time. In case (iv), the firm never

rders after period I 1 because of the increase of L 2 and L 3 . 

In a situation where L 1 < L 3 < L 2 , order crossover wherein re-

lenishment orders are not received in the sequence in which they

re ordered may occur. For instance, if we place an order with L 2 ,

ecause L 3 < L 2 , that order may arrive after an order placed during

 later period associated with L 3 , which results in order crossover. 

The following four cases can be derived from the seasonal or-

ering policy shown in Table 3: 

i. L 1 mod T ≤ ( I 1 + I 2 + L 3 ) mod T ∧ L 1 mod T ≤ ( I 1 + L 2 ) mod 

T , 
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Table 2 

Seasonal ordering policy when L 1 < L 2 < L 3 . 

Ordering interval Order size q t = 

∑ a 2 
n = a 1 D n mod T with a 1 and a 2 : 

From o1 To o2 From a 1 To a 2 

1 I 1 − 1 t + L 1 t + L 1 
I 1 I 1 I 1 + L 1 min { T + L 1 , I 1 + L 2 } 
I 1 + 1 min 

{
( L 1 − L 2 ) mod T 

I 1 + I 2 − 1 

}
t + L 2 t + L 2 

I 1 + I 2 I 1 + I 2 I 1 + I 2 + L 2 min { T + L 1 , I 1 + I 2 + L 3 } 
I 1 + I 2 + 1 ( L 1 − L 3 ) mod T t + L 3 t + L 3 

Table 3 

Seasonal ordering policy when L 1 < L 3 < L 2 . 

Ordering interval Order size q t = 

∑ a 2 
n = a 1 D n mod T with a 1 , a 2 : 

From o1 To o2 From a 1 To a 2 

1 I 1 − 1 t + L 1 t + L 1 

I 1 I 1 I 1 + L 1 min 

⎧ ⎨ 

⎩ 

T + L 1 , 

I 1 + L 2 , 

I 1 + I 2 + L 3 

⎫ ⎬ 

⎭ 

I 1 + 1 min 

{
( L 1 − L 2 ) mod T 

( I 1 + I 2 + L 3 − L 2 ) mod T 

}
t + L 2 t + L 2 

I 1 + I 2 + 1 ( L 1 − L 3 ) mod T t + L 3 t + L 3 
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ii. L 1 mod T ≤ ( I 1 + I 2 + L 3 ) mod T ∧ L 1 mod T ≥ ( I 1 + L 2 ) mod 

T , 

ii. ( I 1 + I 2 + L 3 ) mod T ≤ L 1 mod T ∧ ( I 1 + I 2 + L 3 ) mod T ≤
( I 1 + L 2 ) mod T , 

iv. ( I 1 + I 2 + L 3 ) mod T ≤ L 1 mod T ∧ ( I 1 + I 2 + L 3 ) mod T ≥
( I 1 + L 2 ) mod T . 

In case (i), the firm only places orders during the period with

the shortest lead time. However, in case (iv), the firm places orders

when all three lead times occur. Case (iii) reveals an interesting sit-

uation in which the firm does not place any orders at all when the

lead time is L 2 , and instead postpones the ordering process until

a shorter lead time, L 3 , becomes available, as these orders will ar-

rive earlier. Case (ii) reveals a contrasting situation in which orders

are placed when lead time L 2 , but not lead time L 3 occurs. Thus,

whereas orders are always placed when lead time L 1 is available,

the decision on whether or not orders should be placed when the

lead time are L 2 or L 3 depends on the size of I 1 , I 2 , L 2 , and L 3 . 

In sum, this extension of the base case to cover a more complex

situation entailing multiple lead-time changes per cycle reveals

that the fundamental insight relating to the base case, namely that

the decision on whether or not to order is strongly influenced by

the seasonal pattern of lead-time changes during the cycle, extends

to the case of L 1 < L 2 < L 3 . 

This extension yields an additional fundamental insight relating

to the case in which L 1 < L 3 < L 2 : anticipation of crossovers caused

by the lead-time seasonality may result in the postponement of or-

ders. It is cost-efficient to postpone some orders during the second

interval by taking advantage of the shorter lead time in the third

interval preventing the occurrence of order crossovers. Assuming

that demand is deterministic, an optimal policy is one in which

the order is always fulfilled during the interval with the shortest

lead time, thereby avoiding crossovers. 

4.2. Fixed length and random timing of seasonal lead times 

Next, we relax the assumption of deterministic interval lengths

for the base model with two alternating lead times per season. In-

stead, we assume that the length of the first interval, entailing a

short lead time, is stochastic, while the sum of both intervals re-

mains a constant T , that is, the first interval occurs at the same

time during every season. When modelling the uncertain length of
he first interval, we assume that if it continues at the start of pe-

iod t , the probability that it will conclude at the end of period t is

p t . To ensure that the length of the first interval would not exceed

he cycle length T , the value of p T is set as 1. Intuitively, if the

ength of the first interval approaches T , then the likelihood of the

ermination of the first interval will be higher. Thus, the probability

f a transition to the other lead-time length (i.e., closure of the first

nterval) should not decrease over the course of time (e.g., p t = 

t 
T ).

he objective function is to minimize the expected in-transit, hold-

ng and backordering costs. Accordingly, the in-transit costs are cal-

ulated on the basis of the pipeline inventory, the holding costs are

alculated on the basis of the inventory level, and the backorder-

ng costs are calculated on the basis of the inventory level at the

ime of arrival. We denote b as the unit backordering cost. Here,

e assume that the in-transit cost is calculated at the time of ar-

ival of an order. The results remain the same when the in-transit

osts are calculated as the time of ordering or for each period. 

We define V t ( x, i ) as the minimal expected total cost from pe-

iod t to the end of the cycle T , given that the initial inventory

evel in period t is x and the number of periods during which lead

ime L 1 has been available for ordering up to t is i (including the

urrent period). Define Q t, j as the amount arriving at the beginning

f period t when the lead time is L j . 

V t ( x, i ) = min 

Q t, 1 , Q t, 2 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c 

(
2 ∑ 

j=1 

L j Q t, j 

)
+ h 

(
x + 

2 ∑ 

j=1 

Q t, j − D t 

)+ 

+ b 

(
D t − x −

2 ∑ 

j=1 

Q t, j 

)+ 

+ p t V t+1 

(
x + 

2 ∑ 

j=1 

Q t, j − D t , i 

)

+ ( 1 − p t ) V t+1 

(
x + 

2 ∑ 

j=1 

Q t, j − D t , i + 1 

)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

;

t = 1 , ..., T − 1 

 T ( x, i ) = min 

Q T, 1 , Q T, 2 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c 

(
2 ∑ 

j=1 

L j Q t, j 

)
+ h 

(
x + 

2 ∑ 

j=1 

Q T, j − D T 

)+ 

+ b 

(
D T − x −

2 ∑ 

j=1 

Q T, j 

)+ 

+ V T +1 

(
x + 

2 ∑ 

j=1 

Q T, j − D T , i 

)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 
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Without loss of generality, we assume that V T +1 = 0 . 

The following lemmas constitute the building blocks for our so-

ution, demonstrating that if i is equal to t , then interval I 1 contin-

es; otherwise, I 1 ends and I 2 begins. 

emma 1. If i = t, t ∈ I 1 . Otherwise, if i 	 = t, t ∈ I 2 . 

roof. Because I 1 always begins in period t = 1 and i is the length

f I 1 , it is clear that if i = t , then t ∈ I 1 . Otherwise, if t > i , it means

hat I 1 ends before t . Therefore, t belongs to I 2 . 

emma 2. For t > i we have p t = 1 . 

roof. By Lemma 1 , we have t belongs to I 2 for all t > i. Since the

tate cannot revert back to I 1 once it enters I 2 , we obtain p t = 1 . 

The optimal order quantity that is determined for the time of

rrival is transformed into the corresponding ordering time by cal-

ulating i . Because the optimal solution depends on the length

f the lead time, we analyze two cases: L 1 < L 2 and L 2 < L 1 . The

tructure of the optimal policy can be characterized as follows. 

roposition 1. For L 1 < L 2 and L 1 + 1 ≤ t ≤ T , Q t, 2 = 0 for i ≤ t ≤
 + L 2 , and Q t, 1 = 0 for i + L 1 < t. 

roof. For L 1 < L 2 , we need to consider two cases. 

Case 1: L 2 + 1 ≤ t ≤ T . 

If i ≤ t ≤ i + L 1 , then the option to order with lead time L 1 is

vailable during period t − L 1 . Because the in-transit cost increases

ith the length of the lead time, an order associated with the

hort lead time is a preferred option for minimizing the cost. Thus

e have Q t, 2 = 0 . 

If i + L 1 < t ≤ i + L 2 , then L 1 is unavailable during period t − L 1 
nd L 2 is unavailable during period t − L 2 . Therefore, Q t, 2 = Q t, 1 =
 . 

If t ≥ i + L 2 , then L 1 is unavailable during period t − L 1 , and

 t, 1 = 0 . 

Case 2: L 1 + 1 ≤ t ≤ L 2 . 

Following a similar logic to that in Case 1, if i ≤ t ≤ i + L 1 ,

hen Q t, 2 = 0 ;if i + L 1 < t, as L 1 is unavailable during period t − L 1 ,

herefore, Q t, 1 = 0 . 

This completes the proof. 

It is noteworthy that L 1 is always available during the first pe-

iod. Because the in-transit cost increases with the length of the

ead time, an order with a short lead time is preferable for mini-

izing the cost. The firm should therefore order the demand stock

uring period t associated with a short lead time L 1 . Thus, Q t, 2 = 0 .

To obtain the optimal solution from period 1 to period L 1 , the

nformation on the number of periods when the lead time L 1 is

vailable during the previous cycle is required. This can be denoted

s i 0 , where 1 ≤ i 0 ≤ T . 

roposition 2. For L 1 < L 2 and 1 ≤ t ≤ L 1 , 

• when i 0 = T , then Q t, 2 = 0 ; and 

• when i 0 < T , then Q t, 2 = 0 ∀ t ≤ i 0 + L 2 − T and Q t, 1 = 0 ∀ t ≥
i 0 + L 1 − T . 

roof. During the preceding cycle, the lead time L 1 is, by defi-

ition, available from period 1 to period i 0 while L 2 is available

rom period i 0 + 1 to period T . For i 0 = T , L 2 is unavailable. Hence,

 t, 2 = 0 . 

For i 0 < T , the following three scenarios should be considered. 

If t ≤ i 0 + L 1 − T , then lead time L 1 is available at the time of

rdering, that is, T + t − L 1 . A shorter lead time leads to a lower

n-transit cost. Therefore, Q t, 2 = 0 . 

If i 0 + L 1 − T < t < i 0 + L 2 − T , then L 1 is unavailable during pe-

iod T + t − L 1 and L 2 is unavailable during period T + t − L 2 . Con-

equently, Q t, 1 = Q t, 2 = 0 . 
If t ≥ i 0 + L 2 − T , then the lead time L 1 is unavailable at the or-

ering time T + t − L 1 . Hence, Q t, 1 = 0 . 

This completes the proof. 

Under the assumption of L 1 < L 2 , Proposition 1 indicates that

rders should be placed in advance by taking advantage of the

hort lead time. Proposition 2 demonstrates orders associated with

 long lead time should be postponed to the next cycle if the or-

er with the short lead time arrives earlier than the current order

ith the long lead time. Under the assumption of L 1 > L 2 , we pro-

ide similar propositions, omitting their proofs, which are similar

o the previous proofs. 

roposition 3. For L 1 > L 2 and L 1 + 1 ≤ t ≤ T , Q t, 2 = 0 ∀ i ≤ t ≤ i +
 2 and Q t, 1 = 0 ∀ i + L 2 < t. 

roposition 4. For L 1 > L 2 and 1 ≤ t ≤ L 1 , 

• when i 0 = T , Q t, 2 = 0 ;
• when i 0 < T , if t ≤ i 0 + L 2 − T , then Q t, 2 = 0 ;and if t > i 0 + L 2 −

T , then Q t, 1 = 0 . 

Propositions 3 and 4 indicate that orders associated with a long

ead time should not be placed, thereby avoiding order crossovers

hen L 1 > L 2 . According to the optimality equations, we can prove

hat the cost function is jointly convex in the order decision for

ny given state. Based on the convexity, the structure of the opti-

al policy can be characterized as a state-dependent order-up-to

olicy. 

Given the above-described characteristics of the optimal policy,

e offer the following managerial recommendations. First, when

aking decisions relating to orders, a manager should compare the

urrent inventory level with the order-up-to level. If the former is

elow the latter, then the manager should consider raising the in-

entory level to the order-up-to level by availing of the shortest

ead-time option. Second, the last period for which a short lead

ime is available for orders should be used to cover the demand

or several successive periods. Thus, orders are placed during the

ast period of the interval. Finally, orders associated with a long

ead time should be postponed to the next cycle if another order

ith a short lead time arrives before the current order with a long

ead time. 

The propositions presented in this section extend the appli-

ation of building blocks discussed in Section 4.1 to the solu-

ion for seasonal lead-time problems in which the timing of sea-

ons is stochastic. The extended building blocks balance in-transit,

olding, and backordering costs by availing of the known lead-

ime differences and accounting for the probability of a lead-time

hange occurring during the cycle. It should be noted that un-

er the optimal policy for fixed length and random timing of sea-

onal lead times, order crossovers never occur. However, in case

f stochastic lead-time lengths, the optimal policy may anticipate

rder crossovers. This is discussed in Section 5 . 

. Seasonality where lead-time lengths are stochastic 

In the case of seasonal patterns in stochastic lead-time lengths,

econsideration of the building blocks presented in Section 4 be-

omes necessary. Because the exact time of arrival of issued or-

ers cannot be controlled, some safety measures are required to

void excessive costs associated with moving, storing, and back-

rdering inventory. Backordering costs are generally much higher

han the costs of moving and holding inventory. This trade-off

etween backordering and inventory costs traditionally results in

ome positive safety stock. However, in the case of non-stationary

ead times, these safety stocks also become non-stationary, and in-

ights on how to set safety stock levels in this context are required.

afety lead time can also be introduced by splitting the end-of-

nterval order quantity (which generally differs from the regular
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order quantity; see Tables 1–3 ). Splitting large orders and placing

partial orders in advance during some periods increases the proba-

bility of an on-time arrival of some items, thereby avoiding backo-

rders. Hence, the inclusion of some safety time could be beneficial.

However, the literature does not provide insights on how to set

these safety time levels. 

5.1. Setting-up of numerical experiments 

Our numerical experiments have to reveal the impact of safety

stock and safety lead time on the total cost per cycle as compared

to using dedicated methods that account for seasonality in stochas-

tic lead times. In the benchmark scenario, seasonal patterns are

neglected and variations in lead times are considered to arise from

a general stochastic process. 

We introduce the following additional notation: 

b Backordering costs per period per item short 
a 
t Expected lead time of order arriving in period t 

S t Safety stock required for orders arriving in period t 

S t Order-up-to level when ordering in period t 

ST Safty time = number of periods over which large orders are

evenly split 

k Service factor 

We now assume that L j (i.e. the lead-time length during inter-

val I j ) is a stochastic variable that is independently and identically

distributed within the interval period. However, immediately fol-

lowing the commencement of the new interval, the lead times will

be drawn from another distribution. 

In this section we present the simplest case to illustrate the ef-

fects of safety factor and safety time in seasonal inventory con-

trol. This case entails just two different lead-time distributions or

parameter sets per cycle, and equal (and hence known) lengths

of the two intervals per cycle. We assume: L 1 ∼ N( μ1 , σ1 ) and L 2 ∼
N( μ2 , σ2 ) , where σ j = 0 . 4 μ j for j = 1 , 2 . Hence, following the com-

mencement of another season, the lead-time distribution remains

normal and the coefficient of variation remains 0.4, so only both

means change, resulting in different standard deviations. This as-

sumption makes the benchmark situation more realistic as well,

because the seasonal pattern yields a mixture of two normal dis-

tributions that might not easily be distinguishable from a unimodal

normal distribution with mean ( μ1 + μ2 ) / 2 when testing for nor-

mality. The following parameters are used in the numerical ex-

periments: μ1 = 15 ; μ2 = 25 ; and for the benchmark: μ = 20 ;σ =
9 . 6 weeks . 

The standard deviation for the benchmark distribution is deter-

mined through repeated applications of the Anderson-Darling test

for normality on samples obtained from the time series data of

our lead-time distributions. As expected, the coefficient of varia-

tion of the benchmark distribution is slightly greater than the orig-

inal distributions (0.48 versus 0.4). The average p-value of the nor-

mality tests exceeds 0.1. Therefore, the benchmark distribution is

found to be normal based on the results of the statistical tests,

whereas in reality its normal distribution is bimodal rather than

unimodal. 

In the numerical experiments, the values of the backordering,

holding, and in-transit costs are 50, 1, and 0.8, respectively. When

determining the service factor k , we have to compensate for early

arrivals because of the occurrence of order crossovers in these sit-

uations. We use the bounds on the difference in the lead-time

variance for normally distributed lead times provided by [31] . The

service factor k is obtained by dividing the required safety fac-

tor in cases where no order crossovers occur by a factor ranging

between 

√ 

σ
√ 

πand σ
√ 

1 / 2 to compensate for the effective lead

times. In our example, where σ = 9 . 6 , it is necessary to divide the

required safety factor by at least 4.125. We therefore experiment
ith service factors k = 0.4 and k = 0.5, which corresponds to the

ower bounds of the cycle service levels (i.e., the probabilities of

o stock-out at the time of arrival of an order), ranging between

5% and 98% if the benchmark is the actual lead-time distribution.

oreover, we assume that cycle length T = 52 weeks, demand per

eek D is constant and equal to 1, and interval lengths I 1 = I 2 = 26

eeks. The simulation is performed with one hundred replications.

ach replication comprises one thousand cycles. The performance

easure is the average total cost per cycle. In light of the results

f a statistical analysis, the warm-up period is set at 150 cycles to

liminate the impact of the initial inventory available during the

rst cycle. 

.2. Lead times and safety buffers in the numerical experiments 

We assume that the lead time of an issued order is not known

ntil it arrives. However, at the time of ordering, the distribution of

he lead time length is known as we have known interval lengths.

his assumption allows for situations wherein orders that are is-

ued later arrive before other orders that have been issued earlier.

s ordering costs are not considered, we expect frequent ordering

o occur and hence frequent instances of order crossovers. 

We will now consider the safety stock requirements over time

n the case of seasonal stochastic lead-time lengths. The decision

ot to order at the current time of ordering will only be made if

ufficient stock is anticipated during the next possible time of ar-

ival of an order. Hence, to determine whether or not to order in

eriodic ordering systems, we calculate the required safety stocks

t the first point of arrival, t , following the time of arrival of the

urrent order. If the expected stock is lower than the safety stock

evel during that period, we need to submit an order immediately.

he size of the required safety stock at the next time of arrival

s dependent on the uncertainty of the total demand up to this

ime of arrival. The safety stock at the time of arrival, t , is equal to

 S t = kD σ j , where σ j denotes the standard deviation of the lead

ime of the order that is expected to arrive during period t . It

hould be noted that it is not necessary to include the lengths of

he interval and review period in the safety stock calculation, as no

ncertainty is faced regarding the lengths of these periods. 

The safety stock at t has to be determined prior to deciding

n the order for the previous time of arrival. Hence, we have to

earch backwards to find the time of ordering for which this safety

tock needs to be included. We assume that the last order that

rrives before t does arrive at period t − i , and denote the expected

ead time of that order as �a 
t−i 

. The time of placing that order is

 o = t − i − �a 
t−i 

. For every expected time of arrival t , we are able to

dentify the time of ordering at which the safety stock at t has to

e accounted for. The values of i and t o are calculated based on the

nformation presented in Table 1 and applying our multiple lead-

ime algorithm. 

.3. Non-stationary base stock policy 

We will now formulate the non-stationary base stock policy. If

he expected stock at t is below the required safety stock level at t ,

he expected stock should be raised to the safety stock level by or-

ering the difference at the current ordering time t o . Therefore, at

ime t o , both the future t and the expected stock at this time need

o be estimated along with the required safety stock at t . If we as-

ume that all already issued orders and the current inventory level

ill be used to cover the demand up to t, then the expected stock

evel at time t will be equal to the current inventory position mi-

us all of the demand arising up to t , that is, during t − t o periods.

ence, at the time of ordering t o , the inventory position is raised

o the order-up-to level S t o = D ( t − t o ) + S S t . This order-up-to level

s non-stationary, as both the safety stock and the length of time
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Fig. 4. Cumulative gap-size frequencies for stock-out probabilities SP of 2 and 5%. 

Fig. 5. Cumulative gap-size frequencies for different safety lead-time lengths (ST). 
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for covering the demand change over time. The

xpected value of i is normally equal to 1. However, in the case

f an interval change from I 1 to I 2 (caused by a lead-time increase),

he expected value of i becomes E(i ) = μ2 − μ1 . At some point in

ime, ordering with lead time L 2 should be stopped, as waiting un-

il the short lead-time option L 1 becomes available again is a more

rofitable option. However, in terms of the time of arrival, t , of the

ext order, L 2 is simply reverting to L 1 , which reduces the order-

p-to level and constrains ordering until the difference between

he expected stock and the required safety stock becomes positive

gain (see [23] ) for a detailed analysis of this effect). 

If a safety time is applied to anticipate a change affecting a sea-

on with a longer expected lead time (i.e., the approaching end of

nterval I 1 ), the large end-of-interval order needs to be placed in

dvance, spread over several periods. Therefore, when a safety time

T > 1, wherein the large order is spread evenly over a few periods,

ur order-up-to policy at t o takes account of whether I 1 − ST < t 0 <

 1 . If this is the case, the inventory position is raised to the order-

p-to level S t o = D ( t − t o ) + S S t + D ( μ2 − μ1 )( ST − I 1 + t 0 ) / ( ST ) . 

.4. Results of the numerical analysis 

The results of the numerical analysis reveal the costs incurred

y ignoring the seasonal pattern and using the benchmark distri-

ution. Ignoring seasonality leads to higher costs. The cost gap is

he difference between the average cycle cost of the model that ig-

ores seasonality and that of our model, divided by the cost of the

odel that ignores seasonality. This gap is expected to be higher
f service levels are lower, as a lower service level results in more

requent stock outs. Moreover, the gap is expected to be higher if

he safety time is lower, mainly due to the higher probability of

acing a long waiting time before the first order in the season with

he longer lead times arrives. 

Fig. 4 depicts the results of our experiments using different

tock-out probabilities. The distribution of the cost gap with the

enchmark solution that ignores seasonality is shown for stock-out

robabilities SP = 2% and SP = 5%, with the safety time, ST, covering

hree periods. On average, a 2% stock-out probability results in an

verage cost gap of 19.6%, while a 5% stock-out probability results

n an even higher average cost gap of 23.1%. The distribution of

he cost gaps shows a substantial long tail, indicating that high

ost gaps ranging from 25% to 45% are encountered in almost 30%

SP = 2%) or 20% (SP = 5%) of the experiments. 

Fig. 5 shows the effect of varying the safety time factor on the

ost gap in case of a stock-out probability of 5%. Compared to the

revious experiment where we spread the large order equally over

hree weeks (ST = 3), we include both a lower (ST = 1) and higher

ST = 5) safety time factor. ST = 1 means that we do not include ad-

itional safety time at all, and the results of the gap distribution

how that the difference with the benchmark solution increases to

n average 26.4%, while nearly 50% of the cases showing a gap of

0% or more. An increase of the safety time factor to 5 periods

ecreases the average cost gap to 18.9%. At this large safety time

actor, the stock-out costs in the benchmark solution are very low,

hile inventory costs have increased. The impact of a further in-

rease of the safety time is marginal. 
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5.5. Conclusion regarding the outcomes of numerical experiments 

We conclude that ignoring seasonal patterns in the length of

randomly distributed lead times may lead to a substantial cost

increase compared with the cost performance of our solution

approach. Cost advantages range on average between 18.9% and

26.4%, depending on the length of the safety time. The median

value, which is almost 20%, is indicative of a long tail with more

extensive cost savings. The incorporation of more extensive safety

measures, such as higher safety stocks and longer safety lead

times, reduces the average cost gaps from 23.1% to 19.6% and 18,9%,

which are still huge cost improvements for using the seasonal-

ity approach. Moreover, these measures do not shorten the long

tails of the gap distributions. Therefore, we conclude that our solu-

tion that takes account of seasonal patterns in stochastic lead-time

lengths avoids these large cost gaps and is the preferred approach.

6. Conclusions and future research directions 

Whereas the issue of lead-time seasonality is frequently en-

countered in practice, mainly in relation to problems associated

with transportation and suppliers, it has largely been ignored

within the literature on inventory control. To the best of our

knowledge, this is the first study that has examined various types

of seasonality in relation to lead times. Important insights on how

to contend with lead-time seasonality can thus be of value for both

the theory and practice of inventory control. We have proposed a

framework that accounts for the seasonality of lead times and can

be applied to characterize inventory control problems. This frame-

work distinguishes between seasonality relating to the dimensions

of time and magnitude as well as the deterministic or stochas-

tic nature of seasonal variations, resulting in four families of sea-

sonal inventory control problems: ‘all fixed’ (i.e., purely determinis-

tic problems), ‘fixed length, random timing’, ‘fixed timing, random

length’, and ‘all random’ (stochasticity in both the magnitude and

time dimensions). For each of these families, we have offered in-

sights and recommendations on how to cope with seasonality. 

Our elementary models enable us to develop generic insights

based on an analysis of various families of seasonal inventory

problems. For deterministic magnitude dimension, we focus on

cases entailing two or three different lead-time lengths. For the all

fixed class, which is encountered, for example, in tobacco sourc-

ing, the intervals when these lead times occur are known in ad-

vance. We have developed an optimal control policy that mini-

mizes costs by seeking a balance between ordering precisely what

is needed, ordering in advance, and postponing orders, to avail of

benefits resulting from a future reduction of lead time. In cases

entailing more than two different lead times, the optimal solution

may also include order postponement because of anticipated or-

der crossovers. These order crossovers are avoided to save costs. In

light of these findings derived from the use of elementary deter-

ministic models, we suggest that managers should attempt to save

costs by either postponing orders or by ordering in advance in ac-

cordance with known lead-time changes and order crossovers. 

These results have been extended to the stochastic time di-

mension, while the magnitude remains deterministic (entailing a

fixed length and random timing). Such conditions are encountered

in the fashion business and timber transport, and are reflected in

the non-availability of transportation over several seasons, reveal-

ing the salience of this class of problems. We examined a specific

problem in which the length of the first interval is not known in

advance. The optimal solution strategy for this stochastic optimiza-

tion problem still entails ordering in advance as well as order post-

ponement as a result of anticipated order crossovers and lead-time

changes. However, the optimal policy now takes into account back-

ordering costs as well as the probability of a lead-time change oc-
urring during the cycle. Hence, our advice to managers who face

his type of seasonal variability remains similar: apply a policy that

nables benefits to be obtained from the known changes and an-

icipated order crossovers, as this policy saves costs while ensuring

igh customer service levels. 

There are many examples of extensions in the stochastic mag-

itude dimension within the literature, such as make-to-order fur-

iture production, craft production, and coffee supply. It is difficult

o find optimal solutions for these problems. Precise control over

he times of arrival of issued orders is not possible in the case of

tochastic lead-time lengths. The recommendation in the existing

iterature relating to variable/stochastic lead times (see [1,14,19,38] )

s to use safety stocks and/or safety time to mitigate the height and

ariance in inventory levels. However, our insights indicate that ac-

ounting for the non-stationarity of the seasonal lead times is ad-

isable. Managers should anticipate on seasonal shifts of lead-time

engths and use smaller safety buffers, which yields a significant

ost reduction. As shown in numerical experiments, the cost re-

uctions of applying our solution range between 18.9% and 26.4%

n average, entailing substantial long tails of even higher cost re-

uctions. We therefore conclude that the current practice of ignor-

ng seasonal patterns in the lengths of randomly distributed lead-

ime lengths is a costly strategy. Accordingly, our recommendation

o managers who face such seasonal variability is to apply our so-

ution instead of relying on traditional buffering mechanisms such

s safety stocks and time. 

Future research could focus on developing models for appli-

ation within the four families of seasonal lead-time problems.

irstly, we have assumed that the unit purchasing cost is identical

or both lead times. In a future study, we will prove that an order-

p-to optimal policy remains valid if we assume that the long

ead-time option has a lower unit purchasing cost than the short

ead-time option. Secondly, the impacts of fixed ordering costs on

he design of the optimal policy merit an investigation. Finally, re-

earchers could experiment with other lead-time length distribu-

ions, more diverse interval lengths, more relevant models for as-

essing interval change probabilities, and a wider variety of pattern

hanges that occur during a cycle. Such studies would advance the

heory of inventory control in relation to seasonal lead-time pat-

erns. 
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