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Two-photon Rabi oscillations hold potential for quantum computing and quantum information processing
because during a Rabi cycle a pair of entangled photons may be created. We theoretically investigate the onset
of this phenomenon in a heterodimer comprising a semiconductor quantum dot strongly coupled to a metal
nanoparticle. Two-photon Rabi oscillations in this system occur due to a coherent two-photon process involving
the ground-to-biexciton transition in the quantum dot. The presence of a metal nanoparticle near the quantum
dot results in a self-action of the quantum dot via the metal nanoparticle because the polarization state of
the latter depends on the quantum state of the former. The interparticle interaction gives rise to two principal
effects: (i) enhancement of the external field amplitude and (ii) renormalization of the quantum dot’s resonance
frequencies and relaxation rates of the off-diagonal density matrix elements, both depending on the populations
of the quantum dot’s levels. Here, we focus on the first effect, which results in interesting features, in particular,
an increased number of Rabi cycles per pulse compared to an isolated quantum dot and subsequent growth of
the number of entangled photon pairs per pulse. We also discuss the destructive role of radiative decay of the
excitonic states on two-photon Rabi oscillations for both an isolated quantum dot and a heterodimer.

DOI: 10.1103/PhysRevB.99.075302

I. INTRODUCTION

Nanohybrids comprising a quantum emitter (QE) coupled
to a metal nanoparticle (MNP) have been shown to exhibit
a variety of novel optical properties which not only are
intriguing in their own right but also offer great prospects
for applications. In spite of considerable recent interest in
hybrid QE-MNP systems, a number of questions regarding
their optical properties have not been elucidated so far. One
of those concerns the nonlinear optical interactions occurring
in a QE-MNP nanohybrid, namely, the onset of coherent
two-photon processes, in particular, coherent two-photon ab-
sorption (TPA) and two-photon Rabi oscillations (TPRO).
Although two-photon processes generally are weak, they may
serve efficiently for various applications. The characteristics
of two-photon processes make them superior to other room-
temperature schemes based on all-optical nonlinear processes
[1]. The best-known examples of practical applications of
TPA are microfabrication via three-dimensional photopoly-
merization [2,3], imaging [4], and optical data storage [5–7].
The principle of using TPA processes is based on the fact that
many materials, while not being transparent for radiation in
the visible, are transparent in the infrared. This allows one
to reach the bulk materials with infrared light, where TPA
processes may be used for optical applications such as the
ones mentioned above.

The most interesting application of TPRO envisioned at
the moment is the realization of a single-emitter source of
pairs of polarization-entangled photons, which is a challenge
for quantum computing and quantum information processing
[8,9], as well as for quantum cryptography [10]. A single

semiconductor quantum dot (SQD) is considered an excellent
candidate for efficient TPRO, as one may exploit the multiex-
citon states, in particular, biexciton states that naturally occur
in these systems, to achieve this phenomenon.

During a cascade emission from the biexciton state of a
SQD, a pair of polarization-entangled photons is created with
its polarization determined by the spin of the intermediate
exciton state [11–16]. However, the entanglement is not com-
plete because of the hyperfine splitting of one-exciton states
forming the biexciton. This is the major obstacle for high-
quality polarization entanglement when using the cascade
process. Additional manipulations are needed to reduce the
splitting and improve entanglement [11]. This problem is
avoided by placing a SQD into a microcavity [17,18] tuned
exactly to the coherent two-photon resonance. Due to the
biexciton shift, single-photon transitions are detuned and thus
are effectively suppressed, while the coherent two-photon
emission is Purcell enhanced [19]. An additional enhance-
ment of the two-photon rate comes from the fact that the
intermediate-state denominator, determining the rate, is equal
to half of the biexciton binding energy, which is usually on the
order of several meV, i.e., relatively small for the second-order
processes.

The TPRO represents a coherent process, involving the
ground-to-biexciton transition, in which the intermediate one-
exciton states play the role of virtual states, which are not
populated, so that two photons created during one Rabi cycle
are perfectly entangled by default. Importantly, this can be re-
alized in a cavity-free configuration [20,21]. Coherent control
of the biexciton state of an isolated SQD has been achieved
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FIG. 1. (a) Schematics of a SQD-MNP heterodimer subject to a pulsed applied field E0(t ) = E0(t ) cos(ω0t ). The field is linearly polarized
along the system axis (shown by the red arrow). Here, d is the SQD-MNP center-to-center distance, r is the radius of the MNP, εs and εm(ω)
are the dielectric constants of the SQD and the MNP, respectively. The system is embedded in an isotropic and nonabsorbing medium with
permittivity εb. (b) Energy diagrams of the MNP (left) and a ladder-type three-level SQD (right). The excited state of the MNP represents a
broad line centered at the frequency of the LSP’s resonance ωLSP, shown by the dashed yellow line. For the SQD, |1〉, |2〉, and |3〉 are the
ground, one-exciton, and biexciton states, respectively. The energies of these states are ε1 = 0, ε2 = h̄ω2, and ε3 = 2h̄(ω2 − �B/2), where
h̄�B is the biexciton binding energy. Allowed transitions with the corresponding transition dipole moments μ21 and μ32 are indicated by solid
double-headed arrows. Wiggly arrows denote the spontaneous decay with rates γ32 and γ21. The black dashed line shows the location of the
coherent two-photon resonance ω3/2 = ω2 − �B/2 (with simultaneous absorption of two photons).

within two-pulse [13,22] and single-pulse [23] schemes of
excitation followed by the cascade emission of a pair of
entangled photons. The first observation of the cavity-free
TPRO of a single InGaAs SQD was reported by Stufler et al.
[20] together with a simplified theoretical approach explaining
the peculiarities of the effect. A more comprehensive theory
was presented in Ref. [24].

In this paper, we examine theoretically the TPRO in a SQD
strongly coupled to a MNP, where the SQD, as in Ref. [20],
is modeled as a ladderlike three-level system (ground, one-
exciton, and biexciton states). It is well established that the
presence of a MNP near a SQD has a vital influence on
the optical response of the SQD as a consequence of the
polarizability of the MNP. Notable phenomena that have been
studied in detail are the bistable optical response [25–29],
linear and nonlinear Fano resonances [30–32], gain without
inversion [33], and several other effects [34–36]. Our goal is
to uncover the plasmonic effect on the TPRO of a single SQD.

This paper is organized as follows. In the next section, we
present the model system and the mathematical formalism for
its description. In Sec. III, we report the results of numerical
calculations of the TPRO for a set of parameters that is achiev-
able in practice and discuss them. In Sec. IV, we analyze
under what conditions additional nonlinear effects, resulting
from the self-action-induced renormalization of the effective
exciton energies and relaxation rates, may occur. Section V
summarizes the paper.

II. MODEL AND FORMALISM

We theoretically investigate coherent light-matter interac-
tion in a nanohybrid composed of a SQD coupled to a closely
spaced spherical MNP. The nanoparticles are embedded in
an isotropic and lossless background with permittivity εb

and are separated by a (center-to-center) distance d . The
SQD is characterized by its (bulk) dispersionless dielectric
constant εs, while the MNP is described by the dielectric
function εm(ω). The system is driven by a pulsed external field

E0(t ) = E0(t ) cos(ω0t ), with a carrier frequency ω0 and an
amplitude E0(t ) which varies slowly on the scale of the
optical period 2π/ω0. The field is linearly polarized along
the system’s axis [see Fig. 1(a)]. The SQD and MNP radii
as well as their center-to-center distance d are assumed to
be small compared to the optical wavelength, allowing us to
apply the quasistatic approximation [37,38] and to neglect the
retardation in the SQD-MNP interaction.

Figure 1(b) shows the schematics of the electronic states
and corresponding energy levels of the nanohybrid. The os-
cillating external field gives rise to oscillations of conduct-
ing electrons in the MNP, conventionally called a localized
surface plasmon (LSP). For the MNP’s radii r > 5 nm we
consider, quantum-size effects are negligible [39], so that
for LSPs, the classical treatment can be safely applied [38].
Within this approach, the MNP’s optical response can be
described by its complex-valued frequency-dependent polar-
izability α(ω), given by [37,38]

α(ω) = 4πr3 εm(ω) − εb

εm(ω) + 2εb
. (1)

The LSP’s resonance frequency ωLSP is determined as the
frequency at which the real part of α(ω) is minimal (Fröhlich
condition) [37]. Thus, the electronic states of the LSP repre-
sent a ground state and a broad continuum of excited states, as
depicted in Fig. 1(b) (left panel).

The optical excitations in the SQD are excitons. In addition
to the one-exciton states of the SQD, we also incorporate a
biexciton state, corresponding to two excitations coupled by
the Coulomb interaction. In such a system, the degeneracy
of the two one-exciton states is lifted due to the anisotropic
electron-hole exchange, leading to two split linearly polarized
one-exciton states with a negligible energy splitting (on the
order of a few tens of μeV), one of which is dark, while
the other is bright (see, e.g., Refs. [20,40,41]). In this case,
the ground state is coupled to the biexciton state via the
linearly polarized one-exciton bright state. Thus, the system
effectively acquires a three-level structure with a ground state
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|1〉, one-exciton state |2〉, and biexciton state |3〉 with corre-
sponding energies 0, h̄ω2, and h̄ω3 = 2h̄(ω2 − �B/2), where
h̄�B is the biexciton binding energy. Within this model, the
allowed transitions, induced by the external field, are |1〉 ↔
|2〉 and |2〉 ↔ |3〉, which are characterized by the transition
dipole moments μ21(= μ12) and μ32(= μ23), respectively
(for the sake of simplicity, we assume that they are real).
States |3〉 and |2〉 spontaneously decay with rates γ32 and γ21

[see Fig. 1(b)] [42]. Note that the biexciton state |3〉, having
no allowed transition dipole moment from the ground state
|1〉, can be reached either via consecutive |1〉 → |2〉 → |3〉
transitions or via the simultaneous absorption of two photons
of frequency ω3/2 = ω2 − �B/2. At resonant excitation, each
of these transitions can be addressed separately. This remains
valid also for a pulsed excitation if the pulses are spectrally
narrower than the biexciton binding energy h̄�B. We will
predominantly focus our study on the resonant excitation of
the coherent two-photon transition.

Excitons and plasmons, excited in the nanohybrid, interact
with each other via the dipole-dipole interaction, which gives
rise to a renormalization of the field experienced by both the
SQD and MNP. The effects of the coupling can be inferred
from the amplitude of the total field acting on the SQD, which
equals the sum of the external field E0(t ) and the field pro-
duced by the MNP [25–29]. Accounting for the contribution
of higher multipoles, which is important if the MNP’s radius
r is on the order of the SQD-MNP spacing d (our case; see
below), ESQD(t ) reads [36,43]

ESQD(t ) = 1

ε′
s

[
1 + α(ω0)

2πd3

]
E0(t ) + 1

4π2ε0εbε′
s

×
∞∑

n=1

(n + 1)2αn(ω0)

d2n+4
PSQD(t ) . (2)

Here, ε′
s = (εs + 2εb)/(3εb) is the effective dielectric constant

of the SQD; PSQD(t ) is the amplitude of the dipole moment
generated in the SQD [see below, Eq. (5)]. Furthermore, the
higher multipole polarizabilities αn(ω0) are given by

αn(ω0) = 4πr2n+1 εm(ω0) − εb

εm(ω0) + n+1
n εb

. (3)

The first term in Eq. (2) shows that the external field amplitude
E0(t ) experiences renormalization due to the presence of the
nearby MNP (second term in the square brackets). The last
term in Eq. (2) reveals the electromagnetic self-action of the
SQD via the MNP: the field acting upon the SQD depends on
the amplitude of its own dipole moment PSQD(t ). As will be
shown below, this may considerably affect the hybrid’s TPRO
compared to those of an isolated SQD.

It is worth noting that all polarizabilities in Eq. (2) are taken
at the carrier frequency of the external field ω0. Throughout
this paper, we assume that the spectral width of the envelope
E0(t ) is narrow enough to neglect variations of the polariz-
abilities over this interval. For the parameters chosen in our
calculations, this condition is fulfilled easily.

We describe the optical process in the SQD by making
use of the Lindblad quantum master equation for the density
operator ρ(t ), which in the rotating frame (with frequency ω0

of the external field) reads [44,45]

ρ̇ = − i

h̄
[HRWA(t ), ρ] + L(ρ), (4a)

HRWA(t ) = h̄(�21|2〉〈2| + �31|3〉〈3|) − h̄[	21(t )|2〉〈1|
+	32(t )|3〉〈2| + H.c.], (4b)

L(ρ) = γ21

2
([|1〉〈2|ρ, |2〉〈1|] + [|1〉〈2|, ρ |2〉〈1|])

+ γ32

2
([|2〉〈3|ρ, |3〉〈2|] + [|2〉〈3|, ρ |3〉〈2|]).

(4c)

Here, [A,B] denotes the commutator, HRWA(t ) is the SQD
Hamiltonian in the rotating-wave approximation (RWA), and
L(t ) is the Lindblad operator describing the radiative relax-
ation in the system. In Eq. (4b), h̄�21 = h̄(ω2 − ω0) and
h̄�31 = h̄(ω3 − 2ω0) are the energies of states |2〉 and |3〉
in the rotating frame, respectively. Alternatively, the former
may be interpreted as the detuning away from the one-
photon resonance, and the latter may be interpreted as the
detuning from the coherent two-photon resonance. 	21(t ) =
μ21 · ESQD(t )/(2h̄) and 	32(t ) = μ32 · ESQD(t )/(2h̄) are the
slowly varying Rabi amplitudes of ESQD(t ) for the corre-
sponding transitions, where ESQD(t ) is the amplitude of the to-
tal field acting on the SQD. The latter is the sum of the applied
field E0(t ) and the field produced by the plasmon oscillations
in the MNP given by Eq. (2) [25–29]. H.c. stands for the
Hermitian conjugate.

The SQD’s dipole moment amplitude PSQD(t ) in Eq. (2) is
given by

PSQD(t ) = μ21ρ21(t ) + μ32ρ32(t ). (5)

Thus, the Rabi amplitudes 	21(t ) and 	32(t ) may be ex-
pressed as follows:

	21(t ) = 	̃0
21(t ) + G1ρ21(t ) + G3ρ32(t ), (6a)

	32(t ) = 	̃0
32(t ) + G3ρ21(t ) + G2ρ32(t ), (6b)

where we introduced the quantities

	̃0
21(t ) = 1

ε′
s

[
1 + α(ω0)

2πd3

]
	0

21(t ), (7a)

	̃0
32(t ) = 1

ε′
s

[
1 + α(ω0)

2πd3

]
	0

32(t ), (7b)

and

G1 = μ21 · μ21

16π2 h̄ε0εbε′
s

∑
n

(n + 1)2αn(ω0)

d2n+4
, (8a)

G2 = μ32 · μ32

16π2 h̄ε0εbε′
s

∑
n

(n + 1)2αn(ω0)

d2n+4
, (8b)

G3 = μ21 · μ32

16π2 h̄ε0εbε′
s

∑
n

(n + 1)2αn(ω0)

d2n+4
. (8c)

Here, 	0
21(t ) = μ21 · E0(t )/(2h̄) and 	0

32(t ) = μ32 ·
E0(t )/(2h̄) are the Rabi amplitudes of the external field
for the corresponding transitions. As can be seen, the
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external field experiences a renormalization due to the
presence of a nearby MNP, which is reflected in the
factor 1 + α(ω0)/(2πd3). The complex-valued quantities
G1 = GR

1 + iGI
1, G2 = GR

2 + iGI
2, and G3 = GR

3 + iGI
3

represent the so-called feedback parameters, describing
the self-interaction of the SQD via the MNP [25–29]. They
contain all details of the SQD-MNP coupling, such as the
contribution of higher multipoles, material properties, and
geometry of the system.

Using the above, the set of equations for the density matrix
elements ρi j (i, j = 1, 2, 3) governing the optical dynamics of
the SQD in the presence of the nearby MNP reads [36]

ρ̇11 = γ21ρ22 + i(	∗
21ρ21 − 	21ρ

∗
21), (9a)

ρ̇22 = −γ21ρ22 + γ32ρ33 + i(	21ρ
∗
21 − 	∗

21ρ21

+	∗
32ρ32 − 	32ρ

∗
32), (9b)

ρ̇33 = −γ32ρ33 + i(	32ρ
∗
32 − 	∗

32ρ32), (9c)

ρ̇21 = −[i�21 + 1
2γ21]ρ21 + i(	∗

32ρ31 − 	21Z21), (9d)

ρ̇32 = −[i�32 + 1
2 (γ32 + γ21)]ρ32

− i(	∗
21ρ31 + 	32Z32), (9e)

ρ̇31 = −[i�31 + 1
2γ32]ρ31 + i(	32ρ21 − 	21ρ32), (9f)

where �32 = ω3 − ω2 − ω0 is the detuning away from the
|3〉 ↔ |2〉 transition and Zji = ρ j j − ρii denotes the popula-
tion difference between states | j〉 and |i〉. Here, we suppressed
the time dependence of all dynamic variables.

III. RESULTS AND DISCUSSION

A. Isolated SQD

First, we consider the TPRO of an isolated SQD. This
will serve as a reference case for the hybrid analyzed in
Sec. III B. Yet another aspect added in this section compared
to what has been done in previous studies of the isolated SQD
[20,24] is an analysis of the destructive effect of the exciton’s
spontaneous decay on the TPRO. For the SQD, we use the set
of parameters of a CdSe/ZnSe quantum dot with a radius of
3 nm [13]: the energies of the bare one-exciton and biexciton
transitions are h̄ω2 = 2.36 eV and h̄ω3 = h̄(2ω2 − �B), with
h̄�B = 20 meV (�B ≈ 30 ps−1) and the population radiative
decay rates γ21 = 1/220 ps−1 and γ32 = 1/120 ps−1. From
these data, the transition dipole moments are evaluated as
μ21 = 0.6 e nm and μ32 = 0.8 e nm. For the SQD’s dielectric
constant εs, the typical value εs = 6 is taken. In the following,
we denote 	0(t ) ≡ 	0

21(t ) and 	(t ) ≡ 	21(t ). Accordingly,
	0

32(t ) = (μ32/μ21)	0(t ), and 	32(t ) = (μ32/μ21)	(t ).
The system is subjected to a resonant pulsed external field

with Gaussian Rabi amplitude,

	0(t ) = A√
πt0

exp

[
−

(
t − td

t0

)2
]
, (10)

tuned into the two-photon transition (ω0 = ω3/2,�21 =
�B/2). In Eq. (10), A = ∫ ∞

−∞ 	0(t )dt is the pulse area, td
is the delay time until the pulse maximum, and t0 is the
parameter determining the pulse duration tp, which we define
as the pulse full width at half maximum, tp = 2

√
ln 2 t0. We

are primarily interested in the behavior of the biexciton state
population ρ33.

1. Adiabatic limit

Here, we recall the principal results of the adiabatic theory
of the TPRO of an isolated SQD developed in Refs. [20,24].
Adiabaticity means that the coherently driven evolution of
the system is slow enough that at each instant in time, the
system follows the adiabatic instantaneous eigenstate of the
Hamiltonian (4b) (see, e.g., Ref. [46]). This limit involves
certain relationships between the system’s parameters 	0(t ),
t0, �B, and γ −1

32 . First, adiabaticity requires the inequality
�Bt0 � 1, which means that the spectral width of the incident
pulse, ≈1/(2t0), is much smaller than the detuning away from
the one-exciton resonance �B/2, so that the transition to the
latter is almost forbidden. This criterion is obeyed better the
longer the pulse is. On the other hand, the pulse duration
must be much shorter than the biexciton decay time, t0 
γ −1

32 . Otherwise, the one-exciton state will be incoherently
populated via the biexciton state during the pulse action, thus
destroying the coherent TPRO.

We restrict ourselves to a simplified version of the adia-
batic theory of the TPRO, assuming that the Rabi amplitude
A/(

√
πt0) is much smaller than half the biexciton binding

frequency �B/2. In this limit, the perturbation theory can
be applied. A more comprehensive treatment (free of this
assumption) can be found in Refs. [20,24].

The two-photon Rabi amplitude 	2(t ), calculated using
second-order perturbation theory, reads

	2(t ) = 2	21(t )	32(t )

�Bε′2
s

= 2

�B

μ32

μ21

[
	0(t )

ε′
s

]2

. (11)

Accordingly, the area of the two-photon pulse can be
written as

A2 =
∫ ∞

−∞
	2(t )dt =

√
2

π

μ32

μ21

(
A

ε′
s

)2 1

�Bt0
. (12)

The A2 dependence of the biexciton population is given by
[20,24]

ρ33 = sin2 A2

2
. (13)

Thus, the biexciton population acquires its first maximum,
ρ33 = 1 (full population), at A2 = π , similar to that of the
one-photon counterpart, except that the area of the two-photon
pulse A2 depends quadratically on the area of the incident
pulse A [see Eq. (12)].

Equating A2 = π , one can evaluate the incident pulse area
A at which the biexciton state is fully populated:

AA2=π = ε′
s

(
π

√
π

2

μ21

μ32
�Bt0

)1/2

. (14)

From this estimate it follows that on increasing the incident
pulse duration t0, a larger area of the incident pulse is needed
to invert the system. Moreover, it increases proportionally to
t1/2
0 , which is consistent with our numerical calculations (see

Sec. III A 2). Note that the corresponding Rabi amplitude of
the incident pulse 	0(t ) decreases inversely proportionally to
t1/2
0 . The latter, together with narrowing of the pulse spectrum
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FIG. 2. Contour plots of the TPRO of an isolated SQD. Top:
population of the biexciton state ρ33. The white dashed curve shows
the t0 dependence of the incident pulse area A, at which ρ33 acquires
its first maximum, plotted according to Eq. (14) with a correction
coefficient of 0.62. Bottom: population of the one-exciton state ρ22.

for increasing t0, points to the fact that the contribution of
the intermediate one-exciton state to the TPRO will be less
important for pulses of a larger duration, which is also in
agreement with numerical data (see Sec. III A 2).

2. Numerical results

In Fig. 2, we present the contour plots of the populations
of the bi- and one-exciton states obtained by numerically
integrating Eqs. (9a)–(9f). Figure 2 clearly exhibits TPRO
when following the behavior of ρ33 as a function of pulse
area at constant pulse duration. In the ρ33 plot, the white
dashed curve displays the theoretical fit of the ρ33 maxima.
The fitting procedure was as follows. We approximated the
long-pulse numerical data (�Bt0 � 1) with the help of the
adiabatic result, Eq. (14), allowing for a constant prefactor
on the right-hand side of this equation. It turns out that an
excellent fit was achieved when a prefactor of 0.62 was used.
This fit, however, breaks down for �Bt0 on the order of unity,
as expected.

Figure 3 shows the area dependence of ρ33 and ρ22 for
the region of failure of the adiabatic theory (�Bt0 ∼ 1). As
follows from the plots, this limit describes the actual behavior
better for increasing t0, and already starting at t0 = 8/�B, the
adiabatic approximation can be safely applied. We relate the
slight increase in the one-exciton population ρ22 to the direct
excitation of this state due to its finite width γ −1

21 , as well as its

FIG. 3. Area dependence of the populations of the bi- and one-
exciton states for the different incident pulse durations indicated
above each panel. �B = 30 ps−1.

population via the biexciton state, both occurring during each
Rabi cycle. The bottom plot in Fig. 2 presents a more detailed
picture of the ρ22 contribution to the TPRO.

An example of the time evolution of populations for a
short pulse (t0 = 20/�B = 2/3 ps  γ21, γ32) is presented in
Fig. 4. Here, we are almost in the purely adiabatic regime.
Indeed, the pulse spectrum, having a width that may be esti-
mated as 1/(2t0), is 20 times narrower than half the biexciton
binding frequency �B/2 (detuning away from the one-exciton
resonance), the condition for adiabaticity [20,24]. On the other

FIG. 4. Population dynamics calculated for the incident pulse
with area A = 9π , duration t0 = 20/�B = 2/3 ps, and delay time
td = 2 ps. The red dotted curve shows the profile of the incident
Gaussian pulse, exp{−[(t − t0 )/td ]2}.
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FIG. 5. Same as in Fig. 4, but for A = 50π , t0 = 900/�B =
30 ps, and td = 100 ps.

hand, the maximal value of the Rabi amplitude of the incident
pulse A/(

√
πt0) for the value A = 9π used to calculate this

figure is equal to 0.8�B, i.e., even larger than �B/2. This
explains the relatively elevated population of the one-exciton
state during the pulse action. The effects of radiative decay of
the bi- and one-exciton states, giving rise to the incoherent
population of the one-exciton state, are negligible in the
considered case because the duration of the incident pulse is
much shorter than the spontaneous decay time of the biexciton
state, t0 = 2/3 ps  γ −1

32 = 120 ps.
The results presented in Figs. 2–4 were obtained for rel-

atively short incident pulses, t0 � 50/�B = 5/3 ps. At such
pulse durations, the effects of the spontaneous decay are
marginal, as was already noticed. It is interesting to look at
longer pulses, when this process comes into play. Figure 5
shows the population dynamics calculated for a significantly
longer incident pulse, t0 = 900/�B = 30 ps. Here, the pulse
spectrum width ≈1/(2t0) is 900 times narrower than half the
biexciton binding frequency, �B/2. From this point of view,
we are deep in the adiabatic limit. The maximal value of the
Rabi amplitude of the incident pulse A/(

√
πt0) for A = 50π

used in this case is equal to 0.1�B, i.e., significantly smaller
than �B/2. Thus, contrary to the previous case of a short
pulse, the one-exciton state would not be expected to be no-
ticeably excited. Nevertheless, as seen in Fig. 5, its population
progressively grows during the pulse action and even onward,
not disappearing after the pulse has passed, which happens in
the adiabatic case. We explain this behavior by the fact that the
timescale of the incident pulse, t0 = 30 ps (duration ≈60 ps),
is already comparable with the timescale of the spontaneous
decay of the biexciton state, γ −1

32 = 120 ps. Thus, the latter
process leads to incoherent population of the one-exciton state
during the pulse action and afterward and thereby destroys
the TPRO. Thus, a trade-off exists between the adiabaticity,
supporting the pure TPRO, and the spontaneous decay, which
breaks down the coherence of the TPRO.

B. SQD-MNP hybrid

In this section, we analyze the TPRO of a hybrid compris-
ing a CdSe/ZnSe quantum dot and a nearby spherical gold
MNP, both embedded in a host with permittivity εb = 2.16

FIG. 6. Contour plots of the TPRO of a SQD-MNP hybrid cal-
culated for a center-to-center distance d = 18 nm. Top: population
of the biexciton state ρ33. The dashed white curve shows the t0

dependence of the incident pulse area Ã, at which ρ33 acquires its first
maximum, plotted according to Eq. (15) with a correction prefactor
of 0.62. Bottom: population of the one-exciton state ρ22.

(silica). For the SQD, we keep the same parameters as in
Sec. III A. The gold nanosphere is chosen to have radius
a = 12 nm. Its dielectric function εm is calculated by making
use of an improved Drude-like model [47]. The corresponding
surface plasmon resonance is found to be h̄ωsp = 2.34 eV. The
SQD-MNP separation d is chosen to be small enough to get
a strong coupling between the nanoparticles. We perform cal-
culations similar to those presented in Sec. III A to explicitly
see the effect of the presence of a nearby MNP.

Figure 6 shows the contour plots for the populations of
the bi- and one-exciton states, calculated for the SQD-MNP
center-to-center distance d = 18 nm. In the ρ33 plot, the white
dashed curve displays the dependence of the incident pulse
area Ã at which ρ33 attains its first maximum, calculated
within the adiabatic limit adjusted to a hybrid. Here, Eq. (14)
for an isolated SQD has to be modified by replacing the Rabi
amplitude 	0(t ) of the external field by the renormalized
quantity 	̃0(t ) = [1 + α(ω0)/(2πd3)]	0(t ) [see Eqs. (6a)
and (6b)]. Then for ÃA2=π one gets

ÃA2=π = ε′
s

∣∣∣∣1 + α(ω0)

2πd3

∣∣∣∣−1(
π

√
π

2

μ21

μ32
�Bt0

)1/2

. (15)

In deriving Eq. (15), we took into account only the enhance-
ment effect and neglected the self-action of the SQD, which
is described by the feedback constants Gi [Eqs. (8a)–(8c)].
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FIG. 7. Same as in Fig. 3, but for a hybrid with center-to-center
distance d = 18 nm.

For the system parameters used here, the self-action effect is
negligible (see Sec. IV).

In order to fit the numerical data, Eq. (15) should be
corrected by a prefactor of 0.62 which does not depend on
the SQD-MNP spacing d . As can be seen, modified in this
way, Eq. (15) works excellently for large values of �Bt0 but
breaks down for values of �Bt0 on the order of unity, exactly
as in the case of the isolated SQD.

We note that in the case of the hybrid, more Rabi cycles
occur at the same area A of the incident pulse than for
the isolated SQD (compare Figs. 6 and 2). The origin of
this difference lies in the enhancement of the external field
magnitude in the presence of a nearby MNP by the factor
|1 + α(ω0)/(2πd3)|. This feature will be present in all the
following figures. For the hybrid parameters used here, this
factor is ≈2.2, which explains the doubling of the number
of Rabi cycles for the hybrid in comparison with the isolated
SQD, as observed from Figs. 6 and 2.

In Fig. 7, we plot the area dependence of ρ33 and ρ22 for
the region of failure of the adiabatic theory. As can be seen,
the adiabatic limit approximates the actual behavior better for
growing t0 and already starting from t0 = 8/�B can be safely
applied. The slight buildup of the one-exciton population ρ22

on increasing the pulse area has the same origin as in the case
of an isolated SQD (see Sec. III A 2).

Figure 8 shows an example of the population dynamics
for a short pulse (t0 = 20/�B = 2/3 ps  γ21, γ32), when
the adiabatic limit is valid (see Sec. III A 2). Obviously, the
characteristics of the time dependence of the populations are
similar to those for an isolated SQD (compare with Fig. 4),
except the number of Rabi cycles is larger due to the field
enhancement effect.

FIG. 8. Same as in Fig. 4, but for a hybrid with center-to-center
distance d = 18 nm.

The population dynamics for a long incident pulse (t0 =
900/�B = 30 ps) whose duration (≈60 ps) is already com-
parable with the spontaneous decay time of the biexciton
state, γ −1

32 = 120 ps, is shown in Fig. 9. We observe that the
population of the biexciton state decreases during the pulse
action due to the spontaneous emission. Simultaneously, the
one exciton is incoherently populated, which partly destroys
the TPRO.

The results presented in Figs. 6–9 were obtained for the
SQD-MNP separation d = 18 nm. Figure 10 shows how the
TPRO depends on this separation. The contour plot was
obtained numerically for an incident pulse with t0 = 20/�B =
(2/3) ps. Figure 10 clearly shows that the number of Rabi cy-
cles decreases with increasing d , which is due to the reduction
of the enhancement factor |1 + α(ω0)/(2πd3)| for growing d .
As a result, the pulse areas A at which the Rabi oscillations
attain their successive maxima grow with d .

To conclude this section, we comment on how the distance
between the SQD and MNP can be controlled. This may be
done, for instance, by making use of peptide- or DNA-based
SQD-MNP conjugation, which is achievable by means of
methods of surface chemistry (see, e.g., Ref. [48] and refer-
ences therein). After preparing conjugated SQD-MNP pairs

FIG. 9. Same as in Fig. 5, but for a hybrid with center-to-center
distance d = 18 nm.
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FIG. 10. TPRO in the SQD-MNP hybrid considered in this paper
as a function of the interparticle distance d and the pulse area A.
Plotted is the biexciton state population ρ33 for a hybrid calculated
numerically for an incident pulse with t0 = 20/�B = (2/3) ps.

immobilized on a substrate, single-molecule spectroscopy can
be exploited to investigate their optical response.

IV. EFFECTS OF THE SQD SELF-ACTION

In this section, we discuss the effect of the SQD-MNP self-
action described by the complex-valued feedback parameters
Gi (i = 1, 2, 3), Eqs. (8a)–(8c), on the TPRO of the hybrid.
The feedback parameters are hidden in equations of mo-
tion (9a)–(9f). Their role is uncovered after substituting into
Eqs. (9d) and (9f) the explicit expressions for the Rabi ampli-
tudes 	21 and 	32, Eqs. (6a) and (6b). The principal effects of
the feedback are most pronounced in Eqs. (9d) and (9e):

ρ̇21 = −[
i
(
�21 + GR

1 Z21
) + 1

2γ21 − GI
1Z21

]
ρ21

+ i
(
	̃0∗

32ρ31 − 	̃0
21Z21

)
+ i[(G∗

3ρ
∗
21 + G∗

2ρ
∗
32)ρ31 − G3ρ32Z21], (16a)

ρ̇32 = −[
i
(
�32 + GR

2 Z32
) + 1

2 (γ32 + γ21) − GI
2Z32

]
ρ32

− i
(
	̃0∗

21ρ31 + 	̃0
32Z32

)
− i[(G∗

1ρ
∗
21 + G∗

3ρ
∗
32)ρ31 + G3ρ21Z32]. (16b)

Following from Eqs. (16a) and (16b), the self-action of the
SQD gives rise to many additional nonlinearities compared
to an isolated SQD (Gi = 0). Two of these should especially
be mentioned, namely, (i) renormalization of the SQD fre-
quencies, ω2 → ω2 + GR

1 Z21 and ω3 → ω3 + GR
2 Z32, and (ii)

renormalization of the relaxation rates of the off-diagonal
density matrix elements, γ21/2 → γ21/2 − GI

1Z21 and (γ21 +
γ32)/2 → (γ21 + γ32)/2 − GI

2Z32 [compare the expressions in
square brackets in Eqs. (9d) and (9e)], both depending on the
corresponding population differences. Thus, during a pulsed
excitation, which gives rise to time-dependent population
differences, both the effective detunings away from resonance,
�21 + GR

1 Z21 and �32 + GR
2 Z32, and the effective relaxation

rates of the transitions, (1/2)γ21 − GI
1Z21 and (1/2)(γ32 +

γ21) − GI
2Z32, will be swept during the pulse action, which

does not occur in the case of an isolated SQD (Gi = 0).

These two effects may, in principle, substantially modify the
plasmon-assisted TPRO.

In our case of the CdSe/ZnSe-Au hybrid, the magnitudes
of all feedback parameters h̄|Gi|, calculated for the minimal
center-to-center spacing d = 18 nm we used in our computa-
tions, turn out to be on the order of a few tenths of meV, i.e.,
a hundred times smaller than the biexciton binding energy
h̄�B = 20 meV. The spectral width of the longest pulse we
employed (t0 = 900/�B = 30 ps) is ≈h̄�B/1800 ≈ 0.1 meV,
i.e., comparable to |Gi|, while for smaller t0 it is even larger.
Thus, the effects of the SQD self-action do not play any role
in the range of parameters used to obtain the results presented
in Sec. III B. Nevertheless, the SQD self-action effect
might be important for other hybrids such as a ZnSe/ZnS
(core/shell)-Ag heterodimer for which h̄�B = 2.5 meV and
all |Gi| (taken at d = 16 nm) are on the order of �B [36]. This
situation requires additional study due to the complicated
interplay of the enhancement and self-action effects.

V. SUMMARY

We conducted a theoretical study of the two-photon
Rabi oscillations of a heterodimer comprising a semiconduc-
tor quantum dot and a metal nanosphere, considering the
SQD as a three-level ladderlike system with ground, one-
exciton, and biexciton states. The Rabi oscillations in an
isolated InGaAs/GaAs quantum dot were investigated earlier
in Ref. [20]. We took into account the spontaneous decay of
the excitonic states, which was not done in Ref. [20], and
found a trade-off between the adiabatic regime, supporting
coherent TPRO, and spontaneous processes. While in the
former case the TPRO can be realized, in the latter the sponta-
neous emission destroys the TPRO for the duration of incident
pulses comparable to or longer than the spontaneous emission
time. This limits the pulse width for which a coherent TPRO
can be observed.

The presence of a MNP near the SQD results in an en-
hancement of the external field magnitude depending on the
SQD-MNP center-to-center distance, which leads to increas-
ing the number of Rabi cycles per pulse compared to an
isolated SQD at the same magnitude of the external field.
This effect may be advantageous for quantum technological
applications that require the production of many entangled
photon pairs per second.

We performed our calculations for a model system
that may be realized in practice: a heterodimer com-
posed of a closely spaced CdSe/ZnSe quantum dot and a
gold nanosphere. Other candidates to observe the plasmon-
assisted TPRO are ZnSe/ZnS (core/shell)-Ag hybrids and
heterodimers composed of an InGaAs/GaAs quantum dot and
a triangular silver nanoparticle, absorbing over a wide spectral
range, from the visible to the infrared [49].
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Solomon, and G. Weihs, Phys. Rev. Lett. 110, 135505 (2013).

[24] P. Machnikowski, Phys. Rev. B 78, 195320 (2008).
[25] R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).

[26] R. D. Artuso and G. W. Bryant, Phys. Rev. B 82, 195419
(2010).

[27] A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314
(2011).

[28] J. B. Li, N. C. Kim, M. T. Cheng, L. Zhou, Z. H. Hao, and Q. Q
Wang, Opt. Express 20, 1856 (2012).

[29] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester,
J. Chem. Phys. 139, 014303 (2013).

[30] W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett.
97, 146804 (2006).

[31] S. Kosionis, A. Terzis, V. Yannopapas, and E. Paspalakis, J.
Phys. Chem. C 116, 23663 (2012).

[32] B. S. Nugroho, V. A. Malyshev, and J. Knoester, Phys. Rev. B
92, 165432 (2015).

[33] S. M. Sadeghi, Nanotechnology 21, 455401 (2010).
[34] S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
[35] M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-

Granado, J. Cox, and M. R. Singh, Phys. Rev. B 86, 155305
(2012).

[36] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester,
J. Opt. 19, 015004 (2017).

[37] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, New York, 1983).

[38] S. A. Maier, Plasmonics: Fundamentals and Applications
(Springer, New York, 2007).

[39] J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London) 483,
421 (2012).

[40] G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu,
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