
 

 

 University of Groningen

A dynamic epistemic framework for reasoning about conformant probabilistic plans
Li, Yanjun; Kooi, Barteld; Wang, Yanjing

Published in:
Artificial Intelligence

DOI:
10.1016/j.artint.2018.12.001

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Li, Y., Kooi, B., & Wang, Y. (2019). A dynamic epistemic framework for reasoning about conformant
probabilistic plans. Artificial Intelligence, 268, 54-84. https://doi.org/10.1016/j.artint.2018.12.001

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1016/j.artint.2018.12.001
https://research.rug.nl/en/publications/8b7ca1c4-ebe9-47b9-8ef8-2b990d26fd31
https://doi.org/10.1016/j.artint.2018.12.001


Artificial Intelligence 268 (2019) 54–84
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A dynamic epistemic framework for reasoning about 

conformant probabilistic plans

Yanjun Li a, Barteld Kooi b, Yanjing Wang c,∗
a College of Philosophy, Nankai University, 300350 Tianjin, China
b Faculty of Philosophy, University of Groningen, 9712 GL Groningen, the Netherlands
c Department of Philosophy, Peking University, 100871 Beijing, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 February 2017
Received in revised form 3 July 2018
Accepted 5 December 2018
Available online 7 December 2018

Keywords:
Conformant probabilistic planning
Dynamic epistemic logic

In this paper, we introduce a probabilistic dynamic epistemic logical framework that can 
be applied for reasoning and verifying conformant probabilistic plans in a single agent 
setting. In conformant probabilistic planning (CPP), we are looking for a linear plan such 
that the probability of achieving the goal after executing the plan is no less than a given 
threshold probability δ. Our logical framework can trace the change of the belief state of 
the agent during the execution of the plan and verify the conformant plans. Moreover, with 
this logic, we can enrich the CPP framework by formulating the goal as a formula in our 
language with action modalities and probabilistic beliefs. As for the main technical results, 
we provide a complete axiomatization of the logic and show the decidability of its validity 
problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background of automated planning

Automated planning is a branch of artificial intelligence concerned with devising a plan, which might be a strategy or an 
action sequence, to achieve the agent’s goals. Automated planning technology is widely applied in a variety of areas, ranging 
from controlling the operations of spacecraft to playing the game of bridge [1]. Classical planning which is the simplest 
form of automated planning deals with the problem of finding a linear action sequence in a deterministic transition system 
such that executing the plan in the initial state will achieve the goal (see e.g., [1]). There are two important simplifying 
assumptions for classical planning: determinacy of actions and full observability. Full observability indicates one has complete 
knowledge about the system and the state in which the system starts.

Conformant planning generalizes classical planning by relaxing these two restrictions, namely that it allows lack of 
knowledge of one’s state in the system (and no ability to observe where one is located) and it allows actions to be non-
deterministic. The former means that the set of initial states is no longer necessarily a singleton (and corresponds to the 
agent’s initial uncertainty) but also means one cannot attain certainty regarding one’s whereabouts based on observation 
during plan execution. A conformant plan is an action sequence to guarantee the agent’s arrival at one of the goal states 
no matter which initial state the plan starts from and no matter how the (non-deterministic) plan is executed [1]. Since 
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conformant planning brings out agent’s uncertainty, therefore, besides the traditional AI approaches, we can also take an 
epistemic-logical perspective on conformant planning.

Conformant probabilistic planning (CPP) is a significant generalization of conformant planning. The demands that confor-
mant planning puts on the solution may be too strong, in the sense that a solution has to be found in all cases. It may be 
the case that a solution in this sense is impossible while there may still be some plan that leads to a goal state with very 
high probability. In CPP, we are looking for a linear plan such that the probability of achieving the goal after executing the 
plan is no less than a given threshold probability. The model for CPP includes a probability distribution over initial states 
and the probability that a certain action will lead to a certain successor state.

Let us consider the following toy example of CPP.1 Take a robot whose gripper is possibly wet. The gripper needs to hold 
a block, but gripping a block while the gripper is slippery is more difficult than when it is dry. This can be modeled in a 
transition system with probabilities as below where the bubble denotes the initial uncertainty about whether the gripper is 
dry.

s1: GD
0.7

s3
0.3

s2 : GD,BH s4 : BH

b:0.05

a:1

b:0.95

b:0.5

b:0.5

a:0.8

a:0.2

There are two propositions: GD stands for gripper-dry and BH for block-held, and two actions: a stands for drying and b for 
picking up. Please note that, in the model graph above (as well in all the following model graphs), only positive propositions 
will be mentioned on states (e.g., BH, GD) and that if a proposition isn’t mentioned it could be assumed to be false. We 
model the initial belief state by a probability distribution B over the states of the system, which assigns the following 
probabilities: B(s1) = 0.7 and B(s3) = 0.3. The action a dries a dry gripper with probability 1, but make a wet gripper dry 
with probability 0.8. The action b picks up the block with probability 0.95 if the gripper is dry and with probability 0.5 if 
the gripper is wet. It is impossible to find a plan in this example that will guarantee that after executing the plan the robot 
will hold the block. However, for practical purposes it may be enough to find a plan to hold the block, which succeeds at 
least 90% of the time.

CPP is well studied in the AI literature (see, e.g., [2–6]). The probability of achieving a goal state t by executing a plan 
π = a1 · · ·an is calculated by the following way (cf. [4]):

μπ(t) =
∑

{s0···sn|∀1≤i≤n:si−1
ai→si ,sn=t}

B(s0) × Pr(s0,a1, s1) × · · · × Pr(sn−1,an, sn)

where Pr(si−1, ai, si) denotes the probability of reaching si after executing ai at si−1. For example, in the Slippery Gripper 
example, the probability of achieving s2 by executing ab is the following:

μab(s2)

= B(s1) × Pr(s1,a, s1) × Pr(s1,b, s2) + B(s3) × Pr(s3,a, s1) × Pr(s1,b, s2)

= 0.7 × 1 × 0.95 + 0.3 × 0.8 × 0.95

= 0.665 + 0.228 = 0.893

To achieve a higher probability of holding the block, the robot has to (try to) dry the gripper twice first.

1.2. Motivation

To capture the probabilistic belief change in CPP formally, we propose a single-agent dynamic epistemic framework 
for reasoning about conformant probabilistic plans over probabilistic transition systems. To layout a very general logical 
foundation, we chose to deviate from the dynamic epistemic logic (DEL) approach by considering the probabilistic transition 
systems as our models with both probabilistic labeled transitions and a probability distribution of the initial states. The graph 
for the previously mentioned Slippery Gripper is an illustration of such a model. This model also is a natural probabilistic 
extension of the models used by Wang and Li in [7] for a non-probabilistic dynamic epistemic framework over transition 
systems with initial uncertainty. However, the probabilistic case is much more complicated than the non-probabilistic one 

1 It is a variant of the Slippery Gripper example discussed in [2,3].
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handled in [7]. In order to handle the reasoning behind CPP, we not only need to track the probabilistic belief updates but 
also need to handle the probability of the executability of plans.

Moreover, the logical framework presented in this paper could make a contribution to CPP. First of all, by using a 
powerful logical language we can express more planning goals, such as epistemic goals, by formulas. The logical language 
can also help us to distinguish different conformant probabilistic plans for the same goal. Our proof system can help to 
capture the essential reasoning of CPP, where the axioms can reveal the underlying assumptions behind the probabilistic 
updates. Finally, the proof system also gives us a (syntactic) way to compute final probability after actions in terms of initial 
ones. We use the following toy example to illustrate our ideas:

Example 1. Consider the scenario where a patient is in a very critical condition in the ICU. The doctor has to decide quickly 
what to do and there is no second chance to change. Now the cause for the patient’s condition is still uncertain, it could 
be s1 or s2. If the actual cause is s1 then treatment b would simply save the life of the patient for sure (p). However, if 
the cause is s2 then b is not (successfully) executable, but the trial of b may waste the precious time. On the other hand, 
treatment a will always be executable but it has uncertain outcome depending on the actual cause: if s2 is the case then 
the success rate is 80%, while otherwise the success rate is only 40%. The situation is depicted by the following model N
where the bubble denotes the initial uncertainty with a half–half (subjective) probability distribution over s1 and s2:

s1
0.5

s2
0.5

s3 s4 : p s5

a:0.6
a:0.4

b:1
a:0.2a:0.8

Now, as the doctor, which action should you choose?

We can calculate the probability of a and b in successfully achieving the goal p:

μb(p) = 0.5 × 1 + 0 = 0.5 μa(p) = 0.5 × 0.8 + 0.5 × 0.4 = 0.6

As a rational doctor, we may choose a instead of b to save the patient’s life.
However, the situation can be more subtle. Let us lower the success rate of doing a given s1 a little bit and consider the 

scenario depicted by the following model M:

Example 2.

s1
0.5

s2
0.5

s3 s4 : p s5

a:0.8
a:0.2

b:1
a:0.2a:0.8

Now we have:

μb(p) = 0.5 × 1 + 0 = 0.5 = 0.5 × 0.8 + 0.5 × 0.2 = μa(p)

In CPP, we are indifferent between a and b. However, intuitively we still have some reason to prefer a over b: doing b
means if the cause is s2 then we have totally no chance to save the patient while using a we always have some chance to 
save the patient no matter what the cause is. These can be made explicit in our language by Bε 〈b〉p = 0.5 and Bε〈a〉p = 1
respectively (Bε can be viewed as a belief operator). On the other hand, there is also some reason for us to prefer b over 
a: the probability of p given that a is successfully executed, which is 0.5, is lower than the probability of p given that b
is successfully executed, which is 1. These could be explicitly expressed in our language by [a]Bε p = 0.5 and [b]Bε p = 1
respectively. Such conditional probability can be computed by considering the updated models w.r.t. the given actions. Recall 
that the core idea of dynamic epistemic logic is to treat actions as updates of models. Intuitively, after successfully executing 
a given action, the agent carries the bubble forward along the transitions labeled by this action and then computes the new 
probability distribution within the new bubble accordingly. In our framework executing a and b will give us the following 
models M|a and M|b (to be defined precisely in our framework):
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Therefore although μa(p) = μb(p), there are finner decompositions of the probability of success which may affect the 
decision. As we will see, our language can make all these explicit and rigor.

Furthermore, the preference to a over b may also be explained by having an epistemic goal: making sure that (eventually) 
the agent knows the probability of p is no less than 0.5. This can be expressed by a formula ϕ = Bε p ≥ 0.5 in our language. 
Now, if we recompute the probability in our framework w.r.t. this goal, we have μa(ϕ) = 1 but μb(ϕ) = 0.5. This is yet 
another reason to prefer a over b.

We will provide a complete axiomatization of this logic (Section 4). The axiomatization system reveals the implicit as-
sumptions about probabilistic belief updates in CPP. Axiom ITSP indicates that in CPP we assume that the agent knows that 
he believes what he believes and that he knows that he does not believe what he does not believe. Axiom CP indicates that 
we assume that the agent has perfect recall. The formula of perfect recall intuitively means that the agent never forgets: if 
the agent knows that a will make ϕ true then after executing a he does know ϕ . What is more, based on this axiomatiza-
tion system, we show that each formula can be equivalently transformed to a formula in which each probability modality 
Bπ will never occur in the scope of the action modalities [a] or other probabilities modalities Bπ ′ .2 From the perspective 
of planning, it means that checking an epistemic formula after a plan execution equals to checking a different epistemic 
formula at the initial model (see Proposition 34). For example, in Example 2, the formula [a]Bε p = 0.5 is equivalent to 
Ba p = 0.5Bε〈a〉
. For the formula [a]Bε p = 0.5, we need to check the agent’s belief state in the updated model where the 
agent’s belief state is updated after doing a, while, for the formula Ba p = 0.5Bε〈a〉
, we only need to check it in the initial 
belief state. This will become clear after we introduce the details of our framework.

2. Related work

2.1. DEL approach

Dynamic Epistemic Logic (DEL) was invented to model the change of knowledge and belief due to informational events 
(cf. e.g., [8]). Its core idea is to treat actions (or events) as updates on the epistemic models where uncertainty is encoded 
by equivalence classes of states of the system. For example, when proposition p is publicly announced by a trustworthy 
source, we delete the states that do not satisfy p in our current equivalence class. Recent years have witnessed a growing 
interest in using DEL to handle planning with uncertainty (cf. e.g., [9–16]). In conformant planning, to make sure a goal 
is achieved eventually by doing a plan, it is crucial to track the transitions of belief states during the execution of the 
plan. This is the place where DEL can play a role because DEL could track the belief change step by step. For example, 
in single-agent DEL, after the action of announcing p, the initial uncertain set will be updated to be a subset where p is 
true in each state. Compared to the traditional AI approach, DEL can make the reasoning behind planning more explicit. 
Moreover, the rich language of DEL can express epistemic goals naturally. This could make a real contribution to CPP. As it 
is shown in Example 2, the probability of a and b in successfully achieving the goal p is the same, but we can still make 
further distinctions in favor of a or b as we mentioned.

Since the traditional CPP is single agent, here we only focus on the single-agent case of DEL approach. The epistemic 
model of single-agent DEL is an uncertainty set, therefore, to handle the reasoning behind probabilistic planning, we do need 
to extend DEL with probabilities, such as the work on Probabilistic DEL (PDEL) (cf. [17–19]). However, there has not been 
much work connecting PDEL with automated planning, in particular CPP. We would like to make the first step in this paper. 
Our logical framework is inspired by the ideas of PDEL, but it is not the standard formalism of PDEL. The most relevant 
DEL-style work to ours is the PDEL framework proposed and studied in [17]. There are two significant differences in models 
and the logical language respectively. First of all, our models are probabilistic transition systems instead of probabilistic 
epistemic models for PDEL which do not have actions explicitly in the model. In order to express the CPP requirement in 
terms of μπ (cf. the introduction), we do need the information of probabilities of actions (transitions) in the model. μπ is 

2 Bπ roughly captures the probabilistic belief of the agent after action sequence π has occurred.
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not only a probability purely about possible current states but also a probability about states weighed by the probability of 
π being successfully executed (and in that sense it is closer to a prior probability), namely:

μπ(t) = Pr(π is successfully executed) · Pr(t is reached given π is executed).

Correspondingly, in the language we have a modality Bπϕ ≥ q which generalizes the one in [17] by allowing a sequence of 
actions π (note that here π could be ε) as an index for each modality to express the probability of reaching a certain goal 
by π . In PDEL we can only express the probability of a certain proposition being true in the current state, namely, Bεϕ ≥ q.

2.2. Reduction and regression in planning

DEL approaches also often come with a proof system using the so-called reduction axioms which syntactically relate the 
belief after an action to the belief before an action, and can recursively eliminate the action modality. For example, in [17], 
the formula [!p]Bϕ = 0.5 (which means that the agent’s belief degree of ϕ is 0.5 given the action that p being true is 
successfully announced) could be equivalently reduced to B(p ∧ (p → ϕ)) = 0.5Bp. It is often shown that any formula can 
be equivalently reduced to a formula without the action modality. Therefore checking an epistemic goal after a sequence 
of actions can be reduced to checking some purely epistemic formula at the initial model. The reduction axioms often 
induce a way of eliminating action modalities in the language. From the perspective of planning, we may use this technique 
to turn the problem of checking a formula after a plan execution into the problem of checking a different formula at 
the initial model. There is a clearly natural connection to the regression method in planning using Situation Calculus (see, 
e.g., [20,21]), which has been addressed in the DEL literature as well (see, e.g., [22]). However, in our work, unlike the 
usual DEL-style logics, we cannot eliminate the action modality completely. Nevertheless, we still have a way to reduce an 
arbitrary formula to a simpler formula without non-trivial nested modalities (see Proposition 34). As mentioned before, the 
formula [a]Bε p = 0.5 in Example 2 can be transformed to Ba p = 0.5Bε〈a〉
. We can show this syntactically (in the proof 
system), which also leaves the possibility to design a regression method in CPP.

2.3. Compilation to classical planning

Although we have said that there are limitations of classical planning, there is an important line of work trying to trans-
form conformant planning problems and even conformant probabilistic planning problems into classical planning problems 
w.r.t. different subsets of the original initial uncertainty set with high enough probability (see, e.g., [23,6]). The fully faithful 
transformations usually requires high computational costs, but we can find some sound but incomplete transformations 
which can work well in practice. This also raises a natural question to us: whether we can also do without the probability 
and use the previous non-probabilistic logical framework in [24] for CPP. However, a closer look shows that the transforma-
tion of [6] relies on the assumption that the actions are deterministic, but here we do not want to make this assumption. 
Note that although [23] shows that how to do without non-determinacy in the non-probability setting, it is still unclear to 
us how can we eliminate nondeterminacy in the probabilistic setting in general. Nevertheless, we can actually show, both 
semantically and in terms of formal proof in our system (see Proposition 16), that if the actions are deterministic, we can 
indeed do the corresponding reduction described in [6].

2.4. On logics over MDP and POMDP

Our model is quite similar to Partially Observable Markov Decision Processes (POMDP), see e.g., [25,26]. However, our 
framework implicitly assumes that the agent does not have any observational power when executing the plan, as in non-
probabilistic conformant planning. Planning with POMDP is closer to contingent planning where some observational power 
is assumed. The goal of planning using POMDP is usually to optimize the reward (or cost) in the finite or infinite horizon 
by some policy which may run forever. On the other hand, the notion of a plan for us is a finite sequence of actions and 
the goal is a proposition. There are also recent papers discussing the POMDP-based policy synthesis w.r.t. goals expressed 
by temporal logics (see, e.g., [27]), similar to the discussions in the context of MDP with temporal logic goals [28–30]. Note 
that our language focuses on the epistemic aspect instead of the temporal aspect, and it allows us to express probabilistic 
epistemic goals.

Our contributions can be summarized as below:

• We propose a dynamic epistemic framework for reasoning about conformant probabilistic plans over probabilistic tran-
sition systems such that:
– it captures the step-by-step probabilistic belief change formally.
– we can verify standard conformant probabilistic plans formally, which is beyond the existing PDEL framework.
– we can express the planning goal by formulas in a very rich language and formalize various subtle probabilistic 

criteria for conformant plans, which cannot be done in the standard CPP approaches without a powerful logical 
language.

• We give a sound and complete proof system of the logic such that
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– it reveals implicit assumptions about probabilistic belief updates in CPP.
– checking an epistemic formula in the updated belief state w.r.t. a plan is equivalent to checking a formula in the 

initial belief state.
• We show that the logic is decidable, which can facilitate an automated theorem prover for CPP in the future.

Note that, in this paper, we cannot yet automatically generate plans (the plan existence problem) within our logical 
framework. We do need a richer language as in [24] to turn planning into a model checking problem. We leave this and the 
comparison with existing CPP tools for future work.

The rest of this paper is organized as follows. Section 3 introduces the language and semantics, and also defines confor-
mant probabilistic planning in terms of our logic framework. Section 4 presents the axiomatics of this logic and proves its 
soundness. Section 5 proves the completeness of the axiomatics. Section 6 shows that the logic is decidable. The last section 
concludes with some future directions.

3. Language and semantics

In this section we introduce the language of our logic. We build our language based on action modalities and linear 
inequalities of weighed probabilistic terms inspired by [31,17]. A probabilistic term expresses the probability that a sequence 
of actions reaches a certain set of states. To keep things simple in this paper we focus on the single-agent case. This language 
differs from the usual languages of PDEL, and one of the most important differences is that probabilistic expressions here 
are indexed by a sequence of actions, while in single-agent PDEL probabilistic expressions have no index or can be equally 
seen as having only index ε .

Definition 3 (Language). Let a countable set of propositional variables P and a finite set of actions A be given. The lan-
guage L is defined as the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [a]ϕ | q1 Bπ1ϕ1 + · · · + qn Bπnϕn ≥ q

where p ∈ P, πi ∈ A∗ , i.e. a finite string (possible empty) of actions and q, qi ∈Q for each 1 ≤ i ≤ n.
Besides the usual abbreviations, we have the following.∑n

i=1 qi Bπi ϕi ≥ q := q1 Bπ1ϕ1 + · · · + qn Bπnϕn ≥ q
q1 Bπ1ϕ1 ≥ q2 Bπ2ϕ2 := q1 Bπ1ϕ1 + (−q2)Bπ2ϕ2 ≥ 0∑n

i=1 qi Bπi ϕi ≤ q := ∑n
i=1(−qi)Bπi ϕi ≥ (−q)∑n

i=1 qi Bπi ϕi < q := ¬(
∑n

i=1 qi Bπi ϕi ≥ q)∑n
i=1 qi Bπi ϕi > q := ¬(

∑n
i=1 qi Bπi ϕi ≤ q)∑n

i=1 qi Bπi ϕi = q := (
∑n

i=1 qi Bπi ϕi ≥ q) ∧ (
∑n

i=1 qi Bπi ϕi ≤ q)

Bπϕ = Bπ ′ϕ′ := 1Bπϕ + (−1)Bπ ′ϕ′ = 0
Kϕ := Bεϕ = 1
K̂ϕ := ¬K¬ϕ
〈a〉ϕ := ¬[a]¬ϕ
(|a|)ϕ := [a]ϕ ∧ 〈a〉ϕ
(|a1 · · ·an|)ϕ := (|a1|) · · · (|an|)ϕ
[a1 · · ·an]ϕ := [a1] · · · [an]ϕ

Let us explain how to read the formulas of the language. Propositional variables such as p express basic properties of a 
world, such as “the coin landed heads”. Then we have standard negation and conjunction. We read formulas of the form 
[a]ϕ as “after all executions of action a it is the case that ϕ”. In order to read linear inequality formulas of the form 
q1 Bπ1ϕ1 + · · · + qn Bπnϕn ≥ q, we first explain how to read Bπϕ . The essential idea is that it represents the probability of 
getting ϕ using π . More precisely, it consists of two parts: the probability of ϕ given the successful execution of π , and the 
probability of the successful execution of π . Roughly speaking, Bπϕ is Pr(ϕ | ex(π)) · Pr(ex(π)) where ex(π) means that π
can be successfully executed. As it will become more clear after introducing the semantics, Pr(ϕ | ex(π)) will be calculated 
in the updated model given the execution of π . In other words, Bπϕ is the non-normalized probability of ϕ in the model 
you get by executing π . If π is not executable, Bπϕ should be zero, and if it is executable it is the probability of ϕ in the 
updated model multiplied by the probability of the executability of π .

The language is interpreted on models which are in a sense (discrete) probabilistic transition systems with initial uncer-
tainty.3 There are two kinds of probabilistic elements in these models. There is a prior probability distribution representing 
the initial uncertainty of the agent, and there is a probability function which indicates for each state and each action that 

3 You can also view them as simplified Partially Observable Markov Decision Processes (POMDP) without rewards and observations.
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can be executed at that state which probability one has of reaching some other state. Note that, as in the models of non-
probabilistic conformant planning, some actions may be not executable on some states.4 The initial uncertainty is a subset 
of the set of all states.

Definition 4 (Model). A model M is a tuple 〈SM, RM, PrM, UM, BM, VM〉 such that

• SM 
= ∅, a finite set of states5;
• RM ⊆ SM × A× SM , a non-deterministic execution relation for each action;
• Pr :RM →Q+ , a probability function expressing the probability that an action will lead to another state, such that for 

each a ∈ A it holds that 
∑

t∈RM
a (s) PrM(s,a, t) = 1;

• UM , a non-empty subset of SM , consisting of those states that the agent considers possible;
• BM : UM→Q+ , a probability function expressing the subjective probability of the agent such that 

∑
s′∈UM BM(s′) =1;

• VM : P→P(SM), a valuation function indicating for each propositional variable in which set of worlds it holds.

For any s ∈ UM , (M, s) is a pointed model.

Given M, (s, a, t) ∈RM is also denoted as s a→ t , (s, t) ∈RM
a or t ∈RM

a (s).
Before we provide the semantics, we first provide the notions needed to define how models are updated by executing 

a sequence of actions, since we need those models to interpret actions and probabilistic statements. First we define the 
semantic structure that is associated with a sequence of actions, called the set of execution paths.

Definition 5. Given M, π = a1 · · ·an , we call s0 · · · sn an execution path of π on M if s0 ∈ UM and si−1
ai→ si for each 

1 ≤ i ≤ n. The set of execution paths of π on M is denoted as E PM(π).

After executing a sequence π the probability the agent assigns to the states of the model changes. Let UM|a be the set 
{t ∈ SM | s a→ t for some s ∈ UM}, and UM|π = UM|a1 · · · |an where π = a1 · · ·an . We use the following auxiliary notion to 
update this probability.

Definition 6. Given M and π = a1 · · ·an ∈ A∗ , the function μM
π : UM|π → Q is defined as follows: for each t ∈ UM|π ,

μM
π (t) =

∑
{s0···sn∈E PM(π)|sn=t}

(BM(s0) × �n
i=1PrM(si−1,ai, si))

Given T ⊆ UM|π and π , let μM
π (T ) = ∑

t∈T μM
π (t), especially, μM

π (∅) = 0.

Remark 1. Similar to the forward algorithm for computing the probability of a particular observable sequence in Hidden 
Markov Models (cf. e.g., [32]), we can also compute μM

π (t) recursively by computing μM
π ′ (t′) for all the initial segments π ′

of π and the relevant states t′ .

The updated probability of the agent applies to a possibly updated set of states that the agent considers possible. Now 
we define the updated probability of the agent.

Definition 7. Given M and π = a1 · · ·anA∗ such that UM|π 
= ∅, function BM|π : UM|π → Q+ is defined as follows: for 
each t ∈ UM|π ,

BM|π (t) = μM
π (t)

μM
π (UM|π )

Note that in this definition both the numerator and the denominator are non-zero given the way we set things up. Note 
that by assuming that UM|π is non-empty it follows that E PM(π) is non-empty. Since we assumed that the probability 
functions in the model only assign positive probabilities and t is in UM|π both numerator and denominator are non-zero. 
More formally:

Proposition 8. Given M, π = a1 · · ·an and U |π 
= ∅, we have that BM|π is a probability function from UM|π to Q+ and ∑
t∈UM|π BM|π (t) = 1.

4 An alternative approach is to introduce dump states which are the results of executing non-executable actions.
5 The restriction to a finite set of states is to make the presentation simper. We could easily remove this restriction and use σ -algebras and fully general 

probability theory, but this will only distract from the issues we are exploring in this paper.
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Given all these definitions, it is now easy to define the updated model.

Definition 9. Given model M = 〈SM, RM, PrM, UM, BM, VM〉 and UM|π 
= ∅, model M|π is defined as 〈SM, RM,

PrM, UM|π , BM|π , VM〉.

We use this definition of an updated model in the semantics of actions and the linear inequalities of probabilities. The 
rest of the semantics is far more straightforward.

Definition 10 (Semantics). Given pointed model M, s, the truth relation is defined as follows:

M, s � p ⇐⇒ s ∈ VM(p)

M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ

M, s � [a]ϕ ⇐⇒ for all s′ : s
a→ s′ implies M|a, s′ � ϕ

M, s �
∑n

i=1 qi Bπi ϕi ≥ q ⇐⇒ ∑n
i=1 qiμ

M
πi

([[ϕi]]M|πi
) ≥ q

where [ [ϕ] ]M|πi = {s ∈ UM|πi |M|πi , s � ϕ}.

Remark 2. Note that if M, s is a pointed model, i.e., s ∈ UM , and s a→ s′ then M|a, s′ is also a pointed model, i.e., s′ ∈
UM|a = UM|a .

Note that we use μM
π to define the updated probabilistic distribution of states in the updated model. μM

π itself is not 
normalized.

Proposition 11. μM
π is a non-normalized probability function, and it has the following properties:

(1) μM
π ([ [ϕ] ]M|π ) ≥ 0

(2) μM
π ([ [ϕ] ]M|π ) + μM

π ([ [¬ϕ] ]M|π ) = μM
π ([ [
] ]M|π )

(3) μM
ε ([ [
] ]M) = 1

(4) μM
πa ([ [
] ]M|πa

) = μM
π ([ [〈a〉
] ]M|π )

Proof. Since [ [ϕ] ]M|π ⊆ UM|π , (1) is obvious by Definition 6. Since [ [¬ϕ] ]M|π = UM|π \ [ [ϕ] ]M|π and [ [
] ]M|π = UM|π , 
(2) is obvious by Definition 6. Since μM

ε = BM , (3) is obvious. For (4), let π = a1 · · ·an and an+1 = a then we have the 
following:

μM
a1···an+1

([[
]]M|a1 ···an+1
)

=μM
a1···an+1

(UM|a1···an+1)

=
∑

s0···sn+1∈E PM(a1···an+1)

(BM(s0) × �n+1
i=1 PrM(si−1,ai, si))

=
∑

{s0···sn∈E PM(a1···an)|∃t:t∈RM
a (sn)}

(BM(s0) × �n
i=1PrM(si−1,ai, si) × (

∑
t∈RM

a (sn)

PrM(sn,a, t)))

=
∑

{s0···sn∈E PM(π)|∃t:t∈RM
a (sn)}

(BM(s0) × �n
i=1PrM(si−1,ai, si))

=
∑

{s0···sn∈E PM(a1···an)|sn∈[[〈a〉
]]M|a1 ···an }
(BM(s0) × �n

i=1PrM(si−1,ai, si))

=μM
a1···an

([[〈a〉
]]M|a1 ···an
) �

Proposition 12. Given π = a1 · · ·an, we have that μM
π ([ [
] ]M|π ) = 1 if and only if M, s � K ( |π | )
.

Proof. Let π(i) = a1 · · ·ai for each 1 ≤ i ≤ n and π(0) = ε then it is easy to show that M, s � K ( |π | )
 if and only if 
M|π(i) , v � 〈ai+1〉
 for each 0 ≤ i < n and each v ∈ UM|π(i) .
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From left to right: It follows by Proposition 11 that for each 0 ≤ i < n, we have

μM
π(i+1)

([[
]]M|π(i+1)
) = μM

π(i)
([[〈ai+1〉
]]M|π(i)

) ≤ μM
π(i)

([[
]]M|π(i)
).

Since μM
π ([ [
] ]M|π ) = 1 and μM

ε ([ [
] ]M) = 1, it follows that μM
π(i)

([ [〈ai+1〉
] ]M|π(i)
) = μM

π(i)
([ [
] ]M|π(i)

) for each 0 ≤ i < n. 
Assume that M, s � K ( |π | )
 then it follows that there are 0 ≤ j < n and v ∈ UM|π( j) such that M, v � 〈a j+1〉
. Since v ∈
UM|π( j) , it follows by Definition 6 that μM

π( j)
> 0. Thus, we have μM

π( j)
([ [〈a j+1〉
] ]M|π( j)

) < μM
π( j)

([ [
] ]M|π( j)
). Contradiction. 

Therefore, we have M, s � K ( |π | )
.
From right to left: We will show that μM

π(i)
([ [
] ]M|π(i)

) = 1 for each 0 ≤ i ≤ n by induction on i. It is obvious if i = 0. If 
i = j + 1 where 0 ≤ j < n, μM

π( j+1)
= μM

π( j)a j+1
. It follows by Proposition 11, we have the following:

μM
π( j)a j+1

([[
]]M|π( j)a j+1
) = μM

π( j)
([[〈a j+1〉
]]M|π( j)

)

μM
π( j)

([[〈a j+1〉
]]M|π( j)
) + μM

π( j)
([[¬〈a j+1〉
]]M|π( j)

) = μM
π( j)

([[
]]M|π( j)
)

It follows by IH that μM
π( j)

([ [
] ]M|π( j)
) = 1. Therefore, we only need to show that μM

π( j)
([ [¬〈a j+1〉
] ]M|π( j)

) = 0. Since 

M, s � K ( |π | )
, namely, M|π(i) , v � 〈ai+1〉
 for each 0 ≤ i < n and each v ∈ UM|π(i) , we have [ [¬〈a j+1〉
] ]M|π( j) = ∅. 
Thus, μM

π( j)
([ [¬〈a j+1〉
] ]M|π( j)

) = 0. �
Recall that [a]ϕ means that ϕ holds after executing a, and μM

πi
([ [ϕi] ]M|πi

) is the probability of reaching ϕi by execut-

ing πi .6 We will show how the semantics works by working through an example.

Example 13. Again, consider the scenario where a patient is in a very critical condition but the cause is uncertain (s1 or s2). 
The doctor has to decide in one-step what to do. The left-hand-side model below depicts the effects of taking the pills a
or b. According to the instructions of the medicine, b can only be taken after taking a. The effect of a on s1 is uncertain, but 
if it ends up at s5 then taking the pill b will save the patient (p). On the other hand, it might also cause some allergy (s4) 
and then taking b is no longer an option. If the actual cause is s2 then a will work but you might not see it immediately 
and then taking b might cancel the effect of a (s6) or have no side-effect at all (s8).

M s1 : 0.5 a:0.5

a:0.5

s4 s7 p

s2 : 0.5

a:1
s5

b:1

s8 p

s3 p

b:0.9

b:0.1 s6

M|a s1
a:0.5

a:0.5

s4 : 0.25 s7 p

s2
a:1 s5 : 0.25

b:1

s8 p

s3 : 0.5 p

b:0.9

b:0.1
s6

M|ab
s1

a:0.5

a:0.5

s4 s7 : 5/15 p

s2
a:1 s5

b:1

s8 : 9/15 p

s3 p

b:0.9

b:0.1
s6 : 1/15

We can verify the following:

1. M, s1 � Bε〈a〉
 = 1
2. M, s1 � [a]Bε p = 0.5
3. M, s1 � Ba p = 0.5

4. M, s1 � Bε( |a| )( |b| )
 = 0.5
5. M, s1 � [ab]Bε p > 0.6
6. M, s1 � Bab p = 0.7

6 Note that q1 Bπ1 ϕ1 + · · · + qn Bπn ϕn ≥ q formulas cannot distinguish states in the same uncertainty set but [a]ϕ formulas can, thus [a] cannot be 
eliminated.
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1. Bε〈a〉
 = 1 says that the agent knows that a is executable, i.e., action a is executable in the set U = {s1, s2}, indicated 
by the bubble.

2. [a]Bε p = 0.5 says that after executing action a, the agent assigns probability 0.5 to p, i.e., the probability of {s3} in M|a
is 0.5.

3. Ba p = 0.5 says that the agent assigns probability 0.5 to ending up in a p-state by successfully executing a, i.e., the 
probability of successfully executing a, which is 1, times the probability of p after doing a, which is 0.5.

4. Bε( |a| )( |b| )
 = 0.5 expresses that initially the sequence of actions ab is applicable with probability 0.5, because ( |a| )( |b| )

is only true at s2.

5. [ab]Bε p > 0.6 says that after each successful execution of the sequence ab the probability of p is more than 0.6, because 
p is true in both s7 and s8 and the probability of {s7, s8} in M|ab is 14/15 > 0.6.

6. Bab p = 0.7 expresses that the probability of ending up in a p-state by successfully executing ab is 0.7, i.e., 
μM

ab ({s7, s8}) = 0.5 ∗ 0.5 ∗ 1 + 0.5 ∗ 1 ∗ 0.9 = 0.7. In contrast to [ab]Bε p > 0.6, we now also take into account the 
executability of ab.

We will use this logic as a tool to develop a framework for probabilistic conformant planning, which we can now define 
in a precise way.

Definition 14 (Conformant probabilistic planning). Given a model M, s, a goal formula ϕ ∈ L , and a threshold δ, probabilistic 
conformant planning for ϕ over M, s w.r.t. δ is to find a linear plan π ∈ A∗ such that M, s � Bπϕ ≥ δ, where π is called a 
solution to the probabilistic planning problem.

According to the above definition, to verify that π is a solution is to model check Bπϕ ≥ δ on the pointed model. In the 
above example, according to item 6, if δ ≤ 0.7 then ab is a solution to the probabilistic planning problem for p over M, s1
w.r.t. δ.

Let us come back to the examples in the introduction to demonstrate the use of our logical language. In the Slippery 
Gripper example, we can verify that Bab(BH) < 0.9 holds thus ab is not a good plan if δ = 0.9, but Baab(BH) > 0.9 holds 
thus aab is a good plan. As for Example 1, Bb(p) < 0.6 ∧ Ba(p) = 0.6 thus a looks like a better plan. On the other hand, in 
Example 2, Bb(p) = Ba(p) holds. However, we can still differentiate the two by verifying the following:

• Bε〈a〉p = 1 but Bε〈b〉p = 0.5, i.e., the agent knows that there is always a chance to save the patient by doing a, 
compared to doing b. It may give preference to a over b.

• On the other hand, [a](Bε p = 0.5) but [b](Bε p = 1), i.e., given b is successfully executed the agent know for sure the 
patient is saved while the agent is not so sure given a is successfully executed. It may give preference to b over a.

• Further more, if we care more about the epistemic goal: I believe p more than ¬p, then Ba(Bε(p) > 0.5) = 1 but 
Bb(Bε(p) > 0.5) = 0.5, which may give preference to a over b.

To justify our semantics, we first connect it with non-probabilistic conformant planning.

Proposition 15. Given M, s and ϕ , if δ = 1 then the probabilistic conformant planning problem for a non-probabilistic ϕ over M, s
w.r.t. δ is a standard conformant planning problem for ϕ over M, s where the probabilities over the states and transitions do not 
matter, i.e. M, s � Bπϕ = 1 ⇐⇒ M, s � K ( |π | )ϕ .

Proof. We only need to show that μM
π ([ [ϕ] ]M|π ) = 1 if and only if M, s � K ( |π | )ϕ .

From left to right: Since [ [ϕ] ]M|π ⊆ [ [
] ]M|π , it follows that μM
π ([ [
] ]M|π ) ≥ 1. It follows by Proposition 11 that 

μM
π ([ [
] ]M|π ) ≤ μM

ε ([ [
] ]M) = 1. Therefore, μM
π ([ [
] ]M|π ) = 1. It follows by Proposition 12 that M, s � K ( |π | )
. Thus, 

we only need to show that [ [¬ϕ] ]M|π = ∅. Since μM
π ([ [ϕ] ]M|π ) = μM

π ([ [
] ]M|π ) = 1, it follows by Proposition 11 that 
μM

π ([ [¬ϕ] ]M|π ) = 0. Therefore, [ [¬ϕ] ]M|π = ∅.
From right to left: Since M, s � K ( |π | )ϕ , we have that M, s � K ( |π | )
 and [ [¬ϕ] ]M|π = ∅. It follows by Proposi-

tion 12 that μM
π ([ [
] ]M|π ) = 1. Since [ [¬ϕ] ]M|π = ∅, we have μM

π ([ [¬ϕ] ]M|π ) = 0. It follows by Proposition 11 that 
μM

π ([ [ϕ] ]M|π ) = 1. �
Another degenerated case of conformant probabilistic planning is discussed in [6] under the assumption that the actions 

are deterministic. It is shown in [6] that the probabilistic planning problem can then be reduced to a non-probabilistic one. 
The reduction relies on the fact that, over deterministic models, the probability of reaching a ϕ-world by a sequence π can 
be reduced to the probability of the truth of 〈π〉ϕ at the initial state, which is proved formally in our framework below.

Proposition 16. Given π = a1 · · ·an, μM
π ([ [ϕ] ]M|π ) = μM

ε ([ [〈π〉ϕ] ]M) if all actions ai (1 ≤ i ≤ n) are deterministic.

Proof. If U |π = ∅, this follows that [ [ϕ] ]M|π = ∅ and [ [〈π〉ϕ] ]M = ∅. Thus, it is obvious that μM
π ([ [ϕ] ]M|π ) =

μM
ε ([ [〈π〉ϕ] ]M).
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Table 1
System SCPP.

AXIOMS
All instances of propositional tautologies
All instances of linear inequality axioms

DIST(a) [a](ϕ → ψ) → ([a]ϕ → [a]ψ)

T Kϕ → ϕ

Nonneg(π) Bπϕ ≥ 0
PRTR(ε) K

PRF(πa) Bπaϕ ≤ Bπ 〈a〉ϕ
PRFEQ(πa) Bπ (〈a〉ϕ ∧ 〈a〉¬ϕ) = 0 ↔ Bπaϕ = Bπ 〈a〉ϕ
Add(π) Bπ (ϕ ∧ ψ) + Bπ (ϕ ∧ ¬ψ) = Bπϕ

ITSP (
∑n

i=1 qi Bππ ′
i
ϕi �� qBπ
) → Bπ (

∑n
i=1 qi Bπ ′

i
ϕi �� q) = Bπ 


CP 〈a〉
 → ([a](∑n
i=1 qi Bπi ϕi �� q) ↔ ∑n

i=1 qi Baπi ϕi �� qBa
)

DET 〈a〉ϕ → [a]ϕ where ϕ is a probability formula

RULES
MP From ϕ → ψ and ϕ, infer ψ

GEN From ϕ, infer [a]ϕ
Equivalence From ϕ ↔ ψ , infer Bπϕ = Bπ ψ

If U |π 
= ∅, we have that

μM
π ([[ϕ]]M|π ) =

∑
{s0···sn∈E PM(π)|sn∈[[ϕ]]M|π }

B(s0) × �n
i=1Pr(si−1,ai, si).

Since each ai (1 ≤ i ≤ n) is deterministic, this follows that Pr(si−1, ai, si) = 1 for all 1 ≤ i ≤ n. Thus, we have

μM
π ([[ϕ]]M|π ) =

∑
{s0···sn∈E PM(π)|sn∈[[ϕ]]M|π }

B(s0).

We know that M, s0 � 〈π〉ϕ if and only if there is s0 · · · sn ∈ E PM(π) such that M|π , sn � ϕ . Therefore, we have that∑
{s0···sn∈E PM(π)|sn∈[[ϕ]]M|π }

B(s0) =
∑

s0∈[[〈π 〉ϕ]]M
B(s0).

Thus, we have μM
π ([ [ϕ] ]M|π ) = μM

ε ([ [〈π〉ϕ] ]M). �
4. Axiomatization

In this section we provide a Hilbert-style proof system for the logic presented above. A proof consists of a sequence of 
formulas such that each formula is either an instance of an axiom or it can be obtained by applying one of the rules to 
formulas occurring earlier in the sequence.

Definition 17. Let �� be one of ≤, =, ≥, <, >, and �� be the negation of ��. System SCPP is defined in Table 1, where the 
linear inequality axioms can be found in Definition 57 of Appendix J.

Let us explain how the above axioms are to be read. We only focus on those involving probability. Axiom T expresses that 
truths are assigned positive probability. This is because the empty sequence is always executable and we defined pointed 
models such that the state is always in UM , so it will always receive positive probability.

Axiom Nonneg(π) expresses that any formula receives a non-negative probability (since negative probabilities don’t 
make sense).

Axiom PRTR(ε) expresses that the set of states that the agent considers possible is assigned probability 1.
Axiom PRF(πa) expresses that the probability of those πa-execution paths leading to ϕ-states, is less than or equal to 

the probability of those π -execution paths leading to states where a can lead to a ϕ-state. This is because executing π may 
lead to a state where executing a may lead to a ϕ-state, but executing a could also lead to a non-ϕ-state.

Axiom PRFEQ(πa) expresses the condition under which the above probabilities are equal. This is the case if either all 
a-paths in π -reachable states lead to ϕ-states or if all a-paths in π -reachable states lead to non-ϕ-states, or in other words 
whenever the probability that executing a can lead to a ϕ-state and can lead to a non-ϕ-state is zero.

Axiom Add(π) expresses that probabilities are additive.
Axiom ITSP can be viewed as the combination of the introspection axioms 4 and 5 in epistemic logic. Note that two 

simple forms of ITSP are:
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Bεϕ ≥ q → Bε(Bεϕ ≥ q) = 1 you know that you believe what you believe
¬(Bεϕ ≥ q) → Bε(Bεϕ < q) = 1 you know that you don’t believe what you don’t believe

Axiom CP is essentially the definition of the update using normalization, given that a is executable. A simple form of CP
is the following.

〈a〉
 → ([a](Bεϕ �� q) ↔ Baϕ �� qBa
)

Note that DET is not valid for arbitrary ψ . It is crucial that a is not deterministic for basic facts.
As a simple but non-trivial example of derivation in our proof system, we can show that if the models are deterministic 

then the probability of reaching ϕ using π is the same as the probability of 〈π〉ϕ initially, which was proved semantically 
by Proposition 16.

Proposition 18. In the system SCPP+ which extends SCPP with the unrestricted deterministic axiom 〈a〉ϕ → [a]ϕ , we have 
�SCPP

+ Bπϕ = Bε〈π〉ϕ .

Proof. Since � 〈a〉ϕ → [a]ϕ for all actions a and all formulas ϕ , this follows that � 〈a〉ϕ ∧〈a〉¬ϕ ↔ ⊥. Since � Bπ⊥ = 0, this 
follows that � Bπ (〈a〉ϕ ∧ 〈a〉¬ϕ) = 0. Then it follows by Axiom PRFEQ(πa), and Rule Equivalence that � Bπaϕ = Bπ 〈a〉ϕ . 
By induction on π , we can prove that � Bπϕ = Bε〈π〉ϕ . �

For the rest of this section, we will prove that the axiomatization is sound. Given that the logic is built on well-
understood modal logic, we will not show that the usual modal axioms and rules are sound. Also, the part of the 
axiomatization concerned with linear inequalities is well-understood and we do not show the soundness of the part ei-
ther. Instead, we will focus on the axioms and rules that deal with the interplay between action and probability.

We will leave the soundness proofs of Nonneg(π) and PRTR(ε) to the reader. They are rather straightforward. In order 
to prove the soundness of PRF(πa), we first prove two auxiliary propositions. The first is about the relation between 
probabilities in a model after an action and probabilities preceding the action.

Proposition 19. Given model M and UM|π 
= ∅, we have μM|π
π ′ (t) = μM

ππ ′(t)/ μM
π (UM|π ) for each t ∈ SM .

Proof.

μ
M|π
π ′ (t)

=
∑

{s0···sn∈E PM|π (π ′)|sn=t}
(BM|π (s0) × �n

i=1PrM|π (si−1,ai, si))

= 1/μM
π (UM|π )

∑
{s0···sn∈E PM|π (π ′)|sn=t}

(μM
π (s0) × �n

i=1PrM|π (si−1,ai, si))

= 1/μM
π (UM|π )

∑
{s0···sn∈E PM|π (π ′)|sn=t}

( ∑
{s′0···s′m∈E PM(π)|s′m=s0}

BM(s0) × �n
i=1PrM(s′

i−1,a′
i, s′

i) × �n
i=1PrM|π (si−1,ai, si)

)
= 1/μM

π (UM|π )
∑

{u0···um+n∈E PM(ππ ′)|um+n=t}
(μM

π (u0) × �m+n
i=1 PrM(si−1,ai, si))

= μM
ππ ′(t)/μM

π (UM|π ) �
Using this proposition we can prove the second auxiliary proposition that expresses that updating a model with a 

composed action is the same as updating the model sequentially, first with the one component of the action, then the other 
component.

Proposition 20. Given model M and UM|ππ ′ 
= ∅, we have M|π |π ′ =M|ππ ′
.

Proof. We only need to show that BM|π |π ′
(t) = BM|ππ ′

(t) for each t ∈ UM|ππ ′
.

BM|π |π ′
(t) = μ

M|π
π ′ (t)

μ
M|π
π ′ (UM|ππ ′

)

= μM
ππ ′(t)/μM

π (UM|π∑
M ππ ′ μM ′(s)/μM(UM|π )

by Proposition 19

s∈U | ππ π
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= μM
ππ ′(t)∑

s∈UM|ππ ′ μM
ππ ′(s)

= BM|ππ ′
(t) �

Using this proposition we can show the soundness of PRF(πa).

Proposition 21. � Bπaϕ ≤ Bπ 〈a〉ϕ .

Proof. Given model M, we only need to show that μM
πa ([ [ϕ] ]M|πa

) ≤ μM
π ([ [〈a〉ϕ] ]M|π ). If UM|πa = ∅, μM

πa ([ [ϕ] ]M|πa
) = 0, 

since μM
π ([ [〈a〉ϕ] ]M|π ), it is obvious. If UM|πa 
= ∅, we have that for each t ∈ [ [ϕ] ]M|πa ⊆ UM|πa , there exists s ∈ UM|π

such that s a→ t . Moreover, it follows by Definition 6 that for each t ∈ UM|πa ,

μM
πa (t) =

∑
{s∈UM|π |s a→t}

μM
π (s) × PrM(s,a, t)

We then have the following:

μM
πa ([[ϕ]]M|πa

)

= ∑
t∈[[ϕ]]M|πa μM

πa (t)

= ∑
t∈[[ϕ]]M|πa

(∑
{s∈UM|π |s a→t} μ

M
π (s) × PrM(s,a, t)

)
= ∑

{s∈UM|π | ∃t∈[[ϕ]]M|πa :s a→t} μ
M
π (s) × (∑

t∈([[ϕ]]M|πa ∩RM
a (s)) PrM(s,a, t)

)
≤ ∑

{s∈UM|π | ∃t∈[[ϕ]]M|πa :s a→t} μ
M
π (s)

= ∑
{s∈UM|π | ∃t∈[[ϕ]]M|π |a :s a→t} μ

M
π (s) by Proposition 20

= ∑
s∈[[〈a〉ϕ]]M|π μM

π (s)

= μM
π ([[〈a〉ϕ]]M|π ) �

The soundness of this axiom is used in the proof of the soundness of PRFEQ(πa).

Proposition 22. � Bπ (〈a〉ϕ ∧ 〈a〉¬ϕ) = 0 ↔ Bπaϕ = Bπ 〈a〉ϕ .

Proof. Given a pointed model M, s, we only need to show that M, s � Bπ (〈a〉ϕ ∧ 〈a〉¬ϕ) = 0 iff M, s � Bπaϕ = Bπ 〈a〉ϕ . It 
is obvious if UM|πa = ∅. Next, we only focus on the case of UM|πa 
= ∅. We have the following:

M, s � Bπaϕ = Bπ 〈a〉ϕ
⇔μM

πa ([[ϕ]]M|πa
) < μM

π ([[〈a〉ϕ]]M|π ) by Proposition 21

⇔there exists s′ ∈ UM|π such that M|πa, t′ � ϕ for some t′ ∈ RM
a (s) and( ∑

t∈([[ϕ]]Mπa ∩RM
a (s))

PrM(s,a, t)
)

< 1 by the proof of Proposition 21

⇔there exists s′ ∈ UM|π such that M|πa, t′ � ϕ for some t′ ∈ RM
a (s) and

M|πa, t � ϕ for some t ∈ RM
a (s)

⇔there exists s′ ∈ UM|π such that M|π , s � 〈a〉ϕ ∧ 〈a〉¬ϕ

⇔μM
π ([[〈a〉ϕ ∧ 〈a〉¬ϕ]]M|π ) > 0

⇔M, s � Bπ (〈a〉ϕ ∧ 〈a〉¬ϕ) = 0 �
We will leave the proof of the soundness of Add(π) to the reader. The next axiom for which we prove soundness is 

ITSP. This axiom is a scheme for many different formulas. We abstract from the (in)equality expressed. We call the axiom 
introspection because it is closely related to the usual axioms 4 and 5 in epistemic logic that express positive and negative 
introspection respectively. Since an inequality is a negation, this scheme captures both positive and negative introspection 
in our probabilistic setting.
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Proposition 23. � (
∑n

i=1 qi Bππ ′
i
ϕi �� qBπ
) → Bπ (

∑n
i=1 qi Bπ ′

i
ϕi �� q) = Bπ
.

Proof. If M, s �
∑n

i=1 qi Bππ ′
i
ϕi �� qBπ
, namely, 

∑n
i=1 qi · μM

ππ ′([ [ϕi] ]M|ππ ′
) �� q · μM

π ([ [
] ]M|π ), we need to show M, s �
Bπ (

∑n
i=1 qi Bπ ′

i
ϕi �� q) = Bπ
, namely, μM

π ([ [∑n
i=1 qi Bπ ′

i
ϕi �� q] ]M|π ) = μM

π ([ [
] ]M|π ). If UM|ππ ′ = ∅, it is obvious.

Next, we focus on the situation of UM|ππ ′ 
= ∅. To show μM
π ([ [∑n

i=1 qi Bπ ′
i
ϕi �� q] ]M|π ) = μM

π ([ [
] ]M|π ), we only need 

to show that [ [∑n
i=1 qi Bπ ′

i
ϕi �� q] ]M|π = UM|π . By semantics, we only need to show 

∑n
i=1 qi ·μM|π

π ′
i

([ [ϕi] ]M|π |π ′
i
) �� q. Since 

UM|ππ ′ 
= ∅, it follows by Propositions 20 and 19 that μM|π
π ′ ([ [ϕi] ]M|π |π ′

) = μM
ππ ′([ [ϕi] ]M|ππ ′

)/μM
π (UM|π ). Therefore, we 

have 
∑n

i=1 qi · μM|π
π ′

i
([ [ϕi] ]M|π |π ′

i
) �� q if and only if 

∑n
i=1 qi · μM

ππ ′([ [ϕi] ]M|ππ ′
) �� q · μM

π ([ [
] ]M|π ). �
The last axiom for which we prove soundness is CP, an axiom about conditional probability. It expresses the relation 

between prior and posterior probability in our setting.

Proposition 24. � 〈a〉
 → ([a](∑n
i=1 qi Bπi ϕi �� q) ↔ ∑n

i=1 qi Baπi ϕi �� qBa
).

Proof. Given a pointed M, s � and s a→ t for some t ∈ S , we need to show that M, s � [a](∑n
i=1 qi Bπi ϕi �� q) ↔∑n

i=1 qi Baπi ϕi �� qBa
. Since M, s � [a](∑n
i=1 qi Bπi ϕi �� q) if and only if M|a, t �

∑n
i=1 qi Bπi ϕi �� q. Thus, we only need 

to show M|a, t �
∑n

i=1 qi Bπi ϕi �� q if and only if M, s �
∑n

i=1 qi Baπi ϕi �� qBa
. It is obvious if UM|aπi = ∅ for all 1 ≤ i ≤ n. 
Next we only focus on the case of UM|aπi 
= ∅ for all 1 ≤ i ≤ n.

M|a, t �
∑n

i=1 qi Bπi ϕi �� q

⇔ ∑n
i=1 qiμ

M|a
πi ([[ϕi]]M|a|πi

) �� q

⇔ ∑n
i=1 qiμ

M|a
πi ([[ϕi]]M|aπi

) �� q by Proposition 20

⇔ ∑n
i=1 qi/μ

M
a (UM|a) · μM

aπi
([[ϕi]]M|aπi

) �� q by Proposition 19

⇔ ∑n
i=1 qiμ

M
aπi

([[ϕi]]M|aπi
) �� qμM

a (UM|a) due to μM
a (UM|a) > 0

⇔ M, s �
∑n

i=1 qi Baπi ϕi �� qBa
 �
Based on the propositions above, the soundness lemma can be proven by induction on the length of the proof. We will 

leave the proof to the reader.

Theorem 25 (Soundness). For each formula ϕ , � ϕ implies � ϕ .

5. Completeness

In this section we show that the axiomatization presented above is complete with respect to the semantics we pre-
sented earlier. One important strategy that has been employed to prove completeness for dynamic epistemic logic is to use 
reduction axioms (see for instance [33]). Reduction axioms are a way of relating what is the case after an action (e.g., an 
announcement) to what is the case before the action. Thus we can recursively eliminate all the action modalities. Unfortu-
nately, as in the case of [7], here we cannot eliminate the action modalities completely. For example, we cannot reduce [a]p
to a propositional formula, since unlike the standard DEL approach, the truth values of p at the a-successors are not fully 
determined by the current state (see [34] for an in-depth discussion on the use and failure of such reductions). However, we 
will try to transform the language L to its fragment L 0 in which formula’s nesting degree is 0 and prove completeness 
with respect to L 0. As we will see below, in our case a formula with degree 0 can still have action modalities.

5.1. A fragment L 0 of the whole language

Definition 26 (Nesting degree). Nesting degree of a formula or an item is defined as follows.

d(p) = 0
d(¬ϕ) = d(ϕ)

d(ϕ ∧ ψ) = max{d(ϕ),d(ψ)}
d([a]ϕ) =

{
1 + d(ϕ) if a probability term occurs in ϕ

0 else
d(

∑n q B ϕ ≥ q) = max{d(B ϕ ) | 1 ≤ i ≤ n}
i=1 i πi i πi i
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d(Bπϕ) =
{

1 + d(ϕ) if a probability term occurs in ϕ

0 else

We use L 0 to denote the formula set {ϕ ∈ L | d(ϕ) = 0}.

Nesting degree captures the depth of the probability modality Bπ in the scope of modalities [a] or other probabil-
ity modalities Bπ ′ . For example, d([a]Bπ p ≥ q) = 1, d(Bπ1(Bπ2 ≥ q2) ≥ q1) = 1, and d(Bπ [a]p ≥ q) = 0. For each formula 
ϕ ∈ L 0, each probability modality Bπ in ϕ will never occur in the scope of the modalities [a] or other probability modal-
ities Bπ ′ . Next we will show that each formula ϕ ∈ L can be equivalently transformed to a formula ϕ′ ∈ L 0. To do that, 
we need the following auxiliary notion.

Definition 27 (Conjunctive normal form). A formula ϕ is in conjunctive normal form if it is a conjunction of disjunctions of 
‘literals’, where a ‘literal’ is a formula in the form of p, ¬p, [a]ψ , ¬[a]ψ , 

∑n
i=1 qi Bπi ψi ≥ q or ¬(

∑n
i=1 qi Bπi ψi ≥ q), where 

ψ and ψi are also in conjunctive normal form.

The following proposition means that the replacement rule is admissible in our axiomatization system. The replacement 
rule plays a fundamental role in reducing a formula ϕ ∈ L to a formula of conjunctive normal form and then to a formula 
ϕ′ ∈ L 0.

Proposition 28. If � ψ ↔ χ then � ϕ ↔ ϕ(ψ/χ).

Proof. Please find the proof in Appendix A. �
With the replacement rule, the following proposition can be proved in a similar process as in propositional logic.

Proposition 29. For each formula ϕ , there exists a formula ϕ′ such that � ϕ ↔ ϕ′ and ϕ′ is in conjunctive normal form.

Proof. Please find the proof in Appendix B. �
By Proposition 29, we only need to show that each formula ϕ of conjunctive normal form can be equivalently trans-

formed to be a formula ϕ′ ∈ L 0. The key is to show that literals with nesting degree 1 of the form [a]ψ or 
∑n

i=1 qi Bπi ψi ≥ q
can be equivalently transformed to be formulas in L 0. Next we will deal with these two cases respectively.

To show that each literal [a]ϕ with d([a]ϕ) = 1 can be equivalently transformed to be a formula in L 0, we firstly show 
the following proposition.

Proposition 30. ConP: � [a](∑n
i=1 qi Bπi ϕi �� q ∨ ψ) ↔ (

∑n
i=1 qi Baπi ϕi �� qBa
) ∨ [a]ψ .

Proof. Please find the proof in Appendix C. �
Now we are ready to show that each literal [a]ψ with d([a]ψ) = 1 can be equivalently transformed to a formula in L 0.

Proposition 31. Given [a]ψ and d([a]ψ) = 1, there exists a formula ϕ such that d(ϕ) = 0 and � ϕ ↔ [a]ψ .

Proof. Please find the proof in Appendix D. �
Next we will transform the literal ϕ := ∑n

i=1 qi Bπi ψi �� q with d(ϕ) = 1 to be a formula in L 0. Firstly, we need the 
following proposition.

Proposition 32. Let T := ∑m
j=1 q j Bπ j ψ j , δ0 := ∑n

i=1 q′
i Bπ ′

i
ϕi ��1 q, and δ1 := ∑n

i=1 q′
i Bπ ′

i
ϕi ��1 qBπ
. We have � q0 Bπ ((δ0 ∨

ψ) ∧ χ) + T ≥ q ↔ (δ1 ∧ (q0 Bπχ + T ��2 q)) ∨ (¬δ1 ∧ (q0 Bπ (ψ ∧ χ) + T ��2 q)).

Proof. Please find the proof in Appendix E. �
Now we are ready to show that each probability literal ϕ with d(ϕ) = 1 can be equivalently transformed to be a formula 

in L 0.

Proposition 33. Given ϕ := ∑n
i=1 qi Bπi ϕi ≥ q and d(ϕ) = 1, there exists a formula ϕ′ such that d(ϕ′) = 0 and � ϕ ↔ ϕ′ .
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Proof. Please find the proof in Appendix F. �
Finally we will show the following proposition that each formula ϕ ∈ L can be equivalently transformed to be a formula 

ϕ′ ∈ L 0.

Proposition 34. For each formula ϕ ∈ L , we can effectively compute a formula ϕ′ such that � ϕ ↔ ϕ′ and d(ϕ′) = 0.

Proof. We prove it by induction on d(ϕ). It is obvious if d(ϕ) = 0. If d(ϕ) = n + 1, by Proposition 29, we assume ϕ is in 
conjunctive normal form. It follows by Proposition 28 that we only need to show that for each literal ψ in ϕ there exists 
a formula ψ ′ such that � ψ ↔ ψ ′ and d(ψ ′) = 0. By IH, it is straightforward if d(ψ) = n. If d(ψ) = n + 1, ψ is in the form 
of [a]ψ ′ , ¬[a]ψ ′ , 

∑n
i=1 qi Bπi ψ

′
i ≥ q or ¬ 

∑n
i=1 qi Bπi ψ

′
i ≥ q. We only focus on the case of [a]ψ ′ and 

∑n
i=1 qi Bπi ψ

′
i ≥ q; the 

other cases are similar.
If ψ := [a]ψ ′ and d([a]ψ ′) = n + 1, it follows that d(ψ ′) = n. By IH, it follows that there exists a formula χ ′ such that 

� ψ ′ ↔ χ ′ and d(χ ′) = 0. Thus, we have � ψ ↔ [a]χ ′ and d([a]χ ′) ≤ 1. If d([a]χ ′) = 1, it follows by Proposition 31 that 
there exists a formula χ such that � χ ↔ [a]χ ′ and d(χ) = 0. It follows that � ψ ↔ χ .

If ψ := ∑n
i=1 qi Bπi ψ

′
i ≥ q and d(ψ) = n + 1, it follows that d(ψ ′

i ) ≤ n for all 1 ≤ i ≤ n. By IH, it follows that for each ψ ′
i

there exists a formula χ ′
i such that � ψ ′

i ↔ χ ′
i and d(χ ′

i ) = 0. It follows that � ψ ↔ ∑n
i=1 qi Bπi χ

′
i ≥ q and d(

∑n
i=1 qi Bπi χ

′
i ≥

q) ≤ 1. If d(
∑n

i=1 qi Bπi χ
′
i ≥ q) = 1, it follows by Proposition 33 that there exists a formula χ such that � ∑n

i=1 qi Bπi χ
′
i ≥

q ↔ χ and d(χ) = 0. It follows that � ψ ↔ χ . �
Remark 3. The above results tell us that instead of checking ϕ in the final situation, we can check another formula without 
nested actions in the initial situation. It also provides the possibility of a regression method in the spirit of the regression 
in situation calculus, e.g., [20,21].

5.2. Nonstandard models

We have shown that each formula in L can be equivalently transformed to be a formula in L 0. To show the complete-
ness, we only need to show that each consistent formula ϕ ∈ L 0 is satisfiable. Our strategy is that firstly we define a notion 
of nonstandard model and show that if ϕ ∈ L 0 is satisfiable in nonstandard models then it is also satisfiable in standard 
models. Secondly, we construct a canonical nonstandard model with respect to ϕ ∈ L 0 and show that ϕ is satisfiable in 
the canonical nonstandard model.

Definition 35 (Nonstandard model). A nonstandard model M is a tuple 〈SM, RM, UM, {μM
π | π ∈ A∗}, VM〉 such that

• SM is a non-empty finite set of states,
• RM ⊆ SM × A× SM ,
• UM is a non-empty subset of SM ,
• μM

π : UM|π → [0, 1] is a function such that
– μM

ε (UM) = 1 and μM
ε (s) > 0 for each s ∈ UM;

– μM
πa(UM|πa) = μM

π ({s ∈ UM|π |RM
a (s) 
= ∅}) and μM

πa(s) > 0 for each s ∈ UM|πa;

– μM
πa(E) ≤ μM

π ({s ∈ UM|π | ∃t ∈ E : s a→ t}) for each E ⊆ UM|πa;

– μM
πa(E) < μM

π ({s ∈ UM|π | ∃t ∈ E : s a→ t}) for each E ⊆ UM|πa such that RM
a (s) ∩ E 
= ∅ and RM

a (s) \ E 
= ∅ for some 
s ∈ UM|π ,

• VM : P→P(SM).

From now on, we call models and semantics defined in Section 3 as standard model and standard semantics. A nonstandard 
model is almost the same as a standard model except probability functions. First, there are no transition probabilities in 
nonstandard models. Second, the functions μπ of nonstandard models intuitively are the same as the functions of standard 
models defined in Definition 6. The requirements of the functions μM

π of nonstandard models make sure that there exists 
transition probabilities such that μM

π can be calculated in the way shown in Definition 6.

Definition 36 (Nonstandard semantics). Given a nonstandard model M, a state s ∈ SM and a formula ϕ with d(ϕ) = 0, the 
truth relation is defined as follows:

M, s � p ⇐⇒ s ∈ V M(p)

M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ and M, s � ψ

M, s � [a]ϕ ⇐⇒ for all s′ : s
a→ s′ implies M, s′ � ϕ

M, s �
∑n

i=1 qi Bπi ϕi ≥ q ⇐⇒ ∑n
i=1 qiμ

M
πi

([[ϕi]]Mπi
) ≥ q

where [ [ϕ] ]Mπ = {s ∈ UM|πi | M, s � ϕ}.

i
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Please note that in nonstandard semantics we care only about formulas in L 0.
The following proposition shows that if ϕ ∈ L 0 is satisfiable in nonstandard models then it is also satisfiable in standard 

models.

Proposition 37. Given a nonstandard model M and M, u � ϕ where u ∈ UM and d(ϕ) = 0, there exists a standard pointed model 
that satisfies ϕ .

Proof. The proof is quite involved and can be found in Appendix K. �
Given a consistent formula ϕ ∈ L 0, next we will construct a canonical nonstandard model with respect to ϕ and show 

that ϕ is satisfiable in this nonstandard model. The canonical model will be built by levels, and the number of its levels 
will be bounded by the modal depth of ϕ . The notion of modal depth is defined in the following.

Definition 38 (Modal depth). The modal depth of a formula is defined inductively as follows.

md(p) = 0
md(¬ϕ) = md(ϕ)

md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)}
md([a]ϕ) = 1 + md(ϕ)

md(
∑n

i=1 qi Bπi ϕi ≥ q) = max{|πi| + md(ϕi) | 1 ≤ i ≤ n}
where |πi| is the length of the sequence πi .

Here are some notions before we construct the canonical nonstandard model for ϕ . We use A|ϕ to denote the set of 
actions occurring in ϕ , and (A|ϕ)n to denote the set of sequences whose length is no bigger than n and whose actions are 
in A|ϕ . If s is a finite set of formulas, we use ϕs to denote 

∧
ψ∈s ψ . Let ∼ψ = χ if ψ = ¬χ , otherwise, ∼ψ = ¬ψ . It is 

obvious that � ¬ψ ↔ ∼ψ . We use sub+(ϕ) to denote the set Sub(ϕ) ∪ {∼ψ | ψ ∈ Sub(ϕ)}, where Sub(ϕ) is the set of all 
subformulas of ϕ . Let md(ϕ) = h, and let L B-Free be the set of formula that no probability formulas occurring in it. Next 
we will define sets of maximal consistent sets for each k ≤ h.

Definition 39. For each 0 ≤ k ≤ h, 
ϕ
k and Atomϕ

k are defined as follows.

• k = h
– 


ϕ
h = {ψ ∈ sub+(ϕ) | md(ψ) = 0 and ψ ∈ L B-Free};

– Atomϕ
h = {(s, h) | s is a maximal consistent subset of 
ϕ

h };
• k < h but k > 0

– 

ϕ
k = {ψ ∈ sub+(ϕ) | md(ψ) ≤ h − k and ψ ∈ L B-Free} ∪ {sub+(〈a〉ϕs) | a ∈ (A|ϕ), (s, k + 1) ∈ Atomϕ

k+1};

– Atomϕ
k = {(s, k) | s is a maximal consistent subset of 
ϕ

k };
• k = 0

– 

ϕ
0 = sub+(ϕ) ∪ {sub+(Bε〈π〉ϕs > 0) | (s, j) ∈ Atomϕ

j for some 1 ≤ j ≤ h and π ∈ (A|ϕ) j} ∪ {sub+(Bε(ψ1 ∧ · · · ∧ ψ j) ≥
0) | ψ1, · · · , ψ j ∈ sub+(ϕ) ∩ L B-Free};

– Atomϕ
0 = {(s, 0) | s a maximal consistent subset of 
ϕ

0 }.

From the definition above, we can see that Atomϕ
k is the set of all maximal consistent subsets of 
ϕ

k . 
ϕ
h is the set of all 

propositional letters in sub+(ϕ). For each formula ψ ∈ 

ϕ
k , we have md(ψ) ≤ k. Probability formulas only occur in 
ϕ

0 .
Since ϕ is consistent and ϕ ∈ 


ϕ
0 , it follows by Lindenbaum’s lemma that there exist (u, 0) ∈ Atomϕ

0 such that ϕ ∈ u. 
Next we will construct a canonical nonstandard model with respect to ϕ and u and will show that ϕ is satisfiable in it.

Definition 40 (Canonical nonstandard model). The canonical nonstandard model Mϕ
u w.r.t ϕ and u is defined as

• SM
ϕ
u = {(s, k) ∈ Atomϕ

k | 0 ≤ k ≤ md(ϕ)}
• RM

ϕ
u = {((s, k), a, (t, k + 1)) | ϕs ∧ 〈a〉ϕt is consistent, a ∈ A|ϕ}

• UM
ϕ
u = {(s, 0) ∈ Atomϕ

0 | s and u contain the same probability formulas}
• VM

ϕ
u (p) = {(s, k) | p ∈ s} for each p ∈ sub+(ϕ)

• μ
M

ϕ
u

π will be defined later

By induction on k, it is easy to show that all 
ϕ
k and all Atomϕ

k are finite. Since each Atomϕ
k is the set of all maximally 

consistent subset of 
ϕ , we have the following three propositions.
k
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Proposition 41. For each 0 ≤ k ≤ h, we have � ∨
s∈Atomϕ

k
ϕs .

Proposition 42. For each ψ ∈ 

ϕ
k , we have � ψ ↔ ∨

{s∈Atomϕ
k |ψ∈s} ϕs .

Proposition 43. Let Bπψ occur in some formula in sub+(ϕ), then we have � Bπψ = ∑
{(s,|π |)∈Atomϕ

|π | |ψ∈s} Bπϕs .

Before we show the truth lemma, we need to show two things: the existence lemma for formulas of the form 〈a〉ψ , and a 
proper definition of the functions μM

ϕ
u

π . The following proposition is the “existence lemma” for formulas of the form 〈a〉ψ .

Proposition 44. For each (s, k) ∈ SM
ϕ
u and 〈a〉ψ ∈ sub+(ϕ), 〈a〉ψ ∈ s iff there exists a state (t, k + 1) ∈ SM

ϕ
u such that ψ ∈ t and 

(s, k) a→ (t, k + 1).

Proof. Please find the proof in Appendix G. �
Next we will deal with the functions μM

ϕ
u

π . By Definition 35, we know that these functions should satisfy some conditions 
to make that Mϕ

u is a properly defined nonstandard model. Our strategy is to show that such functions μM
ϕ
u

π does exist due 
to the completeness of linear inequality logic. By Definition 6, we know that μM

ϕ
u

π is defined on U |π . We firstly show that 
μ
M

ϕ
u

π (t) > 0 for each t ∈ U |π and that μM
ϕ
u

π (t) = 0 if t /∈ U |π . The following proposition will guarantee that μM
ϕ
u

π (t) > 0 for 
each t ∈ U |π .

Proposition 45. Given (s, k) ∈ SM
ϕ
u and π ∈ (A|ϕ)k, (s, k) ∈ UM

ϕ
u |π implies � ϕu → Bπϕs > 0.

Proof. Please find the proof in Appendix H. �
To show that μM

ϕ
u

π (t) = 0 if t /∈ U |π , we need the following two auxiliary propositions.

Proposition 46. If Bεψ > 0 ∈ u then there exists (s, 0) ∈ UM
ϕ
u such that ψ ∈ s.

Proof. Please find the proof in Appendix I. �
Proposition 47. If 〈π〉ψ ∈ s for some (s, 0) ∈ SM

ϕ
u , there exists (t, |π |) ∈ SM

ϕ
u such that (s, 0) π→ (t, |π |) and ψ is consistent with t.

Proof. We prove it by induction on π . It is obvious if π := ε . If it is πa, it follows by induction on π that there exists 
(s′, |π |) ∈ SM

ϕ
u such that (s, 0) π→ (s′, |π |) and 〈a〉ψ is consistent with s′ . Next, we only need to show that there exists 

(t, |πa|) ∈ SM
ϕ
u such that (s′, |π |) a→ (t, |πa|) and ψ is consistent with t .

We construct an appropriate (t, |πa|) ∈ Atomϕ
|πa| by forcing choices. Enumerate the formulas in 
ϕ

|πa| as χ1, · · · , χm . 
Define D0 to be {ψ} then ϕs′ ∧ 〈a〉ϕD0 is consistent. Suppose as an inductive hypothesis that D j is defined such that 
ϕs′ ∧〈a〉ϕD j is consistent where 0 ≤ j ≤ m. Therefore, either for D ′ = D j ∪{χ j+1} or for D ′ = D j ∪{¬χ j+1} we have that ϕs′ ∧
〈a〉ϕD ′ is consistent. Choose D j+1 to this consistent expansion, and let t be Dm ∩ 


ϕ
|πa| . Thus, we have (t, |πa|) ∈ Atomϕ

|πa| , 
ϕs′ ∧ 〈a〉ϕt is consistent and t is consistent with ψ . Therefore, we have (s′, |π |) a→ (t, |πa|) and (s, 0) πa→ (t, |πa|). �

The following proposition will guarantee that μM
ϕ
u

π (t) = 0 if t /∈ U |π .

Proposition 48. Given (s, k) ∈ SM
ϕ
u and π ∈ (A|ϕ)k, (s, k) /∈ UM

ϕ
u |π implies � ϕu → Bπϕs = 0.

Proof. For the case of k = 0 and π := ε , without loss of generality, assume that ¬ψ ∈ u and ψ ∈ s for some probability 
formula in 
ϕ

0 . Let χ := ∧(s \ {ψ}). By Axioms PRTR(ε) and Add(ε), it follows that � Bεϕs > 0 ↔ ψ ∧ Bεχ > 0. Therefore, 
we have � ϕu ∧ Bεϕs > 0 → ⊥, and consequently � ϕu → Bεϕs ≤ 0. It follows by Axiom Nonneg(ε) that � ϕu → Bεϕs = 0.

For the case of k + 1 and πa, by Axiom Nonneg(ε), we only need to show � ϕu → Bπaϕs ≤ 0. If ϕu ∧ Bπaϕs > 0 is 
consistent, it follows by Axiom PRTR(ε) that ϕu ∧ Bε〈πa〉ϕs > 0 is consistent. Since Bε〈πa〉ϕs > 0 ∈ 


ϕ
0 , it follows that 

Bε〈πa〉ϕs > 0 ∈ u. It follows by Proposition 46 that 〈πa〉ϕs ∈ w for some (w, 0) ∈ UM
ϕ
u . By Proposition 47 that there exists 

(v, k + 1) ∈ SM
ϕ
u such that (w, 0) πa→ (v, k + 1) and ϕs is consistent with v . This means that s = v , and then (s, k + 1) ∈

UM
ϕ
u |πa. This is contradictory with our assumption. Therefore, ϕu ∧ Bπaϕs > 0 is not consistent, and consequently � ϕu →

Bπaϕs = 0. �
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Now we are ready to show that there exist functions μM
ϕ
u

π that are properly defined.

Proposition 49. There exist functions μM
ϕ
u

π where π ∈ A∗ such that Mϕ
u is a nonstandard model and that 

∑n
i=1 qi Bπi ψi ≥ q ∈ u iff ∑n

i=1 qiμ
M

ϕ
u

πi (Di) ≥ q where Di = {(s, |πi |) ∈ UM
ϕ
u |πi | ψi ∈ s} for each 

∑n
i=1 qi Bπi ψi ≥ q ∈ sub+(ϕ).

Proof. We only need to focus on the case of π ∈ ⋃
0≤k≤md(ϕ)(A|ϕ)k .

Firstly, it follows from Proposition 41 that � 
 ↔ ∨
(s,0)∈Atomϕ

0
ϕs . By Axioms PRTR(ε) and Add(ε) and Rules, it follows 

that

�
∑

(s,0)∈Atomϕ
0

Bεϕs = 1 (1)

By Proposition 45, for each (s, 0) ∈ UM
ϕ
u , we have

u � Bεϕs > 0 (2)

By Proposition 48, for each (s, 0) /∈ UM
ϕ
u , we have

u � Bεϕs = 0 (3)

Secondly, it follows by Proposition 41 and 42 that � 
 ↔ ∨
(s,|πa|)∈Atomϕ

|πa|
ϕs and � 〈a〉
 ↔ ∨

{(s,|π |)∈Atomϕ
|π ||〈a〉
∈s} ϕs . By 

Axioms PRTR(ε) and Add(ε) and Rules, it follows that

�
∑

(s,|πa|)∈Atomϕ
|πa|

Bπaϕs =
∑

{(s,|π |)∈Atomϕ
|π ||〈a〉
∈s}

Bπϕs (4)

By Proposition 45, for each (s, |πa|) ∈ UM
ϕ
u |πa , we have

u � Bπaϕs > 0 (5)

By Proposition 45, for each (s, |πa|) /∈ UM
ϕ
u |πa , we have

u � Bπaϕs = 0 (6)

Thirdly, for each set E ⊆ UM
ϕ
u |πa , it follows by Axiom Add(πa) that � Bπa

∨
(t,|πa|)∈E ϕt = ∑

(t,|πa|)∈E Bπaϕt . For each 
(t, |πa|) ∈E , it follows by Proposition 42 that �〈a〉ϕt ↔∨

{(s,|π |)∈Atomϕ
|π ||〈a〉ϕt∈s} ϕs . What is more, since �〈a〉(∨(t,|πa|)∈E ϕt) ↔∨

(t,|πa|)∈E 〈a〉ϕt , we have that

� 〈a〉(
∨

(t,|πa|)∈E

ϕt) ↔
∨

{(s,|π |)∈Atomϕ
|π ||∃(t,|πa|)∈E:〈a〉ϕt∈s}

ϕs.

By Axiom Add(π), we have

� Bπ 〈a〉(
∨

(t,|πa|)∈E

ϕt) =
∑

{(s,|π |)∈Atomϕ
|π ||∃(t,|πa|)∈E:〈a〉ϕt∈s}

Bπϕs.

By Axiom PRTR(π), we have � Bπa
∨

(t,|πa|)∈E ϕt ≤ Bπ 〈a〉(∨(t,|πa|)∈E ϕt). Therefore, we have

�
∑

(t,|πa|)∈E

Bπaϕt ≤
∑

{(s,|π |)∈Atomϕ
|π ||∃(t,|πa|)∈E:〈a〉ϕt∈s}

Bπϕs (7)

Moreover, for each set E ⊆ UM
ϕ
u |πa , if there exists (s, |π |) ∈ UM

ϕ
u |π such that RM

ϕ
u (s, |π |) ∩ E 
= ∅ and RM

ϕ
u (s, |π |) \

E 
= ∅, namely (t, |πa|) ∈ E and (t′, |πa|) /∈ E for some (t, |πa|), (t, |πa|) ∈ RM
ϕ
u (s, |π |), it follows that � ϕt → ϕE (let 

ϕE := ∨
(t,|πa|)∈E ϕt ) and � ϕt′ → ¬ϕE . Therefore, we have � 〈a〉ϕt ∧ 〈a〉ϕt′ → 〈a〉ϕE ∧ 〈a〉¬ϕE . Since � ϕs → 〈a〉ϕt ∧ 〈a〉ϕt′ , it 

follows that � ϕs → 〈a〉ϕE ∧〈a〉¬ϕE . Therefore, we have � Bπϕs ≤ Bπ (〈a〉ϕE ∧〈a〉¬ϕE ). It follows by Proposition 45 that u �
Bπ 〈a〉ϕE ∧ 〈a〉¬ϕE > 0. Thus, by Axiom PRTR(π), we have u � BπaϕE < Bπ 〈a〉ϕE , namely u � Bπa

∨
t∈E ϕt < Bπ

∨
t∈E 〈a〉ϕt . 

Therefore, we have

u �
∑

(t,|πa|)∈E

Bπaϕt <
∑

M
ϕ
u π

Bπϕs (8)
{(s,|π |)∈U | |∃(t,|πa|)∈E:〈a〉ϕt∈s}
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Furthermore, for each χ := ∑n
i=1 qi Bπi ψi ≥ q ∈ sub+(ϕ), if χ ∈ u, it follows by Proposition 43 that

u �
n∑

i=1

(qi ·
∑

{(s,|πi |)∈Atomϕ
|πi ||ψi∈s}

Bπi ϕs) ≥ q (9)

If χ /∈ u, we have

u �
n∑

i=1

(qi ·
∑

{(s,|πi |)∈Atomϕ
|πi ||ψi∈s}

Bπi ϕs) < q (10)

Finally, we now can construct a set of linear inequalities by replacing Bπϕs in formulas of (1) to (10) by variables xπ(s,|π |) , 

which represents μM
ϕ
u

π (s, |π |). Since u is consistent, it follows that this set of linear inequalities is also consistent. By com-

pleteness of linear inequality system, this inequality set has a solution. We define μM
ϕ
u

π by assigning μM
ϕ
u

π (s, |π |) the value 
of xπ(s,|π |) . It follows by (1) to (8) that Mϕ

u is a nonstandard model. For each χ := ∑n
i=1 qi Bπi ψi ≥ q ∈ sub+(ϕ), it follows 

by (9) and (10) that χ ∈ u iff 
∑n

i=1 qiμ
M

ϕ
u

πi ({(s, |πi |) ∈ Atomϕ
|πi | | ψi ∈ s}) ≥ q. By (3) and (6), we have that μM

ϕ
u

πi (s, |π |) = 0

for each (s, |πi|) /∈ UM
ϕ
u |πi . Therefore, we have μM

ϕ
u

πi ({(s, |πi |) ∈ Atomϕ
|πi | | ψi ∈ s}) = μ

M
ϕ
u

πi (Di). �
Now we are ready to show the truth lemma.

Lemma 50 (Truth lemma). For each 0 ≤ k ≤ h, each (s, k) ∈ SM
ϕ
u and each ψ ∈ sub+(ϕ) ∩ 


ϕ
k , we have Mϕ

u , (s, k) � ψ iff ψ ∈ s.

Proof. If h > 0, we prove it by induction on k. For the case of k = h, each formula ψ ∈ sub+(ϕ) ∩ 

ϕ
h is a boolean formula. 

Therefore, by induction on ψ , it is easy to show that Mϕ
u , (s, h) � ψ iff ψ ∈ s.

With the induction hypothesis that Mϕ
u , (s, k) � ψ iff ψ ∈ s for each k ≤ h, each (s, k) ∈ SM

ϕ
u and each ψ ∈ sub+(ϕ) ∩


ϕ
k , 

we will show that Mϕ
u , (s, k − 1) � ψ iff ψ ∈ s for each (s, k − 1) ∈ SM

ϕ
u and each ψ ∈ sub+(ϕ) ∩ 


ϕ
k−1. We prove this by 

induction on ψ . The boolean cases are easy by IH. For the case of 〈a〉ψ , due to Proposition 44, the result can be shown by 
a standard process [35]. For the case of ψ := ∑n

i=1 qi Bπi ψi ≥ q, by Definition 39, we know that k − 1 = 0. Then we need to 
show that Mϕ

u , (s, 0) �
∑n

i=1 qi Bπi ψi ≥ q iff 
∑n

i=1 qi Bπi ψi ≥ q ∈ s. We have the following:

M
ϕ
u , (s,0) �

n∑
i=1

qi Bπi ψi ≥ q

⇐⇒
n∑

i=1

qiμ
M

ϕ
u

πi [[ψi]]M
ϕ
u

πi ≥ q

where [[ψi]]M
ϕ
u

πi = {(t,k) ∈ UM
ϕ
u |πi |Mϕ

u , (t,k) � ψi}
(Please note that by induction on π it is easy to show that (t,k) ∈ UM

ϕ
u |π implies k = |π |)

⇐⇒
n∑

i=1

qiμ
M

ϕ
u

πi Di ≥ q

where Di = {(t, |πi|) ∈ UM
ϕ
u |πi | ψi ∈ t} (by IH, we have [[ψi]]M

ϕ
u

πi = Di)

⇐⇒
n∑

i=1

qi Bπi ψi ≥ q ∈ u (by Proposition 49)

⇐⇒
n∑

i=1

qi Bπi ψi ≥ q ∈ s (by (s,0) ∈ UM
ϕ
u )

If h = 0, by induction on ψ , for the similar process, we will also have Mϕ
u , (s, 0) � ψ iff ψ ∈ s. �

Theorem 51 (Completeness). For each formula ϕ , � ϕ implies � ϕ .

Proof. We only need to show that if ¬ϕ is consistent then there exists a pointed model M, s such that M, s � ¬ϕ . If ¬ϕ is 
consistent, it follows by Proposition 34 that there exists a formula ¬ϕ′ such that � ¬ϕ ↔ ¬ϕ′ and d(¬ϕ′) = 0. Please note 
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that ¬ϕ′ is also consistent. It follows by Lindenbaum’s lemma that there exists (u, 0) ∈ Atom¬ϕ′
0 such that ¬ϕ′ ∈ u. Thus, we 

can construct a canonical model Mϕ
u based on ¬ϕ′ and u. It follows by Lemma 50 that M, (u, 0) � ¬ϕ′ . By Proposition 37, 

we have that there exists a pointed model M, s such that M, s � ¬ϕ′ . Since � ¬ϕ ↔ ¬ϕ′ , it follows by Theorem 25 that 
M, s � ¬ϕ . �
6. Decidability

This section will show that the problem whether a formula ϕ ∈ L is satisfiable in standard models is decidable. First, 
we show that the problem whether a formula ϕ ∈ L 0 is satisfiable in nonstandard models is decidable. Second, we show 
that a formula ϕ ∈ L 0 is satisfiable in standard models if and only if it is satisfiable in nonstandard models. Since each 
ϕ ∈ L can be transformed to be a formula ϕ′ ∈ L 0, thus the decidability of ϕ′ in nonstandard models will lead to the 
decidability of ϕ in standard models.

Given ϕ ∈ L 0, we use |ϕ| to denote the length of ϕ and use f (|ϕ|) to denote the size of the canonical nonstandard 
model. From the construction of the canonical nonstandard model, we can see that f (|ϕ|) is a finite number bounded by 
O (md(ϕ) · 2|ϕ|·md(ϕ)). We use ||ϕ|| to denote the length of the longest coefficients that appear in ϕ .

Next we will show that the problem whether ϕ ∈ L 0 is satisfiable in nonstandard models is decidable. By Lemma 50, 
we know that if ϕ ∈ L 0 is satisfiable then it is satisfiable in a finite model with size f (|ϕ|). Please note that this does not 
imply L 0’s decidability in nonstandard models because there might be infinitely many different probability functions on a 
finite bounded domain. Therefore, to show L 0 is decidable in nonstandard models, the key is to show that the size of the 
probability functions that are shown in Proposition 49 are bounded.

Proposition 52. If ϕ ∈ L 0 is satisfiable in nonstandard models then it is also satisfiable in a nonstandard model with at most f (|ϕ|)
states where the value assigned to each state by μM

π is a rational number with size of O (r||ϕ|| + r log r), where r = O (|ϕ||ϕ| +2 f (|ϕ|)).

Proof. If ϕ ∈ L 0 is satisfiable in nonstandard models, it follows by Proposition 37 that ϕ is satisfiable in standard models. 
By the soundness of SCPP with respect to standard models, we have that ϕ is consistent. As it is shown in the proof of 
completeness, ϕ is satisfiable in the canonical nonstandard model whose size is f (|ϕ|). Next, we will show that for each 
t ∈ UM

ϕ
u |π , μM

ϕ
u

π (t) is a rational number whose size can be bounded by O (r||ϕ|| + r log r). Please note that we only need to 
care about the action sequence π ∈ (A|ϕ)md(ϕ) .

In the proof of Proposition 49, we know that the value of μM
ϕ
u

π (t) is determined by the system of linear inequalities 
listed by (1)–(10) in the proof of Proposition 49. Next, we will show how many linear inequalities are listed by (1)–(10).

By (9) and (10), for each χ of the form 
∑m

i=1 qiψi ≥ q and χ ∈ sub+(ϕ), there is a corresponding linear inequality. 
Therefore, (9) and (10) list at most |ϕ| linear inequalities into the system.

(1)–(3) are the requirements that the function μM
ϕ
u

ε needs to satisfy. They list 5 linear inequalities into the system. 
Please note that the linear inequality x1 + · · · xk = q is two inequalities in the system, that is, x1 + · · · xk ≥ q and (−1)x1 +
· · · (−1)xk ≤ −q.

(4)–(8) are the requirements that the function μM
ϕ
u

πa needs to satisfy for each πa ∈ (A|ϕ)md(ϕ) . Given πa ∈ (A|ϕ)md(ϕ) , 
(4)–(6) list 5 linear inequalities. (7)–(8) list 2 linear inequalities for each E ⊆ UM

ϕ
u |πa . Since UM

ϕ
u |πa ⊆ SM

ϕ
u and the size 

of SM
ϕ
u is f (|ϕ|), there are at most 2 f (|ϕ|) such subset E . Therefore, (4)–(8) list at most 5 + 2 × 2 f (|ϕ|) linear inequalities for 

each πa ∈ (A|ϕ)md(ϕ) . Since there are at most |ϕ||ϕ|sequences in (A|ϕ)md(ϕ) , thus (4)–(8) list at most |ϕ||ϕ|(5 + 2 × 2 f (|ϕ|))
linear inequalities in the system.

Therefore, (1)–(10) list at most |ϕ| + 5 + |ϕ||ϕ|(5 + 2 × 2 f (|ϕ|)) linear inequalities in the system of linear inequalities. 
Since |ϕ| + 5 + |ϕ||ϕ|(5 + 2 × 2 f (|ϕ|)) ≤ r, there are at most r linear inequalities in the system. It follows by the lemma 4.10 
in [31] that there exists a probability function μM

π such that the value assigned to each state by μM
π is a rational number 

with size of O (r||ϕ|| + r log r). �
The following proposition follows immediately.

Proposition 53. Given ϕ ∈ L 0 , the problem whether ϕ is satisfiable in nonstandard models is decidable.

Proposition 37 has shown that if L 0 is satisfiable in nonstandard models then it is satisfiable in standard models. To 
reduce the satisfiability of L 0 in standard models to the satisfiability of L 0 in nonstandard models, we still need to show 
that if L 0 is satisfiable in standard models then it is satisfiable in nonstandard models.

Proposition 54. If ϕ ∈ L 0 is satisfiable in standard models then ϕ is satisfiable in nonstandard models.

Proof. The proof can be found in Appendix L. �



Y. Li et al. / Artificial Intelligence 268 (2019) 54–84 75
With Propositions 37 and 54, we have the following proposition.

Proposition 55. ϕ ∈ L 0 is satisfiable in standard models if and only if ϕ is satisfiable in nonstandard models.

Now, we are ready to show the decidability in standard models.

Theorem 56 (Decidability). Given ϕ ∈ L , the problem whether ϕ is satisfiable in standard models is decidable.

Proof. Assume the nesting degree of ϕ is d(ϕ) = k. It is obvious that k ≤ |ϕ|. Let ϕ1, · · · , ϕi where i ≤ k is the subformulas 
of ϕ such that d(ϕ j) = 1 for all 1 ≤ j ≤ i. The proofs of Proposition 31 and Proposition 33 supply procedures to transform 
each ϕ j to a formula ϕ′

j such that � ϕ j ↔ ϕ′
j and d(ϕ′

j) = 0. Since the length of each ϕ j is finite, the procedures can be 
terminated in a finite number of steps. We can then obtain the formula ϕ′ by replacing each ψ j with ψ ′

j . It follows that 
d(ϕ′) = k − 1. By Proposition 28, we have � ϕ ↔ ϕ′ . If k − 1 > 0, we do the same procedure for ϕ′ . Therefore, we can obtain 
a formula ψ in a finite number of steps such that � ϕ ↔ ψ and d(ψ) = 0.

It follows by the soundness that ϕ is satisfiable in standard models if and only if ψ is satisfiable in standard models. Since 
ψ ∈ L 0, it follows by Proposition 54 that ψ is satisfiable in standard models if and only if it is satisfiable in nonstandard 
models. By Proposition 53, the problem whether ψ is satisfiable in nonstandard models is decidable. Therefore, the problem 
whether ϕ is satisfiable in standard models is decidable. �
7. Conclusion

In this paper we developed a logical framework for conformant probabilistic planning. As we argued, this approach 
differs from existing approaches to conformant probabilistic planning by focusing on a logical language with which to 
specify plans. Rather than thinking of goals of plans as subsets of the set of nodes of a probabilistic transition system, our 
framework allows one to think of the goal as a formula, which may be more convenient when we formulate goals that are 
probabilistic in nature.

The particular logic we developed allows for reasoning about conformant plans and their probabilistic consequences. 
We provided an intuitive semantics, which makes it clear how probabilities change as actions take place. We also pro-
vided a complete axiomatization of the logic, which shows it is rather well-behaved for a logic that deals with conformant 
probabilistic planning.

As for future work, the first thing to do is find a way to actually do planning using our framework, like the previous 
work in the non-probabilistic setting [24]. For now, only plan verification can be captured by model checking within our 
framework. We need to extend the language with some program operator as in [24]. We also hope to expand this work to 
the multi-agent setting, where different agents may have different prior probability distributions about the current state of 
the transition system.

Another direction for future research is to handle contingent planning. For this, we need to generalize the framework by 
defining the logical language directly over POMDP with explicit observations. For probabilistic contingent planning based on 
POMDP, the plan is usually a policy mapping belief states into actions (cf. [36]). Therefore, to deal with the reasoning in 
POMDP planning, we also need to expand the language and semantics to talk about policies.

Furthermore, with possible implementation in mind, future research will include determining the complexity of algo-
rithms for model checking and planning, which will make a comparison with other AI approaches to planning (with or 
without probability), such as the complexity results in [37,38]. The ultimate goal is to implement our framework such that 
we can compare with existing tools in AI based on plan generation time or plan quality.
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Appendix A. Proof of Proposition 28

Proof. We prove it by induction on ϕ . We only focus on the case of 
∑n

i=1 qi Bπi ϕi ≥ q; the other cases are straightforward.
If ϕ := ∑n

i=1 qi Bπi ϕi ≥ q, it follows by IH that � ϕi ↔ ϕi(ψ/χ) for each 1 ≤ i ≤ n. By the Equivalence rule in Table 1, we 
have that Bπi ϕi = Bπi ϕi(ψ/χ). It follows by linear inequality logic that � ϕ ↔ ∑n

i=1 qi Bπi ϕi(ψ/χ) ≥ q. �
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Appendix B. Proof of Proposition 29

Proof. Firstly, with the theorems that � ¬(ϕ ∧ ψ) ↔ ¬ϕ ∨ ¬ψ , � ¬(ϕ ∨ ψ) ↔ ¬ϕ ∧ ¬ψ , and � ¬¬ϕ ↔ ϕ , we can push 
negations down. Therefore, we can assume that ϕ is of the form that its negation subformulas are negative literals, namely, 
¬p, ¬[a]ψ , or ¬(

∑n
i=1 qi Bπi ψi ≥ q). Then we can define a translation function t as: t(p) = p; t(¬ϕ) = ¬t(ϕ); t([a]ϕ) =

[a]t(ϕ); t(
∑n

i=1 qi Bπi ψi ≥ q) = ∑n
i=1 qi Bπi t(ψi) ≥ q; t(ψ ∧ χ) = t(ψ) ∧ t(χ); and t(ψ ∨ χ) is defined as follows.

1. t(ψ ∨ χ) = t(ψ) ∨ t(χ) if ψ and χ are literals.
2. If ψ = ψ1 ∧ · · · ∧ ψn then

t(ψ ∨ χ) = (t(ψ1) ∨ t(χ)) ∧ · · · ∧ (t(ψn) ∨ t(χ))

If χ is not a literal but of the form χ1 ∧ · · · ∧ χk , we take one more step to replace each t(ψi) ∨ t(χ) with (t(ψi) ∨
t(χ1)) ∧ · · · ∧ (t(ψi) ∨ t(χk)).

By induction on ϕ , it can be shown that � ϕ ↔ t(ϕ) and that t(ϕ) is in conjunctive normal form. �
Appendix C. Proof of Proposition 30

Proof. To make the proof shorter, let χ := ∑n
i=1 qi Bπi ϕi �� q and χ ′ := ∑n

i=1 qi Baπi ϕi �� q.
⇒
(1) � [a](χ ∨ ψ) ∧ [a]¬χ → [a]ψ by normal modal logic
(2) � 〈a〉χ → 〈a〉
 ∧ [a]χ by normal modal logic and Axiom DET
(3) � 〈a〉
 ∧ [a]χ → χ ′ by Axiom CP
(4) � 〈a〉χ → χ ′ by (2), (3)
(5) � ¬χ ′ → [a]¬χ by (4)
(6) � [a](χ ∨ ψ) ∧ ¬χ ′ → [a]ψ by (1) and (5)
(7) � [a](χ ∨ ψ) → χ ′ ∨ [a]ψ by (7)
⇐
(1) � [a]ψ → [a](χ ∨ ψ) by normal modal logic
(2) � χ ′ → (〈a〉
 → [a]χ) by Axiom CP
(3) � χ ′ → [a]⊥ ∨ [a]χ by (2)
(4) � [a]⊥ → [a]χ by normal modal logic
(5) � χ ′ → [a]χ by (3) and (4)
(6) � χ ′ → [a](χ ∨ ψ) by (5)
(7) � χ ′ ∨ [a]ψ → [a](χ ∨ ψ) by (1) and (6) �
Appendix D. Proof of Proposition 31

Proof. Since d([a]ψ) = 1, ψ cannot be in the form of [b]χ or ¬[b]χ . By Proposition 29, we assume ψ is in conjunctive 
normal form and [a]ψ := [a](ψ1 ∨ · · · ∨ ψn ∨ ψ ′) where d([a]ψ ′) = 0 and for all 1 ≤ i ≤ n, ψi := ∑in

j=1 qi j Bπi j
χi j ≥ qi and 

for all 1 ≤ j ≤ in , d(Bπi j
χi j ) = 0. By induction on n, we will show that there exists a formula ϕ with d(ϕ) = 0 such that 

� [a]ψ ↔ ϕ .
If n = 1, [a]ψ := [a](∑m

j=1 q j Bπ j χ j ≥ q ∨ψ ′). Let ϕ := (
∑m

j=1 q j Baπ j χ j ≥ qBa
) ∨[a]ψ ′ then we have d(ϕ) = 0. It follows 
by Axiom ConP that � [a]ψ ↔ ϕ . If [a]ψ := [a](ψ1 ∨ · · · ∨ ψn+1 ∨ ψ ′) where ψi := ∑in

j=1 qi j Bπi j
χi j ≥ qi for each 1 ≤ i ≤

n + 1. Let ϕ′ := (
∑1n

j=1 q1 j Baπ1 j
χ1 j ≥ q1 Ba
) ∨ [a](ψ2 ∨ · · · ∨ ψn+1 ∨ ψ ′) then we have d(

∑1n
j=1 q1 j Baπ1 j

χ1 j ≥ q1 Ba
) = 0. It 
follows by Axiom ConP that � [a]ψ ↔ ϕ′ . By induction on n, it follows that there exists a formula ϕ′′ such that d(ϕ′′ = 0)

and � ϕ′′ ↔ [a](ψ2 ∨ · · · ∨ ψn+1 ∨ ψ ′). Let ϕ := (
∑1n

j=1 q1 j Baπ1 j
χ1 j ≥ q1 Ba
) ∨ ϕ′′ then we have d(ϕ) = 0. It follows by 

Proposition 28 that � ϕ ↔ ϕ′ . Since � [a]ψ ↔ ϕ′ , it follows that � [a]ψ ↔ ϕ . �
Appendix E. Proof of Proposition 32

Proof. (1) � δ1 → Bπ δ0 = Bπ
 by Axiom ITSP
(2) � Bπ δ0 = Bπ
 → Bπ ((δ0 ∨ ψ) ∧ χ) = Bπχ by probability logic
(3) � δ1 → Bπ ((δ0 ∨ ψ) ∧ χ) = Bπχ by (1) and (2)
(4) � ¬δ1 → Bπ¬δ0 = Bπ
 by Axiom ITSP
(5) � Bπ¬δ0 = Bπ
 → Bπδ0 = 0 by probability logic
(6) � ¬δ1 → Bπδ0 = 0 by (4) and (5)
(7) � Bπ δ0 = 0 → Bπ ((δ0 ∨ ψ) ∧ χ) = Bπ (ψ ∧ χ) by probability logic
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(8) � ¬δ1 → Bπ ((δ0 ∨ ψ) ∧ χ) = Bπ (ψ ∧ χ) by (6) and (7)
(9) � q0 Bπ ((δ0 ∨ ψ) ∧ χ) + T ��2 q ↔ (δ1 ∧ (q0 Bπχ + T ��2 q)) ∨ (¬δ1 ∧ (q0 Bπ (ψ ∧ χ) + T ��2 q)) by (3), (8) and linear 
inequality logic �
Appendix F. Proof of Proposition 33

Proof. By Proposition 29, we assume that each ϕi (1 ≤ i ≤ n) is in conjunctive normal form. Since d(ϕ) = 1, it follows 
that at least one ϕi has a probability literal for some 1 ≤ i ≤ n. Assume that ϕ1 has a probability literal, namely ϕ1 :=
(
∑m

j=1 Bπ ′
j
χ ′

j �� q′ ∨ χ ′′) ∧ χ ′′′ . Then ϕ is in the form of q1 Bπ1 ((
∑m

j=1 Bπ ′
j
χ ′

j �� q′ ∨ χ ′′) ∧ χ ′′′) + ∑n
i=2 qi Bπi ϕi ≥ q where 

d(Bπ ′
j
χ ′

j) = 0 for all 1 ≤ j ≤ m. Let k be the number of occurrences of probability literals in ϕ1, · · · , ϕn . We prove it by 
induction on k.

If k = 1, it follows that d(Bπ (χ ′′ ∧ χ ′′′)) = 0 and d(Bπi ϕi) = 0 for all 2 ≤ i ≤ n. Let ψ1 := q1 Bπ1χ
′′′ + ∑n

i=2 Bπi ϕi ≥ q
and ψ2 := q1 Bπ1 (χ

′′ ∧ χ ′′′) + ∑n
i=2 Bπi χi ≥ q. It follows that d(ψ1) = d(ψ2) = 0. Let ϕ′ := ((

∑m
j=1 Bππ ′

j
χ ′

j �� q′Bπ
) ∧ ψ1) ∨
(¬(

∑m
j=1 Bππ ′

j
χ ′

j �� q′Bπ
) ∧ψ2). Since d(
∑m

j=1 Bππ ′
j
χ ′

j �� q′Bπ
) = 0, it follows that d(ϕ′) = 0. It follows by Proposition 32

that � ϕ ↔ ϕ′ .
If k = h + 1 and h > 0, Let ψ1 := q1 Bπ1χ

′′′ +∑n
i=2 Bπi ϕi ≥ q and ψ2 := q1 Bπ1 (χ

′′ ∧χ ′′′) +∑n
i=2 Bπi χi ≥ q. It follows that 

d(ψ2) = 1 and the number of occurrences of probability literals in χ ′′ ∧χ ′′′, ϕ2, · · · , ϕn is h. It follows by IH that there exists 
a formula ψ ′

2 such that d(ψ ′
2) = 0 and � ψ2 ↔ ψ ′

2. If d(ψ1) = 1, it follows that the number of occurrences of probability 
literals in χ ′′′, ϕ2, · · · , ϕn is less than or equal to h. It follows by IH that there exists a formula ψ ′

1 such that d(ψ ′
1) = 0

and � ψ1 ↔ ψ ′
1. Let ϕ′′ := ((

∑m
j=1 Bππ ′

j
χ ′

j �� q′Bπ
) ∧ ψ1) ∨ (¬(
∑m

j=1 Bππ ′
j
χ ′

j �� q′Bπ
) ∧ ψ2) and ϕ′ := ((
∑m

j=1 Bππ ′
j
χ ′

j ��
q′Bπ
) ∧ ψ ′

1) ∨ (¬(
∑m

j=1 Bππ ′
j
χ ′

j �� q′Bπ
) ∧ ψ ′
2). Since d(

∑m
j=1 Bππ ′

j
χ ′

j �� q′Bπ
) = 0, we have d(ϕ′) = 0. It follows by 
Proposition 32 that � ϕ ↔ ϕ′′ . It follows by Proposition 28 that � ϕ′ ↔ ϕ′′ . Therefore, we have � ϕ ↔ ϕ′ . �
Appendix G. Proof of Proposition 44

Proof. We leave the proof of left-to-right to the reader. Please note that it follows by the definition that k < h since 〈a〉ψ ∈ s

and s ∈ Atomϕ
k . Assume that 〈a〉ψ ∈ s and that there does not exist (t, k + 1) ∈ SM

ϕ
u such that ψ ∈ t and (s, k) a→ (t, k + 1). It 

follows that for all t ∈ Atomϕ
k+1: if ψ ∈ t then ϕs � [a]¬ϕt . Let t1, · · · , tn be all the sets in Atomϕ

k+1 such that ψ is a member 
of them. It follows by Proposition 42 that � ψ ↔ ϕt1 ∨ · · · ∨ϕtn . Moreover, since � ϕs → ([a]¬ϕt1 ∧ · · · ∧ [a]ϕtn ), it is easy to 
show that � ϕs → [a]¬ψ . This is in contradiction with 〈a〉ψ ∈ s and the assumption that s is consistent. Therefore, we have 
shown if 〈a〉ψ ∈ s then there exists (t, k + 1) ∈ SM

ϕ
u such that ψ ∈ t and (s, k) a→ (t, k + 1). �

Appendix H. Proof of Proposition 45

Proof. For the case of k = 0 and π := ε , let D ⊆ s be the set of all probability formulas in s, and let ψ := ∧D and χ :=
∧(s \ D). By Axioms PRTR(ε) and Add(ε), it follows that � Bεϕs ≤ 0 ↔ ¬ψ ∨ Bεχ ≤ 0. Since (s, 0) ∈ UM

ϕ
u , it follows that 

� ϕu → ψ . Thus, we have � ϕu ∧ Bεϕs ≤ 0 → Bεχ ≤ 0. Since � ϕs → χ , it follows by Axiom T that � ϕs → Bεχ > 0. By 
Definition 39, it follows that Bεχ > 0 ∈ 


ϕ
0 . Thus, we have Bεχ > 0 ∈ s, and consequently Bεχ > 0 ∈ u. Therefore, we have 

� ϕu ∧ Bεϕs ≤ 0 → ⊥, and consequently � ϕu → Bεϕs > 0.

For the case of k +1 and πa, it follows by (s, k +1) ∈ UM
ϕ
u |πa that there exists (w, 0) ∈ UM

ϕ
u such that (w, 0) πa→ (s, k +1). 

Since � Bπ 〈a〉ψ > 0 → Bπaψ > 0, by induction on π , it can be shown that � Bε〈πa〉ψ > 0 → Bπaψ > 0. Since w and u
share the same probability formulas and Bε 〈πa〉ϕs > 0 ∈ 


ϕ
0 , by Axioms T, we only need to show that 〈πa〉ϕs ∈ w . Next we 

will show it by induction on π . It is obvious for the case of a. For the case of πa, we have that (w, 0) π→ (w ′, k) a→ (s, k + 1)

for some (w ′, k) ∈ SM
ϕ
u . It follows by induction on π that 〈π〉ϕw ′ ∈ w . Moreover, since 〈a〉ϕs ∈ w ′ , we have � ϕw → 〈π〉ϕw ′

and � ϕw ′ → 〈a〉ϕs . Therefore, we have � ϕw → 〈πa〉ϕs , and consequently 〈πa〉ϕs ∈ w . �
Appendix I. Proof of Proposition 46

Proof. Let D be the set of all the probability formulas in u. We then only need to show that D ∪ {ψ} is consistent. If it 
is not, we have � ϕD → ¬ψ . It follows by Axiom PRTR(ε) that Bε(¬ϕD ∨ ¬ψ) = 1. Since ¬ϕD is a boolean composition 
of probability formulas, it can be shown that � ¬ϕD ∨ Bε¬ψ = 1. Since � ϕu → ϕD , we have � ϕu → Bε¬ψ = 1. By 
Axioms PRTR(ε) and Add(ε), it follows that � ϕu → Bεψ = 0. This is contradictory with Bεψ > 0 ∈ u. Therefore, D ∪ {ψ}
is consistent. �
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Table J.2
Linear inequality axioms.

Identity t ≥ t

0 terms
∑n

i=1 qiti ≥ q ↔ ∑n
i=1 qiti + 0t′ ≥ q

Permutation
∑n

i=1 qiti ≥ q → ∑n
i=1 qki tki ≥ q

where k1, · · ·kn is a permutation of 1, · · ·n.

Addition (
∑n

i=1 qiti ≥ q) ∧ (
∑n

i=1 q′
iti ≥ q′) → ∑n

i=1(qi + q′
i)ti ≥ q + q′

Multiplication
∑n

i=1 qiti ≥ q ↔ ∑n
i=1 dqiti ≥ dq (d is a positive rational)

Dichotomy (t ≥ q) ∨ (t ≤ q)

Monotonicity (t ≥ q) → (t > q′) where q > q′

Appendix J. Logic of linear inequalities

Definition 57 (Linear inequality axioms). Let t1, · · · tn be terms and q and q′ be rationals. The axioms of linear inequality logic 
(see [31]) are presented in Table J.2

Appendix K. Proof of Proposition 37

The only differences between standard models and nonstandard models are probabilities. Recall Definition 6, and we 
know that in standard models, μa is calculated by the probability B and the probability Pra . Since με in nonstandard 
models is the same as B in standard models, the first claim is to show that there exist such functions Pra that Pra is a 
probability distribution and that μa in nonstandard models coincides with μa which is calculated by this Pra and με . The 
idea of the proof is that we list a set of inequalities based on the probability μa in nonstandard models and the conditions 
that Pra needs to satisfy, and then we show the inequality set is satisfiable.

Claim 1. Define probability functions PrMπa :RM
a |UM|π ×UM|πa → Q+ such that 

∑
t∈RM

a (s) PrMπa(s, t) = 1 for each s ∈ UM|π where 
a is executable at s, and that 

∑
{s∈UM|π |t∈RM

a (s)} μM
π (s) · PrMπa(s, t) = μM

πa(t) for each t ∈ UM|πa.

Proof of Claim 1. If s is the current state after doing π and s a→ t , PrMπa(s, t) represents the probability of reaching t by 
continuing to do a in s. Let UM|π = {s1, · · · , sn, · · · , sn′ } such that action a is executable at each 1 ≤ i ≤ n and unexecutable 
at each n < i ≤ n′ . Let UM|πa = {t1, · · · , tm}, then the accessibility relation of a on UM|π ×UM|πa can be roughly depicted 
as follows.

UM|π s1 sn· · · · · · sn′

UM|πa t1 · · · tm

We now describe a set of linear inequalities over variables of the form x(i, j) for (si, t j) ∈ RM
a |UM|π ×UM|πa . We can 

think of x(i, j) as representing μM
π (si) · PrMπa(si, t j). For each (si, t j) ∈ RM

a |UM|π ×UM|πa , to make sure PrMπa(si, t j) > 0, we 
only need to request that

x(i, j) > 0. (K.1)

For each 1 ≤ i ≤ n, to make sure 
∑

t j∈RM
a (si)

PrMπa(si, t j) = 1, we only need to request that

∑
t j∈RM

a (si)

x(i, j) = μM
π (si). (K.2)

For each 1 ≤ j ≤ m, to make sure 
∑

M π M μM
π (si) · PrMπa(si, t j) = μM

πa(t j), we only need to request that
{si∈U | |t j∈Ra (si)}
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∑
{si∈UM|π |t j∈RM

a (si)}
x(i, j) = μM

πa(t j). (K.3)

Next, we only need to show that the set, S , of linear inequalities described in (K.1) to (K.3) has a solution. By the 
solvability theorem [39]:

Let S be a set of linear inequalities. If the inequality 0x1 +· · ·+0xn > 0 is not a legal linear combination of the inequalities 
of S , then S is solvable/satisfiable.

We only need to show that∑
(si ,t j)∈RM

a |UM |π ×UM |πa

0x(i, j) > 0 (K.4)

is not a possible legal linear combination of S . (For the definition of legal liner combination please see [39].) If possible, let 
μM

π (si) = ai and μM
πa(t j) = b j then there exists a scheme (see [39]) of S as shown in Table K.3 such that

u(i′, j′) > 0 for some (si′ , t j′) ∈ RM
a |UM|π ×UM|πa ; (K.5)

d(i, j) = u(i, j) + ri + w j = 0 for each (si, t j) ∈ RM
a |UM|π ×UM|πa ; (K.6)

d = −u0 + r1a1 + · · · + rnan + w1b1 + · · · + wmbm = 0 (K.7)

where ri = r′
2i−1 − r′

2i and w j = w ′
2 j−1 − w ′

2 j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Let a group G be a minimal subset of UM|πa such that for each t ∈ G if s a→ t and s a→ t′ for some s ∈ UM|π then t′ ∈ G . 
It is obvious that UM|πa can be divided into several such groups. Let one of these groups be {t1, · · · , th}, and we will write 
it as {1, · · · , h} for abbreviation. For each j ∈ G , let D j = {1 ≤ i ≤ n | (si, t j) ∈ RM

a |UM|π ×UM|πa }, which is the set of all the 

numbers i such that si ∈ UM|π and si
a→ t j . For each i ∈ D j , since d(i, j) = 0 and u(i, j) ≥ 0, it follows that w j ≤ −ri . Given 

j ∈ G , we use rw j to denote the maximal number in {ri | i ∈ D j}. Since w j ≤ −ri for all i ∈ D j , it follows that w j ≤ −rw j . 
Without loss of generality, we assume that rw1 ≤ · · · ≤ rwh . We use D1, j as an abbreviation for D1 ∪ · · · ∪ D j . It follows by 
Definition 35 that 

∑
i∈D1,h

ai = b1 + · · · + bh and that 
∑

i∈D1,k
ai > b1 + · · · + bk for each k < h. We then have the following:

∑
i∈D1,h

riai + ∑h
j=1 w jb j

≤ ∑
i∈D1,h

riai + ∑h
j=1 −rw j b j

≤ rw1(
∑

i∈D1
ai − b1) + ∑

i∈D1,h\D1
riai + ∑h

j=2 −rw j b j

≤ rw2(
∑

i∈D1,2
ai − b1 − b2) + ∑

i∈D1,h\D1,2
riai + ∑m

j=3 −rw j b j

because of (K.9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ rwh · (∑i∈D1,h
ai + ∑h

j=1 −b j)

= 0

(K.8)

For each 1 ≤ k ≤ h, we have the following.

rwk (
∑

i∈D1,k
ai + ∑k

j=1 −b j) + ∑
i∈D1,h\D1,k

riai + ∑h
j=k+1 −rw j b j

≤ rwk (
∑

i∈D1,k
ai + ∑k

j=1 −b j) + rwk+1

∑
i∈Dk+1\D1,k

ai + ∑
i∈D1,h\D1,(k+1)

riai + ∑h
j=k+1 −rw j b j

≤ rwk+1(
∑

i∈D1,k
ai + ∑k

j=1 −b j) + rwk+1

∑
i∈Dk+1\D1,k

ai + ∑
i∈D1,h\D1,(k+1)

riai + ∑m
j=k+1 −rw j b j

= rwk+1(
∑

i∈D1,(k+1)
ai + ∑k+1

j=1 −b j) + ∑
i∈D1,h\D1,(k+1)

riai + ∑h
j=k+2 −rw j b j

(K.9)

Because of the property of group, it follows that if G and G ′ are two different groups, and t ∈ G , t′ ∈ G ′ then Dt ∩ Dt′ = ∅. 
Assuming UM|πa is divided into l groups, it follows that

d = −u0 +
∑

1≤k≤l

(
∑

i∈DGk

riai +
∑
j∈Gk

w jb j) (K.10)

Since d = 0, −u0 ≤ 0 and 
∑

i∈DG
riai + ∑

j∈G w jb j ≤ 0 for each group G , it follows that u0 = 0 and 
∑

i∈DG
riai +∑

j∈G w jb j = 0. It follows that each inequality of (K.8) or (K.9) equals 0, especially,
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Table K.3
Scheme.

u0 ≥ 0:
∑

(si ,t j )∈RM
a |UM |π ×UM |πa

0x(i, j) > −1

u(1,1) ≥ 0: x(1,1) > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(i, j) ≥ 0: x(i, j) > 0
r′

1 ≥ 0:
∑

t j∈RM
a (s1) x(1, j) ≥ a1

r′
2 ≥ 0:

∑
t j∈RM

a (s1) −x(1, j) ≥ −a1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r′
2n−1 ≥ 0:

∑
t j∈RM

a (sn) x(n, j) ≥ an

r′
2n ≥ 0:

∑
t j∈RM

a (sn) −x(n, j) ≥ −an

w ′
1 ≥ 0:

∑
{si∈UM |π |t1∈RM

a (si )} x(i,1) ≥ b1

w ′
2 ≥ 0:

∑
{si∈UM |π |t1∈RM

a (si )} −x(i,1) ≥ −b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w ′
2m−1 ≥ 0:

∑
{si ∈UM |π |tm∈RM

a (si )} x(i,m) ≥ bm

w ′
2m ≥ 0:

∑
{si∈UM |π |tm∈RM

a (si )} −x(i,m) ≥ −bm

d(1,1)x(1,1) + · · · + d(i, j)x(i, j) > d

(Scheme is a systematical way to get a logical consequence 
of a set of inequalities. Please see [39].)

∑
i∈DG

riai +
∑
j∈G

w jb j =
∑
i∈DG

riai +
∑
j∈G

−rw j b j = 0. (K.11)

Moreover, by (K.9), we have that for each 1 ≤ k < h,

rwk (
∑

i∈D1,k

ai +
k∑

j=1

−b j) = rwk+1(
∑

i∈D1,k

ai +
k∑

j=1

−b j), (K.12)

∑
i∈Dk+1\D1,k

riai = rwk+1

∑
i∈Dk+1\D1,k

ai . (K.13)

Since 
∑

i∈D1,k
ai + ∑k

j=1 −b j > 0, it follows by (K.12) that rwk = rwk+1 for each 1 ≤ k < h. Next, we will show that for each 
1 ≤ k ≤ h, namely tk ∈ G , i ∈ Dk implies ri = rwk . For the case of k = 1, it is obvious from (K.8). For the case of k + 1, if 
i ∈ Dk+1 \ D1,k , it is obvious from (K.13). If i /∈ Dk+1 \ D1,k , it follows by IH that ri = rwk′ for some k′ ≤ k. Since rwk = rwk+1

for all 1 ≤ k < h, it follows that r , it follows that ri = rwk+1 .
By (K.5), we have known that u(i′, j′) > 0. Since ri = ri′ and d(i, j′) = u(i, j′) + ri + w j′ = 0 for all i ∈ D j′ , it follows that 

u(i, j′) = ui′, j′ for all i ∈ D j′ . Since u(i′, j′) > 0, it follows that rw j′ + w j′ < 0, namely w j′ < −rw j′ . Thus, for the group G such 
that j′ ∈ G , we have the following

∑
i∈DG

riai +
∑
j∈G

w jb j <
∑
i∈DG

riai +
∑
j∈G

−rw j b j.

This is contradictory with (K.11). Therefore, (K.4) cannot be a legal linear combination of S , and it follows by the solvability 
theorem that S has a solution.

Therefore, we define function PrMπa on RM
a |UM|π ×UM|πa as PrMπa(si, t j) = x(i, j)/μ

M
π (si) for each (si, t j) ∈

RM
a |UM|π ×UM|πa . It follows from (K.1) to (K.3) that PrMπa : RM

a |UM|π ×UM|πa → Q+ such that 
∑

t∈RM
a (s) PrMπa(s, t) = 1 for 

each s ∈ UM|π where a is executable at s, and that 
∑

{s∈UM|π |t∈RM
a (s)} μM

π (s) · PrMπa(s, t) = μM
πa(t) for each t ∈ UM|πa . �

Please recall that an execution path σ ∈ E PM(a1 · · ·an) is an alternating sequence of states and actions, s0a1 · · · sn , where 
s0 ∈ UM and si−1

ai→ si for each 1 ≤ i ≤ n. Given σ := s0a1 · · · sn , we use T (σ ) to denote the last state sn and ρ(σ ) to the 
action sequence a1 · · ·an . Given t ∈ UM|π , let [σ ]πt = {σ ∈ E PM(π) | T (σ ) = t}. Next, we construct a standard model based 
on the execution paths of M.

Claim 2. Construct a standard model M• such that μM•
π ([σ ]πt ) = μM

π (t) where π ∈ ⋃
0≤k≤md(ϕ)(A|ϕ)k and t ∈ UM|π .

Proof of Claim 2. We define the standard model M• as follows.
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SM• = {σ ∈ E PM(π) | π ∈ ⋃
0≤k≤md(ϕ)(A|ϕ)k}

RM• = {(σ ,a,σ ′) | a ∈ A|ϕ,σ ′ = σat}
PrM

ϕ
u (σ ,a,σat) = PrMρ(σ )a(T (σ ), t)

UM• = UM

BM• = μM
ε

VM•
(p) = {σ | T (σ ) ∈ VM(p)} for each p ∈ sub+(ϕ)

By the definition above, it is obvious that σ ∈ UM• |π iff T (σ ) ∈ UM|π for each σ ∈ SM•
. By induction on π we will 

show that μM•
π ([σ ]πt ) = μM

π (t). It is obvious for the case of ε . For the case of πa, we have the following.

μM•
πa ([σat]πa

t ) = μM•
πa ({σ ′at | s ∈ UM|π , t ∈ RM

a (s),σ ′ ∈ [σ ]πs })
=

∑
{s∈UM|π |t∈RM

a (s)}

∑
σ ′∈[σ ]πs

μM•
πa (σ ′at)

=
∑

{s∈UM|π |t∈RM
a (s)}

∑
σ ′∈[σ ]πs

μM•
π (σ ′) · PrM

•
(σ ′,a,σ ′at)

=
∑

{s∈UM|π |t∈RM
a (s)}

∑
σ ′∈[σ ]πs

μM•
π (σ ′) · PrMπa(s, t)

=
∑

{s∈UM|π |t∈RM
a (s)}

PrMπa(s, t)
∑

σ ′∈[σ ]πs
μM•

π (σ ′)

=
∑

{s∈UM|π |t∈RM
a (s)}

PrMπa(s, t) · μM
π (s) (by IH)

= μM
πa(t) (by Claim 1)

Therefore, we have shown that μM•
π ([σ ]πt ) = μM

π (t) for each t ∈ UM|π . �
Claim 3. M•, σ � ψ iff M, T (σ ) � ψ for each σ ∈ SM•

and ψ ∈ sub+(ϕ) such that no probability formula occurs in ψ .

Proof of Claim 3. By the definition of M• in Claim 2, it is obvious. �
Claim 4. M•, s � ψ iff M, s � ψ for each s ∈ UM•

and ψ ∈ sub+(ϕ).

Proof of Claim 4. We prove it by induction on ψ . We only focus on the cases of [a]ψ and 
∑n

i=1 qi Bπi ψi ≥ q; the other cases 
are straightforward.

For the case of [a]ψ , since d(ϕ) = 0 and [a]ψ ∈ sub+(ϕ), it follows that there is no probability formula occurring in [a]ψ . 
It follows by Claim 3 that M•, s � [a]ψ iff M, s � [a]ψ .

For the case of ψ := ∑n
i=1 qi Bπi ψi ≥ q, we only need to show μM

πi
([ [ψi] ]Mπi

) = μM•
πi

([ [ψi] ]M•|πi
). Please note that there is 

no probability formula occurring in ψi since d(ϕ) = 0. We have the following.

μM
πi

([[ψi]]Mπi
) =

∑
{t∈UM|πi |M,t�ψi}

μM
πi

(t)

=
∑

{t∈UM|πi |M,t�ψi}
μM

πi
([σ ]πi

t ) (by Claim 2)

=
∑

t∈UM|πi

∑
{σ ′∈[σ ]πi

t |M,t�ψi}
μM

πi
(σ ′)

=
∑

t∈UM|πi

∑
{σ ′∈[σ ]πi

t |M•,σ ′�ψi}
μM

πi
(σ ′) (by Claim 3)

=
∑

{σ∈UM• |πi |M•,σ�ψi}
μM•

πi
(σ )

= μM•
πi

([[ψi]]M•|πi
) �
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Appendix L. Proof of Proposition 54

Proof. Given a standard model M = 〈SM, RM, PrM, UM, BM, VM〉 with M, s � ϕ for some s ∈ UM , we define the 
nonstandard model M• as SM• = SM; RM• = RM; UM• = UM; VM• = VM; μM•

π = μM
π . Please note that μM

π is 
defined in Definition 6.

First, we need to show that M• is indeed a nonstandard model. We need to show the following claim.

Claim 5.

1. μM•
ε (UM•

) = 1 and μM•
ε (s) > 0 for each s ∈ UM•

;
2. μM•

πa (UM• |πa) = μM•
π ({s ∈ UM• |π |RM•

a (s) 
= ∅}) and μM•
πa (t) > 0 for each t ∈ UM• |πa;

3. μM•
πa (E) ≤ μM•

π ({s ∈ UM• |π | ∃t ∈ E : s a→ t}) for each E ⊆ UM• |πa;

4. μM•
πa (E) < μM•

π ({s ∈ UM• |π | ∃t ∈ E : s a→ t}) for each E ⊆ UM• |πa such that RM•
a (s) ∩ E 
= ∅ and RM•

a (s) \ E 
= ∅ for 
some s ∈ UM• |π .

Proof of Claim 5. 1. Since μM•
ε = BM , this is obvious.

2. First, we show μM•
πa (t) > 0 given t ∈ UM• |πa . Since t ∈ UM• |πa = UM|πa , it follows that there is a sequence s0a1 · · · sn

such that s0 ∈ UM , si
ai+1→ si+1 for all 0 ≤ i < n, and sn = t . It follows that BM(s0) > 0, PrM(si, ai+1, si+1) > 0 for all 0 ≤

i < n. It follows by Definition 6 that μM
πa (t) ≥ BM(s0) ×�n

i=1PrM(si−1, ai, si). Since BM(s0) ×�n
i=1PrM(si−1, ai, si) > 0

and μM•
πa = μM

πa , it follows that μM•
πa (t) > 0.

Second, let D = {s ∈ UM• |π | RM•
a (s) 
= ∅} then we will show μM•

πa (UM• |πa) = μM•
π (D). By the definition, we 

only need to show μM
πa (UM|πa) = μM

π (D ′) where D ′ = {s ∈ UM|π | RM
a (s) 
= ∅}. If UM|πa = ∅, it is obvious. If 

UM|πa 
= ∅, it follows that UM|πa = [ [
] ]M|πa
and D ′ = [ [〈a〉
] ]M|π . By Proposition 11, it follows that μM

πa (UM|πa) =
μM

π (D ′).

3. We only need to show that μM
πa (E) ≤ μM

π ({s ∈ UM|π | ∃t ∈ E : s a→ t}) for each E ⊆ UM|πa . Given E ⊆ UM|πa , let 
D = {s ∈ UM|π | ∃t ∈ E : s a→ t}. If E = ∅, it is obvious. If E 
= ∅, for each t ∈ E , there exists s ∈ D such that s a→ t . 
Moreover, it follows by Definition 6 that for each t ∈ E ,

μM
πa (t) =

∑
{s∈D|s a→t}

μM
π (s) × PrM(s,a, t)

We then have the following:

μM
πa (E)

= ∑
t∈E μM

πa (t)

= ∑
t∈E

(∑
{s∈D|s a→t} μ

M
π (s) × PrM(s,a, t)

)
= ∑

s∈D μM
π (s) × (∑

t∈(E∩RM
a (s)) PrM(s,a, t)

)
≤ ∑

s∈D μM
π (s) since 0 <

∑
t∈(E∩RM

a (s)) PrM(s,a, t) ≤ 1

= μM
π (D)

4. Given u ∈ UM|π and E ⊆ UM|πa , there are v, v ′ ∈ RM
a (u) such that v ∈ E and v ′ /∈ E . We need to show μM

πa (E) <
μM

π (D) where D = {s ∈ UM|π | ∃t ∈ E : s a→ t}. In 3. above, we have shown that μM
πa (E) ≤ μM

π (D) since for each 
s ∈ D:

μM
π (s) × ( ∑

t∈(E∩RM
a (s))

PrM(s,a, t)
) ≤ μM

π (s)

which is due to

0 <
∑

t∈(E∩RM
a (s))

PrM(s,a, t) ≤ 1.

However, since there are v, v ′ ∈RM
a (u) such that v ∈ E and v ′ /∈ E , thus we have

0 <
∑

M

PrM(u,a, t) < 1.
t∈(E∩Ra (u))
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Therefore, we have

μM
π (u) × ( ∑

t∈(E∩RM
a (u))

PrM(u,a, t)
)
< μM

π (u).

Since u ∈ D , it follows that μM
πa (E) < μM

π (D). �
Second, by induction on the formula ψ , it is easy to show that M•, t � ψ if and only if M|π , t � ψ for each ψ ∈

L B-Free , each t ∈ SM , and each π ∈ A∗ with t ∈ UM|π .
Third, we will show M•, u � ψ if and only if M, u � ψ for each ψ ∈ L 0 and each u ∈ UM . We prove it by induction 

on ψ . Please note that ψ ∈ L 0. Due to the second step, here we only focus on the case of 
∑n

i=1 qi Bπi ψi ≥ q. Since μM
πi

=
μM•

πi
, we only need to show [ [ψi] ]M|πi = [ [ψi] ]M•

πi
. Since ψi ∈ L B-Free , it follows by the second step that [ [ψi] ]M|πi =

[ [ψi] ]M•
πi

. �
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