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Abstract: The universal nature of black hole collapse in asymptotically AdS3 gravita-

tional theories suggests that its holographic dual process, thermalization, should similarly

be fixed by the universal features of 2d CFT with large central charge c. It is known that

non-equilibrium states with scaling dimensions of order c can be sorted into states that

eventually thermalize and those that fail to do so. By proving an equivalence between

bounded Virasoro coadjoint orbits and certain (in)stability intervals of Hill’s equation it is

shown that semi-classical CFTs possess a phase transition where a state that fails to ther-

malize can be promoted to a thermalizing state by preparing the system beforehand with

an energy greater than an appropriate threshold energy. It is generally a difficult problem

to ascertain whether a state will thermalize or not. As partial progress to this problem

a set of lower bounds are presented for the threshold energy, which can alternatively be

interpreted as criteria for thermalization.
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1 Introduction

Strongly coupled quantum field theories provide examples of very interesting but extremely

complex chaotic phenomena. Unfortunately the amount of precise statements that can be

made about systems at strong coupling is very limited, and these typically only apply to

very specific models. One family of strongly coupled theories where one can make rather

powerful statements is 2d conformal field theory. In particular, if one narrows it down

further and considers 2d CFT in the regime of large central charge, in which case the

amount of accessible information grows even further.

Better yet a lot of these statements are often universal, depending only on conformal

symmetry, modular invariance or the presence of the identity operator in the operator

spectrum, while otherwise completely independent of the microscopic details of the theory.

Examples include the famous Cardy formula [8, 9] and the universal ground state entangle-

ment entropy [10, 11]. A particularly fruitful common feature of 2d CFT is the universal

contribution of the vacuum representation to the Hilbert space and its state-operator dual,
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the identity operator. In the ’t Hooft limit in higher dimensions the presence of the iden-

tity operator block ensures large-N factorization, in 2d dimensions the extended vacuum

representation under the much larger Virasoro algebra causes the identity block to capture

substantially more non-trivial information of the field interactions, in particular this has

been exploited in for instance [3, 12].

Of course one of the most, if not the most, exciting developments in theoretical physics

of the last decades is the AdS/CFT correspondence. Its most pressing contributions are

in the form of implications to quantum gravity. Rightfully so, most of the AdS/CFT

literature is devoted to formulating (or possibly defining) quantum gravity in terms of con-

formal field theory. But the flipside of the conjecture provides us with a lot of intuition on

strongly coupled conformal field theory with large numbers of degrees of freedom in terms

of semi-classical gravity. For one we expect the gravitational sector of the AdS3 bulk dual

to exhibit a phase transition in the form of black hole collapse. In the boundary CFT we

hence expect that non-equilibrium evolve at late Lorentzian times to an equilibrium state

that is either in an integrable phase or a thermal phase.

The key word in the CFT description of black hole collapse is thermalization, it is

typically said that a state thermalizes if at asymptotic late times a certain class of suffi-

ciently ‘simple’ correlators on the state approach the expectation values that would have

been obtained if they had been computed on a thermal state instead. The subject of this

paper will be to consider the identity block contribution to a two-point function of light

probe operators on a heavy non-equilibrium state, specifically at leading order in a large

central charge expansion.

Summary of the central message. The distinguishing function determining whether

a state thermalizes or not is the stress tensor expectation value of the state. A family

of stress tensor expectation values that are connected to each other through conformal

transformations form a Virasoro coadjoint orbit, all of these distinct orbits have been

classified [5, 6, 13, 32]. While the role of these orbits within the context of 3d gravity with

a negative cosmological constant is known [7, 15–20, 29], in [2] the authors established from

the conformal field theory perspective that the orbit in which the stress tensor expectation

value of a state is contained determines its ultimate fate.

In this paper it will be demonstrated that given a non-equilibrium state that would

keep the system in an integrable phase, there exists a state associated energy scale such

that one can trigger thermalization. Specifically if we prepare the system in advance in

an energy eigenstate with an energy above this scale and release the non-equilibrium state

on top of this eigenstate the system will thermalize. Furthermore it will be shown that

unitarity combined with Virasoro representation theory ensures that there can only be at

most one such transition scale per state.

While the gravitational bulk picture of this phenomena is very intuitive (see figure 1) a

pure conformal field theory description of this transition for CFTs with large numbers of de-

grees of freedom appears to be lacking in the literature, this paper attempts to fill that gap.

On a more pragmatic note, this approach naturally presents a set of lower bounds on

the transition energy in terms of the other Virasoro conserved charges of the state. These
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Figure 1. The bulk gravitational picture is particularly intuitive. If a non-equilibrium collapse

state is prepared that will collapse into a non-thermal geometry (e.g. a conical defect geometry),

then if the experiment were to be repeated with an initial conical defect with mass m in the

asymptotic past, then there exists a critical value of m such that the conical defect is pushed over

the critical opening angle and a BTZ black hole is formed instead.

provide us with a set of necessary (but not sufficient) conditions that a state needs to satisfy

in order to thermalize. It is an open problem to find an analytically accessible diagnostic

deciding whether a state thermalizes or not [20], in principal the answer is given by a path-

ordered integral but it is generally not feasible for these to be analytically computed. The

necessary conditions in terms of Virasoro charges gives a partial answer to this question in

terms of much simpler contour integrals instead. Alternatively, if the Virasoro conserved

charges are interpreted as thermodynamic equation of state variables, then the derived

lower bounds can be thought of as bounding the equation of state in the thermalizing phase.

As a mathematical problem the question: to what Virasoro coadjoint orbit does a given

stress tensor belong, appears deceptively similar to a continuous version of the question:

given a CFT descendent state, what is its associated primary state. While the stress tensor

expectation value, in a sense, only contains coarse-grained information about a state, it is

much more directly related to the thermodynamic quantities of the state. A simple example

that partly demonstrates the difference between these concepts is the case of the displaced

primary operator acting on the vacuum O(α)|0〉 = exp(−iαL−1)O(0) exp(iαL−1)|0〉. Ex-

panding the exponentials displays the fact that this simple state is a complicated superpo-

sition of descendant states at all levels of the Verma module. As this state does not have

a specific level it is unclear how to ascertain purely from the Virasoro algebra what its

asociated primary state is. This problem will be further exacerbated by the states under

consideration in this paper as they will generically be superposition states of many different

conformal families.

This paper has been organized in the following way, section 2 provides a relatively

low-technical review of the identity block contribution to probe two-point functions on

heavy states and the role of Virasoro coadjoint orbits. Section 3 discusses some of the

general features of Hill’s equation, the class of ODEs that naturally occur in these two-
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point functions and presents an equivalence between a subspace of Hill’s equations and

the space of bounded Virasoro orbits. In section 4 a set of lower bounds are derived for

the transition energy from an elliptic to hyperbolic state. Furthermore two appendices

have been added, the first of which contains a more technical review of the classification

of Virasoro coadjoint orbits. The second appendix provides some of the more technical

aspects of the proof for the argued equivalence in section 3. For a reader who is interested

in an overview of the results but wishes to avoid the technical derivations reading section 2

is in principle sufficient.

2 Black hole collapse and the Virasoro identity block

One particular feature of asymptotically AdS3 gravity is that its black hole solutions, the

BTZ black holes, possess a mass gap. As a result not all collapsing states can form black

holes. Naively one could expect that the total energy of a state could act as a diagnostic

to determine whether a collapse process’ final state consists of a black hole. Interestingly

this does not quite work due to the rich boundary dynamics attributed to the Brown-

Henneaux conserved charges [30]. Simply put, arbitrarily large amounts of energy can be

stored in the Virasoro boundary charges without contributing to a potential final state

black hole mass, in fact one could remove or increase this energy by means of a conformal

transformation [20]. As an analogy, one can consider a bound system of particles, one could

increase the energy of this system by arbitrarily large amounts by boosting it to higher

and higher velocities but it will not affect the Schwarzschild radius of the bound system.

By the holographic nature of asymptotic AdS3 gravity it is expected that there exists a

CFT analogue to this dichotomy between states |V 〉 that collapse to a black hole and states

that fail to form black hole states. The holographic dictionary states that the analogue

would be that some initial states will equilibriate to states that are indistinguishable from

being thermal [21] while other states remain in an integrable phase. The class of 2d

CFTs under consideration will be very broad, mirroring the universality of black hole

thermodynamics in gravitational theories. The focus will be on 2d CFTs with very large

central charge c, due to the semi-classical nature of black hole thermodynamics but mostly

due to immense analytical simplification it provides. Secondly we will assume a sparse

operator spectrum at low scaling dimensions, this allows one to find a kinematical regime

where the dominant contribution to correlation function is due to the vacuum Virasoro

block, as far as we know there exist no examples of theories with gravitational duals that

violate this assumption.

Similarly we will want to examine the late time behaviour of a set of states that is

as broad as possible. One area where the large c approximation particularly shines is the

calculation of correlation functions of operators with scaling dimensions that are small with

respect to the central charge. Unfortunately in order to overcome the Casimir energy of the

Lorentzian cylinder |EC | = c/24 one needs to consider states |V 〉 with scaling dimensions

HV proportional to c (typically called heavy states). Put explicitly we will want to consider

– 4 –
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Figure 2. In order to ensure dominance of the identity Virasoro block the states are assumed to

be generated by heavy primary operators inserted into the dark shaded region A. As a result all

hermitian adjoint operators are located in the light shaded region. The dark shaded region manifest

in (2.1) as the integration region over which the operators are (potentially) smeared.

states of the generic form

|V 〉 =

N∏
k

∫
A
dzk gk(zk)Ok(zk)|0〉, (2.1)

with heavy operators Ok and possibly some sufficiently smooth smearing function gk(zk).

The insertion locations zk are not completely free since we will want to compute correlators

involving this state where there exists an OPE channel where the identity block contribution

dominates. One way to achieve this is to restrain zk to a thin annulus A whose exterior

boundary is given by the unit circle, see figure 2. Excluding the unit circle from the region

A ensures the regularity, the smearing functions are in place purely to emphasize the

generality of the state, in particular, within this context the functions gk(zk) are allowed

to simply be (a sum over) delta functions. Note that this implies that the number of heavy

operators is left generic.

The heaviness of the state provides an additional complication that was tackled by

the authors of [3, 4] in what they call the uniformization approach. They applied there

strategy to states generated by acting on the origin with a primary operator, in [2] the

authors applied this method to a wider class of heavy states, and showed that while the

resulting differential equations typically can not be solved analytically some qualitative

features can be derived. It was for instance shown that if the heavy state thermalizes at

late time that the temperature matches the temperature of the bulk dual black hole in the

Chern-Simons formulation of AdS3 gravity. Some of the results of [2] are briefly covered in

section 2.1.

It will be shown that given an integrable heavy state increasing the energy of this

state in a controlled way will cause it to cross a threshold that will trigger thermalization

at late Lorentzian time. A state that thermalizes at late times will be referred to as a
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hyperbolic state, conversely states that fail to thermalize will be called elliptic states, this

terminology makes particular sense in the following discussion but conveniently (though

not coincidentally) this convention was already standardized in [16].

We will see that the existence of a single such threshold is fixed by a combination

of representation theory of the Virasoro algebra and classic properties of linear ordinary

differential equations.

2.1 probe two-point function

To probe the behavior of the final state of an out-of-equilibrium state |V 〉 consider the

late-time limit of a two-point function of light operators on the state

A(z1, z2) = 〈V |Qh(z1)Qh(z2)|V 〉 (2.2)

the coordinates z are on the radial plane. The operator Qh is light in the sense that h� c

as such the amount by which they affect the dynamics of |V 〉 surmounts to a 1/c correction,

for this reason they form appropriate probes to measure physics of the state |V 〉, in order

for the correlator to be radially ordered we restrict the probe coordinates z1, z2 to the unit

circle. Note that while this correlator is radially ordered on the Euclidean radial plane

the Lorentzian correlator of interest is out of time order, this has to be taken into account

when analytically continuing to the Lorentzian cylinder. The direct interest of this note

is the late Lorentzian time limit, in [2] it was shown that after mapping the radial plane

to the Euclidean cylinder z = exp(τ + iφ) and analytically continuing the Euclidean time

coordinate τ time-evolving in Lorentzian time corresponds to letting the probe observers

undergo counter-clockwise circles on the radial plane. The non-trivial multi-valuedness of

the correlator A(z1, z2) ensures that the result is not necessarily periodic in time.

The correlator will be simplified in two directions, first we will only look at the lead-

ing order in a 1/c expansion secondly we will only consider the identity block exchange,

i.e. we only consider the exchange of identity operators when performing OPE contrac-

tions between the operators of the state (2.1) and the probe operators. Unlike in higher

dimensional CFT where the vacuum block contribution merely computes the factorized

correlator in 2d CFT the vacuum block contribution to a correlation function captures

highly non-trivial information between the interaction of the state onto the probes. One

of the Virasoro descendants of the identity operator is the stress tensor, the AdS/CFT

dictionary states that its dual field is the graviton field, therefore the bulk interpretation

is that Virasoro identity block resums all graviton exchanges between the probes and the

geometry generated by the heavy state.

It was found through means closely related to the uniformization of punctured Riemann

surfaces [3, 23] that the correlator A(z1, z2) could be written in the form

A(z1, z2) = ψ(z1)−2hQψ(z2)−2hQ

(∫ z2

z1

ψ(z)−2dz

)−2hQ

(2.3)

where ψ(z) satisfies the Fuchsian ODE

ψ′′(z) +
6

c
T (z)ψ(z) = 0, (2.4)

– 6 –
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and where the expectation value T (z) is defined through

T (z) =
〈V |T (z)|V 〉
〈V |V 〉

. (2.5)

The freedom in picking a particular solution ψ(z) of (2.4) the reflects the freedom in

conjoining a uniformizing coordinate system with a global conformal transformation with-

out spoiling its uniformization property. As a complex function T (z) cannot be entirely

generic, due to the fact that the in- and out-states are identical up to Hermitian conjuga-

tion, taking the complex conjugate of (2.5) shows that it is subject to the following Schwarz

reflection property

T (z) = z−4T (1/z∗)∗, (2.6)

this for one implies that z2T (z) will be real-valued along the unit circle which will be

relevant when we consider the associated Hill system in section 3. Schwarz reflection also

restrict the monodromy matrix around the unit circle Mψ of a basis of solutions of (2.4).

There has to exist a basis of solutions such that Mψ is contained within SU(1, 1) [22],

which restricts the eigenvalues of Mψ in any basis to consist of both purely real numbers

or both pure phases. Additionally the determinant constraint fixes the eigenvalues to be

each others inverse (µ, 1/µ).

The late Lorentzian time limit corresponds to letting both the coordinates z1 and z2

perform a large number of cycles around the unit circle. If the eigenvalues are given by

real numbers (µ, 1/µ) the probe correlator is proportional to

A
(
e2πin1z1, e

2πin2z2

)
∝ µ−2h(n1−n2) n1 > n2 � 1, (2.7)

identifying ni with a Lorentzian time through ti = 2πni we find that (2.7) resembles a

two-point function evaluated on a thermal state with a temperature TV given by

log(|µ|) = 2π2TV . (2.8)

This concludes a condensed version of some of the results in [2].

2.2 Temperature as a conformal invariant and Virasoro orbits

The arguments reviewed above demonstrate that whether a heavy state |V 〉 thermalizes

and what temperature it thermalizes to is controlled by the eigenvalues of the monodromy

matrix Mψ of the independent solutions of the linear ODE (2.4). It can be shown that these

eigenvalues are independent of conformal frame, consider the single-valued holomorphic

mapping w(z), under this transformation the stress tensor T (z) transforms as

T (z)→ T (w) =

(
dz

dw

)2

T (z(w)) +
c

12
S[z, w] , (2.9)

it can easily be verified that if ψ(z) solves the ODE (2.4) that after the substitution (2.9)

the ODE (2.4) will be solved by

φ(w) =
1√
z′(w)

ψ(z(w)). (2.10)

– 7 –
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Orbit Stabilizer SL(2,R) class Bounded energy Primary representative

B0(b) S1 hyperbolic yes yes

Bn>0(b) Tn,∆ hyperbolic no no

C(ν) (0 < ν < 1) S1 elliptic yes yes

C(ν) otherwise S1 elliptic no yes

P+
0 S1 parabolic yes yes

P−1 T̃1,− parabolic yes no

P±n T̃n,∓ parabolic no no

E1 PSL(2,R) exceptional yes yes

En 6=1 PSL(n)(2,R) exceptional no no

Table 1. Summarized form of the various features of the Virasoro orbits as classified in [5] and

reviewed in appendix A.

Therefore the solution φ(w) under the curve w(eiθ) inherits the monodromy of the solution

ψ(z) under traversing the unit circle.1 Hence the matrix Mψ forms a conformal invariant

of the stress tensor.

A set of functions T (z) that are connected to each other through the action (2.9) is

given by a Virasoro coadjoint orbit, see appendix A for a short review based on [5, 6, 31],

for an additional review see [7]. All disconnected Virasoro coadjoint orbits have been

classified, for instance the set of all hyperbolic orbits is designated by Bn(b). Here the

index n indicates the number of zeroes of the independent solutions of (2.4) in the diagonal

basis, the argument b uniquely parametrizes a certain representative element of the orbit.

While all the various Virasoro coadjoint orbits have been classified (see table 1) not all of

them are physically relevant. If we define the holomorphic contribution to the energy the

usual way as the zero-mode of the stress tensor

E = L0 =
1

2πi

∮
dz zT (z), (2.11)

it is known that all orbits contain elements with arbitrarily large energies. This is not

a problem but it does complicate the process of sorting T (z) into an orbit as it almost

completely disconnects the temperature and the energy as quantities, in section 5 it will be

shown that any equation of state would need to contain all other virasoro conserved charges

as well. What is problematic is that some orbits possess an energy that is unbounded from

below, as one of the assumptions of unitary conformal field theory is that the vacuum state

is the lowest energy state in any conformal frame this leads to a contradiction, hence we

can dismiss these orbits as being unphysical.

1There is a small subtlety present concerning winding number, one could construct a map w(z) such

that a closed curve in w-space has to be traversed multiple times before z(w) performs a single S1 circle in

z-space. In [5, 6] this issue is bypassed by considering only mappings S1 → S1 with winding number 0, in

this paper the issue will largely be disregarded.
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Each Virasoro orbit that possesses a lower bound on its energy also possesses a primary

representative, meaning that for any T (z) contained within that orbit there exists a single-

valued transformation that takes it to a stress tensor of the form T (z) = H/z2. This is

exactly the form of the stress tensor expectation value of a state created by a primary

operator with scaling weight H inserted at the origin, OH(0)|0〉. They are related to the

constant representatives of [5, 6] through the coordinate transformation z = eiθ, in both

cases they are the representatives of an orbit whose energy saturates the lower bound. The

presence of such a primary representative paints a highly non-trivial picture of the physics

of semi-classical CFTs, the heavy state |V 〉, being generic, will generally decompose by the

operator state-correspondence into a state generated by a linear combination of operators

of many different conformal families all inserted at the origin. The fact that each physical

orbit contains such a primary representatives anyway has some implications with respect

to the eigenstate thermalization hypothesis [21], it implies that any generic heavy state

is sharply dominated by a single typical energy eigenstate, which in a CFT would be

either a descendent or primary state. See [2] for a short discussion on this point and

some estimates on the growth and sharpness of the peak in the case of an heavy operator

distribution corresponding to inserted mirror pairs.

The set of distinct physical orbits are dominated by the hyperbolic B0(b) orbits and

the elliptic Cν orbits with 0 < ν < 1. Besides these the physical spectrum consists of

one parabolic orbit P+
0 and an exceptional orbit E1 respectively corresponding to the BTZ

cross-over point and the vacuum. Each of these orbits possesses a primary representatives

of the form

E1 T (z) = 0

Cν (0 < ν < 1) T (z) =
c

24
(1− ν2)

1

z2
,

P+
0 T (z) =

c

24

1

z2
,

B0(b) T (z) =
c

24
(1 + b2)

1

z2
.

From the AdS/CFT dictionary mass ←→ scaling dimension it can be seen that it is con-

sistent to attribute to a hyperbolic state a bulk interpretation as being conformally related

to a BTZ black hole in the center of AdS. Similarly we can think of elliptic orbits as being

conformally equivalent to sourcing a conical defect geometry and of the parabolic orbit as

the minimal mass BTZ geometry.

As these are the lowest energy representatives they solidify the CFT intuition that |V 〉
can be thought of as being dominated by a single descendant state of Virasoro representa-

tion whose highest weight state has a scaling dimension given by the numerical factor in

front of the primary representative stress tensor.

One would rightly think that it would be very difficult to couple a generic state |V 〉 to

the appropriate primary representative since they are related to each other by the solutions

of extremely complex differential equations [5]. Fortunately there exists a large body of

known theorems about ODEs closely related to (2.4). These theorems will allow us to prove

that we can change the primary representative of a state by acting on a state with a primary

– 9 –
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operator at the origin, |V 〉H = OH(0)|V 〉. Given a set of stress tensor expectation values

{TH(z)} =

{
〈V |OH(∞)T (z)OH(0)|V 〉
〈V |OH(∞)OH(0)|V 〉

| All primary OH in the CFT spectrum

}
,

(2.12)

we can think of this family as a curve through the space of all possible stress tensor expec-

tation values parametrized by H. In section 3 it will be proven that this curve intersects a

bounded Virasoro coadjoint orbit only once, by showing that the constant representative

of the orbit increases monotonically as a function of H. In fact this tells us that given an

elliptic state |V 〉 there exists a certain state-specific critical scaling dimension H∗ such that

|V 〉H∗ falls within the class of hyperbolic states.

The bulk interpretation is that without any matter in the center of AdS an elliptic orbit

T (z) would source a geometry that would evolve to a non-thermal geometry (e.g. a conical

defect), but if there was a point source of matter in the center of AdS before releasing |V 〉
then the total scattering mass might be sufficient to trigger black hole collapse.

Finding the exact value for the energy neccessary to trigger such a transition is a very

difficult problem but it is possible to determine a set of bounds on the transition energy in

terms of the Virasoro conserved charges of the stress tensor. In section 4 it will be derived

that for any integer n 6= 0 the transition value of L0 designated L|V 〉 is bounded from

below by

L|V 〉 ≥
c

24
(1− n2) + |Re(L−n)| (2.13)

From this one can easily interpret this instead as an infinite set of neccessary conditions

for a stress tensor T (z) to be contained within a hyperbolic orbit

L0 >
c

24
(1− n2) + |Re(L−n)|, (2.14)

to emphasize the meaning of these inequalities, all of these need to hold in order for a

state |V 〉 associated to T (z) to thermalize, if just one of them fails it implies that T (z) is

contained within an elliptic orbit and hence |V 〉 fails to thermalize.

One question that one could raise is, given that any state, including the heavy states,

is decomposable into energy eigenstates and probe correlators on energy eigenstates are

known [3]. Would an alternative strategy to bypass the discussion of coadjoint orbits be

to decompose the heavy state |V 〉 into energy eigenstates instead. The argument as why

this alternative strategy would not be easier is due to the general sensitivity of a state on

its decomposition coefficients. At large central charge and energies comparable to c the

density of states is very large and a small change in any of the coefficients will have a very

large effect on the time evolution of a state. Finding the basis decomposition coefficients

of the original state to the required level of precision is a very difficult problem.

3 From Fuchs to Hill’s equation and its implications

In order to determine the late-time fate of a state |V 〉 one needs to know the monodromy

of the solutions to (2.4) around the unit circle. This suggests that for the purpose of

determining the monodromy, or (as we shall see) equivalently the orbit of T (z), knowing
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y(x) = e−ixψ(x)

Q(x) = 24
c

(
L0 − e4ixT (x)

)
λ = 1− 24

c L0

z = e2ix

Table 2. The constituents of the Hill system in terms of CFT data.

the solutions on the full complex plane is largely superfluous. Therefore it makes sense to

restrict ODE to the unit circle, as a result one obtains a real-valued ODE of Hill class. The

class of Hill’s equations are of the following general form

y′′(x) + (λ+Q(x)) y(x) = 0, (3.1)

where the coefficient function Q(x) is a periodic function satisfying

Q(x+ π) = Q(x),

∫ π

0
dxQ(x) = 0. (3.2)

Furthermore it is assumed that Q(x) is a real function on the interval [0, π]. There exists

a very substantial library of known theorems on the qualitative behavior of this large class

of ODEs [1] which will be exploited in the upcoming sections. Turning our attention back

to the Fuchs equation

ψ′′(z) +
6

c
T (z)ψ(z) = 0, (3.3)

where now T (z) is complex meromorphic function subject to the reflection constraint

T (z) =
1

z4
T (1/z∗)∗, (3.4)

as mentioned before this directly implies that the product z2T (z)||z|=1 is real-valued. To

rewrite this ODE into Hill form first map the unit circle to the interval [0, π] by means of

z = e2ix, in which case the ODE transforms to

ψ′′(x)− 2iψ′(x)− 24

c
e4ixT (x)ψ(x) = 0. (3.5)

This can (almost) be brought into the canonical form above by means of the transformation

y(x) = e−ixψ(x)

y′′(x) +

(
1− 24

c
e4ixT (x)

)
y(x) = 0. (3.6)

In order to fully connect to the canonical form (3.1) the zero-mode needs to be subtracted

out of the coefficient function

λ =
1

π

∫ π

0
dx 1− 24

c
e4ixT (x) = 1− 12

πic

∮
dz zT (z) = 1− 24

c
L0. (3.7)

Hence we obtain the Hill system (3.1) whose elements are described in table 2.
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There are a few interesting things here to note. First that this is exclusively a well-

defined Hill system if the coefficient function is guaranteed to be real for all real values of

x. This in turn is guaranteed by the reflection symmetry of the stress-tensor expectation

value T (z) (3.4) which implied z2T (z)||z|=1 is real-valued.

Secondly the number λ which plays a very important role in various stability theorems

of the Hill equation, has a clear physical interpretation, being for one related to the holo-

morphic Euclidean energy L0. Additionally if the total energy of the state is converted

into a black hole (i.e. no boundary gravitons) λ satisfies
√
|λ| ∝ TBH [2, 3]. In the next

section we will further expand on the CFT role of λ.

3.1 The off-set parameter as a CFT quantity

In a large amount of the theorems we will quote a deciding role will be played by the off-set

parameter λ. Within the CFT context the parameter λ is not so esoteric as will be shown.

Consider a state |V 〉 and its stress tensor expectation value T (z)

T (z) =
〈V |T (z)|V 〉
〈V |V 〉

. (3.8)

From the state |V 〉 we can construct a family of states by acting with primary operators

|V 〉H = OH(0)|V 〉 (3.9)

whose holomorphic stress tensor expectation value is given by

TH(z) ≡ 〈V |OH(∞)T (z)OH(0)|V 〉
〈V |V 〉

. (3.10)

Both the Fuchs and Hill equation take as input the expectation value of the stress-tensor

on the Euclidean radial plane, hence in this specific context no analytic continuation to

Lorentzian time is required, as a result the apparent breakdown of radial ordering is of no

concern. While no general proof is known it is generally believed that in the large c domain

correlators take the general form e−
c
6
f(zi) [10, 24–26], this combined with the holomorphic

Ward identities fixes TH(z) to the form

TH(z) =
H

z2
+
cV
z

+ T (z), (3.11)

demanding that both T (z) and TH(z) satisfy the reflection symmetry (2.6) sets the coeffi-

cient cV = 0, hence

TH(z) =
H

z2
+ T (z). (3.12)

This demonstrates that acting on a state with a primary operator has the effect of shifting

the L0 mode of the stress tensor without affecting the other modes. From the table 2 we

can as a result read off that acting with a primary operator on the state has the effect of

changing the relevant Hill equation to one with the exact same potential Q(x) but with a

lower off-set parameter λ.

Acting with a primary operator on the state has a clear bulk interpretation, depending

on the scaling dimension H it corresponds to creating in the asymptotic past either a

– 12 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
2

conical defect or a black hole in the center of AdS3. In fact one could feasibly construct

an experiment in which the value of λ is varied. First prepare an ensemble of systems in

various energy eigenstates then at a fixed reference time create the collapse state |V 〉 on

top of the eigenstate by acting with the operators that create |V 〉 out of the vacuum.

3.2 Floquet’s theorem and its implications

The main advantage of rewriting the Fuchs equation into Hill form is that it provides access

to the general theorems that apply to Hill’s equation. Some of these classic results will be

quoted without proof in this section, these have all been taken from [1] which in addition

contains all the missing proofs. Some definitions are required, given a Hill system (3.1)

and a set of normalized solutions y1(x) and y2(x) such that

y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1. (3.13)

We can define a characteristic equation

ρ2 −
(
y1(π) + y′2(π)

)
ρ+ 1 = 0, (3.14)

whose roots we denote by

ρ1 = eiαπ, ρ2 = e−iαπ. (3.15)

After these definitions we can state Floquet’s theorem

Theorem 1. Floquet’s theorem. If the roots ρ1 and ρ2 are distinct then Hill’s equation

has two linearly independent solutions

f1(x) = eiαxp1(x), f2(x) = e−iαxp2(x), (3.16)

where pi(x) are periodic functions with period π. If ρ1 = ρ2 then Hill’s equation has a pe-

riodic solution with either period π (when ρ1 = ρ2 = 1) or period 2π (when ρ1 = ρ2 = −1).

Let p(x) denote this periodic solution and let y(x) be another linearly independent solution.

Then

y(x+ π) = ρ1y(x) + θp(x), (3.17)

with a constant θ. The case θ = 0 corresponds to

y1(π) + y2(π) = ±2, y2(π) = 0, y′1(π) = 0. (3.18)

The Floquet basis of solutions is equivalent to the eigenbasis of solutions discussed

in section 2, this theorem is essentially a slightly more powerful version of the statement

that the monodromy matrix around the unit circle of the solutions of the Fuchs equation

is restricted to the set of SU(1, 1) matrices. It shares the same conclusion that, depending

on wether (3.14) has real solutions, the ODE solutions can broadly be divided into a class

of solutions that grows/shrinks exponentially and a class that stays bounded at all times.

The former will be referred to as unstable solutions and the latter as stable solutions. This

brings us to the second theorem, which tells us how the unstable and stable solutions are

distributed over parameter space
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Theorem 2. Oscillation theorem. To every differential equation (3.1), there belong two

monotonically increasing infinite sequences of real numbers

λ0, λ1, λ2, . . .

and

λ′1, λ
′
2, . . .

The differential equation (3.1) possesses a solution of period π if and only if λ = λn, and

a solution of period 2π if and only if λ = λ′n. The sequences satisfy the inequalities

λ0 < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 < λ′4 < λ3 < λ4 . . . (3.19)

The solutions of (3.1) are stable in the intervals

(λ0, λ
′
1), (λ′2, λ1), (λ2, λ

′
3), . . .

At the endpoints of these intervals the solutions are generally unstable. This is always

true for λ = λ0. The solutions are stable for λ = λ2n+1 or λ = λ2n+2 if and only if

λ2n+1 = λ2n+2, and they are stable for λ = λ′2n+1 or λ = λ′2n+2 if and only if λ′2n+1 = λ′2n+2.

If we promote a basis of solutions to functions of x and λ as yi(x, λ) then the charac-

teristic values solve the equations

y1(π, λn) + y′2(π, λn) = 2, (3.20)

y1(π, λ′n) + y′2(π, λ′n) = −2. (3.21)

Due to the fact that λ = 1−24L0/c, the oscillation theorem is consistent with the physical

intuition that if the energy is taken to infinity while keeping all the other Virasoro conserved

charges fixed the state equilibriates to an unstable (black hole) phase with an arbitrarily

high temperature. If we now think of the energy as a free parameter in the spirit of primary

operator insertions presented in the last section then we can see that lowering the energy

causes the solutions to settle down into a stable phase at some point λ0. In principle the

oscillation theorem states that instabilities can reoccur if the energy is lowered further but

this possiblity will be shown to be excluded.

In order to connect the stability intervals of the oscillation theorem to the Virasoro

coadjoint orbits we need one more theorem

Theorem 3. Either all nontrivial real solutions of (3.1) have only a finite number of

zeroes, or all real solutions have infinitely many zeroes. Let λ0 be the smallest value of λ

for which (3.1) has a periodic solution. Then for λ ≤ λ0 all nontrivial real solutions have

only a finite number of zeroes, but for λ > λ0, every real solution has infinitely many zeroes.

This theorem hints at the fact that the zeroth instability interval is special since it is

the only one where solutions possess a finite number of zeroes.
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3.3 Equivalence to Virasoro coadjoint orbits

At this point two ways of classifying stress tensors have been discussed, one can either

sort T (z) into one of the Virasoro coadjoint orbits or one can try to find out in what

(in)stability interval its associated Hill system falls. In this section it will be shown that

both approaches are equivalent.

The basis of solutions to the Fuchs equation that diagonalizes the monodromy matrix

around the unit circle corresponds to the Floquet basis of solutions of the Hill system. From

this we can determine that the hyperbolic class of Fuchs equations, those with eigenvalues

|µi| 6= 1 correspond to unstable solutions of the Hill system. The set of stress tensors

T (z) that lead to hyperbolic Fuchs equations is given by the set of hyperbolic Virasoro

coadjoint orbits Bn(b). The integer n counts the number of zeroes of the solutions of the

Fuchs equation on the unit circle [5] in the diagonal basis, hence for the Hill system the

number n corresponds to the number of zeroes on the interval (0, π) of the Floquet basis.

Theorem 3 states that the only instability interval whose solutions can have a finite

number of zeroes is the zeroth instability interval λ ∈ (−∞, λ0). The solutions associated

to the B0(b) orbit stress tensors possess no zeroes in the Floquet basis, therefore they have

to be contained within the zeroth instability interval. Conversely, all orbits Bn>0(b) lead

to Hill solutions that possess at least one zero on the interval (0, π). because of the real-

valuedness of the Floquet factors ρi this zero has to be attributed to the periodic parts

pi(x), hence on the entire real line these solutions have an infinite number of zeroes and

they have to be contained within the higher instability intervals.

On physical grounds all orbits Bn>0(b) can be dismissed as they correspond to states

which are conformally related to states with an energy lower than the vacuum. This

implies that all instability intervals other than the zeroth interval can be dismissed as being

unphysical.

From this we can easily establish that all stability intervals other than the first are

similarly unphysical. Simply take such a hypothetical state |V 〉 such that its associated

Hill system falls in one of the higher stability intervals. Then we can construct a new state

|V 〉H = OH(x)|V 〉 by acting with a primary operator. As derived in section 3.1 this will

only affect the Hill system by lowering the value of λ. Therefore if we are in a higher

stability interval we can pick a scaling dimension H such that |V 〉H is contained within a

higher instability interval. As a result we conclude that OH(0)|V 〉 is an unphysical state

and cannot be contained within the Hilbert of our CFT which implies that |V 〉 cannot be

contained within the physical Hilbert space either.

To complete the equivalence one needs to show the converse statement, that every

point on zeroth instability interval and first stability interval respectively correspond to

a unique B0(b) orbit or C0<ν<1 orbit. The proofs for these statements are quite a bit

more technical and as a result have been relegated to appendix B. The underlying idea is

straightforward though, there exists a simple bijective mapping of the Floquet factor α in

eiαx and the constant representative of the orbit, in appendix B it is shown that on the

zeroth instability interval and the first stability interval the Floquet factor is a monotonic

function of λ, which interpolates every single possible Floquet factor. As a result every

single constant representative is hit exactly once on the interval λ ∈ (−∞, λ′1).

– 15 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
2

In short we conclude that every physical bounded Virasoro coadjoint orbit has to

correspond to a point on the zeroth instability interval or the first instability interval,

and conversely that every point on these two (in)stability intevals in a one-to-one manner

exhausts the full set of B0(b), C0<ν<1 and the P+
0 orbits. This completes the proof for

the proposed equivalence between physical orbits and the first two (in)stability intervals.

As a direct corollary this provides a CFT version of the fact that there can only be one

non-thermal to thermal gravitational phase transition in the bulk.

4 Putting upper bounds on the transition energy

Virasoro representation theory restricts the set of physically relevant characteristic values

to λ0 (other than λ′1 which will not be discussed). When λ0 is converted into an energy

scale L|V 〉 through λ0 = 1− 24
c L|V 〉 it corresponds to the energy at which the family of states

{|V 〉H} = {OH(0)|V 〉 |All primary OH in the CFT spectrum} , (4.1)

crosses over to a state that eventually thermalizes at late time. Alternatively one can

think of the energy scale L|V 〉 as a diagnostic tool that lets one easily determine whether a

state |V 〉 will thermalize or remain in an integrable phase. Unfortunately determining λ0

analytically is an extremely difficult task, either given by the solution to a path-ordered

integral [2], or by the solution of an infinite determinant problem [1]. In this section we will

instead derive a set of upper bounds for the transition energy L|V 〉 in terms of the Virasoro

conserved charges. For this purpose consider the following eigenvalue problem which can

be constructed out of Hill’s equation(
d2

dx2
+ λ+Q(x)

)
yn(x) = σnyn(x), yn(x+ π) = yn(x), (4.2)

from the oscillation theorem we know that if y(x) is constrained to have periodic boundary

conditions y(x+ π) = y(x) that the eigenvalues σn have to be related to the characteristic

values through σn = λ− λn. If we are given a stress tensor in the thermal phase we know

from the arguments above that λ < λ0. Hence in the thermal phase all eigenvalues are

negative and

H(x) ≡ d2

dx2
+Q(x) + λ (4.3)

is a negative definite operator. Assuming that the set of periodic solutions yn(x) forms a

complete set on the space of periodic functions we can derive the following inequality∫ π

0
dxw(x)H(x)w(x) ≤ 0, (4.4)

which should hold for any real-valued periodic function w(x). We can think of (−)H(x)

as a Hamiltonian of some quantum system in which case estimating λ0 corresponds to

estimating the ground state energy. Note that the inequality (4.4) suggests that one pos-

sible strategy to sort T (z) into an orbit would be to check whether there exists a periodic

function w(x) such that the inequality (4.4) fails to hold. Mind though that if T (z) is
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contained within the elliptic phase that H(x) will only have one positive eigenvalue, hence

trial-and-error is extremely unlikely to produce a counter-example.

By exploiting the fact that the spectrum of H(x) is bounded from above a more

general set of bounds can be derived. This can be done by applying the variational method

to estimate the ground state energy of a Hamiltonian. Since σ0 is the largest eigenvalue of

H(x) the following inequality has to hold for any normalized periodic function w(x)∫ π

0
dxw(x)H(x)w(x) ≤ σ0. (4.5)

Take the following normalized set of test functions wn(x) =
√

2
π sin(nx).∫ π

0
dxwn(x)H(x)wn(x) =

1

2
(1− n2)− 12

c
L0 +

6

c
(Ln + L−n) , (4.6)

to obtain this expression the identities Q+λ = 1− 24
c e

4ixT (x) and Ln = 1
2πi

∮
dz zn+1T (z)

have been used. Since the largest eigenvalue of H(x) is given by σ0 we can establish the

following general upper bound

1− n2 − 24

c
L0 +

12

c
(Ln + L−n) ≤ σ0, (4.7)

reinstating λ0 through σ0 = λ − λ0 = 1 − 24
c L0 − λ0 and similarly converting λ0 into the

transition energy scale λ0 = 1− 24
c L|V 〉 yields

c

24
(1− n2) +

1

2
(Ln − L−n) ≤ L|V 〉. (4.8)

This provides us with an infinite set of lower bounds on the black hole transition energy.

Therefore if L0 is smaller than the left hand-side for any value of n we know for a fact that

the energy of the state |V 〉 is below the transition energy and we can conclude that the

stress tensor has to be contained within an elliptic orbit, or to phrase it quantitatively, if

there exists any n such that

L0 <
c

24
(1− n2) +

1

2
(Ln + L−n) (4.9)

then T (z) has to be some element of one of the Cν elliptic orbits.

By considering the different set of test functions wn(x) =
√

2
π cos(nx) a similar set of

lower bounds can be obtained2

c

24
(1− n2)− 1

2
(Ln − L−n) ≤ L|V 〉. (4.10)

The interpretation of an orbit as a classical Virasoro representation suggests that the Ln
charges are due to lowering operators and as such the dependence on these numbers is in

2One might be concerned that this allows test functions that posses test functions with period 2π instead

of π, the oscillation theorem states that Hill’s equation can only possess non-trivial solutions with period

2π at the characteristic values λ′n. Since λ0 < λ′n for all n this does not affect the conclusion.
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a sense redundant, the reflection condition (3.4) imposes that Ln = L∗−n this allows us to

eliminate the lowering operator charges. Furthermore the two sets of lower bounds (4.9)

and (4.10) can be combined to give

c

24
(1− n2) + |Re(L−n)| ≤ L|V 〉. (4.11)

This provides the following general necessary conditions for whether a state will

thermalize

L0 >
c

24
(1− n2) + |Re(L−n)|, (4.12)

these are necessary in the sense that the state |V 〉 will exclusively thermalize if all of

these condtions hold. The major downside is of course that these are only necessary

conditions not sufficient conditions. The CFT interpretation is that |V 〉 is generically not

a primary state but a descendent. Only the contribution to the energy from the primary

contributes to the constant representative. These criteria tell us whether, after filtering out

the energy contribution from a particular Virasoro raising mode, the energy is still sufficient

to overcome the holomorphic Casimir energy equal to c/24. Alternatively one can think

of the inequalities (4.12) as bounding an equation of state in the thermalizing phase if the

Virasoro conserved charges are interpreted as thermodynamic equation of state variables.

5 Discussion

The universality of black hole formation and black hole thermodynamics of gravity theories

on asymptotic AdS3 suggests that the dual description of thermalization should equally

be fixed by the universal features of 2d conformal field theory. This paper set out to

demonstrate that a similar transition to a thermal state is fixed by a combination of

Virasoro representation theory, properties of linear differential equations and the universal

vacuum block contribution to correlators. As a consequence a set of upper bounds were

derived that firstly let one, in some cases, determine if a given heavy state is elliptic (i.e. non-

thermal) and secondly provides lower bounds on the deficient energy required to trigger

thermalization. These upper bounds are given in terms of the Virasoro charges, which

are contour integrals of the stress tensor, this makes them significantly more analytically

tractable than the path-ordered integral that would be required to obtain the exact answer.

These bounds possess a physical interpretation on both sides of the duality. On the

gravitational side, the additional charges Ln<0 count the amount by which the excitations

of the excited state |V 〉 are locked up in conserved boundary charges. These locked exci-

tations possess energy and as these charges are conserved this energy will never be able

to contribute to a potential post-collapse black hole mass. As such it is not only the total

energy of the initial state needs to not only overcome the holomorphic BTZ mass gap of

c/24 but also the energy after filtering out the energy contained within boundary charges.

On the CFT side of the duality the conserved charges Ln can be interpreted as coarse-

grained thermodynamic equation of state variables. If so the inequalities (4.12) can be

thought of as approximating an equation of state when the system is prepared into a
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thermalizing phase. The fact that every physical coadjoint orbit possesses a primary repre-

sentative is indicative of the statistical mechanics of 2d semi-classical CFT. As the annulus

in figure 2 gets thinner the identity block contribution to the probe correlator grows more

dominant, additionally the energy expectation value of the heavy state grows higher as well

due to the fact that the heavy operators and their adjoints are brought closer together.

Both the expectation value of the energy as well as the standard deviation of the energy

grow as the annulus shrinks, but the expectation value grows parametrically faster than

the standard deviation, as a result the energy expectation value becomes more sharply

peaked the more identity block dominates OPE channel [2]. This underlies the physical

explanation for the presence of the primary representative in the Virasoro coadjoint orbits,

and reinforces the holographic dictionary that the statistical mechanics of large-c strongly

coupled CFT corresponds to the semi-classical limit of gravity in AdS.

The states that fall in the categorization (2.1) are generally superpositions of various

energy states, as such a natural question is to ask what breaks down in this construction

when considering as a state a superposition of states of the form (2.1). Both in principle

and practice there is no issue in analyzing these states due to the linearity of quantum

mechanics, but these states are not single elements of coadjoint orbits, rather they are sums

of elements of various coadjoint orbits. This follows from the wavefunction decoupling of

light operators from heavy correlators [24], this decoupling ensures that the stress-tensor

expectation value inherits the transformation rule of the CFT stress tensor. In the case of

a superposition of states (2.1) no such common factor can be divided out of the Schwarzian

ODE that appears in uniformization of Riemann surfaces and hence each term needs to be

treated separately. Holographically this teaches us that heavy states of the form (2.1) source

geometries that solve the Einstein field equations in the bulk, while superpositions of states

of the form (2.1) would form quantum mechanical superposition geometries in the bulk.

To probe thermalization it is typical to compute correlators of a set of simple operators

and see if, to leading order in a statistical mechanics large system limit, they match thermal

expectation values. This paper specifically considers two-point functions of probe opera-

tors, these operators have small scaling dimensions compared to the system. Therefore

they can be interpreted as corresponding to low-energy excitations in radial quantization.

In the case considered the large central charge expansion plays the role of the large system

limit. In principal the number of probe operators can be scaled up relatively straightfor-

wardly as long as the resulting product operator is parametrically light compared to the

central charge. Physically this correponds to the fact that a sufficiently complicated quan-

tum measurement can resolve the microstate of the ensemble which in the process destroys

the statistical mechanics interpretation. Quantitatively the Virasoro Ward identity states

that one would have to sum up all light contributions to the stress tensor expecation value

if there are order O(c) of these O
(
c0
)

contributions the large c expansion will break down.

Intuitively black holes formed by dynamical collapse would be an ideal arena to study

the information paradox. In fact since the leading order large central charge calculation

reproduces the correlator decay discussed in Maldacena’s formulation of the information

paradox [33], it is tempting to compute perturbative corrections. Especially since the

authors of [4] showed that these corrections can be computed systematically. Unfortunately

– 19 –



J
H
E
P
0
2
(
2
0
1
9
)
0
2
2

almost exactly the same authors demonstrated that these perturbative corrections can not

resolve the information paradox [34], see also [35] for a recent discussion. Perturbative 1/c

corrections are not entirely devoid of practical meaning though, and are in fact very efficient

for the purpose of calculating gravitational loop corrections. The first 1/c corrections of the

probe part contributes the Eikonal resummation of ladder diagrams of graviton exchanges

between the probe fields and higher order corrections resum loop corrections on top of that.
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A Virasoro coadjoint orbits

Due to their prevalence in the main body of the text it would be useful to review some of

the basic facts of Virasoro coadjoint orbits. First we will review that the Lie derivatives

of orientation preserving diffeomorphisms of the circle (Diff(S1)) form an algebra that in

the fourier basis gives the Witt algebra. As a result the Virasoro algebra has a geometrical

meaning as the central extension of the Lie algebra of Diff(S1). From this we will be able to

read off that the CFT stress-tensor has a geometrical interpretation in terms of a quadratic

differential field on a manifold whose tangent bundle is given by the (extended) family of

infinitessimal elements of Diff(S1) [5, 14, 32].

Since S1 is 1-dimensional the algebra constructed out of their Lie derivatives is partic-

ularly simple. Given two vector fields on S1, V = f(θ)∂θ and W = g(θ)∂θ.

[W,V ] = LWV =
(
f ′g − g′f

)
∂θ. (A.1)

If we decompose the functions f(θ), g(θ) in Fourier modes

f(θ) =
∑
n

iLne
iθ(n+1), (A.2)

and invert it we obtain the Witt algebra for the modes Ln

[Ln, Lm] = (n−m)Ln+m. (A.3)

As is well-known, the Virasoro algebra is the central extension of the Witt algebra. As

such we have to motivate a particular way to extend this algebra. The elements are easy,

the basic elements of Witt algebra were the tangent vector fields on the circle parametrized

by functions f(θ). To extend the elements we simply append to each function f(θ) a

number to create a doublet (f(θ), t), these will be the elements of the extended algebra.

The complication is to find a new bracket on this extended algebra, i.e given two doublets

(f(θ), t1), g(θ), t2) what is

[(f(θ), t1), (g(θ), t2)] = ?
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The standard CFT approach is to define the bracket through the 2d conformal Ward

identity

δε〈X〉 = − 1

2πi

∮
dz ε(z)〈T (z)X〉. (A.4)

From this Ward identity we can associate the following charge operator to the infinitessimal

conformal transformation ε(z)

Qε[T ] =
1

2π

∮
dz ε(z)T (z), (A.5)

we associate the following Lie bracket to these conserved charges

[Qε1 , Qε2 ][T ] ≡ −Qε2 [δε1T ]. (A.6)

We know the effect of the infinitessimal transformation on the stress tensor

∂εT (z) = − c

12
∂3
z ε(z)− 2T (z)∂zε(z)− ε(z)∂zT (z), (A.7)

hence we can work out the right-hand side of (A.6)

[Qε1 , Qε2 ][T ] =
1

2π

∮
dz ε2(z)

(
−2T (z)∂zε1(z)− ε1(z)∂zT (z)− c

12
∂3
z ε1(z)

)
=

1

2π

∮
dz (ε1(z)∂zε2(z)− ε2(z)∂zε1(z))T (z)− c

24π

∮
dz ε2(z)

(
∂3
z ε1(z)

)
= Q[ε1,ε2][T (z)]− c

24π

∮
dz ε2(z)

(
∂3
z ε1(z)

)
. (A.8)

Note that the boundary term coming from the integration by parts vanishes due to the

assumed single-valuedness of T (z) and εi(z). This candidate Lie bracket does not look anti-

symmetric yet, this can be fixed by performing two integrations by parts on the anoma-

lous term ∮
dz ε2(z)∂3

z ε1(z) = −
∮
dz ∂zε2(z)∂2

z ε1(z)

= −
∮
dz

1

2

(
∂zε2(z)∂2

z ε1(z) + ∂zε2(z)∂2
z ε1(z)

)
=

∮
dz

1

2

(
∂2
z ε2(z)∂zε1(z)− ∂2

z ε1(z)∂zε2(z)
)
. (A.9)

This commutator algebra on the conformal charges of 2d CFT motivates the following

bracket on the extended Witt algebra by transforming back to our coordinate system

through z = eiθ. After some algebra we find

[(f(θ), t1), (g(θ), t2)] =

(
[f(θ), g(θ)] ,

1

48π

∫ 2π

0
dθ e−2iθ

(
f ′(θ)g′′(θ)− g′(θ)f ′′(θ)

))
.

(A.10)

Write the space (f(θ)∂θ, a) in terms of the following basis

Ln =
(
iei(n+1)θ∂θ, 0

)
, Z = (0, i/2). (A.11)
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It is then easy to check that we find the usual Virasoro algebra (in a slightly unconventional

form)

[Ln, Lm] = (n−m)Ln+m +
Z

12
(n+ 1)3δn+m,0, (A.12)

[Ln, Z] = 0. (A.13)

The additional generator Z commutes with all other generators, hence this is a proper

central extension of the Witt algebra.

A.1 Coadjoint action

In the last subsection it was reviewed how the Witt algebra can be viewed as the Lie bracket

of vector field on S1 and the Virasoro algebra as a central extensions of this algebra. To

define the adjoint and coadjoint action on these vector fields we need to define an inner

product. The vector fields f(θ)∂θ and quadratic differential fields b(θ)dθ2 possess a natural

inner product

〈b(θ), f(θ)〉 =

∫ 2π

0
dθ f(θ)b(θ), (A.14)

by simple Cartesian extension of this scalar product we can define an inner product on the

extended space

〈(b(θ), a), (f(θ), t)〉 =

∫ 2π

0
dθ f(θ)b(θ) + at. (A.15)

The adjoint representation is defined through the action of the vector fields onto themselves

i.e.

adu(v) ≡ [u, v] (A.16)

from this definition we can construct the adjoint action through the bracket (A.10). In-

serting this into the inner product tells us the effect of the adjoint action

〈(b, a), ad(g,x)(f, y)〉 = 〈(b, a),

(
f ′g − g′f, 1

48π

∫ 2π

0
dθ e−2iθ(f ′g′′ − g′f ′′)

)
〉

=

∫ 2π

0
dθ b(f ′g − g′f) +

a

48π

∫ 2π

0
dθ e−2iθ(f ′g′′ − g′f ′′). (A.17)

Given the adjoint action we define the coadjoint action as the unique operator on the dual

space such that its effect on inner products is the same as that of the adjoint action,3

specifically

〈ad∗(g,x)(b, a), (f, y)〉 ≡ −〈(b, a), ad(g,x)(f, y)〉. (A.18)

Since the right hand-side is known we can compute what the effect of the coadjoint action

is on a quadratic differential pair (b, a)

〈ad∗(g,x)(b, a), (f, y)〉 ≡ −〈(b, a), ad(g,x)(f, y)〉 = −
∫ 2π

0
dθ bf ′g−bg′f+

a

48π
e−2iθ(f ′g′′−g′f ′′),

(A.19)

3Up to a sign that is, this sign convention ensure that the combination 〈ad∗(g,x)(b, a), (f, y)〉 +

〈(b, a), ad(g,x)(f, y)〉 vanishes.
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after performing some integrations by parts we obtain

〈ad∗(g,x)(b, a), (f, y)〉 =

∫ 2π

0
dθ
(
−2bg′ − b′g − a

48π
e−2iθ

(
2g′′′ − 6ig′′ − 4g′

))
f, (A.20)

from which we can read off the effect of the coadjoint action

ad∗(g,x)(b, a) =
(

2bg′ + b′g +
a

48π
e−2iθ

(
2g′′′ − 6ig′′ − 4g′

)
, 0
)
. (A.21)

This expression looks unfamiliar but if we apply the change of variables z = eiθ on the

right hand-side of (A.20) we obtain

〈ad∗(g,x)(b, a), (f, y)〉 =

∮
dz
(

2bg′ + b′g − a

24π
g′′′
)
f (A.22)

hence in z-coordinates the coadjoint action takes the form of the variation of the 2d CFT

stress-tensor under infinitessimal conformal transformations generated by g. This justifies

the description maintained throughout the body of the text, that the sets of all stress-energy

tensors that are connected to each other through single-valued conformal transformations

are isomorphic to the coadjoint orbits generated from a quadratic differential field on the

extended space by acting with the coadjoint action.

A.2 Classifying orbits

In the previous subsection it was shown that due to the transformation rule of the stress

tensor it naturally lives inside a Virasoro coadjoint orbit, i.e. the space of all quadratic

differentials that are continuously connected to some reference quadratic differential field.

These coadjoint orbits possess a natural manifold structure [31], where we can think of

the coadjoint action parametrized by a pair (f, x) as (almost) the tangent space at the

reference point (b, a). This is not entirely accurate, there are possibly also pairs (h, y) that

leave the reference point (b, a) invariant, these have to be modded out. Define the central

extension of the algebra of vector fields on S1 as diff(S1) and Gb as the algebra spanned

by the vector fields (h, y) such that ad∗(h,y)(b, a) = 0 specifically

Gb =
{
h ∈ diff(S1) | ad∗h(b, a) = 0

}
. (A.23)

In that case the tangent space of the coadjoint orbit at the reference point (b, a) is given

by diff(S1)/Hb. This tangent space can be integrated to a full manifold designated by

Diff(S1)/Hb, these will be identified as the coadjoint orbits. As a result the coadjoint

orbits are classified by their reference point and their stabilizer algebra. Turning back to

the stabilizer algebra, since the coadjoint action is given by

ad∗(f,x)(b, a) =
(

2bf ′ + b′f +
a

48π
e−2iθ

(
2f ′′′ − 6if ′′ − 4f ′

)
, 0
)
. (A.24)

we know that given a fixed point (b, a) the defining equation for the stabilizer vectors h is

2bh′ + b′h+
a

48π
e−2iθ

(
2h′′′ − 6ih′′ − 4h′

)
= 0, (A.25)
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Orbit Stabilizer algebra generators

Diff(S1)/S1 l0

Diff(S1)/PSL(n)(2,R) l0, ln, l−n

Diff(S1)/Tn,∆ f(θ), where f is a vector field with 2n simple roots

Diff(S1)/T̄n,± f(θ), where f is a vector field with n double roots

Table 3. The classification of Virasoro coadjoint orbits purely in terms of group manifolds, i.e.

without their reference points.

or after a change of variables z = exp(iθ)

2bh′ + b′h− a

24π
h′′′ = 0. (A.26)

As a first step towards the well-studied [5] connection between Virasoro coadjoint orbits

and the differential equations classified as Hill’s equation we note that given a basis of

solutions ψ1(z) and ψ2(z) to the linear ODE

ψ′′(z)− b(z)ψ(z) = 0, (A.27)

the independent solutions of (A.26) will be given by

ψ1(z)2, ψ2(z)2, ψ1(z)ψ2(z). (A.28)

There is one additional complication, the condition (A.26) is a local condition, there is

no guarantee that the local solutions (A.28) respect the periodicity condition of the circle.

In a particularly impressive proof in [6] it is shown that the number of global stabilizing

vector fields of a given reference point is always either 1 or 3.

The classes of solutions to (A.26) have been classified [6], the resulting (either 1 or 3 di-

mensional) stabilizer groups that can be uplifted from the solutions are typically listed as [5]

S1, ,PSL(n)(2,R), Tn,∆, T̃n,±. (A.29)

Respectively, S1 forms the set of rigid rotations of the circle, PSL(n)(2,R) is the group

generated from the subalgebra of diff(S1) spanned by (L0, L−n, Ln). Tn,∆ and T̃n,± are

one-dimensional groups whose Lie algebras consist of vector fields on S1 with respectively

2n simple zeros or n double zeros, since the number of zeros is an orbit invariant The list of

these group manifolds that form the various Virasoro coadjoint orbits has been summarized

in table 3 [14].

A.3 Hill’s equation, Virasoro coadjoint orbits and SL(2,R) conjugacy classes

So far this concludes the classification as presented in [6], the group manifolds formed by

the coadjoint orbits form somewhat intangible structures. In this section we will follow [5]

and link the Virasoro coadjoint orbits to something that is of direct physical interest for

our purposes; the conjugacy classes of the monodromy matrices of the solutions ψ(z) of

ψ′′(z) +
6

c
T (z)ψ(z) = 0, (A.30)
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around the unit circle. The information of the coadjoint orbit enters the ODE through T (z)

which is related to the earlier quadratic differential fields b(θ)dθ2 through T (z) = b(x(z))

with z = eiθ. In order to directly connect to application in 2d CFT described in section 2

we identify T (z) with the stress tensor expectation value of the CFT used throughout the

body of the text, in that vein c designates the central charge of theory. Being a second

order linear differential equation, the solution space of (A.30) is spanned by a basis of

solutions of the form ψψψ(z) = (ψ1(z), ψ2(z))T , the monodromy matrix ψψψ(z) around the unit

circle Mψ ∈ SL(2,R) is given by

ψψψ
(
e2πiz

)
= Mψψψψ(z) (A.31)

The infinitessimal transformation under a vector field (f, y) was given in (A.22) it is

known that this expression integrates to the transformation rule

T (w) =

(
dz

dw

)2

T (z) +
c

12
S[z, w], (A.32)

where w(z) is an element of Diff(S1) analytically continued to the complex plane and

S[z, w] is the Schwarzian derivative defined as

S[z, w] =
z′′′(w)

z′(w)
− 3

2

(
z′′(w)

z′(w)

)
. (A.33)

It is straightforward to check that if ψ(z) solves (A.30) that under the replacement T (z)→
T (w) as in (A.32) that (A.30) is solved by the replacement ψ(z)→ φ(w) = 1√

z′(w)
ψ(z(w)).

Since w(z) is by construction single-valued along the unit circle we can conclude that

the monodromy matrix Mψ is invariant under the transformations w(z). Of course in

constructing the basis of solutions ψψψ(z) there exists a freedom in choice of basis, a basis

tranformation ψψψA(z) = Aψψψ(z) has the effect of conjugating the monodromy matrix

MψA
= A−1MψA. (A.34)

This establishes an important fact namely that the conjugacy class of the monodromy

matrix Mφ is an orbit invariant with respect with the entire Virasoro orbit in which T (z)

is contained.

Since every Virasoro orbit maps to a conjugacy class of SL(2,R) and since these conju-

gacy classes are known, the problem is to link the right orbit to the right conjugacy class.

The strategy is to match the respective stabilizer subgroups. Take α(z) to be an element

of the stabilizer group of T (z), i.e.

T (z) =

(
dz

dα

)2

T (z) +
c

12
S[z, α]. (A.35)

The fact that α(z) leaves the differential equation invariant but changes the solution implies

that the new solutions are related to the old ones by linear transformation

1√
α′(z)

ψψψ(α(z)) = γ(α)ψψψ(z), (A.36)
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the left hand side leaves Mψ invariant whereas the right-hand side affects Mψ through

conjugation as a result the matrix γ(α) has to satisfy

Mψ = γ(α)−1Mψγ(α). (A.37)

As a mapping γ(α) has the property of mapping of mapping an element of the stabilizer

group to a matrix that leaves the matrix Mψ invariant under conjugation, this set of

matrices forms a group G[Mψ] and γ(α) forms a homomorhpism from the stabilizer group

to G[Mψ]. This led the authors of [5] to the following strategy: take a conjugacy class of

SL(2,R), pick an element of that class to act as a representative, compute the set of matrices

that leave the representative invariant under conjugation. As a final, most computationally

challenging, task find a T (z) such that a basis of solutions to (A.30) exists such that it’s

monodromy around the unit circle is given by the representative matrix. As a result one

will have found the set of representatives and stabilizer groups hence classifying all Virasoro

coadjoint orbits.

The set of eigenvalues of an element of SL(2,R) are invariant under conjugation, the

det(Mψ) = 1 constraint restricts the two eigenvalues of Mψ to be each others inverse,

Floquet’s theorem further restricts the relevant classes to either be purely real or pure

phase with cross-over points where both eigenvalues are either 1 or both -1. The orbits

with eigenvalues falling in these categories are respectively designated as hyperbolic, elliptic

and parabolic or exceptional orbits. By constructing explicit examples of stress tensors T (z)

whose associated solutions have a monodromy within these conjugacy classes the authors

of [5] list the following classes of Virasoro orbits

Bn(b), C(ν), P±n , En (A.38)

these respectively correspond hyperbolic, elliptic, parabolic and exceptional orbits, but

they can have different stabilizer algebras corresponding to the affixes n and ± the real

arguments b and ν parametrize the set of representative stress tensors.

A.4 Relevant qualitative features of the individual orbits

As we shall see not all the orbits mentioned in the previous section are of direct physical

interest though. To each stress tensor we an associate an energy expectation value through

the conserved charge L0

L0 =
1

2πi

∮
dz zT (z), (A.39)

while within each orbit this number is unbounded from above, there are only a few orbits

for which this number bounded from below. Since we are considering unitary CFTs the

energy expectation value on the entire spectrum of states is bounded from below by the

energy expectation value of the vacuum state (in any conformal frame). Therefore one

can dismiss any orbit without a lower bound as incapable of being associated to a physical

state of the CFT spectrum. The full list of orbits which possess a lower bound on their

energy is given by

B0(b), C(ν) (0 < ν < 1), P+
0 , E1, P−1 . (A.40)
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Orbit Stabilizer SL(2,R) class Bounded energy Constant representative

B0(b) S1 hyperbolic yes yes

Bn>0(b) Tn,∆ hyperbolic no no

C(ν) (0 < ν < 1) S1 elliptic yes yes

C(ν) otherwise S1 elliptic no yes

P+
0 S1 parabolic yes yes

P−1 T̃1,− parabolic yes no

P±n T̃n,∓ parabolic no no

E1 PSL(2,R) exceptional yes yes

En 6=1 PSL(n)(2,R) exceptional no no

Table 4. Relevant features of the Virasoro coadjoint orbits as classified in [5].

In addition some of these orbits have the special property that they contain constant

representatives4 these orbits and their representatives are given by

E1 T (z) = 0

Cν (0 < ν < 1) T (z) =
c

24
(1− ν2)

1

z2
,

P+
0 T (z) =

c

24

1

z2
,

B0(b) T (z) =
c

24
(1 + b2)

1

z2
.

The representative functions T (z) have the form of the stress-tensor expectation values

on a state given by conformal primary inserted at the origin acting on the vacuum with

a scaling dimension given by the numerical prefactor of T (z). This also serves as a first

indicator that something seems to change at the BTZ mass threshold c/24. Some of the

details of the classification have been summarized in table 4.

B Floquet factor as a monotonic function of λ

The number λ contained within Hill’s equation possesses within our context the inter-

pretation as being related to the total energy of our state on the radial plane through

λ = 1 − 24
c L0. It would hence seem sensible that decreasing λ would increase the mass of

the conformal primary associated to an orbit. In this section we will prove that this is the

case, in more practical terms, this establishes that as we decrease λ from λ′1 to negative

infinity we sweep every physically allowed orbit and we reach every orbit exactly once.

The scaling dimension H of the primary representative of an orbit T (z) = H/z2 is simply

4The name is due to fact that in the coordinate x of [5, 6] these representatives are in fact constants, for

the 2d CFT purposes of this note it is convenient to immediately express these representative stress tensors

in the z-coordinate of the radial plane, where constant representative is perhaps a bit of a misnomer. Hence

in the main body of the text they are instead referred to as primary representatives.
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related to the Floquet factor α in (3.16) through

α =

√
1− 24

H

c
, (B.1)

therefore we will argue the equivalent statement that varying λ from λ′1 to negative infinity

monotonically interpolates every possible Floquet factor. The proof is somewhat technical,

mostly due to the fact that any proof has to naturally exclude the instability intervals

that are not the zeroth interval due to the clear fact that the Floquet factor cannot be

monotonic within these intervals. The proof for the first stability interval has already been

done in the past, in [1] it is proven that Hill’s discriminant is monotonically decreasing

within this interval.

To prove the monotonicity of the Floquet factor in the zeroth instability interval con-

sider the Floquet basis of solutions

y1(x) = e−βxp1(x), y2(x) = eβxp2(x) with pi(x+ π) = pi(x), (B.2)

of Hill’s equation

y′′(x) + (Q(x) + λ) y(x) = 0 (B.3)

an important point to note is that all solutions associated to Hill’s equation with λ < λ0

have only a finite amount of zeroes, the periodic nature of pi(x) hence implies that yi(x)

has no zeroes. This means that both functions yi(x) have definite sign for all x and since

Hill’s equation is linear we can choose this sign to be positive without loss of generality for

both Floquet solutions

yi(x) > 0 for all x as long as λ < λ0. (B.4)

now consider the following Hill equation shifted by a small ε

v′′(x) + (Q(x) + λ− ε)v(x) = 0, (B.5)

this equation will have another Floquet basis

v1(x) = e−γxq1(x), v2(x) = eγxq2(x) with qi(x+ π) = qi(x), (B.6)

The same consideration that applied to yi(x) apply to vi(x), i.e. the functions vi(x) can

be taken to be strictly greater than zero for all x. The solutions of Hill’s equation should

continuously flow into each other as we vary λ. Consider the solution ỹ2(x) to (B.5)

obtained from the exponentially increasing y2(x) by continuously shifting λ→ λ− ε. As a

solution it should be expressible as a linear combination of Floquet solutions

ỹ2(x) = av1(x) + bv2(x) = ae−γxq1(x) + beγxq2(x), (B.7)

since y2(x) is positive everywhere we can choose an ε such that the solution ỹ2(x) is positive

everywhere as well, this implies that both a, b > 0. Now consider the ratio ỹ2(x)/y2(x) in

the limit x→∞

lim
x→∞

ỹ2(x)

y2(x)
= lim

x→∞

ae−γxq1(x) + beγxq2(x)

eβxp2(x)
= lim

x→∞
be(γ−β)x q2(x)

p2(x)
. (B.8)
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Since q2(x) is a periodic function and hence bounded and since p2(x) can vanish nowhere

we can conclude that if ỹ2(x)/y2(x) blows up in the limit x→∞ this implies that γ > β.

We will now construct the solution ỹ2(x) for small ε by perturbing around the solution

y2(x) i.e.

ỹ2(x) = y2(x) + εz(x). (B.9)

To linear order in ε we find that z(x) satisfies the ODE

z′′(x) + (Q(x) + λ)z(x) = y2(x), (B.10)

by means of variation of parameters we find that the relevant particular solution for z(x)

is given by

z(x) = y2(x)

∫ x

0
y1(x′)y2(x′)dx′ − y1(x)

∫ x

0
y2(x′)2dx′

= eβxp2(x)

∫ x

0
p1(x′)p2(x′)dx′ − e−βxp1(x)

∫ x

0
e2βx′p2

2(x′)dx′. (B.11)

Due to the periodic nature of p2(x) it is bounded from above, take M to be an upper bound

such that for all x p2(x) < M then

z(x) > eβxp2(x)

∫ x

0
p1(x′)p2(x′)dx′ − e−βxp1(x)

∫ x

0
e2βx′M2dx′

= eβxp2(x)

∫ x

0
p1(x′)p2(x′)dx′ − e−βxp1(x)M2

(
1

2β
e2βx − 1

)
> eβx

(
p2(x)

∫ x

0
p1(x′)p2(x′)dx′ − p1(x)

M2

2β

)
, (B.12)

The negative term in parenthesis is bounded whereas the positive term diverges linearly

with x in the limit x→∞, again due to the positive definite and periodic nature of pi(x).

Looking back at the ratio ỹ2(x)/y2(x) in the large x limit

lim
x→∞

ỹ2(x)

y2(x)
= lim

x→∞

y2(x) + εz(x) +O
(
ε2
)

y2(x)

= lim
x→∞

1 + ε

(∫ x

0
p1(x′)p2(x′)dx′ − M2

2β

p1(x)

p2(x)

)
+O(ε2),

this ratio diverges to positive infinity in the limit x→∞, from which we can establish that

γ > β. This completes the proof that the Floquet factor is a stricly decreasing function of

λ as long as λ < λ0.
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