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Background Predicting mortality is important in patients with heart failure (HF). However, current strategies for predicting risk
are only modestly successful, likely because they are derived from statistical analysis methods that fail to capture
prognostic information in large data sets containing multi-dimensional interactions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods
and results

We used a machine learning algorithm to capture correlations between patient characteristics and mortality. A model
was built by training a boosted decision tree algorithm to relate a subset of the patient data with a very high or very
low mortality risk in a cohort of 5822 hospitalized and ambulatory patients with HF. From this model we derived a
risk score that accurately discriminated between low and high-risk of death by identifying eight variables (diastolic
blood pressure, creatinine, blood urea nitrogen, haemoglobin, white blood cell count, platelets, albumin, and red
blood cell distribution width). This risk score had an area under the curve (AUC) of 0.88 and was predictive across
the full spectrum of risk. External validation in two separate HF populations gave AUCs of 0.84 and 0.81, which were
superior to those obtained with two available risk scores in these same populations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusions Using machine learning and readily available variables, we generated and validated a mortality risk score in patients
with HF that was more accurate than other risk scores to which it was compared. These results support the use of
this machine learning approach for the evaluation of patients with HF and in other settings where predicting risk has
been challenging.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Introduction
Predicting mortality in heart failure (HF) is critically important to
patients, their providers, healthcare systems, and third-party pay-
ers alike. The ability to accurately assess outcomes in patients
with HF, however, has proven to be a difficult task. Although
a number of tools, including biomarkers,1,2 risk scores3–10 and
their combination11–13 have been developed for this purpose, most

*Corresponding author. Division of Cardiology, Department of Medicine, UC San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA. Tel: +1 858 246 2987, Email:
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.. have achieved only modest success, particularly when they are

employed in HF populations other than those from which the score
was derived.14–19 For instance, the Meta-Analysis Global Group in
Chronic Heart Failure (MAGGIC) risk score8 achieved a C-statistic
for the area under the curve (AUC) of 0.74 for predicting mortality
risk in a large cohort of patients followed in the Swedish Heart
Failure Registry, but performed less well in patients on a transplant
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waiting list and in a large population of ambulatory HF patients in
the US where the C-statistics were 0.69 and 0.70, respectively.16,18

The results with previous HF risk scores are likely due to several
causes including dependence on variables that are not universally
available and temporal dispersion in the collection of variables so
that the state of the patient at a discrete point in the course of
their disease is not captured.14,15 Most importantly, though, is that
previous HF prediction tools were largely derived using statistical
analysis methods that fail to capture multi-dimensional correlations
that contain prognostic information. In contrast, machine learning,
which has long been used by other fields, including high-energy
physics20 to discriminate between signal and background, uses
non-parametric analysis methods to incorporate these interac-
tions. As this approach offers theoretical advantages over ones
used in the past, we hypothesized that it could be used to gen-
erate a model that more accurately predicts mortality risk among
patients with HF than previously published scores.

Methods
The study conforms with the principles outlined in the Declaration of
Helsinki21 and was approved by the University of California, San Diego
(UCSD) Health Institutional Review Board.

Identification of three separate cohorts
of patients with heart failure
This study utilizes data derived from three distinct patient populations.
The algorithm was developed from retrospective analysis of a cohort of
patients followed at UCSD who were identified at the time HF was first
noted in their medical records. To locate these patients, we queried
the institutional electronic medical record (EMR) (EPIC 2015, Verona,
WI, USA) for patients with the earliest recorded occurrence (HF
index event) of the International Classification of Disease-10 (ICD-10)
codes listed in the online supplementary Table S1. This cohort includes
patients admitted for HF, had emergency room visits, or were seen in
an outpatient setting at the time when HF was first coded, regardless
of ejection fraction between 2006 and 2017. For every patient in this
cohort, we extracted results from the first instance of the complete
blood count, comprehensive metabolic panel, vital sign measurement,
electrocardiogram, and echocardiogram that occurred within 7 days
of the patient’s HF index event. This relatively narrow time window
allows for a precise capture of the state of the patient and preserves
the correlation between variables that could be diluted over time.

The second set of patients came from the University of California,
San Francisco Medical Center (UCSF) and was identified following an
identical procedure (ICD-10 codes and database extraction script) as
the one used for the data extraction at UCSD. This was possible as both
medical centres use the same underlying EMR system (EPIC 2015). For
this cohort, the study was approved by the UCSF Health Institutional
Review Board.

The third set of patients were those from the European A sys-
tems BIOlogy Study to TAilored Treatment in Chronic Heart Fail-
ure (BIOSTAT-CHF) project, which enrolled from 69 centres in 11

European countries between 2010 and 2012 to determine profiles
of patients with HF that do not respond to recommended therapies,
despite anticipated up-titration. The design and first results of the study
and patients have been described elsewhere.22 ..
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.. Derivation of the Machine learning
Assessment of RisK and EaRly mortality
in Heart Failure (MARKER-HF) risk
model
We developed a model using data from 14 589 patients identified at the
time of the first occurrence of HF in the UCSD EMRs. After exclusion
of patients older than 80 years at the time of the clinical encounter
(n = 2444), with cardiac implantable electronic device (CIED) including
implantable cardioverter-defibrillator or pacemaker (n = 612), with
findings consistent with sepsis (n = 40), who had died within 7 days
of initial encounter (n = 254), who had medical records with obvious
database errors such as recorded date of death prior to a recorded
clinical encounter or spurious lab results (n = 651) and those who had
missing data (n = 4766), the cohort used in the derivation and initial
validation consisted of 5822 patients, all of whom were under 80 years
of age. The rationale for excluding patients older than 80 years in our
derivation cohort is that age is the best predictor of death in older
patients and that inclusion of this variable would have diluted the ability
of the model to ‘learn’ the salient clinical features relevant to all ages.
For patients with a recorded date of death in the EMR, the time from
index event to mortality was calculated. The 407 patients who died
within 90 days of index event were classified as high-risk. For patients
without a recorded date of death, we calculated the time interval from
index event to the last known follow-up defined as the latest date of an
actual physical encounter recorded in the EMR. The 966 patients with
a last known follow-up 800 (or more) days after index event and with
no recorded date of death were defined as low-risk.

MARKER-HF was then designed by building a model to discriminate
between high and low-risk patients. The choice to not include the
population with ‘intermediate’ outcomes (mortality after 90 days or no
recorded follow-up after 800 days) in the derivation of the model was
dictated by two considerations. First, the algorithm that was chosen to
build the model is based on automated training with two well-defined
populations, which in this case are the high and low-risk cohorts.
Second, by excluding the patients with intermediate outcomes, the two
populations used in the training are clearly separated in outcomes, and
this helps the algorithm focus on the most important distinguishing
characteristics and correlations.

The model was built by training a boosted decision tree (BDT)
algorithm23 to relate a subset of the patient data, as detailed below,
to the two extreme outcomes. The BDT was based on the AdaBoost
algorithm,24 as implemented in the TMVA toolkit in version 6.13/01

of the CERN ROOT software package.25,26 The number of variables
selected was limited in order to increase inclusiveness by avoiding loss
of patients with missing data and to minimize overfitting that can result
in over-training and loss of robustness when the score is applied to
other populations. The variables selected are inexpensive to obtain
and commonly available. We used this algorithm to iteratively select
the smallest, most common and discriminating subset of variables out
of those available in the UCSD cohort. This approach identified a com-
posite of eight variables [diastolic blood pressure, creatinine, blood
urea nitrogen, haemoglobin, white blood cell count, platelets, albumin,
and red blood cell distribution width (RDW)] that provided excel-
lent discrimination between high and low-risk patients. In developing
the model, the high and low-risk cohorts were randomly divided into
equal-sized training (derivation) and test (validation) samples. The high and
low-risk training samples were used to train the BDT; the validation
samples were used to test the performance in a statistically indepen-
dent way. Training was performed assuming equal a-priori probabilities

© 2019 The Authors
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for any individual patient to belong to the low or high-risk samples.
Modifying these relative probabilities to 20–80% or 80–20% did not
result in significant changes in performance. The output of the BDT
algorithm for a given patient is the MARKER-HF score, where a higher
score indicates a higher likelihood of death. Although the MARKER-HF
score was derived from the high and low-risk patients, it can be calcu-
lated for all patients, not just those in the low and high-risk cohorts, and
subsequently testing was performed in patients across the full spectrum
of mortality risk in all three populations studied.

MARKER-HF performance on the
University of California, San Diego
cohort
The performance of MARKER-HF was tested by calculating the
C-statistic in the separation of the high and low-risk cohorts, and by
examining the relationship between MARKER-HF and life expectancy
in the full cohort, i.e. including patients with intermediate outcomes,
as defined previously. In addition, MARKER-HF performance is stud-
ied in subsets of patients divided by gender, ethnicity, inpatients vs.
outpatients, and by the ICD code used to identify HF at the identifying
occurrence.

External validation of the MARKER-HF
risk model
In order to determine if the score accurately predicts risk of death
in other distinct patient cohorts, we compared C-statistics and corre-
lation between MARKER-HF and life expectancy in patients from the
UCSD, UCSF and BIOSTAT-CHF populations. For this test RDW infor-
mation was imputed in both the BIOSTAT-CHF and UCSF patients,
since it was not available for these patients.

Results
Description of the three cohorts and the
covariates used in MARKER-HF
Age, gender, and mean values for the eight variables used to
construct the MARKER-HF score of the patients studied in the
three populations are summarized in Table 1.

Performance of MARKER-HF in the
University of California, San Diego
cohort
Using a BDT algorithm, a score between −1 and+1 was generated
for each patient. As shown in Figure 1A, the MARKER-HF score
was highly effective in separating the high and low-risk UCSD
patients. The un-binned Kolmogorov–Smirnov probabilities for
the compatibility between distributions of MARKER-HF scores for
the training and validation cohorts are 84% (high-risk cohorts)
and 31% (low-risk cohorts), demonstrating no overtraining by
the underlying algorithm. To further visualize how MARKER-HF
discriminates between high and low-risk patients in the validation
sample, we constructed a receiver operator characteristic (ROC)
curve (Figure 1B) and calculated 95% confidence intervals for the ..
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Table 1 Age, gender and variables used in
MARKER-HF in the three cohorts

UCSD
(n = 5822)

UCSF
(n = 1516)

BIOSTAT-CHF
(n = 888)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Demographics
Age, years 59 57 65
Female sex, % 41 41 28

MARKER-HF covariates, mean (SD)
Diastolic blood pressure,
mmHg

70 (14) 68 (13) 77 (15)

BUN, mg/dL 23 (14) 25 (16) 28 (17)
Creatinine, mg/dL 1.2 (0.7) 1.4 (0.9) 1.2 (0.4)
Haemoglobin, g/dL 11.3 (2.6) 11.6 (2.4) 13.3 (2.0)
White blood cell count,
× 103/L

9.6 (6.0) 9.3 (7.7) 8.3 (3.0)

Platelet count, ×103/L 211 (108) 206 (107) 231 (84)
Albumin, g/dL 3.6 (0.7) 3.1 (0.7) 3.2 (0.9)
RDW, % 15.4 (2.5) NA NA

BUN, blood urea nitrogen; NA, not available; RDW, red blood cell distribution width; SD,
standard deviation; UCSD, University of California, San Diego; UCSF, University of California,
San Francisco.

area under the ROC curve (AUC or C-statistic). The AUC in the
validation sample is 0.88 (95% confidence interval 0.85–0.90). It
is important to note that none of the eight input covariates is a
powerful discriminator in and of itself, since their individual AUCs
are in the range 0.54–0.78.

We calculated life expectancy in exclusive ranges of MARKER-
HF further distinguishing the training and validation UCSD
cohorts and splitting the remaining population randomly between
the two. To allow adequate follow-up time, we only included here
patients with index event prior to 31 December 2015 (n = 1986).
Figure 2A shows 1-year survival rates in ranges of MARKER-HF
score for these patients. The red (blue) curves show the results
for the training (validation) cohorts, respectively. Note that while
MARKER-HF was developed excluding intermediate risk patients,
the distribution shown in Figure 2A demonstrates the applicability
of the MARKER-HF algorithm across the full range of risk.

MARKER-HF performance on different
cohorts
The performance of MARKER-HF was subsequently further vali-
dated in two additional patient populations. For this purpose, we
used a cohort of patients from UCSF identified at the first recorded
occurrence of HF in the EMR and a cohort of patients from a Euro-
pean registry, BIOSTAT-CHF, which included HF patients who had
not responded to recommended therapies. To this end, we first
defined high and low-risk cohorts for UCSF and BIOSTAT-CHF
in the same way as was done for the UCSD cohort. We then
assigned a MARKER-HF score to each patient using the model
developed on the UCSD cohort, and finally calculated the AUCs
for separating high and low-risk patients. The results, including a
comparison with those on the UCSD cohort, are summarized in
Table 2 and Figure 2B. As mentioned previously, RDW information
was not available in the UCSF and BIOSTAT-CHF cohorts. For
these patients we imputed the RDW value as the mean RDW

© 2019 The Authors
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Figure 1 Comparison of high-risk and low-risk populations. (A) Distributions of MARKER-HF scores in the high-risk (blue) and low-risk
(red) populations. Both training (histograms) and testing/validation (data points) samples are shown. The vertical error bars on the data points
represent the

√
n statistical uncertainties in each data point. The corresponding uncertainties in the histogram are of the same order, and they

are not shown for simplicity. (B) Receiver operating characteristic curve for discrimination of high-risk from low-risk patients in the validation
cohort. AUC, area under the curve; CI, confidence interval; TNR, true negative rate; TPR, true positive rate.
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Figure 2 MARKER-HF performance as a risk score: 1-year survival rate in ranges of MARKER-HF comparing (A) University of California, San
Diego (UCSD) training and validation cohorts, and (B) the UCSD (n = 1986, index event before 31 December 2015), University of California,
San Francisco (UCSF; n = 1516, index event before 31 December 2016), and BIOSTAT-CHF (n = 888, index event required to be at least
1 year prior to end-of-study date) cohorts. The horizontal bar on each point represents the range in MARKER-HF of the corresponding
bin. The data point is placed at the weighted-mean position in the bin range. The vertical error bar on each point represents the one sigma
Clopper–Pearson interval. Note the reproducibility between cohorts over wide range of risks.

from the UCSD cohort. As shown in Table 2, when we tested this
strategy on the UCSD cohort there was only a small deteriora-
tion in performance (row 1 vs. row 2). Note that for rows 2, 3,
and 4 of Table 2 MARKER-HF was computed using the same RDW
value in every cohort, which effectively removes it as a distinguish-
ing feature between high and low-risk cohorts. Within the some-
what limited statistical power of the comparison, the AUCs on the
three samples are consistent with each other (𝜒2/n.d.o.f = 4.1/2,
P = 0.13) indicating the ability of MARKER-HF to predict outcomes
across different populations. To test the performance in a broader
set of patients, we compared the 1-year mortality prediction in ..
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.. ranges of MARKER-HF (Figure 2B) in the UCSF and BIOSTAT-CHF
populations following the same procedure described previously for
Figure 2A. We observed consistent performance, within statistics,
over the full risk spectrum in all three populations.

Comparing MARKER-HF to NT-proBNP
in determining risk
We also compared the performance of MARKER-HF with
N-terminal pro-B-type natriuretic peptide (NT-proBNP), a
well-validated biomarker associated with HF for which elevation
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Table 2 MARKER-HF area under the curve (AUC) in
different cohorts. Comparisons of AUCs to separate
high- and low-risk cohorts in the University of
California, San Diego validation cohort, the University
of California, San Francisco cohort, and the
BIOSTAT-CHF cohort

Cohort High-risk,
n

Low-risk,
n

AUC 95%
CI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UCSD (all variables) 204 483 0.88 0.85–0.90
UCSD (RDW imputed) 204 483 0.87 0.84–0.89
UCSFa 135 330 0.81 0.77–0.86
BIOSTAT-CHFa 35 228 0.84 0.78–0.90

CI, confidence interval; RDW, red blood cell distribution width; UCSD, University
of California, San Diego; UCSF, University of California, San Francisco.
aNote that RDW was imputed in both UCSF and BIOSTAT-CHF cohorts.

is strongly and independently associated with mortality.1,2 When
we examined NT-proBNP values stratified by the MARKER-HF
score in UCSD patients for whom it was available (Figure 3A),
we found that increasing MARKER-HF scores are clearly linked
with increasing NT-proBNP values. However, in contrast to the
more powerful AUC of 0.88 for MARKER-HF, the mortality-risk
predictive power of NT-proBNP has an AUC of only 0.69 to
separate high and low-risk patients (Figure 3B). We chose to
exclude NT-proBNP from the set of variables in the training of
the model because of its low availability (∼50%) in the UCSD
cohort. Furthermore, as shown in the online supplementary Table
S2, we found that adding NT-proBNP to the other eight variables
in MARKER-HF did not result in a measurable improvement for
the predictive power of the model. ..
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. MARKER-HF testing in subgroups of the
University of California, San Diego
population
Our results show that MARKER-HF performs consistently across
the full range of risk in subgroups of the UCSD population based on
sex, race, and site of entry into the study (inpatient vs. outpatient)
(Figure 4A–4C). We also compared patients with an ICD code for
HF (I50) to the ICD code for pulmonary oedema (J81) and found
no difference in the predictive power of MARKER-HF (Figure 4D).
Finally, as shown in the online supplementary Table S3 and Figure
S1, when we compared MARKER-HF in UCSD patients <55 years,
55–66 years and >66 years, no significant differences were seen in
the correlation coefficients relating MARKER-HF score and time
to death between the three age groups.

Comparison of MARKER-HF to other
scores
We compared the performance of MARKER-HF in the UCSD
population to other risk scores. The C-statistic for the AUC
for MARKER-HF (0.88) was significantly greater than that for
either the Intermountain Risk Score (IMRS),7 the Get With the
Guidelines-HF (GWTG-HF) risk score6 and the Acute Decom-
pensated Heart Failure Registry (ADHERE) score3 where the
C-statistics were 0.78, 0.74 and 0.63, respectively (P< 0.001 for
each compared to MARKER-HF). The Pearson correlation coeffi-
cient between MARKER-HF and time to death (r = −0.41) was
also superior to those of IMRS (−0.31), GWTG-HF (−0.25)
and ADHERE (−0.14). Similar patterns were found using differ-
ent measures of correlation (Kendall and Spearman). In addi-
tion, as shown in the online supplementary Table S4, MARKER-HF
was superior to both the GWTG-HF and the ADHERE risk
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Figure 3 N-terminal pro-B-type natriuretic peptide (NT-proBNP) in MARKER-HF cohort and comparison as risk predictors: (A) mean
NT-proBNP vs. MARKER-HF in the subset of patients that had NT-proBNP tested. Error bars represent the one sigma statistical uncertainty
on the mean. (B) Receiver operating characteristic curves for NT-proBNP (red) and MARKER-HF (black). MARKER-HF has significantly higher
C-statistic. AUC, area under the curve; TNR, true negative rate; TPR, true positive rate.
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Figure 4 Comparisons of 1-year mortality in subsets of the University of California, San Diego cohorts: (A) male vs. female; (B) white
non-Hispanics vs. other races; (C) inpatients vs. outpatients; (D) patients with main index diagnosis being heart failure vs. patients with main
index diagnosis being pulmonary oedema.

scores when these were applied to the UCSD and BIOSTAT-CHF
populations.

Discussion
We applied novel machine learning analytical techniques to cre-
ate a mortality risk model in patients with HF. The resulting
MARKER-HF score demonstrated excellent discriminatory power
in assessing mortality risk with an AUC of 0.88. MARKER-HF per-
formed well across a wide range of risk, and in subgroups based on
gender, race and whether patients were identified in the clinic or
during hospitalization. External validation of this risk score model
in two independent study cohorts yielded similarly high AUCs,
indicating the applicability of this machine learning approach to
other populations of patients with HF. In addition, MARKER-HF
performed better than other risk scores in the three populations
in which it was tested.

Numerous risk scores have been developed to predict mor-
tality in patients with HF.3–13 These tools generally do not have
the discriminatory power of MARKER-HF. The moderate to poor ..
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.. performance of previous risk prediction models has often been

ascribed to the heterogeneity of patients with HF. However, their
modest performance is more likely due to the failure of the sta-
tistical methods used in their design to capture prognostically
important multi-dimensional correlations between the state of the
patient and their outcome. In contrast, MARKER-HF was specifi-
cally designed to capture these correlations. We also ensured that
covariates were taken within a limited time frame to ensure that
the correlations between them defined the patient at a specific
well-defined point in time. This approach resulted in the generation
of a risk score that greatly improves the accuracy of determining
risk of mortality in HF patients.

The eight variables used in MARKER-HF (diastolic blood pres-
sure, creatinine, blood urea nitrogen, haemoglobin, white blood
cell count, platelets, albumin, and RDW) were selected in an iter-
ative optimization process based on learning done in the training
cohort. Starting from the superset of all available variables, a set
of variables was selected that maximized discriminating power (as
indicated by the C-statistic). The number of variables selected was
limited in order to increase inclusiveness by avoiding loss of patients
with missing data and also to minimize over-fitting that can result
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in over-training and loss of robustness when the score is applied
to other populations.

The variables selected are inexpensive to obtain and commonly
available. They are generally ordered as part of the initial evalu-
ation of most patients with HF. Of note, the addition of other
clinical variables did not significantly improve the performance
of MARKER-HF, including several variables more directly physi-
ologically associated with HF, such as heart rate, left ventricular
ejection fraction, QRS duration. In order to keep the number of
variables low and to avoid overfitting, we excluded this additional
information from the construction of MARKER-HF. When creating
MARKER-HF we chose not to use age as a variable, even though
it was available in all of the patients in the cohorts and is strongly
associated with death. By including age as a variable in the train-
ing, the ‘machine’ would essentially learn that when you are old,
you are more likely to die. Thus, the addition of age would dilute
our ability to identify salient clinical variables and associations that
were predictive. To assess the impact of age on the model, we
performed additional analysis in which age was added to the set
of variables on which the algorithm was trained. The AUC of the
retrained BDT was identical to what we had found initially (i.e.
without adding age) but that there was slightly worse overtraining.
Furthermore, when this nine variable model of MARKER-HF was
assessed in to an expanded UCSD population that included patients
between 80–89 years, the AUC was not improved confirming our
hypothesis that age dilutes the ability of the ‘machine’ to detect
salient clinical features that are predictive of outcome. Other vari-
ables traditionally associated with outcomes in HF, including gen-
der, and ethnicity,27,28 did not significantly improve the predictive
accuracy of MARKER-HF. Moreover, MARKER-HF distributions
showed no dependence on clinical setting in which the patient
was identified (outpatient vs. hospitalization) or whether the pri-
mary diagnosis was listed as pulmonary oedema or another HF
diagnosis.

Previous studies have shown a relationship between NT-proBNP
levels and mortality in patients with HF. The demonstration that
NT-proBNP and MARKER-HF closely approximated each other
in their ability to predict mortality serves as additional and inde-
pendent validation of the relevance and efficacy of MARKER-HF.
We decided, however, not to include NT-proBNP in the deriva-
tion of MARKER-HF as its inclusion would have greatly reduced
the number of patients that were available. In support of this deci-
sion was the finding that the addition of NT-proBNP as a ninth
variable in MARKER-HF did not improve the predictive accuracy
of the model. Finally, when we compared the predictive power
of NT-proBNP to MARKER-HF in the subset of our cohort with
available NT-proBNP levels, we observed that MARKER-HF was
superior to the natriuretic peptide.

The applicability of MARKER-HF was further demonstrated
by observing a very similar performance in cohorts of patients
from UCSF and the BIOSTAT-CHF study as was seen in the
UCSD population. The ability of MARKER-HF to largely retain its
predictive ability in two additional, distinct cohorts despite having
to remove one of the test variables (RDW) speaks to the validity
of our findings across a spectrum of HF patients. It is also worth
noting that the performance of MARKER-HF was superior to that ..
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.. of either the IMRS, GWTG-HF or AHDERE risk scores in the
UCSD population and also to the GWTG-HF or AHDERE risk
scores in two additional independent populations in which it was
tested.

Our study has potentially important clinical ramifications. HF
remains a leading cause of death in the United States as well as in
most other countries in the world.27–30 A central challenge in HF
management is the identification of mortality risk, as the clinical
course is often unpredictable. Prompt identification of high-risk
patients using MARKER-HF could help allow for the deployment
of additional resources, including more intensive assessment by
physicians and health care extenders, in appropriate cases. It could
be used to alert patients and their families of the severity of the
patient’s illness and encourage discussions regarding advanced care
or end of life directives. MARKER-HF might also be useful in the
evaluation and prioritization of patients for interventions such as
CIEDs, mechanical circulatory support and heart transplantation,
although this possibility would need to be confirmed in future
studies.

Limitations
MARKER-HF was initially derived from a single centre (with two
hospitals) in San Diego, California, and hence may be subject to
a particular demographic selection bias. However, it performed
quite well in defining risk of mortality in two separate groups
of patients, including the European-based BIOSTAT-CHF cohort.
In order to capture higher order correlations between the input
variables, we decided not to impute missing data and this may
have introduced additional bias. Although this decision resulted
in an approximate 40% reduction in the study cohort size, we
found that the distributions of the other individual variables for
the rejected patients did not differ significantly from those in the
patients who were retained in the analysis, suggesting that this
decision did not influence the characteristics of the patients used
to generate MARKER-HF.

For the derivation stage of the score, we excluded certain
groups of patients in order to enable the algorithm to capture
the salient features distinguishing high from low-risk cases. This
included patients over 80 years old as well as those with CIED and
those with left ventricular assist devices. We explicitly excluded
elderly patients when deriving the score as they are more likely to
die from causes not necessarily related to HF and their presence in
the cohort used to define the model will weaken it. However, since
MARKER-HF was derived and validated in HF populations that
are relatively young, its performance should be assessed in older
populations to more fully determine its generalizability. Similarly,
we excluded patients with a left ventricular assist device or a
CIED (at index event) when deriving the score as our goal was
to assess prognosis at a time as close as possible to the onset of
the disease and its earliest recorded diagnosis. Sensitivity analysis in
which patients with CIED were included (data not shown) did not
significantly affect either the derivation or validation of the score.
Future study will be required to assess the utility of MARKER-HF
in these patients.
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Future directions
Although MARKER-HF performed well in the three populations
studied, further validation in other populations including those
on transplant waiting lists and in countries not represented in
this report would be helpful in determining its usefulness in
clinical practice. In addition, we are currently in the process
of prospectively utilizing MARKER-HF in the UCSD HF pop-
ulation to determine its impact on decision making in clinical
practice.

Conclusions
Using a machine learning approach, we generated and validated a
risk score that was highly predictive of mortality in patients with
HF. MARKER-HF, which uses readily available variables, provided
consistent results in three different cohorts, within various sub-
groups (e.g. men vs. women, inpatients vs. outpatients) and across
a full range of risk. These findings suggest that MARKER-HF can
be a clinically useful tool in the management of patients with HF.
They also raise the possibility that the approach taken to develop
MARKER-HF may be useful for determining risk of events in other
disease states. However, this possibility will need to be confirmed
by additional studies in the future.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
Table S1. ICD-10 codes used to identify patients in the UCSD
cohort.
Table S2. Predictive value of MARKER-HF in the UCSD popula-
tion using the original eight variables and with the addition of age
and NT-proBNP.
Table S3. Correlation coefficients between MARKER-HF and time
to death for the three age groups.
Table S4. Performance of MARKER-HF, GWTG-HF risk score and
the ADHERE risk score in the UCSD, UCSF and BIOSTAT-CHF
populations.
Figure S1. Distribution of MARKER-HF scores in different age
groups of the UCSD population.
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