P . 7
university of :7’%//4
groningen ?',,g’z,, University Medical Center Groningen

i

University of Groningen

Perturbations in higher derivative gravity beyond maximally symmetric spacetimes
Kumar, K. Sravan; Maheshwari, Shubham; Mazumdar, Anupam

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.100.064022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):

Kumar, K. S., Maheshwari, S., & Mazumdar, A. (2019). Perturbations in higher derivative gravity beyond
maximally symmetric spacetimes. Physical Review D, 100(6), 1-32. [064022].
https://doi.org/10.1103/PhysRevD.100.064022

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022


https://doi.org/10.1103/PhysRevD.100.064022
https://research.rug.nl/en/publications/bd1c15ee-476e-4bac-8897-4b97ee5a1bbc
https://doi.org/10.1103/PhysRevD.100.064022

PHYSICAL REVIEW D 100, 064022 (2019)

Perturbations in higher derivative gravity beyond
maximally symmetric spacetimes

K. Sravan Kumar,* Shubham Maheshwari ,T and Anupam Mazumdar®
Van Swinderen Institute, University of Groningen, 9747 AG, Groningen, The Netherlands

® (Received 24 May 2019; published 12 September 2019)

We study (covariant) scalar-vector-tensor (SVT) perturbations of infinite derivative gravity (IDG), at the
quadratic level of the action, around conformally flat, covariantly constant curvature backgrounds that are

not maximally symmetric spacetimes (MSS). This extends a previous analysis of perturbations done around

MSS, which were shown to be ghost-free. We motivate our choice of backgrounds that arise as solutions of
IDG in the UV, avoiding big bang and black hole singularities. Contrary to MSS, in this paper we show that,
generically, all SVT modes are coupled to each other at the quadratic level of the action. We consider

simple examples of the full IDG action, and we illustrate this mixing and also a case where the action can be
diagonalized and a ghost-free spectrum constructed. Our study is widely applicable for both nonsingular
cosmology and black hole physics where backgrounds depart from MSS. In the appendixes, we provide
SVT perturbations around conformally flat and arbitrary backgrounds which can serve as a compendium
of useful results when studying various higher derivative gravity models.

DOI: 10.1103/PhysRevD.100.064022

I. INTRODUCTION

Einstein’s general relativity (GR) is an excellent theory
in the infrared (IR) regime, far from the source, and at late
times. Its success has been seen from solar system tests [1]
to the recent detection of gravitational waves from mergers
of binary compact systems [2,3]. Despite this success, GR
requires modifications at short distance and time scales,
i.e., in the ultraviolet (UV) regime. At the classical level,
there exist cosmological (big bang) and black hole singu-
larities [4—7]. At the quantum level, GR is nonrenormaliz-
able [8,9]. In fact, we do not yet know, experimentally, if a
quantum theory of gravity exists [10]. There are various
ways to address these problems, such as string theory [11],
loop quantum gravity [12], causal set dynamics [13], and
asymptotic safety [14]. There is another very insightful
approach, perhaps not yet at the fundamental level, but
rather from the bottom up: adding higher derivative
corrections to GR. In four spacetime dimensions, quadratic
curvature gravity is renormalizable [15] but suffers from
ghost instabilities." In fact, any finite derivative theory of
gravity suffers from classical and quantum instabilities in
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'Ghosts are degrees of freedom (d.o.f.) with ‘wrong’ sign
kinetic terms, compared to healthy sectors of the theory which
have Hamiltonians bounded from below. When ghost and healthy
systems interact, runaway production of ghost and normal
particles from the vacuum is kinematically allowed, characterized
by a divergent phase space integral [16].

2470-0010/2019/100(6)/064022(32)

064022-1

nonsupersymmetric, time-dependent backgrounds [17,18].
One can go beyond finite derivative modifications to GR in
the spirit of string field theory (SFT) [19-24] (for a review,
see [25]) and higher derivative (&) corrections that appear
in the low energy string effective action [26,27].

As mentioned above, one potential approach to tackle
these problems is to invoke infinite covariant derivatives
[28-36]. It was shown that infinite derivative gravity (IDG)
can potentially resolve cosmological (big bang) singularity
[32,37,38] and black hole singularities in static [33,39-47]
and dynamical setups [39,40,48]. Furthermore, infinite
derivative field theories [35,36,49] have UV behavior
similar to that of SFT and p-adic strings [25]. In infinite
derivative theories, there exists a scale of nonlocality, M,
below the Planck scale in four spacetime dimensions. The
nonlocality appears only at the level of interactions, which
can potentially ameliorate the UV problems at higher loops
for proper gravitational form factors [34,49,50]. It has been
shown that there exists a complementarity due to nonlocal
interactions that suppresses scattering amplitudes with
two [51,52] or more interactions [53], such that the
fundamental nonlocal scale may shift in the IR. This allows
the intriguing possibility of observing this nonlocal scale at
low energies, allowing us to constrain or falsify the theory
[54,55]. Furthermore, infinite derivative theories have
very interesting quantum properties at finite temperatures
[56-60], which mimics some properties of the Hagedorn
behavior of strings at temperatures above the string scale. In
addition to all these developments, it is important to study
classical perturbations of IDG in four spacetime dimen-
sions. In fact, earlier papers have studied cosmological

© 2019 American Physical Society
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perturbations around a bounce, ameliorating the cosmo-
logical (big bang) singularity [61,62], around de Sitter (dS)
and anti—de Sitter (AdS) backgrounds [63,64], and during
cosmic inflation [65-70].

The aim of this paper is to study perturbations in IDG at
the quadratic level of the action around backgrounds that go
beyond those usually studied in literature, viz. flat/dS/AdS,
which are maximally symmetric spacetimes (MSS). In
particular, we study the scalar-vector-tensor (SVT) modes
of metric perturbation around a background that is con-
formally flat and has covariantly constant curvatures
motivated through physically relevant examples such as
cosmological bounces and nonsingular, nonvacuum,
spherically symmetric, static spacetimes. In the appendixes,
we provide, for the first time to our knowledge, second
order SVT perturbations around arbitrary and conformally
flat [e.g., Friedmann-Lemaitre-Robertson-Walker (FLRW)]
backgrounds. Our treatment is general with many valuable
results, which can be useful for future work in a variety of
higher derivative gravity theories.

The paper is organized as follows: in Sec. II, we
introduce IDG, a general class of higher derivative gravity
and the action that we use in this paper. In Sec. III, we
introduce the background field method, (covariant) SVT
decomposition of metric perturbation, and the general
structure of the second order action. In Sec. IV, we will
discuss typical backgrounds studied in literature, such as
dS/AdS, and then choose a specific non-MSS background
upon which we perform perturbations in later sections. This
background is conformally flat and satisfies covariantly
constant curvature conditions. These conditions signifi-
cantly reduce the convoluted perturbative expressions to be
encountered in later sections and also make contact with
physically motivated examples from cosmological bounce
and black hole-like scenarios. We also lay out the back-
ground equations of motion. In Sec. V, we segregate,
organize, and present second order perturbations at the
level of the action, in SVT form, for the action we started
with in Sec. II. They possess peculiar scalar-vector-tensor
mixings, explicitly showing how perturbations around
general backgrounds become difficult to analyze. In
Sec. VI, we will verify our general analysis by deriving
dS/AdS and flat space limits that were studied in previous
papers [63,64]. In Sec. VII, we analyze the physical
spectrum for simple cases of the full action we started
with. Finally, we conclude with some comments on
possible directions for future work in Sec. VIII. Many
relevant perturbative expressions and commutation rela-
tions are collected in Appendixes B, C, and E. They include
perturbations and commutation relations around an arbi-
trary background and are therefore useful for future work in
gravity, and higher derivative gravity in particular.

Notation: We use the metric signature (—, +, +, +).A =
¢ =1, and the reduced Planck mass is M3 = (82G)~!.
Relevant quantities such as curvatures are split into

background and perturbations as explained in
Appendix (B3). Overbars on curvatures indicate their
values on a fixed background.

I1. INFINITE DERIVATIVE GRAVITY

The most general action for gravity that is quadratic in
Ricci scalar R, traceless Ricci tensor $#,, and Weyl tensor
C?,, each, parity invariant, torsion-free, and which can be
made ghost-free around maximally symmetric backgrounds
is given by [33,63,64]

§— / L MR(R ~20) + RF, (CL)R
+ SuﬂfZ(Ds)Sﬂu + Cp”ﬂl/f3(|:|“‘)cﬂy/’”]

= /d4xEEH+A + ERZ +£SZ +£C2, (1)

where we have defined (J; = [1/M?, where M (<Mp) is
the scale of nonlocality. The traceless Ricci tensor in four
dimensions is given by

R
S/w = R;w - Zg/u/' (2)

F;(O,) are analytic gravitational form factors that are
functions of d’Alembertian and have a power series
expansion:

FiO,) = if (ME) ()

The coefficients go as f;, ~ O(M%/M?). In IR, for low
enough momenta k << M, Lgy,, dominates over the
higher curvature terms. One can easily consider special
cases of the above general action by considering arbitrary
form factors, such as F;(CJ;) = 1, or truncating F;((J,) to
a finite order in Ds.z' The full, nonlinear equations of
motion (EoM), around an arbitrary background, has been
derived in [73] (see Appendix A). In this paper, we take the
above action in Eq. (1) and analyze second order pertur-
bations around a specific (non-MSS) background.

’It is worthwhile to mention that the most general quadratic
curvature action which contains torsion and generalizes Poincaré
gravity was constructed recently in [71]. See also [72] for a 3D
version of the action in eq. (1).

*From eq. (1) we can reach various limits, such as pure
Einstein-Hilbert term, or fourth order gravity: R + R*> + R* R+
cwioC wic» OF sixth order gravity, by keeping f;, and f;, terms
and so on and so forth around Minkowski background. Also higher
curvature terms are also encapsulated in this action, because
around arbitrary backgrounds (i.e., other than Minkowski), [,
also contributes to O(h). Therefore, in principle, expanding the
action around an arbitrary background will give O(h") contribu-
tion to the action.
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III. PERTURBATION THEORY

We will use the well-known background field method
(see [74,75]) to study second order metric perturbations at
the level of the action. We define the covariant SVT
decomposition and provide the most general structure of
the second order action (6°S) one can expect in IDG (and a
generic quadratic curvature gravity) around arbitrary back-
grounds. Restricting to 3 + 1 dimensions, we split the full
metric g,, into background g,, and perturbation £,,,

g/,w = g;w + h’mﬂ

where |h,,| < |7,,|, and expand the action S up to O(h?) to

get 5°S. We are interested in perturbations around vacuum
solutions so we put 7, = 0. Extremizing § to first order
gives the background EoM, E,w = 0. We consider on-shell
perturbations and therefore get rid of the linear in /4 term in
%S by imposing E,,, = 0. The background EoM are useful
in simplifying the computation of 65 as we will see later.

A. Scalar-vector-tensor decomposition

We can covariantly decompose h,,, into two scalar, one
vector, and one tensor (SVT) d.o.f. [17,76-78],

R - - - = 1_ - 1_
hy =h,+V,A,+V,A,+ (V”Vy - Zg,,ﬂ)B +—Guh,

4
(4)

§*h, =0, VA, =0. (5)
The first two conditions make IQW transverse and traceless,
respectively. The last condition ensures transversality of A ,,
while 4 is the trace g*”h,,,. For both GR and IDG, the above
decomposition produces kinetic mixings between B and &
modes in 5°S when the background is flat or dS/AdS.
This mixing can be removed by the field redefinition
¢ =B — h, so that the graviton quadratic form has one
tensor IAa,w and one scalar ¢» mode, as expected [63,64].
Following suit, we rewrite Eq. (4) as

By =y +V,A, +V, A, +V,V,B-=5,0. (6)
which is the decomposition we will use in this paper. The
theory has gauge redundancy expressed by the following
gauge transformation:

My = hy + V6, + V8, (7)

where the gauge transformation vector £, can be decom-
posed into its transverse and longitudinal parts as [79]

& =&, +0,& where VVE, =0, (8)

so that the SVT modes transform as following under the
gauge transformations:

¢ — 9,
B — B +2¢, (9)

hy = hyy,

Ay = A+ &,

from which we see that fzm and ¢ are gauge invariant while
A, and B are not. Note that we have not yet canonically
normalized h,,, so [h,]=0,[¢]|=0,[B]=-2,[A,]=-1,
and [h,,] = 0.

Hv

B. General structure of §2S

Studying the propagating modes of the theory given by
Eq. (1) around general backgrounds is quite involved. In
order to find 8>S for any theory, we need to compute
perturbations of many quantities. We provide perturbations
of curvatures around arbitrary backgrounds in Appendix B.
Decomposition of these perturbations in SVT form are given
in Appendix C. The second order action around arbitrary
backgrounds has the following general form*:

#S:/ﬁﬁwﬁw ¢ A, hy)

Ko Ko Koz Ko B
Ko Ky K K
10 1 12 13 ¢ . (10)
K3 Ag
Ko Ksi Ki Kss i:la/i

where K is a complicated, generalized kinetic matrix given
by the sum of kinetic and effective mass matrices of all SVT
modes. Its entries can be read off from the general structure
of perturbations given in Appendix C. From there, one can
see that /C is not diagonal in general and involves mixings
between the different SVT modes. For GR and IDG around

dS/AdS/flat backgrounds, K is diagonal in ¢ and /Aam, [64]:

0 0 0 0 B
. Ky 0 ¢
B A, h 11
(B ¢ A, W]o 0 0 o |la, (11)
0 0 0 Kyl Llhy

Next, we discuss backgrounds typically studied in
perturbative analyses, and then choose a specific non-
MSS background (g,,) for the purpose of this paper. We
motivate our choice of background that occurs in the

“We have suppressed Lorentz indices in each matrix element of
IC that are needed to make the action a scalar.
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context of IDG and removes cosmological and black hole—
type singularities.

IV. TYPICAL BACKGROUND SPACETIMES

We recall here aspects of pedagogical backgrounds one
typically encounters when studying gravitational perturba-
tions, and choose a specific background for the purpose of
this paper. The lower the symmetry of the background, the
harder it is to find 525, or equivalently, compute (equations
of motion of) perturbations expressible in a form that is
tractable to solving them, either analytically or numerically.
It is useful to decompose all curvatures into their irreduc-
ible trace and traceless parts. Doing this for the Riemann
tensor gives

_ R o
Ruz/pa = E (gupgya - g;mgpﬂ)

dS/AdS

+ (guasyp + gﬂpgmf - gupsya - gﬂﬂgl/p) + C;wpo"

N[ =

deviation fromdS/AdS
(12)

which manifestly separates the Riemann tensor for a MSS
and deviations from it. Two commonly studied spacetimes
are conformally flat (e.g., FLRW) and Einstein (R/w x Jy)
manifolds, defined by C wpe = 0 and S/w = 0, respectively
(see Fig. 1).

Given S,, = C,,,, = 0, we get 9,R = 0 from the (differ-
ential) Bianchi identity, implying that the manifold is MSS
with the Riemann tensor assuming the dS/AdS form
highlighted in Eq. (12). This means that the intersection
of conformally flat and Einstein manifolds is MSS as
shown in Fig. 1. From Fig. 1 and Eq. (12), it is clear that
deviations from MSS can arise when S, #0 and/or
Cm«pa # 0. In this paper, we will focus on conformally
flat, non-MSS backgrounds. To be clear, the background
we consider in this paper has the following properties:

C;wpn =0, Sﬂy #0, R #0, (13&)
V,S,=0, 9,R=0, (13b)

where the “covariantly constant curvature” conditions’ in
Eq. (13b) greatly simplify SVT perturbations of the action

Given Eq. (13b) and C'M,G_:O from Eq. (13a), we can
succinctly write Eq. (13b) as VaRﬂ,,p(, = 0. This covariantly
constant curvature condition has appeared elsewhere in literature,
for example, to simplify calculations of asymptotic heat kernel
expansions when developing a covariant technique of computing
the one-loop effective action in the presence of arbitrary back-
ground fields in curved space [80].

Backgrounds

Conformally flat Einstein space

space =
P 5,=0

Our background withg,R =0, V.5, =0

FIG. 1. Venn diagram with our specific conformally flat,
nonmaximally symmetric background. d,R =0 follows from
V,S,, = 0. The dS/AdS limit is achieved by putting S, = 0.

to be discussed in Sec. V. Actually, vas,w =0 implies
G”R = 0 via the contracted Bianchi identity in Eq. (32), so
effectively we have only one condition, but we keep both of
them explicit. Note that Eq. (13b) does not imply that the
background is MSS; a simple example is the Schwarzschild
metric. It is easy to take the dS/AdS limit of 6*S around this
more general background in Eq. (13) by putting S’ﬂy =0
(and R = 0 for the flat space limit) as we will see in Sec. VL.
The background in Eq. (13) is not as restrictive as MSS, and
we will see from the analysis of perturbations later in
Sec. VII that this is just enough to draw interesting
qualitative and quantitative conclusions about the nature
of gravity in less symmetric, nontrivial backgrounds,
particularly scalar-vector-tensor mixing essentially because
S'ﬂ,, # 0. In Table I, we collect properties of curvatures of
typical spacetimes and the background we consider in this
paper. Fig. 1 shows a Venn diagram of different back-
grounds with our chosen background in the shaded region.

A. Background equations of motion

The full, nonlinear EoM for the action in Eq. (1) is given
in Appendix (Al). On these, we impose our background
conditions C,,,, =0.V,S,, =0, and 9,R=0 from
Eq. (13) to obtain

_ 1 . - 1_-- _
QS*, = fao (Eaﬂysaﬂsaﬂ - ERS”I/ - ZSWSW) (14)
where we have defined
Q= Mj +2foR (15)

and used

R=4A, (16)
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TABLE I. Properties of typical background spacetimes. “# 0” in particular implies an arbitrary function of x*.

R S}tl/ R/w Cﬂl//}()‘ R;w/}(i ayR vagﬂu
Maximally symmetric spacetime (MSS)  Constant 0 Ry, /4 0 R(GpTuo = GuoBup)/ 12 0 0
Einstein (Ricci flat) #0 (0) 0  RG/40) #0  #R(GTu — Guod)/12  #0(0) 0
Conformally flat (e.g., FLRW) #0 #0 #0 0 # R(9up000 — Juolup)/ 12 #0 #0
This paper [Eq. (13)] Constant  #0 #0 0 # R(9,p900 — GuoTup)/ 12 0 0
which comes from the trace of the equations of motion © "
given in Eq. (A8). We have a three parameter family of H=M, 2 Cn(Ms)™, (21

n=0

solutions characterized by (A, f} 0, f20). Of course, one
trivial solution is S’W = 0, but this is just MSS. For S w70
for our background [see Eq. (13)], we consider nontrivial
solutions of Eq. (14), but the exact form of these solutions
is irrelevant for our purposes. The background EoM in
Eq. (14) will be useful in simplifying 5°S as we will see
later. Next, we consider examples where our background
conditions in Eq. (13) may be realized physically.

B. Physical examples

1. Near a cosmological bounce

In bouncing cosmology, we usually deal with a flat
FLRW metric given by

ds* = —di* + a®(dr* + r?dQ?),

. k 2
K =12(H> + H)* + 12(—2+ H2> : (17)
a

where an overdot indicates differentiation with respect to
cosmic time ¢ and H = (a/a) is the Hubble factor. K is the
Kretschmann scalar that can be decomposed as

R2

o . < R
K = RyupaR"7 = €O + 28,5+ (18)

HUpc
Since the FLRW metric is conformally flat, the Weyl tensor
in Eq. (18) vanishes. So if K is singular as ¢ — 0, it implies
that S, 8** and/or R* blow up. This is the case in big bang
singularity where a ~ t*, H ~ a/t, for a > 0. Now, let us
consider a bouncing scenario. General physical conditions
at any symmetric bounce are [61]
H#0,

H =0, H =0,

H #0, H=0,..=H =0, (19)

If we consider a simple bouncing scenario, which happens
very slowly, we then have
H ) ~ 0, n>1. (20)

To realize a slow-bouncing scenario, we can Taylor expand
the Hubble factor in time as

where M characterizes the timescale related to bounce.
The Ricci scalar and tensor for flat FLRW are
R=12H?+6H,

R, =3H?+3H, R;=3H>+H.

(22)

At the point of slow bounce, we have H = 0 and H~ const.
In the limit t <« 1/M,, we have

(23)

The nonzero components of traceless Ricci tensor, in
general, take the form

1.
S, :§Hdiag(3,—l,—l,—1>, (24)

during the bounce. Using the approximation of a slow
bouncing scenario stated in Eq. (20) that is nearly constant,
we obtain

vV, S, ~0, s+, ~ 0. (25)
We see that we can satisfy our background conditions in
Eq. (13) in a bouncing scenario that occurs sufficiently
slow, or in the limit t — 0. Therefore, studying perturba-
tions around backgrounds satisfying the conditions in

Eq. (13) enables us to address the stability of a bouncing
universe.

2. Nonvacuum, nonsingular static compact objects

In IDG, classical and quantum analyses suggest the
existence of a nonsingular, spherically symmetric metric,
with an effective scale of nonlocality M ¢ (which may be
different from M ; see [53,55]), and is given by [44]

ds? = —(1 +2®)d* + (1 = 20)[dr? + r2dQ?),

® = —G—mErf<%) (26)

r
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In IR, it asymptotes to the linearized Schwarzschild
solution. Computing curvatures for the above metric in
the limit r << 1/ M, we get [81]

M3 3
_ e it GMM 2

Ryo=R; ~ NG . Ryn=Ry3=0, R=2Ry,
- - 3GmM3 e~ M _
Soo=>5811= 46\%—[ , S»==5833=0,

- GmM> re iMur

VaSWNfoT, (27)

so that, in the short distance regime r < 1/M, we have

VS, =0, 9,R~0, (28)
as r — 0. Also, the Kretschmann scalar is finite in this
limit: K ~ G>m>MS;. This solution is very different from a
Schwarzschild black hole, which is a vacuum solution and
has a singularity as r — 0. For differences between the two
solutions, see [81]. Similar behavior persists if a charged
system is studied [82]. The above conditions [Eq. (28)]
approximately satisfy the conditions we earlier imposed on
our background choice in Eq. (28). Furthermore, it was
shown in [44] that the above metric solution becomes
conformally flat for length scales much smaller than the
effective nonlocality scale 1/M .

Also in [44], it was shown that in the nonlocal region, the
following metric is a solution of IDG EoM, with non-
singular curvature scalar invariants:

2 \2
ds> = ( ) (=df*> + dr? + r*dQ?*),  (29)
TV eff

which gives

100 0
2—0 r _1l0 10 0
T “orloo 2 0 |
0 0 0 r*sin%0
VR, =0OR,, =0. (30)

From the discussions above, there is enough physical
motivation to study perturbations around our background
in Eq. (13), satisfying V,,S,, ~0,9,R ~ 0. Next, we study
perturbations in SVT form around these backgrounds.

V. SECOND ORDER VARIATIONS
OF THE ACTION

In this section, we will organize and present the second
order perturbations for every term in the action given in
Eq. (1) around the background in Eq. (13) and express them
in SVT form [see Eq. (6)]:

S = /d4x52£
= /d4x52£EH+A + 52£R2 + 62£52 + 62;660.. (31)

After obtaining perturbations in terms of 4,, and back-
ground curvatures, a significant series of steps must be
carried out in order to simplify them and express the final
expressions in SVT form. We present only the final, most
simplified expressions in this section, after applying our
background curvature conditions in Eq. (13) and Bianchi
identities. The step-by-step procedure we have followed is
outlined as follows:

(i) Decompose all background curvatures into their
irreducible trace and traceless parts so that all ex-
pressions are specified in terms of Ricci scalar (R),
traceless Ricci tensor (S uw)» and Weyl tensor (C upo)-

(i1)) Commute covariant derivatives as much as possible
so that they assume a canonical form and end up
acting on the divergenceless }Az,w and A, giving zero
[see Eq. (5)].

(iii) Set C wpe = 0, since the background is conformally
flat [see Eq. (13)].

(iv) The nth order perturbation of an arbitrary tensor
shares the same index symmetry and tracelessness
properties as the original tensor. For example, the
first order perturbation ¢*”,, inherits the properties
of the full Weyl tensor C*,; in particular, it is
completely traceless.

(v) Apply the contracted differential Bianchi identities:

pos

V¥R, = %ayie, VS, = %ayie. (32)

(vi) Use the covariantly constant background curvature

conditions in Eq. (13b): V,S,, =0,0,R = 0.

The detailed derivation of perturbations can be found in
Appendix C where the above steps have been followed. In
particular, we have listed perturbations first around an
arbitrary background, then applied conformal flatness
(C'W,(y = 0), and finally applied the covariantly constant
curvature conditions in Eq. (13b). The general perturbations
can be useful for future work when considering general or
conformally flat backgrounds (such as FLRW), which do not
satisfy Eq. (13b).

Perturbations at the quadratic level of the action around
arbitrary, non-MSS backgrounds are quite convoluted (as
can be seen from explicit expressions in Appendix C), and
although they tell us a great deal about the structure of
possible higher order terms, some simplifying assumptions
must be imposed if we are to make any headway in
calculations. Our background conditions in Eq. (13) turn
out to be very helpful in simplifying calculations to a large
extent. 6%S is not too hard to find when the background is
MSS (see [64]). The reason is the appearance in perturbative
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expressions of many terms proportional to J, RS ,w and
C/wpw which are zero for MSS. In this paper, we analyze
perturbations beyond MSS because we choose to keep
S w 7 0. Note that all perturbations have a common factor

of \/—g, which we have omitted hereon for brevity.

A. Perturbing Einstein-Hilbert plus cosmological
constant term

The Einstein-Hilbert term with cosmological constant A
in our Lagrangian in Eq. (1) is

M2
Lepin = TP V=9(R = 2A). (33)

Defining &, = 8*[,/=g(R — 2A)], we get (see [64])

M2
8 Lppin = 2P 00>
M, R, _
Mr st + 2wV + (v

(34)

where we have used A = R/4 which satisfies the back-
ground trace equations of motion [see eq. (16)]. We then
first express Eq. (34) in terms of 4, and then decompose
the result in SVT form using Eq. (6). d, contains terms
purely quadratic in ¢, B,A,, and fl,w, and mixed terms
between them. A detailed calculation from scratch is given
in Appendix C 1. Here we present the final expressions
after following the simplifying steps given before in the
beginning of Sec. V. The purely quadratic in scalar, vector,
and tensor modes each are

| A U N
Soss) =B {gRSa,,vﬂva + ES{ZVS/;yVﬂV“ + Zsﬁyvrvﬂ D] B,

1 1o < v_ QO \JU\IV7
So(an) = A" [12R5ﬂ+5 Sﬂ}’ ZgaﬂSMvSM —SWVMV aﬂ:|
x4, (35)

~ [-R+60]., —-R-30
Sogiviy = My {T] ", So(pg) = [T} @,
(36)

while the five nonzero mix terms are

1o ¢ o

| L
Sosa) = B {5 RS,;VP + 2Sarsﬁyvﬁ] A% (37)

1. S D N
Sosiy = B [5 RS 425 5h — Esaﬁm} B,

1. = _ = A
Sopa) = ¢ [— ESaﬂVﬁ} A%, 50(Ai,) = Aa[—zsﬂyvy]haﬁ,

(38)

and the ¢h scalar-tensor mixing is zero. Note from
gs. (37) and (38) that the mode mixing terms are
proportional to SM,,, which vanish around MSS and flat
backgrounds, as we will see later in Sec. VI. But these

mixings are nonzero for our background [see background
EoM in Eq. (14)].

B. Perturbing quadratic in Ricci scalar term

The Ricci scalar squared term in our Lagrangian in
Eq. (1) is

Lo = % J=GRF (DR, (39)

Let us lay out all the ten possible O(h?) perturbations
in 6%(/=gRF,(0,)R). We label’ each term in

v—9RF(Ls)R by a number n =0, 1, or 2 to indicate
a contribution” of O(h"):

(1100) = =55 rF\(C)R.

(1010) = V=52 Ro(F ()R,

(1001) = \/_hRj’-'l(E ),

(0110) = +/=gré(F,(O,))R,

(0101) = /=grF,(T,)r,

(0011) = v/=gRS(F (),

(2000) = /=3 <—411h,wh”” + %2> RF,(3,)R.

(0200) = /=g8*(R)F(LI))R,

R )R,

(40)

In total, there are nine independent terms because (0200) is
equal to (0002) after integration by parts. Substituting the
SVT decomposition Eq. (6) in Eq. (40) gives purely

®For example, (1100) denotes the expression which has the
O(h") perturbation of \/=g, O(h') of R, O(h°) of F (), and
(9(7h0 ) of R, all adding up to give O(h?).

We follow the following notation: R = R + r + &R, Sy
St 8,468, and Copo = Coupo + Cuupo +0*Crpo- Fordetalls
see Appendlx B.
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quadratic terms in ¢, B, A, and it each, and additionally,
mixed terms between them. There are six possible mix
terms: ¢B, PA, qﬁfz, BA, Bh, and Ah, just as for 82 Ly, 4 in
Sec. VA.

In 6* Lz, we collect some terms that actually turn out to
be equal to 6> Ly 1A as shown for maximally symmetric
backgrounds in [64]. Consider the part 5*(,/=gR)F (O,)R
in 82Lz>. We see that it can be expanded as

& (V=gR)F1 ()R

=8 (V=9R)f10R

= [ (V=9)R +2V=598(R) + 6(/=g)rlf10R.  (41)
v_vher_e iI} the first equality, the only nonzero term from
F ()R was picked, the rest being zero from Eq. (13b). In

the second equality, the middle term has a coefficient of 2

because it occurs twice in 62£R:, as we just noted above:
(0200) = (0002). From Egs. (41) and (34), we notice that

5(v=gR)F\(0,)R [6(v=g)r1f10R. (42)

We recall here for convenience 62£Rz from [64]

1 h 1 h2 hy,
2 ——\/—ql|2| = —| —

= 260f10R -

>R+52( ))fl,of?
#r, @+ (SR+r)oF OOR

FRE(F(O)R+ 5 REF(O) = Fro)r

+RS(F, (DS))r} . (43)

Comparing Egs. (42) and (43), the second term in Eq. (42)
forms a part of the second term in the third line of Eq. (43).
In Eq. (43), the second term in the second line and the first
term in the first line both vanish upon using 8”1_? = 0 from
Eq. (13b) and Appendix (B16); the second term in the third
line and the term in the fourth line are each non-zero, but
sum to zero after using 5’”1_? = 0 and integrating by parts,
exactly like the MSS case as shown in [64]. Ultimately, this
implies

Ly = /=7 |f10RS + = r}—l( )T (44)

In deriving this result, we just used R = const, which is true
for both MSS and our background in Eq. (13). Therefore,
for 6>L>, the only nontrivial term we have to find is
(0101) = /=grF,(0,)r. The detailed calculation from
scratch is given in Appendix C 2. Finally, we have terms
that are purely quadratic in scalar and tensor modes

*Indices on A, and ftw are suppressed for brevity.

7Oy = R + 3007 2y,
[r}—l(ljs)r}hh [ /3~7:1( ) Ww (45)
and a scalar-tensor mix term

[r}"l(ﬁs)r](p;l =¢|-(R+ 3&)5‘,1/3’7:1(5]3) h? (46)

with the rest of the SVT perturbations zero for our chosen
background in Eq. (13). Note that the scalar-tensor (¢iz)
mixing in Eq. (46) is proportional to Sﬂ,, and so vanishes
around flat and MSS backgrounds as we see later in
Sec. VI. But it is nonzero for our background.

C. Perturbing quadratic in traceless
Ricci tensor term

The traceless Ricci tensor squared term in our
Lagrangian in Eq. (1) is

1
= S VIS (O,)S",. (47)

8%(\/=g8",F»(0;)$*,) has the following contributions
after imposing the background conditions, Eq. (13), and
integration by parts:

(1100) = V= 5, Fo(C1)5, = V53 fr08, 5
(1010) = J——gismfx.ﬂ(ms»sﬂy,
1001)2\/—_9230,,5(‘ st \/_ 8,5, Fo(0)h,

(
(0110) = V=G, 6(F>(1,))
(0101) = v/=Gs*, ()
(0011) = /=38, 8(F5(0,))s",.

h )

(2000) = \/—‘<—Zh o+ 8>S” Fo(,)3
h? _

=V- fzo( _haﬂhﬂ+ 8>S”MS”U,

(0200) vV~ 52(SU ) (Ij ) Mv =V _ng,Oswvéz(Syu)’
(0020) = /=55, 8*(F»(0,) 3.
(0002) = /=g5*, F»(0,)5* (8,

= V=0f208",5°(5",). (48)
giving nine independent terms because (0200) = (0002).
For MSS, because S',,,, = 0, the only nonzero contribution

in 8°Lg is (0101) = \/—gs”ﬂfz(ﬁs)s”,,. Expressing the
above second order perturbation terms [Eq. (48)] in SVT
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decomposition is not straightforward. Although, most
terms can be computed without much effort, the four terms
(1010),(0110),(0011), and (0020) are nontrivial because
they involve either §(F,(0J,)) or 8*(F,([J,)) acting on a
tensor of rank 2, which have long expressions. We now
simplify these terms as much as possible.

(1) (1010) = \/=g4 8", 8(F,(0,))S*,. Recall

F, () is a power series [see Eq. (3)]:

that

fQ(DS)

o0
= E f2,nl:|.';
n=0

= fa0 + foaOs + f22007 + f2,008 +

Now, using the covariantly constant curvature con-
ditions in Eq. (13b), we can put to zero each term in
6F,(0,), which has [ on its rightmost end. This
enables us to effectively write 5F,([J,) in terms of
8(0;) as
6F, (L) = (f21 +fzzD + 23005 +

Ds
We then finally obtain

(1010) = \/—_égsv [M} 5(0,)3,

O
o _h- _ _
This implies = V38, F5O060)F . (5]
6F (L) = f2.18(0) + f226(05) + f238(05) + where we define
:f2,15( s) +f2,2(6(|:|s)|:|s+Ds6(|:|s>) r (|:| ) _ ]—'1<|:|X) _fl 0 (52)
+f23( (DS)D§+Ds5(Ds)Ds ! v Ds
+02s(05)) + (49) and
|
S0, = — [~ Lparge, ~ L o5, 50+ Lprse, + Lpors, 50, — Lpegs,, —2pege 3
s v ? 6 v a 4 v Pap 12 v 2 apX v 6 va 2 a”up
| R | I 1 1 1 -
+ EhSﬂﬂsyﬁ - Zhﬂasa,,sf +5 5,7V, i stvﬂvah +5 S, 0,
1. - 1. = = o= =
=5 Ohe =5 8,V Vght =5 Sﬂavyvﬁhaﬂ (53)
_ =~ v ( s) f20
2) (0110) = \/=35*,8(F,(0,))3,. Just as above, (0011) = v/=58*,5(0;) [45 s,
here we have __ -
=V _gsyyé(mx)fs(l:ls)s (56)
(0110) =V _gsyyé(fQ(Ds))Swu
B - [F »(O,) - fa20 505 which has a long and cpmplicated expression _and
=VTIS 0 (0,)s8%, there seems to be no straightforward way to obtain a
_ 0 o readable form for (0011). B
= v/=5s",Fs(0)8(0;) 8", (54) 4) (0020) = \/=55",8*(F,(0,))5*, has the most in-
N have defined volved expression of all:
where we have define
F(O,) = |:f2(|:,s) —fz,o} , (55) (0020) = /=g8*,[f2.16*(C;)
s +25(0,) Fo(B)8(0,)18",. (57)
and s, is given in Appendix (C14).
(3) (0011) = /=35",6(F,(0;))s",. Now the back- where we have defined
ground §, is to the left of 6(F,(0y)). So we use
[, operators in Eq. (49) on the leftmost positions to (0 0
integrate by parts and put these terms to zero. We Feo(O,) = 2(L,) —]_czz,o — faals (58)
finally get WP
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1. Dominant terms in the UV

The SVT decomposition of §°L in all its glory is quite
complicated, and we do not present it here. For a simplified
analysis, in the UV limit k 2 M, we consider the dominant
contributions in Eq. (48). Below we argue that (1001) and
(0101) are the only contributions we need to consider in the
UV limit. We assume R, S,, < O(M?), which is reason-
able, at least for the cosmological and black hole scenarios
discussed in Sec. IV.

First of all, we neglect the local contributions in Eq. (48),
that is, those which do not have the form factors ;((J,); in
the UV limit, terms with 7,;(C],) dominate 5°S. These are
(1100), (2000), (0200), and (0002). For example, (1001) is
dominant compared to (1100) because F z(ﬂy) > f0. The
remaining nonlocal contributions are (1010), (1001),
(0110), (0101), (0011), and (0020). Let us compare all
these terms with (0101). Suppressing indices, (0101) has
the following terms schematically:

{VV F,(O,)VV

as can be seen from the expression for s“, in
Appendix (C14). Note that 4 denotes the full perturbation
before SVT decomposition. Assuming k 2 M, in the UV
limit and R, S,, < O(M?), we can neglect terms in the
second line of Eq. (59) compared to terms in the first line.
In this limit, we can also deduce that

1 - 1 1 -
—6(0)S, < 8(0)s,, < —Ls

— 60
W ST w2 )

Hy*

To see this, we check contributions coming from the
various dimensionful quantities. Consider the first inequal-
ity in Eq. (60). Ignoring &, §(C1)S,, /M3 given in Eq. (53) is
schematically (SS+SR+SVV)/M? while s*, given in
Eq. (C14) is schematically (R + V V). Comparing these
two and using the above-mentioned limit, s, is dominant.
The same argument can be used to see how the second
inequality in Eq. (60) comes about. Using the above
reasoning, we see which terms in Eq. (48) can be neglected:

|

~

(1) (1010): given in Eq. (51), it is schematically
written as

M%SSMS(DS){V V+S+R}h.  (61)
Comparing Eq. (61) and (0101) in Eq. (59), we can
neglect (1010) in comparison with (0101).

(i) (1001): given in Eq. (48), it goes like
V=985 F(LJ;)h, which we can compare with
(0101) given in Eq. (59). Counting derivatives
and curvatures, we can deduce that the contribution
of (1001) is of the same order as (0101).

(iii) (0110): given in Eq. (54), it can be neglected
compared to (0101) in Eq. (59) by using the first
approximation in Eq. (60).

(iv) (0011): given in Eq. (56), it can be similarly
neglected compared to (0101), using the second
approximation in Eq. (60).

(v) (0020): given in Eq. (57), it contains two kinds of
contributions. The first one is local as it has no

F,(Oy). This can be neglected compared to (0101),

which has F, (). The second part is nonlocal and
can be neglected compared to (0101) using the first
approximation in Eq. (60).

D. Perturbing quadratic in Weyl tensor term

Last, the quadratic in the Weyl tensor term in our
Lagrangian in Eq. (1) is

1
Ecz — 5 ‘/_gC/)O'ﬂyf?’(DS)CﬂV/)O_‘ (62)

Since our background is conformally flat, any term in
8*(\/=gCr,,F5(O,)C* ,,) containing C,,,, vanishes. We
are then left with only one nonzero term,

(010]) =V _gcfmyuﬁé('js)cﬂypm (63)

which finally becomes

T (™ —ap Qo a =foNT NPT ([ ll/ — U 11/ —YU P 1 -y P
Cp"wf3(Ds)C””pg = haﬂ{[éﬁy P8%, + 26 Mgﬂ Vv, V1 F5(O;) —55 65’1/,9}"”]3 +E5 pélgg”‘R —Eé‘”pélag "R

3

Lo o5 Loy iile s g Lo gz Lsgg L s gy e guge
+3 pY o _5 o p +5 pY o _Z ¥ p+Z »9 0'_5 pY o +Z 9 P

1 ., 1 <, 1 <, 1 . -1 _
- Z&ﬁ,gwsvg - Z(S’Q,Q”‘S/ +59 g+S," — Z&ﬂpgws(j + Zfsn,éﬂpgwm - Z(svﬂagwm

1 -1 | - o1 | - -1
+ Zéﬂ,,aﬁagwm - E(sh,ng,,w + Eéﬁggﬂrv,,v" + Eéﬂ,nggw - Eaﬂpgﬂrvﬁv"] }hﬂ,

_ 7 afyA 7
= hagO by

(64)
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where the operator O%r* is introduced for brevity; (C)

indicates that it comes from 6°Lc2. All other SVT con-
tributions including mix terms are zero. A detailed calcu-
lation from scratch is given in Appendix C 4. MSS and flat
space limits are discussed in Sec. VI and are greatly
simplified after setting S, = 0.

VI. dS/AdS AND FLAT SPACETIME LIMITS

In this section, we verify that >£ in Eq. (31) computed
around our non-MSS, conformally flat background given
by Eq. (13) reduces’ to the known expressions computed
before in [63,64]. This section borrows many steps from
there. Three important simplifications occur when comput-
ing 8% L around MSS. First, all perturbations that contain at
least one A, or one B mode go to zero since each term in
these expressions is proportional to S‘W (see Appendix C or
Sec. V). This kills all terms that are purely quadratic in each
A, or B, and also modes that are mixed with them. Second,
all mode mixings between fzﬂ,, and ¢ vanish upon using the
Riemann tensor for MSS in Eq. (12), transversality con-
straints on SVT modes in Eq. (5), and integration by parts.
Third, the complicated piece 5°Lg in Eq. (47) has only one
nonzero contribution coming from (0101), with the rest
vanishing because S, = 0.

The nonzero SVT contributions coming from 6*Lgy o
are [see Eq. (34)]

2 G
0" Leuan=v— 50 =V=9—5" 5 [Bogiiy +O0(g)]
\/_ -k ﬁﬂ”—i¢(3ﬂ+1‘e)¢
B 4 My 6 32 '

(65)

The nonzero SVT contributions coming from §*Lg are
[see Eq. (44)]

&Lz = V/=3f10R B P <G - 2) " — 3%(15(3& +R)¢

+ \/—_g%¢(3ﬁ + R)2F(0;)¢. (66)

The nonzero SVT contributions coming from 6> L. are [see
(Eq. 48)]

The dS/AdS/flat space limit can also be verified from the most
general, second order perturbations around arbitrary back-
grounds given in Appendix C.

52£Sz:(0101):%\/—_§s”ﬂ.7:2(ils)s”
_1[(1, _ (1.
_VTQE[(ZD;, ¢)7:2(Ds)<ZD”D¢)]
1{1/= R\. - 1/- R\.
el el _\pv z _ )
=V [«m( s+2§‘*) ot R)m]
/= R\:,_ = (= R\,
—|-\/—_g§ [(D—6> h," F,(0y) (D—6> hﬂp], (67)
where we have defined
_ o ] _ - R
Ev V - UZ, D””IO, RSEV?, (68)

and used the following recursion relations applicable only
for MSS':

" (T \egwy — [T
%@ = (547

SR\ "-
S) V,H", where H*, =0,
v, (O = (D + 4) V1. (69)

Finally, the nonzero SVT contributions coming from 6L
are [see Eq. (63)]

1 _
(0101):?/ gcr uvf?(D ) e

fon(e ) e-e-)e)
(70)

where we have used the following recursion relations
applicable only for MSS:

(71)

Full 62§ can be split into its tensor (67S) and scalar (6°S)
parts, and we get

"1t is difficult and perhaps impossible to derive recursion
relations for an arbitrary background. Nevertheless, many useful
commutation relations and some recursion relations for an
arbitrary background are presented in Appendix E.
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1 (- R 2,
52S;l:§/d4)€\/—_gh} <D_g>{1+M_%fl’0R

(e

1 R 2

3 3 {1+M—%fl oR

1 . _
“e {2(3D+R).7-"1(DY)

1 - - R, -
o605l ™

where we have introduced canonically normalized fields

~ 1 . ~ 3 - ~
hﬂy :EMPhﬂw P= \/%MPqﬁ’ [h;w] = [¢] =1L (73)

This matches with the results obtained in [64] and verifies
the MSS limit. Effectively, Eq. (72) gives spin-2 and spin-0
components of the graviton propagator around dS/AdS
backgrounds.

Now, going to the flat space limit is easy by substituting
R = 0 above. We get the spin-2 and spin-0 components of

the propagator Iy = m, where
2 2
G =1 =305 [Fa(=p3) + 2F5(=p).
P
2p? 1
Co = —{1 +W [6]:1(—17?) +§}-2(—P%)] }7 (74)
P

and we have defined p? = p?>/M?. We finally get

This matches with the result in [64] and verifies the flat
space limit.

Before moving on to the next section, recall that the
background curvature dependence in expressions compris-
ing 8>S appears in terms of R and S‘}w. These curvatures are
generated in two ways: first, when we compute the
perturbation of a quantity (such as the Ricci scalar) to
some order, and second, when covariant derivatives (v,,)
are commuted across the infinite tower of [, operators [in
Fi(,)] to the other side in order to contract with
corresponding covariant derivatives (V*) to form scalar
[J operators. Perturbations around our background satisfy-
ing Eq. (13) reduce to those around MSS when §,,, is set to
zero. Naively, we might be able to separate the non-MSS
and MSS parts of perturbations by separating expressions
with and without Suw respectively. This is not possible,
however, because simple recursive relations when commut-
ing V¥, as in Eqs. (69) and (71) for MSS, do not seem to
exist for non-MSS backgrounds (except for the simplest
cases when V* operates on a low-rank tensor (see, e.g.,
Appendixes (E14) and (E17).

VII. ILLUSTRATIVE EXAMPLES

To facilitate studying equations of motion of SVT modes
in IDG around our background [Eq. (13)], we consider
three examples, each of which has only one F;([J;)
nonzero. Lgy,, iS never zero since we want the higher
derivative theory to reduce to GR in IR. In two cases, we
will show that the different SVT d.o.f. can be decoupled
and solutions can be obtained in the UV regime. The third
case shows nontrivial mode mixing.

A. L=Lpgia+Ler (F1=F,=0F3 #0)

In this case, the action is composed of Einstein-Hilbert
plus cosmological constant and quadratic in Weyl tensor
parts of the full action in Eq. (1). The background EoM in
Eq. (14) in this case reduces to M%S#, = 0 whose solution
is S'”,, = 0, which is just MSS, and has been studied before
in [64]. We briefly recall the results from there. The second
order action can be read off from Eq. (72):

88 = /d“x\/—_giz,w B (B - §> [1 + Mi% <G - §> F3 <Gs - %)} g“ﬂgﬂv] hos — & [ﬂ; R] 9, (76)

with a kinetic matrix /C diagonal in ¢ and iz/w modes [see
Eq. (11)]. We see in the quadratic form for & L above that in
addition to the usual pole for GR at R/6 expressed by

|

(O — R/6), there is a multiplicative factor that contains the
higher derivative, nonlocal form factor F3(CJ;). By de-
manding this multiplicative factor to be exponential of an
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entire function,'' it becomes possible to modify the

graviton propagator such that there are no extra d.o.f.,
and also no ghosts. For example, for an entire function

a(Jy) and

M2 a(il\.—&) -1
_Mp [e S ] , (77)

f3(|js) - 2 (lj _%)

which is holomorphic, we get the following tensor quad-
ratic form:

S]; == /d4x \/:_g'ljl (lj —_ g) ea(ljs_zgﬁ)illll/’ (78)

2 W

which has the usual graviton pole corresponding to the dS/
AdS radius and, additionally, exponential suppression at
large momenta k = M.

B. L=£EH+A+‘CSZ (T1=f3=07f2¢0)

In this case, the Lagrangian consists of Einstein-Hilbert
plus cosmological constant and quadratic in traceless Ricci
tensor parts of the full Lagrangian in Eq. (1), and we have

M2
L = 7’”50 + 8 Lg. (79)

In this case, the background EoM from Eq. (14) is
MASH, = fr0(16%, 55, — L RS#, —25%5,,), which is
nontrivial to solve. Furthermore, from explicit perturbative
expressions given in Appendixes B and C (see also
Sec. VC), we see that 6L is highly nontrivial and
possesses all of the six possible mixings between scalar,
vector, and tensor modes. Therefore, in this case the
generalized kinetic matrix K, # 0 for all x, v. The full
8L in Eq. (79) for all SVT modes is quite long and not very
enlightening, and so we will not present them here.
However, following the discussion in Sec. V C 1, we can
greatly simplify 6°Ls and extract the two dominant
contributions in the UV, where infinite covariant derivatives
dominate, i.e., (0101) and (1001). In particular, in this limit,
we neglect contributions coming from M33, and terms in
8L that are quadratic in background curvatures because,
in this UV limit, the momenta scale as k2 M, with
R.S,, < O(M?). In Appendix C3, we have presented
the (0101) and (1001) contributions in 8>Lg for all SVT
modes. For now, let us just consider ¢ and fzﬂ,,. There
exist nontrivial SVT mode mixings in §°£L in Eq. (79) such

as B(ICOI)¢’A”(IC21)M¢7il/u/(,C:il)lqu’il/dl/(}Cin)/wBa and

11According to the Weierstrass product theorem, any entire
function f(z) with no zeros can be written as f(z) = e%), where
g(z) is an entire function. We can use this to construct F;(C],)
without poles.

sz(IC32)”” ,A%, along with the usual purely quadratic in
one SVT mode terms ¢(Ky;)¢ and h,, (K53)"*°h,,,. The
respective kinetic matrix elements are

1- - - -
ICOI = gSUﬂfZ(Ds)vavﬂ ’

1- - - = = - - - - -
ot = [3 905,99, - 9,7,(0)5,9:9,|

(1 I 1- R
K:},] — ﬁRFQ(DY)VDV'M +§S6ﬂf2(|:|5)vyvo-

| I _
~ 2 SAF(0) - 2 OF, (@) vV

1- - = 1= R
- g A0 + IR E)0)
A
- FOIER,

Kz = [F»(0,)88%,VPe#, — F,(0,) 08 V&),
1 D B
N v (. 2
Ki = |1 9,9 F2(0)9,7 64f2(Ds>D],

1 I S
— 1 P U)RU g g™ = Fo (L) 5 Ug”

1 _
+Z~7:2(Ds)52§‘0”§” . (80)

Unlike the previous case in Sec. VII A, here we see that
decoupling the different SVT d.o.f. at the quadratic level of
the action is not an easy task, and perhaps impossible. This
indicates having quadratic in (traceless) Ricci tensor terms
in the action will, in general, give rise to all SVT modes
being coupled to each other when the background is not
MSS."? We defer the analysis of Eq. (79) to the future.

C. £=£EH+A+‘CR2 (f2=f'3=0vfl #0)

In this case, the Lagrangian consists of Einstein-Hilbert
plus cosmological constant and quadratic in Ricci scalar
terms of the full Lagrangian in Eq. (1):

L= % [M%(R = 2A) + RF,(L,)R]. (81)

The second order Lagrangian in this case is [see Eqs. (34)
and (44)]

"’Notice that when taking the MSS limit (5, = 0), all mode
mixing operators in Eq. (80) manifestly vanish, except
31 RF> () VVF = LOF, () V*V# in (K5 )*. This goes to
zero, 100, after integrating by parts and using the transversality
condition V*h,, = 0.
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1 -
PL =106+ rF (O], (82)
where Q = M f, +2f 1,0R and the background EoM from
Eq. (14) is

Q3+, = 0. (83)

If we trace back to how we obtained the background EoM
in Eq. (83) from Appendix (A1), we notice that only the
condition 8”1_? =0 was used, not vaS’W = 0. Now, the
background EoM in Eq. (83) has three possible solutions.
Let us consider them one by one:

() Q#0,S8,, = 0: Since S’W = 0, this leads us trivially
to the MSS case presented in Sec. VI (also see [64])
and we get the scalar and tensor parts of the second
order action as

2 Q. 4 hﬂu O==\h
0S5 = 2M2/dx\/ ( 6)

2M2/d4x\/_¢<D—|— )
X {Q—ﬁ(i +§>}"1(|js)] b. (84)

26

In order to have no extra d.o.f. in the ¢ sector, in
addition to a possible Brans-Dicke-like scalar of
mass m, we can choose

[Q—6<|j+§)}'l(ﬂs)} = (1—%>€e“<ms), (85)

where a([J;) is an entire function [as in Eq. (77)]
and € = 0 or 1. € = 0 corresponds to no extra scalar
mode, while ¢ = 1 corresponds to one extra Brans-
Dicke scalar. Imposing m? > 0 ensures that the
scalar is not tachyonic.

2) Q=0, S;w # 0: Since S’W # 0, we have a non-MSS
background, as required by our background con-
ditions in Eq. (13). Q =0 then determines the
background Ricci scalar to be

M3
2f10°
The first term in Eq. (82) vanishes because Q = 0.

From Egs. (45) and (46), we see that 6>£ contains
only ¢ and fzﬂy modes

R=- (86)

FL = %4; [(R +30)2 fl(ils)]qs

16
14 = Uy
2h DS s F1(05) S, 1"

1o [ - - O
zh’”{(RHD)SWf]( )

e e

3
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where, now, we have used the condition V,S w =0

[see Eq. (13b)]. We can diagonalize 6>£L using the
field redefinition

w = (R+30) % - Sﬂyil””, (88)

so that the quadratic action becomes

o5 = [ dxizuE @ (69

and varying 6>S with respect to y gives us the EoM
for y,

Fi(@yy =0. (90)

This new scalar y is gauge invariant as it is
composed of gauge-invariant fields fzﬂ,, and ¢ [see
Eq. (9)]. Now, the propagating d.o.f. in the theory
described by the action in Eq. (89) depend on the
form of F,(CJ;) we choose in our Lagrangian in
Eq. (81). For example, if we choose F,(LJ,) = 1,
then y has no kinetic term. Also, from the EoM in
Eq. (90), we get w = 0, which from Eq. (88) gives
the constraint equation

— A

R+30)2 =5, 0. (91)

b _

4
If we choose F ({J,) = [J;
action becomes

= [J/M?, the quadratic

/&MF% Oy (92)

where ¥ =y /M, now has canonical dimensions
[#] = 1. This theory describes a massless scalar in a
non-MSS (SW # 0) background. It is also ghost-free
because the sign of the kinetic term is correct. If we
choose F () = (1 — L)e™
function a(LJ;), we have

s) for some entire

_1 O\¢ .z
S = /d“x\/—giw(l _W> By, (93)

where € = 0 or 1. The case ¢ = 0 corresponds to no
poles for y, while € = 1 corresponds to a pole at
[ = m?. For the choice ¢ = 0 and a((J,) = [, the
kinetic term is similar to what one has in p-adic
string theory [19].

Q= O,SW = 0: Since S‘W =0, we again have an
MSS background, but this dS/AdS vacuum is differ-
ent from that in Eq. (84) where € was nonzero. Here,
Q = 0, and the coefficient f, in F(J;) is related

to the cosmological constant via
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M}

R = — =
2f10

4A. (94)

The second order action in this case can be obtained
by putting Q = 0 in Eq. (84), where its tensor part
8%S;, vanishes, leaving us with just the scalar part,

~ - R 2 - ~
#Sy=ggz | v (045 ) A 09

which has the EoM for ¢ given by

<E} + §> 2?, (0,)¢ = 0. (96)

As before, we can choose F (L) = ¢*5) for some
entire function a([J,) to avoid any additional poles
for ¢. In a local theory, with say F,(LCJ,) = 1, the
EoM in Eq. (96) reduces to that of a fourth order

wave operator acting on ¢:

(G + §)2<}5 =0. (97)

In addition to modes ¢, that satisfy both
O+ §)(§5 =0 and Eq. (97), there also exist log
modes g;ﬁlog that satisfy Eq. (97) but not ([ —|—§)<77 =0
[83]. We see that this dS/AdS vacuum has a different
spectrum compared to the (Q # 0, S‘ﬂ,, =0) case
discussed before. In that case, 5%S had both tensor
h and scalar (27 modes [see Eq. (84)]. In this case, we

have only the scalar q?ﬁ mode,13 that, too, satisfies a
different EoM given in Eq. (96).

"The vacuum solution Q = S’W = 0 exists even in the local
theory, i.e., when F (L) = f1, giving only a scalar mode but no
tensor mode in the spectrum. Note that we cannot realize the
solution Q=0,§ =0 if we conformally transform the R + f LoR?
action to its Einstein frame where we always have a tensor mode
coming from the Einstein-Hilbert term and a propagating scalar
minimally coupled to gravity. This is because the conformal
transformation cannot always be applied. We can clearly see this
by writing the local quadratic action in terms of a Lagrange
multiplier y as

M2
SRz = /d“x\/—_g[TpR +f1y0R2:|
M2

:/d‘*x\/——g[(Tuzfl,Ox)R—;ﬁ} (98)

Transforming the above action into the Einstein frame involves
2 —

redefining metric g, — (%4— 2f10x) 1 Gy Which is not well

defined when Y22 4+ 2 o7 = 0 [84].

VIII. CONCLUSIONS

In this paper, we studied perturbations at the quadratic
level of the action for infinite derivative gravity, involving
quadratic in curvature terms, proposed in [33]. We
computed (covariant) scalar-vector-tensor perturbations
(¢,B,Aﬂ,fzﬂy) around conformally flat, covariantly con-
stant curvature backgrounds that are more general than and
go beyond maximally symmetric spacetimes. We have
illustrated that conformally flat, covariantly constant cur-
vature backgrounds generically arise in IDG theories when
resolving big bang and black hole singularities. Testing the
stability of these backgrounds requires studying perturba-
tions, which was the focus of this paper. We found that
around our chosen background, the different SVT modes
do not decouple at the quadratic level of the action. This
means that, for instance, the scalar mode ¢ is sourced by the
remaining vector AM, tensor fl,w, and scalar B modes. To
show the consistency of computations around our non-
maximally symmetric background, we derived dS/AdS and
flat space limits, previously computed in [33,64].

Studying quadratic order SVT perturbations at the level
of the action, around our conformally flat, covariantly
constant curvature background in various limits of IDG, we
learn the following:

(1) In the case where 7| =F, =0 and F;3 #0, ie.,

when the action contains only the nonlocal, quadratic
Weyl term in addition to the usual Finstein-Hilbert
plus cosmological constant term, our background
equations of motion imply that the only possible
background solutions are maximally symmetric dS/
AdS (S’,w =0). So in this case, there is only one

propagating d.o.f., fzﬂ,,, and we can construct a ghost-
free propagator for it, as was shown previously in [64].
(i) The case with F| =0,F, #0, and F5 =0, ie.,
when the action contains the nonlocal, quadratic in
traceless Ricci tensor term in addition to the usual GR
term, is quite involved. The second order action has a
complicated form that was expected because of our
nontrivial background that goes beyond dS/AdS. We
present the framework for perturbations in this case,
but for economical reasons, present the second order
action with only the terms that are highly dominant in
the UV. Here, we see that all the SVT modes have
nonlocal [containing F, (L, )] kinetic terms and also
nontrivial mixings with all the other SVT modes.
(iii) In the case with | #0,F, =0, and F5; =0, i.e.,
when the action contains the nonlocal, quadratic in
Ricci scalar term along with the usual GR term,
we found that the scalar B and vector A, modes

do not appear at all. The remaining ¢ and fz/w modes
are mixed but the second order action can be
diagonalized. We have analyzed all the vacuum
solutions of this case and studied the spectrum of
propagating modes.
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In addition to the fact that SVT modes are generically
coupled, we notice that their kinetic terms are not only
functions of [J but also the background traceless Ricci
tensor and Ricci scalar. This is similar to the case when the
background was dS/AdS (see [64]) where we had form
factors (obtained from ghost-free conditions) depending on
not only covariant derivatives but also the background
Ricci scalar [e.g., see Eq. (72)]. In our case, form factors do
depend on the background traceless Ricci tensor since our
background is not MSS. In order to clearly see this,
however, one must use the commutation relations presented
in Appendix E to commute Vﬂ through F;(CJ;) and

contract with V# on the other side of the form factors.
However, these commutation relations are not recursive in
most cases and it is not possible to write a closed form
expression for form factors where explicit background
curvature dependence is manifest. Our study indicates that
in order to formulate a background independent theory of
IDG, we must start with form factors depending on
R Su
TMI M
not have to fix the form factors depending on any particular
background. One might also consider studying perturba-
tions using a decomposition different from the one in
Eq. (6). We leave these interesting endeavors for future
investigations.

The perturbations we have computed in this paper around
backgrounds beyond MSS can have wide cosmological and
astrophysical applications in probing UV physics of any
higher derivative theory of gravity. We illustrated with
explicit computation that all covariant SVT modes in these
backgrounds are generally coupled, indicating that gravi-
tational waves may have nontrivial propagation with extra
polarizations (in addition to the usual 4+ and X tensor

|

curvatures, i.e., F;(0; ) in such a way that we do

polarizations known in GR) since the modes are coupled to
each other. To study (extra) polarizations of gravitational
waves in IDG or in any other higher derivative theory of
gravity, it is useful to decompose metric perturbations with
respect to the symmetries of the background metric; most of
the computations we have carried out in this manuscript will
be useful for related ones involving extra polarizations and
coupling of different modes in higher derivative theories
of gravity. The study of SVT modes in modified theories of
gravity is currently an active area of research in the scope of
LIGO/VIRGO detections [85-88]. It will be interesting to
investigate quantitative signatures of IDG with respect to
detection of extra polarizations, which we defer for future
investigations.
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APPENDIX A: FULL, NONLINEAR
EQUATIONS OF MOTION

Varying the action in Eq. (1) with respect to the metric
gives the EoM derived in [73,91]

1
M%’Gﬂv = Tﬂu - M%’Aéﬂv - zsﬂyfl(D.v)R + Z(VMVD - WUD)]:I (D\)R - ER]:.Z(DS)SMD - zsﬂﬂfé(l:‘s)sﬂy

1 1 1
+ EWDS“ﬁFQ(DS)Sﬁa +2 <VPVUF2(DS)S”P ) OF,(0O;) s, — 55”yVJVp]:2(DS)S"/’>

1 _
+ L, _55’3(”; +Ly)+ Ly~
1 _
- Lo, 0y an,

where G, = R, — % guwR is the Einstein tensor and

Hv

n—1

1 o0 _ [Se]
L,lll/ = m;fln IZ(;aMR(l)ayR(n_l_Uv Ll = Zfln

=) n—1

1 _ oo
Ly = WZon Z V”S(’),";‘VDS(”"‘”Q L, = Zf2n
5 1=0

n=1

1 _
Eéﬂv(l‘ga + LZ) =+ 2A”v + 2(Saﬂ + Zvavﬂ)fZ%(Ds)Cvaﬂﬂ + qu

(A1)
n—1
RO R(=D) (A2)
n=1 =0
n—1
sWasn=0r, (A3)
n=1 1=0
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AM_MZZonZVﬁ ﬁVﬂsnl 1

n—1

qu :M22f3’lzc/3/16y [MU”” - l)

I & - oa(n—I—
A = sz%l Y e [ ¢ postn=i=D)
$ n=1 =0
where
xXm = mx, (A7)
Taking the trace of Eq. (Al), we get
—M3R = —4M3A — 600F (O0,)R — (L, +2L,)
-2V, V,F,(0) 8" — (L, + 2L,) +2A. (A8)

APPENDIX B: PERTURBATIONS AROUND
AN ARBITRARY BACKGROUND

The metric is perturbed as

9w = gﬂb + hﬂb' (Bl)
In general, an expression Q (arbitrary rank tensor, indices
suppressed) that depends on g, has the following expansion:

0=0+0" +0® (B2)

where the superscript in parentheses (1) denotes that the
perturbation is O(h"). O = Q¥ is the background value of
Q. We use lowercase letters to indicate O(h) perturbation
of the relevant quantity, while higher order perturbations
are indicated explicitly by their order n. So, ¢g= Q") =60,
QW = §%Q, etc. Specifically, Q could be the inverse
metric, Ricci scalar (R), Ricci tensor (R,,), traceless
Ricci tensor (S,,), Weyl tensor (C,,,), or the Levi-
Civita connection. In order to set notation, we expand
the curvatures up to O(h?):

R=R+r+8&R,

R, =R, +r,+8&R,.
Sy =S+ S+ 58,
C;wpa = C/wpa + Cuvpo =+ 8 C/,wpa <B3)

— Vs sn=i=n7), (A4)
o, = ng,, Zc,u ¢ pietne), (45)
Cw(wcpma(n l—l)];ﬁ7 (A6)

|
The perturbations of all other quantities involve perturba-
tions to all orders in . We will henceforth expand all other
quantities up to O(h?) at most. As an example, suppose we
want to find the O(h?) contribution in (QP) where Q and P
are some quantities that depend on g,,, . To find (QP)?), we
expand each term and collect all O(h?) contributions:

(QP)@) = [Q(O) +0M 4+ 0@ .. ] [P(O) 4+ pM) 4 p@) .. ]
=00 p2 4 0@ pO 4 o) pH)
collect
+:--otherterms: - -. (B4)
N e
discard
The inverse metric is
g =g — " + hHRY,, (B3)
while the square root of the metric determinant is
_ h o1
V—9=+v- 8 ~1 —h, B ). (B6)

Note that 6g,, = h,,, and 6¢"* = —h**. All traces are taken
with respect to the background metric, such as h = g*h,
Covariant derivatives (v,,) are defined with respect to the
background g,,. The Levi-Civita connection is

_1 - _ _
I, =T} + 3 (V,0*, +V, ', =V'h,). (B7)

Expansions for curvatures are then obtained by substituting
the above expansions in Eq. (B3). We use the notation in
Eq. (B2) for the remaining part of Appendix B. The
following expansions are valid for an arbitrary back-
ground. We get
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R =

R® =

Ry =

2)

RY =

St =

SP =

—hR 5 + VsV ,h* — (h,
_ _ - - _ - |
—h R g5 + 20 h;7 R + WPV pN b = 20PN gN T — i VshVPh

_ _ . _ 1= _ 3_ _
=V hPN by + VPRV by’ + hP O, — 3 Ve VBT 4 2N hog VTR,

1 1 - _
ihy Rﬂa+§hﬂ R,, — h*’R

1 _ _ 1 _
=5 WS Rypay + 1 W Ry =5 1P, R

| le  epw o ep o lo o o 1o o
+5h ﬂvﬁvahﬂy—ivahbﬁvﬂhﬂ +§v,,,hmvﬂh,, +ZV(,hVMhD —Evﬁhaﬂvﬂhy

SOy 4 39,9+ 59, 19,9,

powf

- VahV“hm, +3 vah,wvﬂha

vpay

1 - - le .- le - | 1 - - |
- 5h "V, Vsh, +Zvﬂh PN o + Zvahvyh,, — Evﬁhaﬁvyhﬂ - 5h PN,V shyg +§h PV, NV, B

I TN (T 1 L ee .
ng/h ﬂRaﬂ + Ehv R/wt +5h Rl/a - Zh#yR —h ﬂR#m/ﬂ - El:lhm/ - Zg,“l’vﬂvah p
I 1 - - 1 - -
Ok VVh +-V,V,h,*—=V,V,h
+4g”” 3 3 2 v

1 1_ - 1_ - 1 - -
Zha/jh Raﬁ + Zgﬂbhaﬁhleayﬁl - zgﬂyhaﬂhlyRﬁ al - EhﬁyhuaR,uﬂay + hayhaﬁRﬂﬁy},

- %hﬂrhﬂakmay - %Vahv“h,w + % Veh,,Vsh — —h VsV hP — % 9, hPV sV h

+ %h“ﬂvlﬁahw + %hwﬂh + %gﬂyhaﬂvﬁyhar + % 9, VhVPh — 3 v,,h,,ﬁvﬂh,,“

1 %vﬂhmvﬂhﬂa + % 9, VohV by — % 9, VPhV, by — % G Clh

+ égﬂﬁﬁhaﬁhaﬂ - 1% GV hag VI hYP + %vahvﬂh,ﬂ - %V,,h(,ﬂvﬂ h,* — %h’l/’vﬂ T

le - le - le o 1 e - 1o
+ 3 VO gy + 2V =SV = 2K,V gy + 5DV, g,

= e R = 5 B R+ 5 e Ros = 3y Ry = 5 he R = 5 B Ry 51y R
+ %hﬂaz‘ew %hﬂakwpa - %vpvﬂhw + % V,V,h,,+ %vavﬂhw -~ % V,V,h,,,
- % Voh,sVoh,, + % Voh,, Veh,, + % VRV hy — % VR,V hey — 211 VRV, g
+ %vﬂhmvyhp“ + %?f’hﬂﬁyhm - %vﬂh/,“vvhm + 4—1‘ VahyoV b, = %vphwﬁphﬂa
SRR NN VIR MRS WA MR VIR AR AN
+ % Vh,,Vh,, — % V1,V ghy — % V., h,oV,h,2,
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AU U SR IR IS I I
C/Slvz)a = gg;mguph /}Raﬁ - gg,u/)gy(rh ﬁRa/} - _gurrh/) Rﬂ(l + ng/)h Rﬂ(l - 2 hvnR,u/) +3 ) hv/)R;m
1_ - 1_ 1_ - 1_ -
+ Zg/mh/)aRya - Zgﬂ/)h aRya +3 2 h/me/) ) h/,t/)Rvor - ngo"hyaRpa + Zgﬂ(rhzzaR/)a
IS D S DA S
4 h aRaa - Zg;tphuaRmz + gguuh;tpR - gguph/mR - gg;whupR + 6gﬂf)huﬂR
1 1 R 1 - 1
2 h R/,tap/) - 2 h/) R;wwo’ + Egur;haﬂRuapﬂ - _guphaﬂRﬂao'ﬁ + 5 ho’ IR/,w/)a - E hpaR;wml
1 I 1 o I
2 ~h aRWwa' E huaR/Apoa + 5 hpaR;w'va +5 h Ruap(x - Eg;whaﬁRuapﬂ + igyphaﬁRuaaﬁ
1 [ 1. - _ 1. - -
+ 5 D) hyaRvpoa - E hyaRvapa + ngrl:lhpp tha - Zgﬂzfl:lhyp + ngpDhua
1 _ | 1. -1 1 _
8 o’gzx/)v/)’vahaﬂ + ggypgurfv/ivahaﬂ + _g;mgy/)ljh 69;4/)91/0":‘]1 _gvo'v v( h/)a
1. o 1. o 1. o 1. o«
+ 4gl/p ﬂvahaa + Z /wvyvah/)a - Z ypvyvahaa - Z uavpvahya + Z ;vavahua
| T 1 - - 1o - 1. 1 - -
—+ ngvp ”h - Evpvﬂhw - Z WV/]V h + Evpvuhm —+ Zgbl,vgvahﬂ - Zgﬂﬂvgvahﬂ
1. oo 1o | [
- Zgy/)v”vﬂh + 5 vgvth + ng,v(,vyh - E V(,vyhm,. (B]Z)
|
Note that Cﬁ}m has 144 terms and is not very enlightening, ~ 6(C))R = 8(CJR) — LR,
and so we do not present it here. le  cun Sanc 5 =S b
Perturbations of mixed rank tensors can be written down ) VohVR = VERVgh = hayV'VR
once the perturbation of its fully covariant (or contra- — 0 for R = const. (B16)

variant) counterpart is known, for instance,

5R”l/ = 5(R(ll/g{l”) = SR(II./Q{IM + R(ll/(sgaﬂ

= 5Rm/§(m - Rauhaﬂ' (B 1 3)

We also need perturbations of covariant derivatives. For
VﬂQ, this means that the Levi-Civita connection in the
definition of V, is expanded in £, keeping Q unpefturbed.
Then 6(V,) means that after V, operates on Q, it is
expanded in A, and the first order is picked out. We have

5(V,)0 = V,000 = V,10Q0
= (V,0)) -V, 00

= 5(vﬂQ) - vll(sQ' (B14)

For example, for a scalar ¢ which does not depend on g,,,,
we have

5(|:|)¢ = 5(glwv/4vv)¢ = _h”yvﬂau¢ -
= §(0¢) — Obg.

G0,
(B15)

Similarly, for Ricci scalar R, which depends on s WE
have

We can now expand covariant derivative V,,, box operator
[, and the form factors F;(CJ;) in Eq. (3) in a series in £,

V,=V,04+V,04+V,@ 4.
O=00+00+0@ +

Fi(@)=F(0,) 0+ F(O,) W+ F,(0,)2 +---. (B17)

APPENDIX C: SECOND ORDER VARIATION
OF THE ACTION

This appendix is self-contained. In Appendix B, we had
listed perturbations of all curvatures in terms of /,,. In this
appendix, we perform SVT decomposition of 5°S, Eq. (31),
and apply our background conditions, Eq. (13). We closely
follow the steps enumerated in Sec. V in order to get the
most simplified expressions. In particular,

(i) We first present the most general perturbations in
terms of the SVT modes ¢, B,A,, and hy,, and
background curvatures R, Rﬂ,,, and R, Which
are kept arbitrary. We also use the Bianchi identity
Eq. (32).
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(ii) All background curvatures are then decomposed into their irreducible trace and traceless components R, S - and

Clupe- We also impose background conformal flatness _C wpe = 0, Eq. (13a). And we use the Bianchi identity again.

(iii) Covariantly constant background curvature conditions VaS’W =0and 8”1_6 = 0 in Eq. (13b) are applied.

2 2
L 62 Lpn o = 58 /—8(R-2A)]= 8

For reference, around an arbitrary background, we have [64]

1 - | R 1o
P[/=g(R —2A)] = \/—_gKZ By O = 2 HOh + 5 1V, 9, 1+ Evﬂhw’vyh”,,>

11 I )
+ (hh’l —2]/1”5]/10 )<§Rg"” —ZAgﬂy _ER”D> — (ERo'I/h ph r +§R pyﬂh'uo-h p>i| .

(1) Performing SVT decomposition Eq. (6) of dy, Eq. (34), around an arbitrary background, we get the terms that are
purely quadratic in one SVT mode as

lo=p e & wi's 1 7 pDLa l = DA 1 vt ImAy. 1 =2 1 pr2
So(sm) = g BRIV uRy VB + T ABV,RV"B — ¢ BRV,RV*B — ¢ BV*RUV,B + 7 ABCPB — - BRUB
| 0 P\ D 1 D v Avi T = .5 viAwi‘s | [ — wi's | v Awid
— g BRoY BV/R +§ABRaﬁV/”V B —gBRaVRﬂyV/ VB —ZBRa/jRVﬂV B —ZBRMRGWV/’V B
1o epoan W ompcure = Lo o [
—EBRJMRW,,WV B —§BRﬁ7V BV,Ros + 5 BRIV BV, Ry, —gBRaﬂDVﬂV B

13, cmcan O np Sroscm 3 wd B Srosc |
+5 BR,V'OV'B - ZBRﬂyvyvﬁDB - ZBvaRﬁyvyvﬁvaB + ZBvﬂRayvyvﬁvaB

~J

——BV,R,;V'V/V°B + EBR(,WV“BWR/}V + 5BRaWVﬂVYV/’V“B - 5BRGWV*WV/’V“B

—_

— = BR;5, V*'V'V/VB,

1

3 .
AP = gD
30(pg) 3 ¢ 32¢ P,

] . o | | o _
Boas) = ~AA“A’Ryy + 5 AAPR R — AAPRV Ry + S AV AV VR + 5 APV R — AACIA,

\S]

| e S8 3 aap TSy as L 3 aap ity as 3 aap IS
+5AROIA, - ARy N'VPA, - EAaRamvlvyAﬁ + EA“RGWWWM - EA“RO,WV‘VVA/’ :

T L (N |
By = 5 Ahggh™ + 3 hy' h Ry, — 1 hash™ R + 3 PR R 5 + 1 ROk, (C1)

and six mixed terms given by

| AR (U L
Sosp) = i ABOg — g BV ,¢$V°R — i BR,V/V*, (C2)
So(pay = —A"BRP'V Ry, + AA®BV R — EA“BRVQR - 5BV“R A, + 2ABR,;VPA® + 4BR /R, VP A
= - - _ _ - 1 o = = -
— BR,sRVPA* — ABR"R,,;,VPA* — 2BR "Ry, VP A — EA“BRG,;V/’R + 2A°BRPIV R

— 2BR,,00VPA* + 2BR,, V'A% + BV Ry, V'VPA® 4 6BV 4R, V'V A* — 6BV, R,V VP A
+ SA®BR 5, V'RP" + 3BR,,V*'V'VP A% — 2BR 5, V*V'VP A — 2A°BRPN R, (C3)
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Sowsiy = BRP R Ry, — B R/ Ry, — 5 BRP Oy + BV;R, V'h* — EBVVRQ,,WW ,

1 a Ny P 1~ /A apbryy ® aphry |
Boga) = =7 A AV —ER(,ﬁqbV/’A o oy =0, gy = —A WV Ry, —2A°RIN gy, (C4)

(ii) Rewriting the above in terms of irreducible R, S > Cupo and imposing C ups = 0, the terms purely quadratic in one
SVT mode are then

| . NS R 3 -5 ae T ocps o &
So(pp) = g ABRUIB ~ 3—ZBR2DB -3 BS;,SP"CIB + 1 ABV.RVB — o BRV,RV*B — ngﬂrvaSﬁyV“B

| 1. - | | N [
——BV°RIOV,B+-AB[?B——BR[*B-—BS, ,V*BV’R + — ABS ,V’V°B
16 T 16 96" 3 M
11 55 V/AVAS 7 N AV V/AvL: 3 NZAVAT AV S p% m\V/AvL 17 5 VZAmAVA
—%BRsaﬂv \Y B+§BSa S, V/V°B —gBS \Y vasaﬂ—ngaﬂDv \Y, B+§BSWV VB
5 o oo 3 e erepean Moo e s T oo
- ZBsﬂyvyvﬂDB - ZBvasﬂyvyvﬁv B+ ZBvﬁSayvyvﬂv B- Zvasaﬂvyvﬂv B, (C5)
1 3 -
Sopg) = —§A¢2 - 3—2¢D¢,
1 1 _ _ 1 . | o
So(an) = — ZAAO,A“R + EA(,A"RZ — AA"APS 5 + §AaAﬁRSa[, + A°APS,1S,, — EAaAasﬂysﬂV

| S - | < e
+ S ANVAIVR + S ANV VR — AATTIA, + J ASRTIA, — A®S, VIVPA,,
| PP (O ora
Bogiiy = EAhaﬁhaﬁ - ghaﬂhaﬁR + Zh“ﬂDhaﬁ, (C6)

with the mixed terms

So(sp) = %ABE(,/; - %BR O¢— éB%gN“R - %BSaﬂvﬁv“qﬁ,
Soay = NABV,R — 25—4AaBWaR — 4A*BSP'V .S, — L—I‘BW"R DA, + 2ABS,; VP A® + %BRS‘G/,W’A“
+ 11BS,755,VPA* + %A“BSWW’R + 5A*BSP'V,S 5 — 3BS,;O0VP A + 3BS,, VI A
+ BV, S, V'VPA“ + 6BV,S, V'VPA* — 6BV, 5,V VP A%,
Somiy = %Bh“ﬂl_?saﬂ +2BhS,S,, - %Bsaﬂljfzaﬂ + BV,;S,, V'™ — %B%S‘aﬂvyf}“/’ ,
So(pa) = —%A%I)V(,R -~ %S(,ﬁWﬁAa, Sogiy = 0s Bouaiy = —AWIN Sy, — 24891V . (C7)

(iii) Imposing vaSW =0, 8”1_? = 0 and substituting A = R/4, which solves the background equations of motion [see
Eq. (16)], the terms purely quadratic in one SVT mode are

I —- =s= 1 - - epe 1 - = =p=
50(33) - gBRSa/;VﬂVaB + EBSHVS/;},V/}V”B + ZBS'H},VJ/V‘BDB,
1o, 3 -
dogg) = ~ 3, Re" =35 #L1¢.
1 . S 1 - -
Soan) = Ty A RSy + AAPS 1Sy, — S AASy S — A5, VIVPA,,
[P
Bogiiy = — 5 haph™ R + 3 1 Ohhgp, (C8)

and the mixings are
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| 1 S
Sosg) =75 B3,V Sosa) =5 BRS,;V/A* + 2BS,’S, VP A<,

| PO RN |
Sosiy = 3 Bh PRS,5 +2Bh™'S,7S,, — 5BS P00h,, So(pa) = —EsaﬂwﬁA .

50((/’2) =0, 50(14;1) = _2AaSﬁyv}'haﬂ'

2. %Ly =62[% /—8RF ()R]
We need to compute 6*[,/—gRF(CJ,)R] given in Eq. (44).
(i) We just need to find perturbed Ricci scalars which, for an arbitrary background, are

e 3= lg o a\yJ P Tap
ro =g ROTZ00. rw =5VeRVB. oy =AVGR rgy =Ry
(ii) Rewriting the above in terms of irreducible R, S s C‘Wm and imposing CWM =0 gives

l\)l'—

1. 3.
(iii)) Imposing vaS’W =0, 8ﬂl_€ = 0 to the above gives

1. 3. .
gy =7Re+300, 1 =0, =0, rg=-h"S,

Finally, the nonzero terms are

(0101)¢¢:< Rp + % ¢>f1(D)<iR¢+%E¢>,

(0]01)hh - (ha Srz[)’)fl

@.
(0101),5, = (—%i«p—%m) P05,

v V(IB, r(A) - Aavak, r(il) — _haﬂsaﬁ.

(C10)

(C11)

(C12)

(C13)

All other SVT perturbations are zero. The final expressions for §>Ly. that use the above expressions are given in

Egs. (45) and (46).

3. 8L =82 /=88, F1(0))SH,]

8*[\/=98*,F1(0;)S*,] has perhaps the most complicated terms, Eq. (48). We present some of them here. We need s*,

which in terms of h,, around an arbitrary background is

1 _ ] 1 I
s”:Z(ﬁ”h/”Raﬂ+§h RW+2hﬂR — 2l R—h"R,";—h Sua =50,

1 1 _
=50V + 8,4 Ch+ 5 vkur vvvw— VeV, h

N[ =
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(1) Its SVT decomposition is

v 1 viapp VoD 1. apy 1. v a v va 1< v (1 DU
0 =40, hR 5 5h Rus+5h, Ry =3 h/ R~ hRye s — S, « 75 P+AVR,
1 I A 1 - = 1 1
——A%%}V,R—-Uh," ——36 vOep — §,,VPAY + =V, R, "V*B — -8,V ,RV*B
4 2 16 # 9= Sua +2 g
1 -
+ R, VPV°B = R, VPVB + R,V A —ZRV A+ SR, V,VeB + R, V*A* - §,, V" A
1. 1. & = e | R— le =
ZRV ER viveB -§,,V'V'B —ZRV”V,,B —I—ZV”Vﬂqﬁ. (C15)
(i) Rewriting the above in terms of irreducible R, SM,,, Cm,,,{, and imposing Cm,,,{, =0, we get
v viaf 7 agu 1_v av_v 1= v
s”_EhMR_Z6 h Saﬂ—l—hﬂSa—i—ZS’”qﬁ—i—A aS EDh —E(Sﬂ D¢
S VA le KRAVL NV l_y VAV 1 VAL VA
-5, V'A EV VB + §*,V,A +§S «V, VB — 55w S V'V B+ZV V.. (C16)
(iii) Imposing V,S,, =0, 9,R = 0 gives
v 1 viaf 7 agu 1< v 1= 1 v N VLIV
S'M_EhﬂR_Zé‘ h Sﬁ"’h Sa+_Sﬂ¢—§|:|h _1_66ﬂ|:|¢_SﬂOCVA
1
+ 5,V WAY S” V V"B——S V”V”B+4V”V }. (C17)
Let us now compute the SVT decomposition for (0101):
(0101) = s”ﬂfz(ﬁs)s"v
|\ Lger oL viees + RS+~ qus s ! 8,/Clgp
I T SRR
1. - = 1. = ¢ == -
SWV“A” + 8, V A —|— 5.V, V°B —ESWV”V“B +4—1V”Vﬂ¢ FH(Oy) sy
lAI/_ 7 aqu NI 1_'\11 T VAV | QU VT A
— EhﬂR+hﬂSa+_Sﬂ¢_§Dhﬂ _S/chA —I—SaVﬂA
1 1 -
+ = S”(,V VB — SWV”V“B + - V”V#qﬁ Fo(Oy)s* (C18)

where in the second equality, we canceled the terms to the left (only left, not right) of F,([J,) that contain

Kronecker deltas 5,” because they hit s#, to the right of F ,(CJ,) and vanish because of tracelessness. Then, we

similarly expand s#, on the right, integrate by parts, and get the following expressions for purely quadratic in one
SVT mode:
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1

1 - - - -
= —_— v H -
(0101),, g{){ Fo(0,)8,48*, + < }'Z(D )8V, VH o1

SN
- - = 1 - = - - =

(0101) 55 = [ VoV, Fo(0,) 8,5,V V7 —5 VIV, F (088, V"V”]B,

(0101),, = A {—V“IQ(ES)S'WS/’”VD -V, F,(8,)8,,8, V7 + 2VF, (0, )SWSWW] AF

1 - = 1 -
(0101); FAO)RP 7 + - FoO)RSw 7 - = Fr(O)RO 75"

{144

+ F,(0,) 8 8# — Fo (L) S Og + — fz(D VPgrger ——fz(D ) ’“’Sﬂ"] Mg (C19)

and the mixings are

(0101),5 = 0,

NI*—‘

o 1. _ 1. L
—RF,(00)s" +ﬁR7:2(Ds)VDV” +ESG”-7'—2(DX)S§” +ES””-7'—2(DJV”VG

(0101)5, = A* {?“fz(‘ )8,a5% YV, VP = 2V F,(0,)8,8,,V* VP + V,F,(0;)S° ‘ﬁ,,vvvp]
(0101);, = B, {_ﬂ(ms)sfwsapwvﬂ + fz(ES)vaSﬂﬁﬁﬂ] B
(0101),; = {——]-"2( RSV VP, +éf2(ils)1‘e3ﬂ,,v"&q —2F,(8,)8*S,,Vre,
+2F,(0,)8¥8 V8, + F,(O,)08, VP&, —fz(is)iiﬂﬁ”{sm} A" (C20)

We now consider the perturbation (1001) in SVT form:

1- -

(1001) = ES””S"U}"z(DS)h
Lo 1L Ry s +1§u b— Lo 5 Goar—Ls ugep
2 H 12 12 14 a v 2 v rva 2 va
+ 54,V A“—i— AV, V"‘B—f— V VR Fy(0)[OB - ¢, (C21)
from which we get the terms with purely quadratic in one SVT mode
1 w - leo w -
(1001)(]5(15 = ¢ —gs ,MS va(Ds) _gv VDS uf‘2<|:|s) ¢7

[P U (PR
(1001),5 = B [—stﬂsmvawfz(ms)m + ZS”,,S”,,V“VU}}(DS)D} B. (C22)

and the mixings
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1 - - - -
(1001)¢B—B[§S,’1S”y]-'2(D )+ - S”]—"z( VA }p
1- - = - - -
(100130 = 4 =3 58,9501 + Qs;smvyfzms)} »
o 1 - - - 1- - - - =
(1001, = | = 5 SRFA(E) = SFHF(0) + ;)0

550 vm(ﬂsm}&

u

N =

1o - - -
(1001),, = A# [5 S;”,S,,(,V“]-"z(DS)D —

N N = 1. -
1001) 7 = hy, |=— S*RF, ()0 + = 8¢5+ F,(0,) 0 — — S F, (L) 2 | B. C23
Bh = Tmv 04 277 4

4. 62‘CC2 = [% vV _gcpgﬂvTS(Ds)Cﬂppa]

We now compute &°[,/=gC"?,, F3(0],)C*,,]. We only present the term (0101) = \/—_gcp"w,f3(is)c"”pg, which is
relevant for our background [see Eq. (63)]. Other terms, for an arbitrary background, can be computed from Appendix B
but we do not present them here because they are not very enlightening.

(i) Performing SVT decomposition of ¢*?,, for an arbitrary background, we get

cPo

() =

1 1 1 1 o
= SO RS = LB/ RIG — BRI+ SOSRIP + 58,78, Rp — 5 8,8,7Rep fRM,/”’qb (C24)

7 D pyLa 1 N/ P oV 1 o7 P pVa 1 "/ P o\ 1 c o pLUa
——5,°V,R,/V B+15DPVGRM VB + 70 VR,V B—Za,/’vaRy \% B-156, 6,/'V,RV°B
7 pLa 1 opR VAL 1 IR VAL 1 o T
+—25,,ﬂ5fvaRv B —an R,mpﬂvﬂv B —1—55/’le ﬂvﬁv B +§5D R, N'V°B
a 1 o a 1 a 1 (o2
-=58,/R° VIV B+35, R,/ sV'V°B ~ 50 Rua’ sV/VB ~ 50 R V/VeB

_ - = 1. . - = 1. - - = | - = | - =
o Ba c o o a - a o a
38Ry VIVB = 28,7 R0,V B + 26BN,V B 4 SRV, VB~ SR, 9,V

I Lt

+ 38 RVNB 8,/ RO VN B S R VB4 SR, VN B~ VBVR,,
T R

~ 10 RGNV B + 25, R VIV B~ SR, VPV B ~ R, VB 4 SR, VPVUB

- 1 1 - = | R le, o= 1. - = =
RNV, B + 28, RV, B+ R, VV,B - 26, RV, B+ SV BVR,,, + 26/, V"V

l\)

o7 12 AVLAVL > ov7a 1 oJa 12 AVIAY 1 ividy
”RWVVB—i—Z Ry VB 4 Ry VB = R V7V B + SRIVV,B — 6/ RVV, B

o

=i

l\)l'—‘-bl’—‘l\-)\’—-b —_— A= N = N e N
t

’V°V,B +65 PRV°V,B,
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1 = - 1 = - 1 = - 1 = - 1 -
% uy(a) = —=A%%,°V,R, + EA‘QSZ/’V{,R”” + EA"@,”V,IR,/’ - EA"éﬂf’VaRU” - gA"éﬂ"él/’VaR

o1 1 1 1 1

A58,V R + S R VA, S RITNA, ~ SR VA ~ S RSVA, SR VA,

_ 1 1 1 1. _

R, NA, = SR VA SR, VA 4 SR VA 4R NUAT SR, VAT
1 1

_ 1. - = 1. - - 1
VA =S8 RV A 8RN, A = R V,AY + 5 R ~NV,A% =R,V A

N[ =

+

|
]l

\S}

_ 1 - 1 - 1 - |
VA 4 6, RY,A SRV ,A —gava,,A +§5,, RV,AT =2 5,079,

1., 1. = -
VA~ C8,TRV,A — SR PV,AT 4 26/RY,A

ol

;4

- 1, 1. 1 1 -
8, Ry VA" + 58, R, VP AT ~ R, VA —§R "VPA, + 8, RVPA, + 5 R,7VPA

l\.)\'—‘

= 1 1
/)rvaAa _ 2R po v Aa + 2R op v A(l

+ +
’—‘N|’—‘[\)\>—Al\)|’_‘[\)|’—‘[\)>—*o\|>—‘[\)
wl

o

[\

1 1 = - - = 1. - = 1. - =
—=0 "RV"A A“V”R °——A*VPR,° ——A"‘V”R c —6,’R,,V°A* ——5,"R,,V°A*
6 H +2 2 HY o 2 H ya+2 v " tha 2 H "tra

D 70 A 1_ INTO 1 I vid 1_ Avid 1 I \vid 1 aNJo D )
Rt AT SRV, = 8 RVA, = SRV, 28RV, = S AR,

| B 1
+3ANVR,? 4+ S AR, (C25)

K va’

1 v JPUPTEE D B A DO
iy = ¢ 08 h "Rap — ¢80 "Rap =3O Ry + 38, W Ry = S RS + S 1R,
| [P DO (NP
ShIRS =28, 0 R+ 56,00 R

| PO (O NP (RO IO
+ 10/ R = 1 8,0 R+ 26,0 h R —gé,f’h R—8,7h/R+ 8,/h, R

| P TP B
30 R = 78,/ K7 R+ 51, R ~

1. 1 1. 1a

h"“R o’ — > HR 7 + 5 8,°0R, 5 ——5 PhPR —h°*R, P ——hR,°

2 2 Hov +2 2 Ha /3+2 ] 2 HY a

lAaa‘) 1"0:_(; lAa_o— 1A _o- 1 o1, 1 a

=S hRY = SR+ S HRC  + S SR = 28, hﬂRWﬂﬁJr 8 h R,
+1E"Rﬂ6 _1 aR op +15@3 f’——aﬂm —15"Dh/’+15/’@3 1?/’?@”

R R R 4+ 4 2 M

| | A R

V'V b+ =V, b - VOV, b/ 2
3 oy *3 2 H (C26)

(i) Rewriting the above in terms of irreducible R, S,,, C,,,, and imposing C,,,, = 0, we get

i) = 0,
0 ) = 8,78,V RYB — 15,05, RB L 5,09,5,09°B + 1 6,9,5,79B 1+ L5,79,5,,98
c;w(B)_ﬁyu a _ﬁyu a _Zu au +Zu au +Z;¢ a v
| | (R [N BN
--5,V,S,°V*B +—6,°V,BV'R — —6,°V,BV’R +-6,°V*BV’S,, — -V ,BV’S °
4 a5 +24 v 2471 Y +4 v S 4" Su
| R R S I S
—--6,°V*BV’S -V, ,BV*S,° ——6,V,BV°R+—6,'V,BV°R ——5,/NVN*BV°S
4 m+4 # vooam ot +24” v 47" e
l = 70 C p 1 INTA PVTO C l e /0C p
+;VBVS, 4 15,V BYS,, 2V, BV,

064022-26



PERTURBATIONS IN HIGHER DERIVATIVE GRAVITY BEYOND ... PHYS. REV. D 100, 064022 (2019)

1 - _ 1 - 1 - - 1 I 1 -
C’D /W(A) :EA 5” EUPVaR_EA 5MP51./ VaR —EA 51, VaS”p +§A 5UPVGSM +§A 514 VaS,/’

1 = - 1 = 1 - 1 - 1 = -
--A%,V,S,°——A,8,°V’R+—A,5,°V’R +-A*5,°V’S,, —=ANV’S,°
A A +12 nev +2 g papnwe
1 I 1 -1 _ 1 o

——A%5,°V*S A, VS +—A,5,V°R——A,5,'V°R —-A%,/V°S
) " ua+2 i v +12 vu 12 Hv ) v pua

1 e 1 I
+5AV°8, + EA"(S V8= 5 A5

1 1 1 1 oo
c . _ __ So o 4 s o op__so 7af G - oraf
c? av(h) = 125 h pR+125 ph R—|—125ﬂ hpR 125”ph R 35 6, h Saﬂ+35”p51, h Sop
1 7paT T0aC 7T 6 1o e c 1 6 1paT 1 T0aC
—58,7H Slm+§5,/’h SW—Zhy S+ GBS+ 58,1 S0 = 58,017
1+ hes - Lies,e 15%“5/’ +15"h“Sﬂ +15ﬂhasa Ls b, 50
S 47 4 4 4 O’ 15"
1 N 1 N 1 - lo = & 1o - &
-6,°0n, —-6,,00,° —=6 ”Dh” 5”Dh” VvV, h,° +-V"V h,°
+4 v N Y 4 2 Hv +2 v
1o = -« le = &
+ 3V =SV (C27)

(iii) Imposing V,S,, =0, 9,R = 0 to above gives

i) =0, Pum =0, pu) =0, (C28)

| R R | L B
iy = 150 B/ R+ 25 ’h, R+Eaﬂ hR =58, R =38,76/ K5 +36,76,7h7S,

IO D R T D O D
G P Y X S 3 WNNLY 3 WL WO SO B L

2 12 Sa+2 v Sa 4 I./S +4 I/S +2 SIJIX 2 Sva+4 S

1y o 1 1 .

——1,"8,7 —=6,7h,°5", RS L5075, — L5k 5, 4 Ls,eh e — Lo e e
50 45 $ut 38,705 +45 8% =30/ h.S +45 70/ 0,

Us o+ Ys o~ Lovg ie s Lorg jo s Lors

s oty + Lsp0h — 200 b+ e 4 1oy - L, 2
0O + 6,00, 2 +5 VIV SV =2V, (C29)

Now we find the quadratic in fz,w part. There are many Kronecker delta terms in ¢”?,, ;) with free indices. Since the

totally tracelessness property of the Weyl tensor is preserved at each order of perturbation, all the Kronecker delta
terms in ¢”° (i) will hit c, o(h) and go to zero. We are then left with only a few terms in ¢”° (- Assuming that it

will be multiplied to F 3(Es)c”” po(iy 1ater, the simplified expression is

IAO'_ lA_zr 1A6_ 1. Co 1__A6 1__"0'
c’ yb(il) = —Zhl/ #p + Zhl’psﬂ + Zhﬂ Sl,p - Zl’lﬂpsy - Evpvﬂhb + Evpvyl’lﬂ
l 5, leos o
+ EV V,h/ — EV V,h}'. (C30)
Further simplifications beyond this happen when the above simplified ¢*?, ;) is multiplied with F(O,) e ooy and
the index symmetries of ¢ po(h) Are used. We ultimately get
cpﬂﬂu(ﬁ)f3(|js)cﬂy/m ) [h pS + Q’v v h ]ﬁ3(|js)[cﬂypo-(ﬁ)]’ (C31)

where
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1 1
¢ oy = ~ 13O oM oR+ 58 HR + 15

2
1

(IO
= 1000, + 58,00 ~

1=
2V

It is easy to determine SVT expressions for
. from ¢, since ¢*,, = co G5 G,,000 +
Co56(9™ 9" g,,9:,) Where the second term is zero
for our conformally flat background. So expressions
for ¢#,, are obtained from their ¢”?,, counterparts
with lower (upper) indices raised (lowered).

APPENDIX D: PERTURBED EQUATIONS
OF MOTION AT THE LINEAR LEVEL

Perturbations at the quadratic level of the action are
equivalent to linear perturbation of the equations of motion
and sometimes it is easier to study the latter. The variation
of trace equations of motion Eq. (AS8) under the usual
conditions Eq. (13) is

~M%8R = —6JF(0,)5R —
—28(V,V,)F,(0,)5"
— 2V, V,F,(0,)85" —

(6L, +26L,)

-2V, V,8(F,(0,))5"

(8L, + 26L,) + 26A.
(D1)

oL, = 0L, =0, because each term in their respective
infinite sums have two background curvatures, each of
which has at least one derivative acting on it. Taking a first
variation always results in a derivative acting on these
background curvatures [from Eq. (13b)], resulting in zero.
We have

5L1 = (]: (G) f1,0)5R
51:2 = ( ( ) fZ,O)S(l/)’» (DZ)
—#@%Wﬂ@mﬁ (D3)
~26(V,V,)F(0)8" = 2f,,V,V,5",
29, 9,8(F5(0,))8" —JVVF&%—A}
x §(0,) 8. | (D4)

1

1 TV D U D 1 v 7af ¢ 1 v 7.af G
5",,h R - Eéﬂ,,h SR - 55/3,5 S5 + gaﬂ,,a ohS,

U QO 1 T U 1 TV C 1 U U 1 U 1 v LK
L e T L R T O T R L

VHRY, +

1 - 1 - - 1., - | | 1., -
- _5yahpasﬂa + E(Syﬁhaasﬂa - Z hyo'S”/) + Z hDﬂSﬂ(r + Eéﬂo’hpasya - 5 W/Jhaasya + Z hﬂnsy/)

(I
~ 300,

(C32)

Collecting all terms, the first variation of the trace equations
of motion Eq. (D1) becomes

~M3%6R = —61F(0,)6R — 2RF (1, )J,6R

- 2S(lﬁf5(ils)ilssaﬂ + 2f2,Ovyvbsﬂy
-2V, V,F5(0,)8(0,) 8" - 2V, V, F,(0,) 55"
1 _,- = -
+W255Vﬁvﬂf5(|:|5)57
—ZZSVﬂvﬂv”}—S(ljs)sﬁ (DS)

APPENDIX E: COMMUTATION RELATIONS

In higher derivative gravity like IDG, there are many
covariant derivatives, some of which are to the left of form
factors F;((,), Eq. (3). In order to contract them with
covariant derivatives lying to the right of F;([J;), we need
to perform many commutations. These commutations, in a
theory like IDG with an infinite number of box operators in
Fi(Oy), lead to the generation of an infinite number of
background curvatures. When the background is MSS, it is
possible in some cases to obtain compact expressions after
the many commutations. It is apparently not possible to
obtain compact expressions when the background is
arbitrary. Nevertheless, it is useful to have formulas for
such commutation relations to understand the general
structure of perturbative expansions of a gravity action.
In this section, we will generalize the commutation rela-
tions derived in Appendix B of [64] where the background
was MSS to those when the background is arbitrary.

For an arbitrary scalar ¢, we have

V,V,p =V, V,p, provided torsion T%, =0,

(E1)

For a vector #, we have
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u
vﬂvavﬂtﬂ = vavﬂvﬂtﬂ + Va(l_?ﬂﬂt”)
- Riﬁﬂaviﬂl + RAQVﬁt s
vV, Ot =0V, + V*(R,,1*),
V, V10 =V, V4V, — V00 (RAF, + RE )

+ R",lﬂpvyti + Rg/vpﬂ + VW (Rupt").
(E2)

If # was a transverse vector A* satisfying vﬂA” =0, the
above expressions simplify to

V,V A" = R,,A", (E3)
vﬂvavﬁA = va(Rﬁ”AM) - RlﬁﬂaleM + RmvﬁA’l, (E4)
V,0A* = V¥(R,,AY). (E5)

The last expression tells us that given a transverse vector
AH, [JA* is not a transverse vector. For symmetric (and
traceless) tensor #*, we have

=V, V% + Ryt + R"}, ",
v, V Vﬂtﬂ” =V, V,V, " + V,(Rjyt™ + R, ;")

— R Vit + Ry Vst + RV, V st
v, O = OV, + R, V7t
+ VO (Rjpt™ + RV 51",
vV, Vi, =V,0t, + R, V', — R, V1,
R, V1, (E6)

For a symmetric, transverse (and traceless) tensor T**
satisfying V,T* = 0, we have

V,V, T" = R} T* + RY;,,, T,
VﬂvavﬂT’”’ — va(RM}T}W + RblﬂﬂTﬂﬂ) - Rﬂﬂ”avﬁTﬂy
+ Ry VT + RV, Vs TH,

V,OT% = R, V' T" + V°(R;, T + R, T").

vV, v,r,=V,0T, +R,V'T,, - R, VT,
R, VT, (E7)
For a tensor ¢,,, we have

i

vpljl == Dvptm, - v(I(Rﬂﬂ/)al‘/h./ + Ribﬂ(l [4/1)
- R, V', Vet — Vot,.  (E8)

ﬂpf’ vpa

Now, when the background is MSS, some of these
commutation relations simplify into compact recursion
formulas. For example, we have

v,0¢ = <B - §> V.
= V,0¢ = (D —E> V.. (E9)

In Eq. (El), in order to get a recursion relation, we must
express R, V¥¢ in terms of V,¢. To that end, suppose

V,0¢=0V,-R,V'¢=0V,p—xV,$, (EL0)

where x is some scalar to be determined. Rewriting this
twice, we get

RV, =V, . (E11)

Rumvoxqj = xquﬁ. (EIZ)

Multiplying both expressions above, contracting with g,
and rearranging gives

IR, R*
_ py
X = 1

so that now we have a recursion relation for a general
metric:

(E13)

ViD= (O -x)"V,¢
- R, R™ | -
=|0O- ”4 WP (E14)
For MSS, x = R/4, as expected.
Similarly, for a vector # in Eq. (E2), we have
V,0¢ = 0OV, + V(R *) = OV, + yV,t*
— (4 )7, (E1S)
where the scalar y is given by
V?(R,,1°)
[” — —7/)6 N E16
) =g (E16)
such that we get the recursion relation
V0 = (O 4 y)"V,, ¢
R (V’R,,)t°
where y = —+ % (E17)
4 (V17)g,0

For MSS, y = R/4, as expected.
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Given a tensor ##*, we have

V,Oe = OV, iPve + RP,, VPP — R, N e
+ RHy,, VPP 4 R, NP P
+ VP (RP 1ot + R* 174 + R, ). (E18)

Given a tensor #? we have

,Clpah = O, b 4+ R, VP peh — R, preot
L Re,, OO g R, i 4 RO, 0
+ V7 Rﬂptxauﬂ + Raﬂﬂptﬂlvﬂ + Rylwtﬂa/w

+ RV, ). (E19)
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