
 

 

 University of Groningen

Surprising absence of association between flower surface microstructure and pollination
system
Kraaij, Marjan; van der Kooi, Casper J

Published in:
Plant Biology

DOI:
10.1111/plb.13071

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kraaij, M., & van der Kooi, C. J. (2020). Surprising absence of association between flower surface
microstructure and pollination system. Plant Biology, 22(2), 177-183. https://doi.org/10.1111/plb.13071

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1111/plb.13071
https://research.rug.nl/en/publications/d02c3e82-4062-4f93-a1eb-0d1a465af4bd
https://doi.org/10.1111/plb.13071


RESEARCH PAPER

Surprising absence of association between flower surface
microstructure and pollination system
M. Kraaij & C. J. van der Kooi
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands

Keywords

Colour; epidermal cones; grip; micro-papillae;

microstructure; pollination.

Correspondence

C. J. van der Kooi, University of Groningen,

Groningen Institute for Evolutionary Life

Sciences, Groningen, the Netherlands.

E-mail: c.j.van.der.kooi@rug.nl

Editor

Z.-X. Ren

Received: 6 September 2019; Accepted: 3

November 2019

doi:10.1111/plb.13071

ABSTRACT

• The epidermal cells of flowers come in different shapes and have different functions,
but how they evolved remains largely unknown. Floral micro-texture can provide tac-
tile cues to insects, and increases in surface roughness by means of conical (papillose)
epidermal cells may facilitate flower handling by landing insect pollinators. Whether
flower microstructure correlates with pollination system remains unknown.

• Here, we investigate the floral epidermal microstructure in 29 (congeneric) species
pairs with contrasting pollination system. We test whether flowers pollinated by bees
and/or flies feature more structured, rougher surfaces than flowers pollinated by non-
landing moths or birds and flowers that self-pollinate.

• In contrast with earlier studies, we find no correlation between epidermal microstruc-
ture and pollination system. The shape, cell height and roughness of floral epidermal
cells varies among species, but is not correlated with pollinators at large. Intriguingly,
however, we find that the upper (adaxial) flower surface that surrounds the reproduc-
tive organs and often constitutes the floral display is markedly more structured than
the lower (abaxial) surface.

• We thus conclude that conical epidermal cells probably play a role in plant reproduc-
tion other than providing grip or tactile cues, such as increasing hydrophobicity or
enhancing the visual signal.

INTRODUCTION

The variety in shape and structure of flower surfaces and their
function in terms of interactions between plants and insects
has intrigued scientists for decades (e.g. Kay et al. 1981; Lee
2007; Whitney et al. 2011; Papiorek et al. 2014; van der Kooi
et al. 2014; Ojeda et al. 2016). There are three types of epider-
mal cell shapes in flowers, distinguished by their shape. Flat
cells are the least common type, but are characteristic of flow-
ers in the buttercup genera Ranunculus and Ficaria (Ranuncu-
laceae), contributing to their glossy appearance (Kay et al.
1981; Vignolini et al. 2012; van der Kooi et al. 2017). More
common types of shapes are convex and cone-shaped (Fig. 1).
The epidermal cells of leaves and stems are generally flat, why
then do flowers of so many species have cone-shaped epider-
mal cells?

At least three non-mutually exclusive hypotheses as to the
functional significance of cone-shaped epidermal cells have
been proposed. First, the cone shape may contribute to the
flower’s visual signal by focusing or scattering incident light.
Modelling studies suggested that under perpendicular illumi-
nation, conical epidermal cells could act as micro-lenses that
focus incident light on the floral pigments (Gorton & Vogel-
mann 1996; Wilts et al. 2018), resulting in reflected light being
more strongly filtered by pigments and thus generating stron-
ger flower coloration. However, experimental studies with bees
showed that presence or absence of cones does not change the
flower’s salience as perceived by bees (Dyer et al. 2007).

Further, given the often strongly varying illumination in nature
and varying epidermal cell shape and spacing – even between
neighbouring cells (Fig. 1; van der Kooi et al. 2014; Fritz et al.
2017), it remains unclear whether focusing effects play a bio-
logically meaningful role in natural conditions (reviewed by
van der Kooi et al. 2019a).
Second, the roughness of a flower surface may play a role in

the flower’s hydrophobicity and self-cleaning. Surface rough-
ness, by means of epidermal cones or cuticle striations, reduces
the contact area – and thus adhesion – of water droplets and
the flower, causing water to roll of the flower (Neinhuis &
Barthlott 1997; Barthlott & Neinhuis 1997; Taneda et al. 2015).
Indeed, both modelling and experimental approaches showed
that epidermal cell shape (in combination with a structured
cuticle) determines the wettability of flowers (Taneda et al.
2015).
Third, the flower surface may provide a tactile cue and/or

mediate the amount of grip an insect has upon landing on the
flower. A tactile role of flower surfaces was first shown by Kevan
& Lane (1985), who demonstrated that bees can discriminate
flowers based on surface microstructure. Further, the minute
claws and hairs at the tarsi of flower-visiting insects indeed
adhere better to rough flower-like surfaces (Voigt et al. 2012;
Br€auer et al. 2017). Studies using isogenic Antirrhinum majus
lines and flower surface replicas that differed solely in epidermal
cell shape, confirmed that bees can discriminate flowers based on
touch alone and that epidermal cones may provide grip to bees
that visit the flowers (Whitney et al. 2009). The importance of
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microstructures in providing grip to visiting insects is further
likely to increase with verticality of the floral display.
If conical epidermal cells provide grip to landing insects

then, conversely, their absence could be an ‘anti-bee’ adapta-
tion (sensu Castellanos et al. 2004). For example, (nearly) flat
and smooth epidermal cells may hamper flower handling by
floral antagonists such as nectar-robbing insects (Papiorek
et al. 2014; Ojeda et al. 2017). The pitchers of some species of
carnivorous plants (e.g. Nepenthes) feature flat epidermal cells
that are indeed slippery, causing prey to slide into the pitcher
and be digested (Gaume et al. 2002). By the same reasoning,
there may be differences in surface structure between flower
areas that are frequently touched by pollinating insects (e.g. the
landing area or surfaces surrounding the nectaries and anthers)
versus areas that will rarely be touched by pollinators, such as
the lower (abaxial) side of the floral display.
Following the hypothesis that flower surfaces may provide

grip and/or tactile cues to specific insect pollinators and having
an unstructured surface can deter floral antagonists, we may
expect epidermal surfaces to correlate with pollinator guild.
Whereas bees and flies land on the flower to forage nectar and
pollen, birds and hawkmoths do not land but hover in front of
the flower while feeding. Some birds sit on a nearby branch
while drinking nectar from the flower. Similarly, flowers that
reproduce via uniparental reproduction (e.g. self-pollination or
asexual reproduction) will also not need to provide grip or tac-
tile cues to landing insects, so surface structure may be one of
the multiple (pollinator-attracting) traits that degenerate in
flowers of self-pollinating plants (e.g. Goodwillie et al. 2010;
Sicard & Lenhard 2011; Dart et al. 2012).
In this study, we investigate the evolution of flower surfaces

by virtue of comparing closely related species with contrasting
pollination or mating systems. We include 13 genera across
nine angiosperm families, and in total compare the floral epi-
dermal cell shape for 29 congeneric sister species pairs with
vertically presented flowers that differ in pollination or mating

system. We test whether (i) flower surfaces that are frequently
touched and/or seen by insect pollinators are more structured
(i.e. have higher and/or more pointy, conical epidermal cells)
than areas that are invisible/inaccessible to pollinators, and
whether (ii) surfaces of bee- and fly-pollinated flowers will be
more structured than species that are pollinated by hawk-
moths, birds or via self-fertilisation. We found that there is no
large-scale correlation of flower surface and pollinator guild or
mating system, but that the adaxial surfaces of flowers are
markedly more structured than abaxial surfaces, hinting at abi-
otic and/or visual effects as main drivers for flower surface evo-
lution.

MATERIAL AND METHODS

Species used

Plant species pairs were chosen via a thorough literature
research. We included species that were specialised in their pol-
linator guild inasmuch as that they are exclusively bee-/fly-,
moth- or bird-pollinated, not mixed. In choosing our study
species, we followed the most effective pollinator principle and
not the ‘pollination syndrome’ concept, because this has been
proven to not hold for numerous plant groups (Ollerton et al.
2009; Funamoto & Ohashi 2017). For the same reason, we
included only plant species for which actual pollinating species
were reported, thus excluding cases for which only flower visi-
tors were known. Although we realise that within each category
a plant may be serviced by a wide array of different species
(Waser et al. 1996), these pollinators have similar behaviour
with respect to flower handling, that is, the plants are function-
ally specialised (sensu Ollerton et al. 2007). Species were classi-
fied as (obligate) selfer only when there was clear evidence to
suggest that selfing was the main reproductive mode, because –
as for the pollination syndrome concept – presence of a pheno-
typical trait that typically occurs in selfers need not be good

Fig. 1. Variation in epidermal surface shape and structure of flowers. (a) Solanum citrullifolium, (b) Aquilegia vulgaris, (c) Impatiens scabrida, (d) Phaseolus coc-

cineus, (e) Solanum citrullifolium, (f) Impatiens sodenii, (g) Nicotiana bonariensis, (h) Clarkia breweri. Scale bars: a, b, e–h: 20 lm, c, d: 50 lm.
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evidence that the species is actually largely selfing (e.g. Lozada-
Gobilard et al. 2019). Phylogenetic relatedness was determined
using recently published phylogenies (see Supplementary
Information for information on pairs and references). We thus
included 46 species of 13 genera in nine plant families that cov-
ered 29 species pairs pollinated by guilds with contrasting
flower handling behaviour (Table 1). Flowers were taken from
plants grown from seed in the University greenhouse (LD:
14 h:10 h, day:night temperature 22:20 °C) or in Botanical
Gardens (see Supplementary Information for details on
sources).

Investigation of flower surfaces

We first compared the adaxial and abaxial surfaces of 12 bee-/
fly-pollinated species. For the comparison between pollinator
guilds and mating systems, we compared the adaxial sides, for
in the studied species the adaxial surface will be seen and
touched by pollinators. The surface of the floral organ that
constitutes the visual display (generally the petal) was exam-
ined regardless of its colour (pattern) using dental impression
material (Provil Novo Light, Heraeus Kulzer, Hanau, Ger-
many) as per van der Kooi et al. (2014). Immediately after
picking the flower, it was pressed into the freshly prepared den-
tal impression material that solidifies within minutes. The
mould was subsequently filled with transparent nail polish
(base coat, Hema, the Netherlands), creating a positive surface
replica, i.e. a cast. The casts were examined under a microscope
(Nikon Diaphot 300) with a 409 objective. The surface struc-
ture of the whole floral organ was examined and the most
dominant structure (generally that on the central/distal area)
was photographed with a Nikon D70 camera. Epidermal cell
shape dimensions (below) were measured in Fiji (ImageJ,
NIH). To avoid observer bias, the flower surfaces were
observed and measured by an observer (MK) who had no prior
knowledge of the pollinator, i.e. the observer was ‘blind’

(Holman et al. 2015; Kardish et al. 2015). Transverse sections
of fresh flowers shown in Fig. 1 were obtained by photograph-
ing a transverse section of a piece of flower embedded in 6%
agarose (for details, see van der Kooi & Stavenga 2019).

Analyses of surface parameters

For cells with a round or (quasi-)hexagonal base, we measured
the diameter of the cell’s base, and for cells with a rectangular
base, we measured cell length and width (Fig. 2a, b). The pro-
truding height was measured similarly for both types of epider-
mal cell (Fig. 2c, d). Preferably, we measured the floral surfaces
of three individual plants per species, for which we succeeded
in 34 out of 46 species (74%), but for nine species we could
sample only two individuals and for three species only one.
The approximate roughness of a surface was calculated via a
‘roughness index’, which is the ratio of the lateral, 3D surface
area to the projected, geometric surface area of the cell’s base
(following Aideo & Mohanta 2018). For cone-shaped cells, the
lateral surface area of the cone is described by:

Sl ¼ L� 0:5 � db � p

and the cell base size by:

Cb ¼ ð0:5 � dbÞ2 � p

with L being the cone’s long side and db the cell’s base diameter
(see Fig. 2e). For rectangular cells, the lateral surface area was
calculated as:

Sl ¼ 2� l � L

and the cell base size as:

Cb ¼ l� w

with l, L and w being the base length, the long side length and
width of the cells, respectively (see Fig. 2f). The roughness
index is then the ratio of the lateral surface to the ground
plane:

RI ¼ Sl=Cb

For the exemplary cases shown in Fig. 1a–d, mean cell
widths are 27, 22, 32 and 44 lm, respectively, and mean cell
heights (measured as in Fig. 2c) are 34, 13, 10, 8 lm, respec-
tively. The calculated roughness indices for these species then
are 2.7, 1.6, 1.2 and 1.1, respectively, which is in line with the
differences in roughness seen in Fig. 1a–d.
Statistical significance was tested via a parametric bootstrap

test, using the pbkrtest package in R (R Foundation for Statisti-
cal Computing, Vienna, Austria). In the linear models, species
was nested within genus as a random effect when testing the
effect of flower side, and pair was nested within genus as ran-
dom effect when testing the effect of pollination system. A like-
lihood ratio test (LRT) was used to see whether a model with
the response variable (pollination system or flower side) fits
better to the data than the same model without the response

Table 1. Summary of the taxa and pollinator mode included. Details

regarding species pairs, pollinator guild/mating system and refer-

ences are provided in the supplementary data file.

family genus comparison groups (number of pairs)

Acanthaceae Ruellia Bee-bird (1)

Balsaminaceae Impatiens Bee-bird (4), bee-moth (2)

Campanulaceae Lobelia Bee-bird (1)

Hippobromaa Bee-moth (1)

Caryophyllaceae Silene Bee-bird (1), bee-moth (1), outcrossing-

selfing (1)

Lamiaceae Salvia Bee-bird (2)

Onagraceae Clarkia Bee-moth (1)

Oenothera Outcrossing-selfing/asexual (1)

Phrymaceae Mimulus Bee-bird (1), bee-moth (3), outcrossing-

selfing (1)

Polemoniaceae Leptosiphon Outcrossing-selfing (1)

Solanaceae Nicotiana Bee-bird (2), bee-moth (1)

Petunia Bee-bird (1), bee-moth (1)

Solanum Outcrossing-selfing (2)

aAll species pair comparisons are within one genus, except moth-pollinated

Hippobroma longiflora, which was compared with the closely related bee-

pollinated Lobelia siphilitica.
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variable (1000 simulations). R script and data files are provided
as Supporting Information.

RESULTS

Our analysis of cell anatomy revealed significant differences
between the adaxial and abaxial side of flowers (Fig. 3). The cell
surface area is similar on both sides (LRT = 1.93, P = 0.18), but
the adaxial cell height is on average twice that of the abaxial
side (LRT = 48.98, P < 0.001). As cell height does not ade-
quately capture overall surface curvature, we also calculated a
roughness index, which is the ratio of the cell’s outer surface to
that of the flat, projected cell surface area (Methods, Fig. 2).
Analogous to the aspect ratio, the roughness index thus sum-
marises the cell’s curvature relative to its ground plane. Indeed,
the adaxial roughness index values are significantly larger than
those of the abaxial surface (Fig. 3c; LRT = 44.3, P < 0.001). In
ten out of the 12 studied species, the adaxial epidermal cells are
higher than the abaxial cells; in one species it is approximately
the same and in one there is a small decrease in height; the
roughness shows a similar effect (Fig. 3b, c). In the vast major-
ity, cone-shaped epidermal cells are thus particularly promi-
nent at the adaxial side, and species with cone-shaped cells on
both sides (e.g. Solanum citrullifolium; Fig. 1a) are relatively
rare.
In contrast to observations between different sides of the

flower, adaxial epidermal cell shape does not consistently differ

between species with contrasting pollinators (Fig. 4; n = 29 spe-
cies pairs, for all comparisons). Neither cell surface area
(LRT = 2.57, P = 0.11), cell height (LRT = 0.21, P = 0.2) nor
roughness index (LRT = 0.41, P = 0.52) differs significantly
between sister species. Also, when compared per pollinator
guild, none are significantly different in epidermal cell height
or roughness (Table S1).

In line with the reduction in floral display size commonly
found in selfers (Goodwillie et al. 2010; Sicard & Lenhard 2011;
Dart et al. 2012) is our observation that epidermal cell size is
smaller in five out of six outcrossing–selfing species pairs (see
the red curves in Fig. 4a). Floral epidermal cells of selfers are
approximately 35% smaller in surface area than epidermal cells
in related outcrossers, a difference that is marginally significant
(P = 0.036, n = 6 species pairs; Table S1). A similar trend is vis-
ible in epidermal cells of moth-pollinated flowers, although this
is not significant (P = 0.072, n = 10 species pairs; Table S1).

DISCUSSION

Flower surface does not correlate with pollination system

In our investigation of the microstructure of flowers with con-
trasting pollinators, we found no indication of large-scale cor-
relation of epidermal cell shape and pollination system (Fig. 4).
The fact that the adaxial surface, which generally faces pollina-
tors and is close to the reproductive organs, is markedly more

Fig. 2. Measuring different types of epidermal cell shapes. Convex (or dome-shaped) cells generally have a rectangular/elongated base cell shape, whereas

conical epidermal cells have a circular/hexagonal base cell shape. Left column: shape and measurement of conical epidermal cells; right column: shape and

measurement of convex cells. (a,d) top view, (b,e) side view, (c,f): measurements and calculations of different cells shapes. The roughness index was calculated

as the ratio of the 3D lateral surface of the cell to the ground plane of the cell’s base (see Methods) db: diameter of cell base, l: cell base length, w: cell base

width, h: protruding height, L: long side length.
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structured than the abaxial surface (Fig. 3) suggests, however,
that surface roughness fulfils a biologically meaningful func-
tion. Further, there is an effect of mating system inasmuch as
that selfing plants have smaller epidermal cells than their
outcrossing relatives (Fig. 4a; Table S1). This indicates that the
reduction in floral display size commonly found in selfers
(Goodwillie et al. 2010; Sicard & Lenhard 2011; Dart et al.
2012) is due, at least partly, to a reduction in cell size. Whether
the number of epidermal cells, as well as the size and number
of interior cells, also decrease in selfers requires additional
investigation.

The fact that we find no correlation of flower epidermal cell
shape and pollinator is not because sister species have not (yet)
diverged sufficiently to develop phenotypic differences or
because our method is inadequate to detect a biological signal.
Indeed, we found up to three-fold differences in epidermal cell
surface, height and roughness index between sister species,
albeit in opposite directions (Fig. 4); hence the absence of an
overall pattern. In addition, (genetic) studies corroborate that
shape of floral epidermal cells is evolutionarily labile (Glover
et al. 1998; van Houwelingen et al. 1998; Di Stilio et al. 2009;
Ojeda et al. 2017). Even within species, floral epidermal cell

shape can vary; for example, a recent study on conical epider-
mal cells of 32 (cultivated) Vicia faba lines showed that 13% of
the lines featured deviant epidermal cell shapes (Bailes & Glo-
ver 2018).
Our study does not invalidate previous experiments on tac-

tile or grip effects of flower surfaces (Kevan & Lane 1985;
Whitney et al. 2009), yet it does suggest that providing grip
and/or tactile cues are not the main function of epidermal
cones, at least not across angiosperms broadly. Thus, other
functions are expected to shape flower surface microstructure.
Our findings deviate from some earlier studies. Papiorek et al
(2014) reported differences in epidermal cell shape of 58 spe-
cies with bird or bee pollination; however, as they compared
largely unrelated species, the observed phenotypic differences
may be due to, for example, phylogenetic effects rather than
pollinator guild. Ojeda et al. (2016) compared insect- and
bird-pollinated flowers and found that a transition to bird pol-
lination confers a loss in epidermal cones. The discrepancy
with our results may be explained by the fact that their sam-
pling included relatively few species pairs (five comparison
groups) and/or was based on categorical classification of cell
shape. Our results dovetail those recently reported in two

Fig. 3. Floral epidermal cell shape for different flower

sides. (a) Cell surface, (b) cell height, (c) roughness index.

Each line connects the mean values of different sides of

the flower. [Correction added on 10 January 2020 after

first publication: the figure caption has been updated in

this version.]

Fig. 4. Floral epidermal cell shape in species pairs with

different pollination systems. (a) Cell surface, (b) cell

height, (c) roughness index. Each line connects the mean

values of a species-pair. Different colours represent dif-

ferent pollinator guilds or mating systems, bee/fly versus

bird (black), moth (blue) and self-pollination (red).
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species of Nymphaeaceae with contrasting pollinators but no
difference in flower surface (Coiro & Barone Lumaga 2018),
and with those in a study on surfaces of 11 (unrelated) plant
species with different pollinators (Costa et al. 2017).
It remains unknown how striations in the flower’s cuticle

contribute to the mechanical interaction with pollinators. In
the studied species, the frequent lack of cuticle structure pre-
cluded analysis of whether cuticle differences, if any, are linked
to specific pollinators. Deeper species sampling would help to
elucidate the importance of phylogeny on flower surface evolu-
tion. Additionally, in the systems so far considered, bird polli-
nation was derived from bee/fly pollination and not vice versa,
reflecting the asymmetry in the direction of transitions between
insect and bird pollination found globally (Thomson & Wilson
2008; Barrett 2013). It remains to be investigated whether tran-
sitions from bird to bee pollination yield a systematic differ-
ence in epidermal cell shape, although we consider that
unlikely.

Adaxial flower side markedly more structured than abaxial
side

The marked differences between the adaxial and abaxial sur-
faces (Fig. 3), combined with our observation that epidermal
cell shape does not correlate with pollinator guild, suggest that
cone-shaped epidermal cells occur for reasons other than
providing grip. Adaxial surfaces generally surround the repro-
ductive organs, at least in the studied species, and having
cone-shaped cells may increase water repellence and even self-
cleaning of the flower (Neinhuis & Barthlott 1997; Barthlott &
Neinhuis 1997; Watanabe-Taneda & Taneda 2019), which
could benefit flower visibility and longevity, and ultimately the
plant’s reproductive success. Cone-shaped epidermal cells
could also modify the reflection of light by reducing the surface
gloss and thus create a uniform visual signal that is well visible
to pollinators approaching from different angles (van der Kooi
et al. 2019a). Similar cone-like structures were found to reduce
surface gloss of some animal organs, such as moth eyes and
snake skin (Stavenga et al. 2006; Spinner et al. 2013). Further, a
higher surface roughness means an increase in surface area,
which may lead to changes in transpiration rates (Buschhaus
et al. 2015), flower temperature (van der Kooi et al. 2019b) and
scent emission (Effmert et al. 2005).
The asymmetry in epidermal cell shape between adaxial and

abaxial flower sides may be linked with the pigmentary aspects
of the flower’s visual signal. Many species that have flowers
with conical epidermal cells have pigments that occur in the
epidermal cells only (e.g. flavonoids and anthocyanins; Kay
et al. 1981; Grotewold 2006; Lee 2007; van der Kooi et al.

2016). Anthocyanin-pigmented flowers often feature clear dif-
ferences in pigmentation between abaxial and adaxial flower
sides, resulting in only the pigmented side being strongly
coloured, creating marked differences in coloration between
the different sides (Stavenga & van der Kooi 2016; van der Kooi
et al. 2016). Asymmetry in flower side coloration can be an effi-
cient way of filtering reflected light with relatively little pigment
(van der Kooi et al. 2016), and having only one coloured side
can reduce conspicuousness to floral antagonists when the
flower is closed (Kemp & Ellis 2019). Whether (asymmetry in)
epidermal cell shape and pigmentation are indeed coupled
requires further anatomical and optical investigation. Of par-
ticular interest would be to study the surfaces of species with
hanging, pendant flowers where the abaxial flower side consti-
tutes the visual signal.
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