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Abstract
The aim of this paper is to present a novel control strategy of the satellite attitude control problem on an
energy-based setting. Controlling the orientation with respect to an inertial frame of reference becomes
challenging in presence of nonlinear disturbances such as the gravity-gradient torque. We make use of
the advantages of representing the system under study via the port-Hamiltonian framework due to its clear
control design philosophy. The key strategies depend on position and velocity measurements, together
with and integral action of the system’s output. Finally, numerical simulation results are provided to
demonstrate effectiveness.

1. Introduction

The rigid-body attitude control problem is inspired by aerospace systems such as atmospheric flight, spacecraft, un-
derwater and ground vehicles, together with robotic systems, which includes attitude maneuvers and attitude stabi-
lization, [4, 13]. Furthermore, Euler’s equations of motion describe the dynamics of a rigid-body, and then attitude
kinematic stabilization becomes a requirement. More specifically, attitude control of a satellite is done via attitude
parametrizations due to the fact that the set of attitudes is not a Euclidean space (see [15], and [17] and the references
therein). In addition to this, it is well-known that satellite systems are affected by external torques such as gravity
gradient [14], solar pressures and norm-based disturbances [3], and the J2 effect [2].

The port-Hamiltonian framework (PH) is an energy-based approach which describes (physical) systems in terms
of power ports, energy variables, and their interconnection structure, [8, 18, 19]. The transfer of energy between the
physical system and the environment is given via dissipation and energy elements, together with power preserving
ports. The PH method has the additional advantage of preserving the PH structure for the closed-loop system.

Recently, a PH formulation of the rigid-body attitude problem that enhances the set of tools for its modeling
and control is presented in [9], and [10]. More specifically, in [9] a novel approach on both dynamics and kinematics
equations is provided such that a standard energy-balancing passivity-based controller (PBC) is used for set-point
control. In addition to the PBC controller, a variation of the controller designed by [6] is given. Its mayor advantage is
the achievement of the set-point without velocity measurements. Nevertheless, the controller proposed by [9] becomes
ineffective when nonlinear disturbances are not neglected. The disturbances are considered as external forces affecting
satellite attitude control.

Here, we have proposed a novel controller inspired by [5] and [9], by which a desired attitude kinematics and
a attitude dynamics configuration of a satellite system is attained. Simulation results show how an integral action via
an adapted momenta obtains asymptotic stability in presence of nonlinear disturbances, i.e. a type of gravity-gradient
external torque.

The paper is structured as follows. Section 2 introduces the port-Hamiltonian framework, and later a class of
standard mechanical systems for a satellite is introduced as in [9]. In Section 3, a novel control strategy based on the
advantages of the port-Hamiltonian setting is given where the system’s structure is preserved. Furthermore, in Section
4 simulation results are presented in order to demonstrate the effectiveness of our energy-based approach. Finally,
Section 5 provides our main concluding remarks.

Copyright© 2019 by Mauricio Muñoz-Arias. Published by the EUCASS association with permission.



AN ENERGY-BASED APPROACH TO SATELLITE ATTITUDE CONTROL

1.1 Notation

The “cross” map (·)× : R3 → so (3) is defined as

v× =

v1
v2
v3


×

B

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (1)

while the “vee” map (·)∨ : so (3) denotes the inverse operation of “cross”, namely(
a×

)∨
= a (2)

Furthermore, the gradient of a scalar vector is given by

∇x B
δ

δx
. (3)

All vectors are considered as column vectors, and tr (A) is the trace of the matrix A ∈ Rn×n.

2. port-Hamiltonian framework

In this section, we present the port-Hamiltonian (PH) formalism for a general class of physical systems, and later we
present a formulation for the attitude control dynamics.

We apply the results of [6] in order to reinforced the proposal proposal of [9] in front of nonlinear disturbances.
The PH framework is based on the description of systems in terms of energy variables, their interconnection

structure, and power port pairs.
PH systems include a large family of physical nonlinear systems which includes the dynamics of satellites. The

transfer of energy between the physical system and the environment is given through energy elements, dissipation
elements and power preserving ports [8, 18, 19].

A time-invariant PH system corresponds to the

Σ

ẋ = [J (x) − R (x)]∇xH (x) + g (x) u,

y = g (x)> ∇xH (x) ,
(4)

where the state variable is given by x ∈ RN , and the input-output port-pair representing flows and efforts are given by

u ∈ RN , (5)

y ∈ RM, (6)

respectively. Furthermore, the matrices input, interconnection and dissipation matrices of (4) are given by

g (x) ∈ RN×M, (7)

J (x) = −J (x)> , J (x) ∈ RN×N , (8)

R (x) = R (x)> � 0, R (x) ∈ RN×N , (9)

where M ≤ N being M = N a fully actuated system, and M < N an underactuated one. Furthermore, the energy
function of system (4) is

H (x) ∈ R. (10)

Differentiating the Hamiltonian along the trajectories of ẋ, we recover the energy balance

Ḣ (x) = −∇>x H (x)R (x)∇xH (x) + y>u ≤ y>u (11)

where we clearly see how we consider the system (4) conservative.
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AN ENERGY-BASED A IN PRESENCE OF DISTURBANCES

2.1 port-Hamiltonian formulation of satellite (rigid body)

Given a rigid-body in space (satellite), we define its inner energy (Hamiltonian) function as

H (q, p) B
1
2

p>I−1 p (12)

with x = col (q, p) being the state variable that depends on the (generalized) position q ∈ R3, and generalized momenta
p ∈ R3. Furthermore, the matrix I B diag

(
Ix, Iy, Iz

)
is the (principal) inertia matrix. Also, p B Iω being ω ∈ R3 the

angular velocity vector. The dynamics of p is then given by

ṗ = p×∇pH (p) + u (13)

with u ∈ R3 being the applied control torques to the rigid body (satellite). Based on (12) and (13), we obtain the
following PH formulation

ΣS



[
q̇
ṗ

]
=

[
09×3 r (q)
−r (q)> p×

] [
∇qH (q, p)
∇pH (q, p)

]
+

[
09×3
G (q)

]
u

y = G (q)> ∇pH (q, p) = G (q)> ω

(14)

where the dissipation matrix is assume zero, i.e. R (q, p) = 0, G (q) ∈ R3×3 being the input matrix, and r (q) : R9 →

R9×3 is computed as

r (q) B

R
×
x

R×y
R×z

 (15)

with
q B vec

{
R>

}
=

[
Rx Ry Rz

]
. (16)

Notice from (14) that the dynamics of the generalized position q is given by

q̇ = r (q) p (17)

with r (q) as in (15). In [9], it is shown the full derivation of (14) with the matrix r (q) as in (15), and the vector of
position coordinates q as in (16).

In the follow up, we present the proposed control law to attain a desired attitude of a system in presence of
nonlinear disturbances.

2.2 Definition of the desired attitude configuration

Inspired by [6] and [7], we make use of an adapted momenta strategy where information about the position is added to
the momenta coordinate without loosing the system’s structure, and at the same time attaining asymptotic stability for
control purposes.

First, we define the desired attitude as

Rref B

Rref,x
Rref,y
Rref,z

 , (18)

where where Rref,x, Rref,y, and Rref,z, denote the first, second and third, row of Rref, respectively, then we make use of the
energy candidate function

Href (q) B
1
2

tr
[
Kp

(
I − R>refR (q)

)]
(19)

with Kp = diag
(
kpx, kpy, kpz

)
� 0, and I ∈ R3×3 an identity matrix which [1] has preliminary suggested. Then, the new

Hamiltonian is proposed as
Hd (q, p) = H (q, p) + Href (q) , (20)

and, inspired by [9], (an auxiliary) matrix is also proposed as

Raux (q) B KpR>refR (q) − R (q)> RrefK>p (21)
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such a the desired configuration qd ∈ R
9 is given by

qd = r (q)> ∇qHref (q) =
1
2

Raux (q)> =

−Raux,2,3 (q)
Raux,1,3 (q)
−Raux,1,2 (q)

 (22)

with Raux (q) as in (21). Notice that the new generalized coordinate q̄ ∈ Rn represents the error given by the reference
matrix Rre f in (18) or, in other words, the desired attitude configuration.

3. A novel control strategy

Once we have define the error between the current and desired attitude configuration, i.e by (22), then we introduce the
adapted momenta as

p̄ = p + Kpq̄ (23)

where p̄ ∈ Rn, with n > 0 constant, positive matrix Kp � 0, and desired configuration q̄ = q − qd, with q as in (17), qd

to be defined later on. Then, the resulting output of the new PH systems is

ȳ = p̄. (24)

that contrapositioned with the original output y of (4), we see how the position becomes also relevant for control
purposes.

Here, we also introduce an extended dynamics z ∈ Rn with an integral action on the output, i.e.

ż = −Kiŷ (25)

where a tuning matrix Ki ∈ R
3×3, such that Ki � 0.

Based on the new output ȳ, and the extended dynamics z as in (25), we proposed the following control law.

Theorem 1 Given a satellite dynamics represented by (14) with the generalized coordinate q and the generalized
momenta p, we obtain asymptotic stability at the a desired configuration qd as in (22) with the torque input vector u as

u = −
1
2

q̄ − Kpȳ + z (26)

= (27)

with a positive constant matrix Kp � 0.

Proof: Clearly, from (27), the adapted momenta p̄ as in (23), the new output ȳ as in (24) that depends on the position
q and speed q̇, together with an integral action on the dynamics of z as in (25), we obtain the closed loop system

ΣCL




˙̄q
˙̄p
ż

 =

 −I
−1 r (q̄) 09×3

−r (q̄)> −Kd Ki

03×9 −Ki 03×3


∇q̄H̄ (q̄, p̄, z)
∇p̄H̄ (q̄, p̄, z)
∇zH̄ (q̄, p̄, z)

 (28)

with a Lyapunov Candidate function H̄ (q̄, p̄, z) given by

H̄ (q̄, p̄, z) =
1
2

p̄> p̄ +
1
2

tr
[
Kp

(
I − R>refR (q̄)

)]
+

1
2

z>K−1
i z (29)

First, we see how H̄ (q̄, p̄, z) ≥ 0, and if we evaluate ˙̄H along the trajectories of (28), we obtain that ˙̄H (q̄, p̄, z) ≤ 0.
Finally, since in Rre f , H̄ has a minimum, then via the Lyapunov Stability theory [16], we conclude that the system (28)
has a equilibrium point in (q̄, p̄, z) = (qd, 0, 0). �

Theorem 1 shows how we can attain asymptotic stability on a desired attitude configuration Rre f given by (18).
Even though, it depends on position and velocity measurements, the PH framework ensures robustness in presence
of parameters uncertainties and disturbances, as demonstrated in [7, 18, 19]. In the next section, we incorporate such
nonlinear disturbances to the system (14) and demonstrate the relevance our approach via numerical simulations.
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(a) (b)

(c)

Figure 1: Simulation results of the attitude configuration for the system (14) with control law (27), and nonlinear
disturbances (31). In a), b) and c), we have the attitude error for the rows Rref,x, Rref,y, and Rref,z, respectively. The
solid lines in blue, red and and black represent the attitude error getting stabilized to zero, among the three elements of
each vector row of Rref as in (18) and the three elements of each row matrix of Rref,d as in (30). Asymptotic stability is
obtained after t = 3 s.
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4. Simulation results

Given a satellite system as in (14), and a desired attitude configuration presented as

Rref,d =

Rref,x,d
Rref,y,d
Rref,z,d

 =


0 0 −1

cos
(
π

3

)
− sin

(
π

3

)
0

− sin
(
π

3

)
− cos

(
π

3

)
0

 , (30)

where RrefR>ref = I3×3. Given also initial conditions for the generalized momenta, i.e. p (0) = col (−5.0, 4.0,−3.0),

and the inertial matrix of the system I = diag (1.0, 0.8, 1.0). It follows that the controller parameters are Ki =
1
2

I3×3,
Kp = 2I3×3, and Kd = I3×3 which can always be fine tuned to achieve different performances depending on the desired
transient response. We apply then the control law (27) to the system (14) in order to achieve the desired configuration
(30). Finally, a nonlinear disturbance in the system’s input is presented as a gravity-gradient external torque, similarly
to [20], is given by

τref,d =

dx sinωt cosωt
dy sinωt cosωt
dz sinωt cosωt

 (31)

with ω = π/300 rad constants col
(
dx, dy, dz

)
= col (0.1, 0.1, 0.1) Nm. Figure 1 shows the simulation results. Clearly,

we can see how there is a transient response of t = 2 s, and finally the system is stabilized at t ≥ 3 s. Robustness is
present in front of nonlinear disturbances which results from the model-based strategy together with the integral action
proposed in (25).

5. Concluding remarks and future work

An novel energy-based control strategy is here presented in order to tackle the attitude control problem for a satellite
system. The port-Hamiltonian framework allows the design and implementation of a controller based on the concept of
adapted momenta and a simple integral action on the system’s output. Robustness in presence of nonlinear disturbances
is a key advantage of the presented strategy due to model-based control design. Shaping the energy (Hamiltonian)
function via a Lyapunov Candidate function is a fundamental step towards the regulation problem, i.e attaining a desired
and constant attitude configuration of the spacecraft. The paper presents only disturbance attenuation in presence of
the gravity-gradient external torque. Further types of external torques such as magnetic, aerodynamic, solar radiation
pressure, and mass-expulsion will be considered as a potential extensions to the current study. In addition to this, a
comparison with classical and novel control strategies is another topic of ongoing work. Also, the design of a trajectory
tracking control instead of the regulation problem is certainly a path we would like to follow. Finally, an experimental
setup in space would be the ideal case to compare our simulation results with a real orbiting system. Low cost cub-sat
missions such as [11] and [12] are of interest due to their accessibility.
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