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Abstract: We show that Hamiltonian monodromy of an integrable two degrees of free-
dom systemwith a global circle action can be computed by applyingMorse theory to the
Hamiltonian of the system. Our proof is based on Takens’s index theorem, which spec-
ifies how the energy-h Chern number changes when h passes a non-degenerate critical
value, and a choice of admissible cycles in Fomenko–Zieschang theory. Connections of
our result to some of the existing approaches to monodromy are discussed.

1. Introduction

Questions related to the geometry and dynamics of finite-dimensional integrable Hamil-
tonian systems [2,10,15] permeate modern mathematics, physics, and chemistry. They
are important to such disparate fields as celestial and galactic dynamics [8], persistence
and stability of invariant tori (Kolmogorov–Arnold–Moser and Nekhoroshev theories)
[1,12,35,47,53], quantum spectra of atoms and molecules [14,16,52,59], and the SYZ
conjecture in mirror symmetry [56].

At the most fundamental level, a local understanding of such systems is provided by
the Arnol’d–Liouville theorem [2,3,37,46]. This theorem states that integrable systems
are generically foliated by tori, given by the compact and regular joint level sets of the
integrals of motion, and that such foliations are always locally trivial (in the symplectic
sense). A closely related consequence of the Arnol’d–Liouville theorem, is the local
existence of the action coordinates given by the formula

Ii =
∫

αi

p dq,

where αi , i = 1, . . . , n, are independent homology cycles on a given torus T n of the
foliation.

Passing from the local to the global description of integrable Hamiltonian systems,
naturally leads to questions on the geometry of the foliation of the phase space by
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Arnol’d–Liouville tori. For instance, the question of whether the bundles formed by
Arnol’d–Liouville tori come from aHamiltonian torus action, is closely connected to the
existence of global action coordinates and Hamiltonian monodromy [20]. In the present
work, we shall review old and discuss new ideas related to this classical invariant.

Monodromy was introduced by Duistermaat in [20] and it concerns a certain ‘holon-
omy’ effect that appears when one tries to construct global action coordinates for a given
integrable Hamiltonian system. If the homology cycles αi appearing in the definition of
the actions Ii cannot be globally defined along a certain closed path in phase space, then
the monodromy is non-trivial; in particular, the system has no global action coordinates
and does not admit a Hamiltonian torus action of maximal dimension (the system is not
toric).

Non-trivial Hamiltonian monodromy was found in various integrable systems. The
list of examples contains among others the (quadratic) spherical pendulum [7,15,20,27],
the Lagrange top [17], the Hamiltonian Hopf bifurcation [21], the champagne bottle [6],
the Jaynes–Cummings model [23,33,49], the Euler two-center and the Kepler prob-
lems [26,39,61]. The concept of monodromy has also been extended to near-integrable
systems [11,13,51].

In the context of monodromy and its generalizations, it is natural to ask how one
can compute this invariant for a given class of integrable Hamiltonian systems. Since
Duistermaat’s work [20], a number of different approaches to this problem, ranging from
the residue calculus to algebraic and symplectic geometry, have been developed. The
very first topological argument that allows one to detect non-trivial monodromy in the
spherical pendulum has been given by Richard Cushman. Specifically, he observed that,
for this system, the energy hyper-surfaces H−1(h) for large values of the energy h are
not diffeomorphic to the energy hyper-surfaces near the minimum where the pendulum
is at rest. This property is incompatible with the triviality of monodromy; see [20] and
Sect. 3 formore details. This argument demonstrates that themonodromy in the spherical
pendulum is non-trivial, but does not compute it.

Cushman’s argument had been sleeping for many years until Floris Takens [57]
proposed the idea of using Chern numbers of energy hyper-surfaces and Morse theory
for the computation of monodromy. More specifically, he observed that in integrable
systems with a Hamiltonian circle action (such as the spherical pendulum), the Chern
number of energy hyper-surfaces changes when the energy passes a critical value of
the Hamiltonian function. The main purpose of the present paper is to explain Takens’s
theorem and to show that it allows one to compute monodromy in integrable systems
with a circle action.

We note that the present work is closely related to the works [30,40], which demon-
strate how one can compute monodromy by focusing on the circle action and without
usingMorse theory. However, the idea of computing monodromy through energy hyper-
surfaces and their Chern numbers can also be applied when we do not have a detailed
knowledge of the singularities of the system; see Remark 8. In particular, it can be ap-
plied to the case when we do not have any information about the fixed points of the circle
action. We note that the behaviour of the circle action near the fixed points is important
for the theory developed in the works [30,40].

The paper is organized as follows. In Sect. 2 we discuss Takens’s idea following [57].
In particular, we state and prove Takens’s index theorem, which is central to the present
work. In Sect. 3 we show how this theorem can be applied to the context of monodromy.
We discuss in detail two examples and make a connection to the Duistermaat–Heckman
theorem [22]. In Sect. 4 we revisit the symmetry approach to monodromy presented in
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the works [30,40], and link it to the rotation number [15]. The paper is concluded with
a discussion in Sect. 5. Background material on Hamiltonian monodromy and Chern
classes is presented in the Appendix.

2. Takens’s Index Theorem

We consider an oriented 4-manifoldM and a smoothMorse function H on thismanifold.
We recall that H is called a Morse function if for any critical (= singular) point x of H,

the Hessian

∂2H

∂xi∂x j
(x)

is non-degenerate. We shall assume that H is a proper1 function and that it is invariant
under a smooth circle action G : M × S

1 → M that is free outside the critical points of
H . Note that the critical points of H are the fixed points of the circle action.

Remark 1 (Context of integrable Hamiltonian systems). In the context of integrable
systems, the function H is given by the Hamiltonian of the system or another first
integral, while the circle action comes from the (rotational) symmetry. For instance, in
the spherical pendulum [15,20], which is a typical example of a systemwithmonodromy,
one can take the function H to be the Hamiltonian of the system; the circle action is
given by the component of the angular momentum along the gravitational axis. We shall
discuss this example in detail later on. In the Jaynes–Cummings model [23,33,49], one
can take the function H to be the integral that generates the circle action, but one can
not take H to be the Hamiltonian of the system since the latter function is not proper.

For any regular level Hh = {x ∈ M | H(x) = h}, the circle action gives rise to the
circle bundle

ρh : Hh → Bh = Hh/S
1.

By definition, the fibers ρ−1
h (b) of this bundle ρh are the orbits of the circle action. The

question that was addressed by Takens is how the Chern number (also known as the
Euler number since it generalizes the Euler characteristic) of this bundle changes as h
passes a critical value of H . Before stating his result we shall make a few remarks on
the Chern number and the circle action.

First, we note that the manifolds Hh and Bh are compact and admit an induced
orientation. Assume, for simplicity, that Bh (and hence Hh) are connected. Since the
base manifold Bh is 2-dimensional, the (principal) circle bundle ρh : Hh → Bh has an
‘almost global’ section

s : Bh → ρ−1
h (Bh)

that is not defined at most in one point b ∈ bh . Let α be a (small) loop that encircles this
point.

1 Preimages of compact sets are compact.
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Definition 1. The Chern number c(h) of the principal bundle

ρh : Hh → Bh

can be defined as the winding number of s(α) along the orbit ρ−1
h (b). In other words,

c(h) is the degree of the map

S1 = α → s(α) → ρ−1
h (b) = S

1,

where the map s(α) → ρ−1
h (b) is induced by a retraction of a tubular neighbourhood of

ρ−1
h (b) onto ρ−1

h (b).

Remark 2. We note that the Chern number c(h) is a topological invariant of the bundle
ρh : Hh → Bh which does not depend on the specific choice of the section s and the
loop α; for details see [31,45,50].

Now, consider a singular point P of H . Observe that this point is fixed under the
circle action. From the slice theorem [4, Theorem I.2.1] (see also [9]) it follows that in
a small equivariant neighbourhood of this point the action can be linearized. Thus, in
appropriate complex coordinates (z, w) ∈ C

2 the action can be written as

(z, w) �→ (eimt z, eintw), t ∈ S
1,

for some integers m and n. By our assumption, the circle action is free outside the
(isolated) critical points of the Morse function H . Hence, near each such critical point
the action can be written as

(z, w) �→ (e±i t z, eitw), t ∈ S
1,

in appropriate complex coordinates (z, w) ∈ C
2. The two cases can be mapped to each

other through an orientation-reversing coordinate change.

Definition 2. A singular point P is called positive if the local circle action is given by
(z, w) �→ (e−i t z, eitw) and negative if the action is given by (z, w) �→ (eit z, eitw) in
a coordinate chart having the positive orientation with respect to the orientation of M .

Remark 3. The Hopf fibration is defined by the circle action (z, w) �→ (eit z, eitw) on
the sphere

S3 = {(z, w) ∈ C
2 | 1 = |z|2 + |w|2}.

The circle action (z, w) �→ (e−i t z, eitw) defines the anti-Hopf fibration on S3 [58]. If
the orientation is fixed, these two fibrations are different.

Lemma 1. The Chern number of the Hopf fibration is equal to −1, while for the anti-
Hopf fibration it is equal to 1.

Proof. See Appendix B. ��
Theorem 1 (Takens’s index theorem [57]). Let H be a proper Morse function on an
oriented 4-manifold. Assume that H is invariant under a circle action that is free outside
the critical points. Let hc be a critical value of H containing exactly one critical point.
Then the Chern numbers of the nearby levels satisfy

c(hc + ε) = c(hc − ε) ± 1.

Here the sign is plus if the circle action defines the anti-Hopf fibration near the critical
point and minus for the Hopf fibration.
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Proof. The main idea is to apply Morse theory to the function H . The role of Euler
characteristic in standard Morse theory will be played by the Chern number. We note
that the Chern number, just like the Euler characteristic, is additive.

FromMorse theory [44], we have that themanifold H−1(−∞, hc+ε] can be obtained
from the manifold H−1(−∞, hc − ε] by attaching a handle Dλ × D4−λ, where λ is
the index of the critical point on the level H−1(hc). More specifically, for a suitable
neighbourhood Dλ × D4−λ ⊂ M of the critical point (with Dm standing for an m-
dimensional ball), H−1(−∞, hc + ε] deformation retracts onto the set

X = H−1(−∞, hc − ε] ∪ Dλ × D4−λ

and, moreover,

H−1(−∞, hc + ε] 
 X = H−1(−∞, hc − ε] ∪ Dλ × D4−λ (1)

up to a diffeomorphism. We note that by the construction, the intersection of the handle
Dλ × D4−λ with H−1(−∞, hc − ε] is the subset Sλ−1 × D4−λ ⊂ H−1(hc − ε); see
[44]. For simplicity, we shall assume that the handle is disjoint from H−1(hc + ε). By
taking the boundary in Eq. (1), we get that

H−1(hc + ε) 
 ∂X = (H−1(hc − ε)\Sλ−1 × D4−λ) ∪ Dλ × S4−λ−1. (2)

Here the union (Dλ × S4−λ−1) ∪ (Sλ−1 × D4−λ) is the boundary S3 = ∂(Dλ × D4−λ)

of the handle.
Since we assumed the existence of a global circle action on M , we can choose the

handle and its boundary S3 to be invariant with respect to this action [62]. This will
allow us to relate the Chern numbers of H−1(hc + ε) and H−1(hc − ε) using Eq. (2).
Specifically, due to the invariance under the circle action, the sphere S3 has awell-defined
Chern number.Moreover, since the action is assumed to be free outside the critical points
of H , this Chern number c(S3) = ±1, depending on whether the circle action defines
the anti-Hopf or the Hopf fibration on S3; see Lemma 1. From Eq. (2) and the additive
property of the Chern number, we get

c(∂X) = c(hc − ε) + c(S3) = c(hc − ε) ± 1.

It is left to show that c(hc + ε) = c(∂X) (we note that even though we know that
H−1(hc + ε) and ∂X are diffeomorphic, we cannot yet conclude that they have the same
Chern numbers).

Let the subset Y ⊂ M be defined as the closure of the set

H−1[hc − ε, hc + ε]\Dλ × D4−λ.

We observe that Y is a compact submanifold of M and that ∂Y = ∂X ∪ H−1(hc + ε),

that is, Y is a cobordism in M between ∂X and H−1(hc + ε). By the construction, ∂Y
is invariant under the circle action and there are no critical points of H in Y . It follows
that the Chern number c(∂Y ) = 0. Indeed, one can apply Stokes’s theorem to the Chern
class of ρ : Y → Y/S1, where ρ is the reduction map; see Appendix B. This concludes
the proof of the theorem. ��
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Remark 4. We note that (an analogue of) Theorem 1 holds also when the Hamiltonian
function H has k > 1 isolated critical points on a critical level. In this case

c(hc + ε) = c(hc − ε) +
k∑

i=1

sk,

where sk = ±1 corresponds to the kth critical point.

Remark 5. By a continuity argument, the (integer) Chern number is locally constant.
This means that if [a, b] does not contain critical values of H , then c(h) is the same
for all the values h ∈ [a, b]. On the other hand, by Theorem 1, the Chern number c(h)

changes when h passes a critical value which corresponds to a single critical point.

3. Morse Theory Approach to Monodromy

The goal of the present section is to show how Takens’s index theorem can be used
to compute Hamiltonian monodromy. First, we demonstrate our method on a famous
example of a system with non-trivial monodromy: the spherical pendulum. Then, we
give a new proof of the geometric monodromy theorem along similar lines.We also show
that the jump in the energy level Chern number manifests non-triviality of Hamiltonian
monodromy in the general case. This section is concluded with studying Hamiltonian
monodromy in an example of an integrable system with two focus–focus points.

3.1. Spherical pendulum. The spherical pendulum describes the motion of a particle
moving on the unit sphere

S2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1}

in the linear gravitational potential V (x, y, z) = z. The corresponding Hamiltonian
system is given by

(T ∗S2,Ω|T ∗S2 , H |T ∗S2), where H = 1

2
(p2x + p2y + p2z ) + V (x, y, z)

is the total energyof the pendulumandΩ is the standard symplectic structure.Weobserve
that the function J = xpy − ypx (the component of the total angular momentum about
the z-axis) is conserved. It follows that the system is Liouville integrable. The bifurcation
diagram of the energy-momentum map

F = (H, J ) : T ∗S2 → R
2,

that is, the set of the critical values of this map, is shown in Fig. 1.
From the bifurcation diagram we see that the set R ⊂ image(F) of the regular values

of F (the shaded area in Fig. 2) is an open subset ofR2 with one puncture. Topologically,
R is an annulus and hence π1(R, f0) = Z for any f0 ∈ R. We note that the puncture (the
black dot in Fig. 1) corresponds to an isolated singularity; specifically, to the unstable
equilibrium of the pendulum.

Consider the closed path γ around the puncture that is shown in Fig. 1. Since J
generates a Hamiltonian circle action on T ∗S2, any orbit of this action on F−1(γ (0))
can be transported along γ . Let (a, b) be a basis of H1(F−1(γ (0))), where b is given by
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Fig. 1. Bifurcation diagram for the spherical pendulum and the loop γ around the focus–focus singularity

the homology class of such an orbit. Then the corresponding Hamiltonian monodromy
matrix along γ is given by

Mγ =
(
1 mγ

0 1

)

for some integer mγ . It was shown in [20] that mγ = 1 (in particular, global action
coordinates do not exist in this case). Below we shall show how this result follows from
Theorem 1.

First we recall the following argument due to Cushman, which shows that the mon-
odromy along the loop γ is non-trivial; the argument appeared in [20].

Cushman’s argument. First observe that the points

Pmin = {p = 0, z = −1} and Pc = {p = 0, z = 1}
are the only critical points of H . The corresponding critical values are hmin = −1 and
hc = 1, respectively. The point Pmin is the global and non-degenerate minimum of H on
T ∗S2. From the Morse lemma, we have that H−1(1 − ε), ε ∈ (0, 2), is diffeomorphic
to the 3-sphere S3. On the other hand, H−1(1+ ε) is diffeomorphic to the unit cotangent
bundle T ∗

1 S
2. It follows that the monodromy index mγ �= 0. Indeed, the energy levels

H−1(1 + ε) and H−1(1− ε) are isotopic, respectively, to F−1(γ1) and F−1(γ2), where
γ1 and γ2 are the curves shown in Fig. 2. If mγ = 0, then the preimages F−1(γ1) and
F−1(γ2) would be homeomorphic, which is not the case. ��

Using Takens’s index theorem 1, we shall now make one step further and compute
the monodromy index mγ . By Takens’s index theorem, the energy-level Chern numbers
are related via

c(1 + ε) = c(1 − ε) + 1
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Fig. 2. Bifurcation diagram for the spherical pendulum, the energy levels, the curves γ1 and γ2, and the loop
γ around the focus–focus singularity

since the critical point Pc is of focus–focus type. Note that focus–focus points are positive
by Theorem 3; for a definition of focus–focus points we refer to [10].

Consider again the curves γ1 and γ2 shown in Fig. 2. Observe that F−1(γ1) and
F−1(γ2) are invariant under the circle action given by the Hamiltonian flow of J . Let
c1 and c2 denote the corresponding Chern numbers. By the isotopy, we have that c1 =
c(1 + ε) and c2 = c(1 − ε). In particular, c1 = c2 + 1.

Let δ > 0 be sufficiently small. Consider the following set

S− = {x ∈ F−1(γ1) | J (x) ≤ jmin + δ},
where jmin is the minimum value of the momentum J on F−1(γ1). Similarly, we define
the set

S+ = {x ∈ F−1(γ1) | J (x) ≥ jmax − δ}.
By the construction of the curves γi , the sets S− and S+ are contained in both F−1(γ1)

and F−1(γ2). Topologically, these sets are solid tori.
Let (a−, b−) be two basis cycles on ∂S− such that a− is the meridian and b− is an

orbit of the circle action. Let (a+, b+) be the corresponding cycles on ∂S+. The preimage
F−1(γi ) is homeomorphic to the space obtained by gluing these pairs of cycles by(

a−
b−

)
=

(
1 ci
0 1

) (
a+
b+

)
,

where ci is the Chern number of F−1(γi ). It follows that the monodromy matrix along
γ is given by the product

Mγ =
(
1 c1
0 1

) (
1 c2
0 1

)−1

.
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Since c1 = c2 + 1, we conclude that the monodromy matrix

Mγ =
(
1 1
0 1

)
.

Remark 6 (Fomenko–Zieschang theory). The cycles a±, b±, which we have used when
expressing F−1(γi ) as a result of gluing two solid tori, are admissible in the sense of
Fomenko–Zieschang theory [10,32]. It follows, in particular, that the Liouville fibration
of F−1(γi ) is determined by the Fomenko–Zieschang invariant (the marked molecule)

A∗ ri=∞, ε=1, ni A∗

with the n-mark ni given by the Chern number ci . (The same is true for the regular
energy levels H−1(h).) Therefore, our results show that Hamiltonian monodromy is
also given by the jump in the n-mark. We note that the n-mark and the other labels in the
Fomenko–Zieschang invariant are also defined in the case when no global circle action
exists.

3.2. Geometric monodromy theorem. A common aspect of most of the systems with
non-trivial Hamiltonian monodromy is that the corresponding energy-momentum map
has focus–focus points, which, from the perspective of Morse theory, are saddle points
of the Hamiltonian function.

The following result, which is sometimes referred to as the geometric monodromy
theorem, characterizes monodromy around a focus–focus singularity in systems with
two degrees of freedom.

Theorem 2 (Geometric monodromy theorem, [36,42,43,63]). Monodromy around a
focus–focus singularity is given by the matrix

M =
(
1 m
0 1

)
,

where m is the number of the focus–focus points on the singular fiber.

A related result in the context of the focus–focus singularities is that they come with
a Hamiltonian circle action [63,64].

Theorem 3 (Circle action near focus–focus, [63,64]). In a neighbourhood of a focus–
focus fiber,2 there exists a unique (up to orientation reversing) Hamiltonian circle action
which is free everywhere except for the singular focus–focus points. Near each singular
point, the momentum of the circle action can be written as

J = 1

2
(q21 + p21) − 1

2
(q22 + p22)

for some local canonical coordinates (q1, p1, q2, p2). In particular, the circle action
defines the anti-Hopf fibration near each singular point.

2 That is, a singular fiber containing a number of focus–focus points.
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Fig. 3. Splitting of the focus–focus singularity; the complexity m = 3 in this example

One implication of Theorem 3 is that it allows to prove the geometric monodromy
theorem by looking at the circle action. Specifically, one can apply the Duistermaat–
Heckman theorem in this case; see [64]. A slight modification of our argument, used
in the previous Sect. 3.1 to determine monodromy in the spherical pendulum, results in
another proof of the geometric monodromy theorem. We give this proof below.

Proof of Theorem 2 By applying integrable surgery, we can assume that the bifurcation
diagram consists of a square of elliptic singularities and a focus–focus singularity in the
middle; see [64]. In the case when there is only one focus–focus point on the singular
focus–focus fiber, the proof reduces to the case of the spherical pendulum. Otherwise
the configuration is unstable. Instead of a focus–focus fiber with m singular points, one
can consider a new S

1-invariant fibration such that it is arbitrary close to the original
one and has m simple (that is, containing only one critical point) focus–focus fibers; see
Fig. 3.

As in the case of the spherical pendulum, we get that the monodromy matrix around
each of the simple focus–focus fibers is given by the matrix

Mi =
(
1 1
0 1

)
.

Since the new fibration is S1-invariant, the monodromy matrix around m focus–focus
fibers is given by the product of m such matrices, that is,

Mγ = M1 · · · Mm =
(
1 m
0 1

)
.

The result follows. ��
Remark 7 (Duistermaat–Heckman). Consider a symplectic 4-manifold M and a proper
function J that generates a Hamiltonian circle action on this manifold. Assume that
the fixed points are isolated and that the action is free outside these points. From the
Duistermaat–Heckman theorem [22] it follows that the symplectic volume vol( j) of
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J−1( j)/S1 is a piecewise linear function. Moreover, if j = 0 is a critical value with m
positive fixed points of the circle action, then

vol( j) + vol(− j) = 2 vol(0) − mj.

As was shown in [64], this result implies the geometric monodromy theorem since the
symplectic volume can be viewed as the affine length of the line segment {J = j} in
the image of F . The connection to our approach can be seen from the observation that
the derivative vol′( j) coincides with the Chern number of J−1( j). We note that for
the spherical pendulum, the Hamiltonian does not generate a circle action, whereas the
z-component of the angular momentum is not a proper function. Therefore, neither of
these functions can be taken as ‘J ’; in order to use the Duistermaat–Heckman theorem,
one needs to consider a local model first [64]. Our approach, based onMorse theory, can
be applied directly to the Hamiltonian of the spherical pendulum, even though it does
not generate a circle action.

Remark 8 (Generalization).Weobserve that even if a simple closed curve γ ⊂ R bounds
some complicated arrangement of singularities or, more generally, if the interior of γ

in R
2 is not contained in the image of the energy-momentum map F , the monodromy

along this curve can still be computed by looking at the energy level Chern numbers.
Specifically, the monodromy along γ is given by

Mγ =
(
1 mγ

0 1

)
,

where mγ = c(h2) − c(h1) is the difference between the Chern numbers of two (appro-
priately chosen) energy levels.

Remark 9 (Planar scattering).We note that a similar result holds in the case of mechan-
ical Hamiltonian systems on T ∗

R
2 that are both scattering and integrable; see [41]. For

such systems, the roles of the compact monodromy and the Chern number are played
by the scattering monodromy and Knauf’s scattering index [34], respectively.

Remark 10 (Many degrees of freedom). The approach presented in this paper depends on
the use of energy-levels and their Chern numbers. For this reason, it cannot be directly
generalized to systems with many degrees of freedom. An approach that admits such a
generalization was developed in [30,40]; we shall recall it in the next section.

3.3. Example: a systemwith two focus–focus points. Herewe illustrate theMorse theory
approach that we developed in this paper on a concrete example of an integrable system
that has more than one focus–focus point. The system was introduced in [55]; it is an
example of a semi-toric system [24,54,60] with a special property that it has two distinct
focus–focus fibers, which are not on the same level of the momentum corresponding to
the circle action.

Let S2 be the unit sphere in R
3 and let ω denote its volume form, induced from

R
3. Take the product S2 × S2 with the symplectic structure ω ⊕ 2ω. The system in-

troduced in [55] is an integrable system on S2 × S2 defined in Cartesian coordinates
(x1, y1, z1, x2, y2, z2) ∈ R

3 ⊕ R
3 by the Poisson commuting functions

H = 1

4
z1 +

1

4
z2 +

1

2
(x1x2 + y1y2) and J = z2 + 2z2.
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Fig. 4. The bifurcation diagram for the system on S2 × S2 and the loops γ1, γ2, γ3 around the focus–focus
singularities

Thebifurcationdiagramof the corresponding energy-momentummap F = (H, J ) : S2×
S2 → R

2 is shown in Fig. 4.
The system has 4 singular points: two focus–focus and two elliptic–elliptic points.

These singular points are (S, S), (N , S), (S, N ) and (N , N ), where S and N are the
South and the North poles of S2. Observe that these points are the fixed points of
the circle action generated by the momentum J . The focus–focus points are positive
fixed points (in the sense of Definition 2) and the elliptic–elliptic points are negative.
Takens’s index theorem implies that the topology of the regular J -levels are S3, S2×S1,
and S3; the corresponding Chern numbers are −1, 0, and 1, respectively. Invoking the
argument in Sect. 3.1 for the spherical pendulum (see also Sect. 3.2), we conclude3 that
the monodromy matrices along the curves γ1 and γ2 that encircle the focus–focus points
(see Fig. 4) are

M1 = M2 =
(
1 1
0 1

)
. (3)

Here the homology basis (a, b) is chosen such that b is an orbit of the circle action.

Remark 11 Observe that the regularH -levels have the following topology: S2×S1, S3, S3,
and S2 × S1. We see that the energy levels do not change their topology as the value
of H passes the critical value 0, which corresponds to the two focus–focus points. Still,
the monodromy around γ3 is nontrivial. Indeed, in view of Eq. (3) and the existence of
a global circle action [19], the monodromy along γ3 is given by

M3 = M1 · M2 =
(
1 2
0 1

)
.

3 We note that Eq. 3 follows also from the geometric monodromy theorem since the circle action gives
a universal sign for the monodromy around the two focus–focus points [19]. Our aim is to prove Eq. 3 by
looking at the topology of the energy levels.
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The apparent paradox is resolved when one looks at the Chern numbers: the Chern
number of the 3-sphere below the focus–focus points is equal to − 1, whereas the Chern
number of the 3-sphere above the focus–focus points is equal to + 1. (The Chern number
of S2 × S1 is equal to 0 in both cases.) We note that a similar kind of example of an
integrable system for which the monodromy is non-trivial and the energy levels do not
change their topology, is given in [15] (see Burke’s egg (poached)). In the case of Burke’s
egg, the energy levels are non-compact; in the case of the system on S2 × S2 they are
compact.

4. Symmetry Approach

Wenote that one can avoid using energy levels by looking directly at theChern number of
F−1(γ ), where γ is the closed curve along which Hamiltonian monodromy is defined.
This point of view was developed in the work [30]. It is based on the following two
results.

Theorem 4 (Fomenko–Zieschang, [10, §4.3.2], [30]). Assume that the energy-momentum
map F is proper and invariant under a Hamiltonian circle action. Let γ ⊂ image(F) be
a simple closed curve in the set of the regular values of the map F. Then the Hamiltonian
monodromy of the torus bundle F : F−1(γ ) → γ is given by

(
1 m
0 1

)
∈ SL(2,Z),

where m is the Chern number of the principal circle bundle ρ : F−1(γ ) → F−1(γ )/S1,
defined by reducing the circle action.

In the case when the curve γ bounds a disk D ⊂ image(F), the Chern numberm can
be computed from the singularities of the circle action that project into D. Specifically,
there is the following result.

Theorem 5 ([30]). Let F and γ be as in Theorem 4. Assume that γ = ∂D, where
D ⊂ image(F) is a two-disk, and that the circle action is free everywhere in F−1(D)

outside isolated fixed points. Then the Hamiltonian monodromy of the 2-torus bundle
F : F−1(γ ) → γ is given by the number of positive singular points minus the number
of negative singular points in F−1(D).

We note that Theorems 4 and 5 were generalized to a much more general setting of
fractional monodromy and Seifert fibrations; see [40]. Such a generalization allows one,
in particular, to define monodromy for circle bundles over 2-dimensional surfaces (or
even orbifolds) of genus g ≥ 1; in the standard case the genus g = 1.

Let us now give a new proof of Theorem 4, which makes a connection to the rotation
number. First we shall recall this notion.

We assume that the energy-momentummap F is invariant under a Hamiltonian circle
action.Without loss of generality, F = (H, J ) is such that the circle action is given by the
Hamiltonian flow ϕt

J of J . Let F
−1( f ) be a regular torus. Consider a point x ∈ F−1( f )

and the orbit of the circle action passing through this point. The trajectory ϕt
H (x) leaves

the orbit of the circle action at t = 0 and then returns back to the same orbit at some time
T > 0. The time T is called the the first return time. The rotation number Θ = Θ( f )
is defined by ϕ2πΘ

J (x) = ϕT
H (x). There is the following result.
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Theorem 6 (Monodromy and rotation number, [15]). The Hamiltonian monodromy of
the torus bundle F : F−1(γ ) → γ is given by

(
1 m
0 1

)
∈ SL(2,Z),

where −m is the variation of the rotation number Θ .

Proof First we note that since the flow of J is periodic on F−1(γ ), the monodromy
matrix is of the form (

1 m′
0 1

)
∈ SL(2,Z)

for some integer m′.
Fix a starting point f0 ∈ γ. Choose a smooth branch of the rotation number Θ on

γ \ f0 and define the vector field XS on F−1(γ \ f0) by

XS = T

2π
XH − ΘX J . (4)

By the construction, the flow of XS is periodic. However, unlike the flow of X J , it is not
globally defined on F−1(γ ). Let α1 and α0 be the limiting cycles of this vector field on
F−1( f0), that is, let α0 be given by the flow of the vector field XS for f → f0+ and let
α1 be given by the flow of XS for f → f0−. Then

α1 = α0 + mb f0 ,

where −m is the variation of the rotation number along γ . Indeed, if the variation of the
rotation number is −m, then the vector field T ( f0)

2π XH − Θ( f0)X J on F−1( f0) changes

to T ( f0)
2π XH − (Θ( f0) −m)X J after f traverses γ. Since α1 is the result of the parallel

transport of α0 along γ , we conclude that m′ = m. The result follows. ��
We are now ready to prove Theorem 4.

Proof Take an invariant metric g on F−1(γ ) and define a connection 1-form σ of the
principal S1 bundle ρ : Eγ → Eγ /S1 as follows:

σ(X J ) = i and σ(XH ) = σ(e) = 0,

where e is orthogonal to X J and XH with respect to the metric g. Since the flows ϕt
H

and ϕτ
J commute, σ is indeed a connection one-form.

By the construction,

i

2π

(∫
α0

σ −
∫

α1

σ

)
= − im

2π

∫
b f0

σ = m.

Since α0 � α1 bounds a cylinder C ⊂ F−1(γ \ f0), we also have

m = i

2π

∫
C
dσ =

∫
Eγ /S1

c1,

where c1 is the Chern class of the circle bundle ρ : Eγ → Eγ /S1. The result follows. ��
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5. Discussion

In this paper we studied Hamiltonian monodromy in integrable two-degree of freedom
Hamiltonian systems with a circle action. We showed how Takens’s index theorem,
which is based on Morse theory, can be used to compute Hamiltonian monodromy. In
particular,we gave a newproof of themonodromyaround a focus–focus singularity using
theMorse theory approach. An important implication of our results is a connection of the
geometric theory developed in the works [29,40] to Cushman’s argument, which is also
based on Morse theory. New connections to the rotation number and to Duistermaat–
Heckman theory were also discussed.
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A Hamiltonian monodromy

A typical situation in which monodromy arises is the case of an integrable system on a
4-dimensional symplectic manifold (M4,Ω). Such a system is specified by the energy-
momentum (or the integral) map

F = (H, J ) : M → R
2.

Here H is the Hamiltonian of the system and the momentum J is a ‘symmetry’ function,
that is, the Poisson bracket

{H, J } = Ω−1(d J, dH) = 0

vanishes. We will assume that the map F is proper, that is, that preimages of compact
sets are compact, and that the fibers F−1( f ) of F are connected. Then near any regular
value of F the functions H and J can be combined into new functions I1 = I1(H, J )

and I2 = I2(H, J ) such that the symplectic form has the canonical form

Ω = d I1 ∧ dϕ1 + d I2 ∧ dϕ2

for some angle coordinates ϕ1, ϕ2 on the fibers of F . This follows from the Arnol’d–
Liouville theorem [3]. We note that the regular fibers of F are tori and that the motion
on these tori is quasi-periodic.
The coordinates Ii that appear in the Arnol’d–Liouville theorem are called action

coordinates. It can be shown that if pdq is a local primitive 1-from of the symplectic
form, then these coordinates are given by the formula

Ii =
∫

αi

pdq, (5)

http://creativecommons.org/licenses/by/4.0/
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where αi , i = 1, 2, are two independent cycles on anArnol’d–Liouville torus. However,
this formula is local even if the symplectic form Ω is exact. The reason for this is that
the cycles αi can not, generally speaking, be chosen for each torus F−1( f ) in a such a
way that the maps f �→ αi ( f ) are continuous at all regular values f of F . This is the
essence of Hamiltonian monodromy. Specifically, it is defined as follows.
Let R ⊂ image(F) be the set of the regular values of F . Consider the restriction map

F : F−1(R) → R.

We observe that this map is a torus bundle: locally it is a direct product Dn × T n , the
trivialization being achieved by the action-angle coordinates. Hamiltonian monodromy
is defined as a representation

π1(R, f0) → Aut H1(F
−1( f0))

of the fundamental group π1(R, f0) in the group of automorphisms of the integer ho-
mology group H1(F−1( f0)). Each element γ ∈ π1(R, f0) acts via parallel transport of
integer homology cycles αi ; see [20].
We note that the appearance of the homology groups is due to the fact that the action

coordinates (5) depend only on the homology class of αi on the Arnol’d–Liouville torus.
We observe that since the fibers of F are tori, the group H1(F−1( f0)) is isomorphic to
Z
2. It follows that the monodromy along a given path γ is characterized by an integer

matrix Mγ ∈ GL(2,Z), called the monodromy matrix along γ . It can be shown that the
determinant of this matrix equals 1.

Remark 12 (Examples and generalizations).Non-trivial monodromy has been observed
in various examples of integrable systems, including the most fundamental ones, such
as the spherical pendulum [15,20], the hydrogen atom in crossed fields [18] and the
spatial Kepler problem [26,39]. This invariant has also been generalized in several dif-
ferent directions, leading to the notions of quantum [16,59], fractional [28,40,48] and
scattering [5,25,29,39] monodromy.

Remark 13 (Topological definition ofmonodromy).Topologically, one can defineHamil-
tonian monodromy along a loop γ as monodromy of the torus (in the non-compact case
— cylinder) bundle over this loop. More precisely, consider a T 2-torus bundle

F : F−1(γ ) → γ, γ = S1.

It can be obtained from a trivial bundle [0, 2π ] × T 2 by gluing the boundary tori via a
homeomorphism f , called the monodromy of F . In the context of integrable systems
(when F is the energy-momentum map and γ is a loop in the set of the regular values)
the matrix of the push-forward map

f� : H1(T
2) → H1(T

2)

coincideswith themonodromymatrix along γ in the above sense. It follows, in particular,
that monodromy can be defined for any torus bundle.
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B Chern classes

Let M ′ be an S
1-invariant submanifold of M which does not contain the critical points

of H . The circle action on M ′ is then free and we have a principal circle bundle

ρ : M ′ → M ′/S1.

Let X J denote the vector field on M ′ corresponding to the circle action (such that the
flow of X J gives the circle action) and let σ be a 1-form on M ′ such that the following
two conditions hold

(i) σ(X J ) = i and (ii) R∗
g(σ ) = σ.

Here i ∈ iR — the Lie algebra of S1 = {eiϕ ∈ C | ϕ ∈ [0, 2π ]} and Rg is the (right)
action of S1.
The Chern (or the Euler) class4 can then defined as

c1 = s�(idw/2π) ∈ H2(M ′/S1,R),

where s is any local section of the circle bundle ρ : M ′ → M ′/S1. Here H2(M ′/S1,R)

stands for the second de Rham cohomology group of the quotient M ′/S1.
We note that if the manifold M ′ is compact and 3-dimensional, the Chern number of

M ′ (see Definition 1) is equal to the integral
∫
M ′/S1

c1

of the Chern class c1 over the base manifold M ′/S1.
A non-trivial example of a circle bundle with non-trivial Chern class is given by the

(anti-)Hopf fibration. Recall that the Hopf fibration of the 3-sphere

S3 = {(z, w) ∈ C
2 | 1 = |z|2 + |w|2}

is the principal circle bundle S3 → S2 obtained by reducing the circle action (z, w) �→
(eit z, eitw). The circle action (z, w) �→ (e−i t z, eitw) defines the anti-Hopf fibration of
S3.

Lemma 2 TheChern number of theHopf fibration is equal to−1, while for the anti-Hopf
fibration it is equal to 1.

Proof Consider the case of the Hopf fibration (the anti-Hopf case is analogous). Its
projection map h : S3 → S2 is defined by h(z, w) = (z : w) ∈ CP

1 = S2. Put

U1 = {(u : 1) | u ∈ C, |u| < 1} and U2 = {(1 : v) | v ∈ C, |v| < 1}.
Define the section s j : Uj → S3 by the formulas

s1((u : 1)) =
(

u√|u|2 + 1
,

1√|u|2 + 1

)

4 This Chern class should not be confused with Duistermaat’s Chern class, which is another obstruction to
the existence of global action-angle coordinates; see [20,38].
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and

s2((1 : v)) =
(

1√|v|2 + 1
,

v√|v|2 + 1

)
.

Now, the gluing cocycle t12 : S1 = U1 ∩U 2 → S
1 corresponding to the sections s1 and

s2 is given by

t12((u : 1)) = exp (−iArg u).

If follows that the winding number equals −1 (the loop α in Definition 1 is given by the
equator S1 = U 1 ∩U 2 in this case). ��
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60. Vũ Ngo. c, S.: Moment polytopes for symplectic manifolds with monodromy. Adv.Math. 208(2), 909–934
(2007)

61. Waalkens, H., Dullin, H.R., Richter, P.H.: The problem of two fixed centers: bifurcations, actions, mon-
odromy. Physica D 196(3–4), 265–310 (2004)

62. Wasserman, A.G.: Equivariant differential topology. Topology 8(2), 127–150 (1969)
63. Zung, N.T.: A note on focus–focus singularities. Differ. Geom. Appl. 7(2), 123–130 (1997)
64. Zung, N.T.: Another note on focus–focus singularities. Lett. Math. Phys. 60(1), 87–99 (2002)

Communicated by J. Marklof


	Hamiltonian Monodromy and Morse Theory
	Abstract:
	1 Introduction
	2 Takens's Index Theorem
	3 Morse Theory Approach to Monodromy
	3.1 Spherical pendulum
	3.2 Geometric monodromy theorem
	3.3 Example: a system with two focus–focus points

	4 Symmetry Approach
	5 Discussion
	Acknowledgement.
	A Hamiltonian monodromy
	B Chern classes
	References




