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Abstract In the advanced stages, malignant melanoma
(MM) has a very poor prognosis. Due to tremendous
efforts in cancer research over the last 10 years, and the
introduction of novel therapies such as targeted thera-
pies and immunomodulators, the rather dark horizon of
the median survival has dramatically changed from

under 1 year to several years. With the advent of prote-
omics, deep-mining studies can reach low-abundant
expression levels. The complexity of the proteome,
however, still surpasses the dynamic range capabilities
of current analytical techniques. Consequently, many
predicted protein products with potential biological
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functions have not yet been verified in experimental
proteomic data. This category of ‘missing proteins’
(MP) is comprised of all proteins that have been pre-
dicted but are currently unverified. As part of the initia-
tive launched in 2016 in the USA, the European Cancer
Moonshot Center has performed numerous deep prote-
omics analyses on samples from MM patients. In this
study, nine MPs were clearly identified by mass spec-
trometry in MM metastases. Some MPs significantly
correlated with proteins that possess identical PFAM
structural domains; and other MPs were significantly
associated with cancer-related proteins. This is the first
study to our knowledge, where unknown and novel
proteins have been annotated in metastatic melanoma
tumour tissue.

Keywords Melanoma .Missing proteins . Tissue .

Biobank . Proteomics . Mass spectrometry

Introduction

Metastatic melanoma is an aggressive disease; pre-
viously known to resist most types of therapies.
However, the development of targeted therapies in
tumours with BRAF mutations has revolutionised
treatment. Nevertheless, a significant number of
patients with BRAF V600 metastatic melanoma
experience relapse within a few months after treat-
ment with the combination of BRAF and MEK
inhibitors (Pascale et al. 2018). With the advent
of immunotherapy, a significant improvement in
survival has become evident (Eroglu et al. 2018).
Nonetheless, the disease often overcomes therapeu-
tic blockage of the immune system.

New and promising classification systems and
methods have emerged that have enabled stratification
of patients into refined prognostic clusters. Such

approaches undoubtedly complement available thera-
pies. As such, a more uniform prognosis is provided
and, more importantly, an improved response to treat-
ment (Pimiento et al. 2013; Tímár et al. 2016; Dimitriou
et al. 2018). Based on genetic analyses, cutaneous mel-
anomas are divided into four classes: BRAF-mutated,
RAS-mutated, NF-1-mutated tumours, and triple wild-
type (Cancer Genome Atlas Network et al. 2015). Inde-
pendent of these sub-groups, immune therapy with
check-point inhibitors across tumours has resulted in
an improved outcome. Applying transcriptomic profil-
ing and using paired-end massively parallel sequencing
of cDNA together with analyses of high-resolution chro-
mosomal copy number data, 11 novel melanoma gene
fusion products and 12 novel readthrough transcripts
have been identified. From this RNA-seq analysis, a
surprisingly high mutational burden was described in
melanoma that was crucial for tumour progression
(Berger et al. 2010).

Heterogeneity, clonal expansion and evolutionary
processes are further key phenomena that may be re-
sponsible for the resistance mechanism of cancer
(Marcell Szasz et al. 2019; Turajlic et al. 2019;
Swanton 2018). A deeper understanding of single indi-
vidual tumour can reveal important pieces of the entire
puzzle. For example, immunotherapies are now admin-
istered in earlier stages and it was shown that neoadju-
vant ipilimumab + nivolumab expand more tumour-
resident T cell clones than adjuvant application (Blank
et al. 2018). The adverse effects have prompted further
studies and approaches to apply immunotherapies in a
safer manner (Bosman et al. 2010).

In order to address unsolved clinical drawbacks, al-
ternative research approaches have emerged. Proteo-
mics has been successfully applied to several biological
scenarios as an integral part of multi-omics studies in
system biology and medicine (Collins and Varmus
2015; Chen and Snyder 2013).

By nature, proteins are highly complex. Therefore, as
a consequence of the dynamic range and sensitivity
limits of current proteomic techniques, many predicted
protein products have not yet been identified in proteo-
mic experiments. These proteins could provide essential
clues to aid interpretation of biological processes and
potentially drive new avenues of research and therapeu-
tic strategies to solve remaining clinical problems.

In 2016, the Chromosome-centric Human Proteome
Project (C-HPP) launched an initiative to accelerate the
identification and assignment of these ‘missing
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proteins’(MPs) (Omenn et al. 2017). The proteins were
divided into five groups according to the level of protein
existence (PE). PE1 contains proteins identified by mass
spectrometry, 3D structure, immunohistochemistry, and/
or amino acid sequencing. PE2 refers to transcript ex-
pression, but not protein expression. Proteins annotated
in PE3 do not have any protein or transcript evidence in
humans; however, there are similar sequences that have
been reported in other species. PE4 proteins are
hypothesised from gene models, and the PE5 group
contains predicted protein sequences with uncertain ev-
idence and is mostly associated with pseudogenes (Paik
et al. 2018).

The samples in this study are a part of the
BioMel biobank, governed by Lund Melanoma
Study Group (LMSG). It is a collection of blood
and tissue (primary and metastases) samples with
detailed clinical information from patients diag-
nosed with malignant melanoma in Southern Swe-
den. Since 2013, the sample collection is prospective,
including fresh frozen tissue and blood. Our biobank
coupled high-end proteomic platform was used to study
the melanoma tumour tissues (Welinder et al. 2015,
2017; Welinder et al., 2014a, b; Gil et al. 2019; Kuras
et al. 2018; Murillo et al. 2018). We used histopatholog-
ical characterisation and a genomic data–directed prote-
omic strategy to successfully identify a protein expres-
sion pattern that was associated with improved survival
prognostics in lymph node samples from stage 3 malig-
nant melanoma patients (Betancourt et al. 2019). A
progression from locoregional to distantly spread dis-
ease was witnessed throughout the years (Fig. 1). In a
more recent work, a deeper investigation has been un-
dertaken to identify proteins in metastatic disease,
namely, those that may be responsible for further pro-
gression (Gil et al. 2019).

As a consequence of the high diversity of individuals,
it is crucial to perform large-scale analyses of clinical
samples. This enables the identification of the highest
number of proteins possible, including proteins that
have never been previously reported by mass
spectrometry.

In the current study, a novel data set of 33 proteins is
presented. These proteins were identified across 140
lymph node metastatic tumour samples from malignant
melanoma patients. All identified proteins are currently
annotated in Nextprot (Gaudet et al. 2015) as ‘missing
proteins’. According to the HUPO guidelines, 9 of the
proteins were confidently identified by mass

spectrometry. Association clusters were constructed to
pinpoint predicted functional annotations for these
proteins.

Materials and methods

This study was approved by the Regional Ethical
Committee at Lund University, Southern Sweden,
approval numbers: DNR 191/2007, 101/2013 and
2015/266, 2015/618. All patients involved in the
study provided written informed consent. The ma-
lignant melanoma lymph node metastases were
collected from patients undergoing surgical resec-
tion at Lund University Hospital, Sweden. Out of
the 140 tumours included in this study, only four
received any of the novel therapies. Nevertheless,
the majority of the patients enrolled in the study
died due to the progression of the disease. Histo-
pathological analysis of the tissues was performed
by a board-certified pathologist (Gil et al. 2019).
Protein extraction and digestion were performed
according to the protocol described by Kuras
et al. (2018), and the resultant peptides were la-
belled with TMT 11-plex reagents (Thermo Fisher
Scientific, San Jose, CA, USA) according to the
instructions provided. Labelled peptides were sep-
arated into 24 fractions by basic reversed-phase
liquid chromatography on a Phenomenex Aeris
C8 column (100 mm × 2.1 mm, 3.6-μm particles)
using an Agilent 1100 HPLC system.

LC-MS/MS analysis was performed on an UltiMate
3000 RSLCnano system coupled to a Q Exactive HF-X
mass spectrometer (Thermo Fisher Scientific, San José,
CA, USA). Data were acquired in DDA, with the ADP
set to off, selecting the top 20 precursors. Full MS scans
were acquired over m/z 350–1400 range at a resolution
of 120,000 (at m/z 200), target AGC value of 3 × 106,
maximum injection time of 50 ms, and normalised
collision energy of 34%. The tandem mass spectra were
acquired in the Orbitrap mass analyser with a resolution
of 45,000, a target ACG value of 1 × 103 and a
maximum injection time of 86 ms. An isolation
window of 0.7 m/z was used and fixed first mass
was set to110 m/z. Data were processed with Pro-
teome Discoverer v2.3 (Thermo Fisher Scientific,
San José, CA, USA) and searched against the
Homo sapiens UniProt revised database (2018-10-
01), including isoforms, with Sequest HT. Cysteine

Cell Biol Toxicol (2020) 36:261–272 263



carbamidomethylation was set as fixed modifica-
tion and methionine oxidation, protein N-terminal
acetylation, TMT6plex (+ 229.163 Da) at N-
terminal and lysine residues were set as dynamic
modifications. Peptide mass tolerance for the pre-
cursor ions and MS/MS spectra were 10 ppm and
0.02 Da, respectively.

Protein evidence (PE) was determined using the
criteria adopted from neXtProt and the Chromosome-
centric Human Protein Project (C-HPP) (Omenn
et al. 2018).

Bioinformatics

Missing protein identification

Peptide-spectrum match (PSM), peptide, and protein
identifications were filtered to less than 1% FDR. Iden-
tification and sorting of unique peptides were carried
using the neXtProt tool ‘Peptide uniqueness checker’
(https://www.nextprot.org/tools/peptide-uniqueness-
checker) for all peptide sequences from proteins
classified by neXtProt as P2-P5. PSMs mapping to

Fig. 1 (A) Life history of a melanoma. The image depicts the
evolving progression of a malignant melanoma originating from
the skin, spreading to the lymphatic system and giving rise to
transit (intracutaneous) and distant metastases (lung, liver, and
eventually brain). The histological images in chronological order:
(a) primary nodular melanoma (1×, HE), (b) lymph node metas-
tasis (1×, HE), (c) lymph node metastasis composed of epithelioid
tumour cells (20×, HE), (d) lung metastasis in fibrotic background
and presence of tumour infiltrating lymphocytes (20×, HE), (e)

liver metastasis—note the brisk mitotic activity andmorphological
change in cell shape, spindly melanoma cells (20×, HE), (f) brain
metastasis of spindle and ‘monster’ melanocytes (20×, HE). (B)
Metastatic melanoma in the lymphatic system in four patients. (a)
Small and circumscribed melanoma in a lymph node (1×, HE). (b)
Large pigmented melanoma filling the lymph node (1×, HE). (c)
Large melanoma with necrotic areas (1×, HE). (d) Melanoma
breaking the capsule of the lymph node and infiltrating the
neighbouring tissue (20×, HE)
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missing proteins were also manually inspected. All
novel peptides (peptides without MS evidence) were
aligned using BLASTp (version: 2.7.1) to three
different databases UniProt (release date: 2018),
Ensembl (release date: 2019), and RefSeq (release
date: 2019) as previously suggested (Nesvizhskii 2014
). All possible peptide variants were filtered using the
following filters: identity score higher 70, less than 2
amino acids substitutions with respect to the original
novel peptide, and theoretical mass within 10 ppm com-
pared with the precursor mass. In addition, novel unique
peptides were searched in PeptideAtlas (http://www.
peptideatlas.org) to explore previously reported
evidence in public proteomics data (Fig. 2a).

Structural and functional identification

Structural domains in the novel proteins were identified
by the conserved domain search tool (Marchler-Bauer
et al. 2017). Additionally, structural domains were pre-
dicted by the FFAS and HHpred algorithms
(Jaroszewski et al. 2011; Zimmermann et al. 2018).

The bioinformatics analysis of relational networks
between proteins that correlatedwith novel PE5 proteins
was performed by ingenuity pathway analysis (IPA,
Qiagen, Inc., Redwood City, CA, USA). The queried
data sets that were generated for the PE5 proteins were
significant as assessed by adjusted p value < 0.01 and
included proteins with an expression correlation to a
given PE5 protein across the samples in our study.
Additionally, IPA provided overrepresented functional
annotations and pathways within the identified
subnetworks.

Protein family annotation (PFAM) of the PE2 pro-
teins was detected using the DAVID bioinformatics
database (Huang et al. 2009a, b). Spearman rank corre-
lation test was performed to determine the correlation
coefficient between PE2 proteins and protein members
within the same family. The analysis was based on
protein intensities that were quantitated considering
unique peptides only. Correlations with p values <
0.05 were considered significant.

Results and discussions

Well-characterised samples from 140 patients with stage
3 malignant melanoma (at the time of tissue collection)
were investigated. A robust workflow (Fig. 2a) was

implemented that combines an automated biobank plat-
form, advanced high-throughput proteomics, and bioin-
formatics. Briefly, the tissue samples were collected
from patients and stored with all clinical data in a
quality-controlled biobank (Welinder et al. 2013). The
samples were processed with modern and reproducible
proteomic techniques. To obtain all possible information
related to the identified proteins, the data generated was
processed with a range of bioinformatics tools.

All novel peptides were mapped to Ensembl, Refseq,
and UniProt with allowance for amino acid substitutions
and gaps. The aim was to determine if variants of the
same peptide were apparent in other proteins and could
thus explain the mass spectra. More than 5000 possible
variants were returned, but none passed the criteria, i.e.,
a tryptic peptide with a theoretical mass ± 10 ppm of the
experimental mass.

All tumours are unique in morphology and underly-
ing biological processes; however, some drivers are
shared amongst melanomas. The high number of proc-
essed heterogeneous tumour tissues enabled the identi-
fication of 33 ‘missing proteins’ across the 140 samples
(Table 1). All proteins were classified according to the
PE category reported by neXtProt. Annotations were
applied according to the HUPO guidelines, namely,
‘two or more distinct, uniquely mapping, non-nested
peptide sequences per protein of length ≥ 9 amino acids’
(Omenn et al. 2017). After applying these guidelines,
the number of missing proteins was reduced to nine
(Table 1) and they can be divided into two groups
(PE2 and PE5):

1. Proteins uniquely identified in this study within the
context of metastatic cancer progression: Q9BSN7
(TMEM204), Q8N8Y5 (ZFP41), C9JJ37
(BTBD19), Q32M45 (ANO4) although previously
supported only by transcript presence (PE2)

2. Proteins where the annotation was confirmed and
explicitly linked the proteins to mechanisms of mel-
anoma metastasis: Q58FG1 (HSP90AA4P),
Q6ZTU2 (EP400P1), Q8IUI4 (Putative SNX29P2),
Q58FF7 (HSP90AB3P) , A0A0J9YWL9
(TEX13C) while previously marked as proteins of
uncerta in evidence and suspected to be
pseudogenes (PE5)

The remaining 24 proteins were identified in up to
140 melanoma metastases (Table 1). As most of the
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missing proteins are possibly low-abundance proteins
(Wei et al. 2016), these results can be considered as
further evidence to support the existence of the proteins
in the tumours.

Expression correlation is known to be an indicator of
functional association between genes or proteins (Pita-
Juárez et al. 2018). Four individual Spearman correla-
tion tests were performed to determine if there are any
possible functional associations between the four PE2
proteins and well-known proteins with similarities in
function, structure, or sequence. Using the protein in-
tensities obtained from the MS data, for each novel

protein, the correlation was assessed against proteins
that have the same PFAM structural domains.

Two of the four proteins annotated as PE2 (Q8N8Y5/
ZFP41 and C9JJ37/BTBD19) were significantly corre-
lated with proteins possessing the C2H2 zinc finger
domain (PF00096) and BTB/POZ domain (PF00651),
respectively. Each protein was individually associated
with one different protein family as shown in Fig. 2B.
The Q32945/ANO4 protein was not significantly corre-
lated with any proteins of the same family (anoctamin,
calcium-activated chloride channel, PF04547); and the
Q9BSN7/TMEM204 protein does not have close

Fig. 2 Experimental workflow and information related to the nine
‘missing proteins’ reported. (A) A total of 140 MM tissues were
analysed by LC-MS/MS. MS/MS spectra were contrasted with
available databases and with annotation levels of protein identifi-
cation (PE1-5). Missing proteins were evaluated in terms of pep-
tide length, number of peptides, structural and functional analysis,
and transcriptomic evidence comparison. (B) Protein spearman
correlation based on the expression of two of the PE2 proteins

and proteins belong to the Zing Finger, H2H2 type, and BTP/POZ
domain. The number of samples and the r value for the spearman
correlation are represented by n and r respectively. (C) Evidence-
based on The Human Atlas for the four PE2 missing proteins in
skin tissues, melanoma cell lines (SK-Mel-30), or melanoma
tissues, TPM (Transcripts per Kilobase Million). (D) Frequency
of identification across the 140 tumour samples; Y-axis represents
the number of samples where the proteins were identified

Cell Biol Toxicol (2020) 36:261–272266
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human homologues in existing protein databases. FFAS
analysis of remote sequence similarities, however,
showed that TMEM204 is significantly similar to
claudin-like transporters that have known roles in tight
junction and in cancer.

The zinc finger domain proteins have often been
related to cancer progression, including several cancer
forms, such as breast cancer, gastric cancer, and mela-
noma (Cassandri et al. 2017; Lim 2014a). To date,
however, specifically, the ZFP41 gene has never been
differentially detected in any melanoma study. As this
constitutes the first evidence at the protein level, future
studies are necessary to relate the expression of the
protein with the progression of melanoma.

Conversely, the BTB/POZ domain-containing pro-
teins are known to be involved in several types of

human cancer (Nakayama et al. 2006). The BTBD19
gene has been differentially expressed in melanoma
studies (Expression Atlas codes (https://www.ebi.ac.
uk/arrayexpress/experiment): E-MTAB-6214, E-
MTAB-7143). As this is the first time that C9JJ37
/BTBD19 has been observed on protein level, future
studies should be performed to confirm the specific role
of this protein inmelanoma. Of note, both domains (zinc
finger and BTB/POZ) are structural sections of the
proteins termed ‘ZBTB’, an emerging family of tran-
scription factors with active roles in oncogenesis (Lee
and Maeda 2012; Lim 2014b).

In addition, expression data analysis of the PE2 pro-
teins (genes: BTBD19, ANO4, ZFP41, and TMEM204)
revealed that all have been previously observed in skin
tissues, melanoma cell lines, or melanoma tissues (Fig.

Fig. 3 Functional relationship network for proteins correlated to
TEX13C. Ingenuity pathway analysis (IPA) for the proteins sig-
nificantly correlated to TEX13C expression in the melanoma
samples. Three top protein-protein functional relationship

subnetworks merged. Red, proteins with expression positively
correlated to TEX13C. Blue, proteins negatively correlated to
TEX13C. Solid lines, direct functional relationships. Dashed lines,
indirect relationships
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2C). This evidence was provided by The Human Protein
Atlas (Uhlén et al. 2016; Thul and Lindskog 2018).
Taken together, the results are highly supportive of the
presence of such proteins in stage 3 melanoma.

Seven of the nine proteins were quantitated in more
than 30 samples and all nine in more than 10 samples.
The identification frequencies of the nine PE2 and PE5
proteins during the whole analysis are shown in Fig. 2D.

Five of the nine novel proteins were annotated
previously as the ‘suspect’ PE5 proteins (Table 1).
Proteins annotated as PE5 typically have little to
no information in the literature. Therefore, sets of
proteins with expression patterns across the melanoma
samples that correlated with the PE5 proteins identified
in this study were queried. IPA provided functional
relational subnetworks enriched in the correlated pro-
teins. For TEX13C, IPA analysis of the correlated pro-
teins resulted in a relational network that centred on
hubs known for their involvement in cancer, such as
the oestrogen receptor ESR1, SMAD3 (Tang et al.
2017), TGFB1, and ERK/MAPK kinases (Fig. 3). The
proteins correlated with TEX13C are involved in cell-
to-cell signalling and interaction, cellular growth and
proliferation, and RNA post-transcriptional modifica-
tion. For the proteins that significantly correlated with
TEX13C expression, IPA generated the top three
protein-protein functional relational subnetworks.
TEX13C (LOC100129520) is a member of the TEX13
family that is comprised of two other members,
TEX13A and TEX13B. The latter two proteins have
been characterised to some extent. TEX13A is an
RNA-binding protein (Nguyen et al. 2011) and the
mouse homologue is a male germ cell–specific nuclear
protein that may be involved in transcriptional repres-
sion (Kwon et al. 2016). This protein possesses an
uncharacterised structural domain termed TEX13 and
a zinc finger domain zf-RanBP (PFAM:PF00641).

Two putative HSP90 heat shock proteins,
HSP90AA4P and HSP90AB3P, are close homologues
of the HSP90 chaperones with well-known roles in
cancer and well-established as cancer drug targets
(Mbofung et al. 2017). In this study, we could establish
protein-protein correlations, where 527 and 242 proteins
were found to be significantly correlated with
HSP90AB3P and HSP90AA4P, respectively. IPA anal-
ysis of these protein data sets yielded RNA post-
transcriptional modification as the top, overrepresented
functional annotation. Other overrepresented functional
annotations included molecular transport and RNA

trafficking for HSP90AB3P, and protein synthesis and
cell morphology for HSP90AA4P.

The EP400P1 protein is a homologue of the E1A-
binding chromatin remodeller EP400, albeit containing
only the EP400_N domain with unknown function
(Elsesser et al. 2019) and lacking a catalytic DEAD
nuclease domain. Such an arrangement may indicate a
regulatory function that is related to the longer homo-
logue, EP400. A large number of proteins correlated
with the expression of EP400P1 and the top functional
annotations of the group were a cellular compromise,
molecular transport, and cellular assembly and
organisation.

The SNX29P2 protein is a homologue of sorting
nexins involved in endosomal retromer complex func-
tion (Gallon and Cullen 2015), although the protein
lacks important functional domains (the RUN domain
that is probably involved in Ras-like GTPase signalling
pathways and the phosphatidylinositol-3-phosphate-
binding PX_RUN domain). As such, SNX29P2 can be
hypothesised as a modulator of the full-length homo-
logue, sorting nexin-29. Avery large set of proteins was
observed to correlate with the expression of SNX29P2
and IPA revealed that cellular development, cellular
growth and proliferation, and cell death and survival
were the most common annotations amongst these pro-
teins. Overall, the sets of proteins that had expression
levels in the melanoma samples that correlated with the
five novel PE5 proteins are indicative of cancer-related
functions.

In conclusion, new protein evidence for nine ‘miss-
ing proteins’ is reported. These were expressed in lymph
node metastases of malignant melanoma. The proteins
were clearly identified across a large-scale analysis of
clinical samples from melanoma patients. Furthermore,
associations with cancer-related functions were obtained
and discussed for all the reported proteins.
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