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A B S T R A C T

Objectives: To show how clinical trial data can be extrapolated using historical trial data–based a priori distributions.

Methods: Extrapolations based on 30-month pivotal multiple myeloma trial datawere comparedwith 75-month data from the
same trial. The 30-month data represent a typical decision-making scenario where early results from a clinical trial are
extrapolated. Mature historical trial data with the same comparator as in the pivotal trial were incorporated in 2 stages. First,
the parametric distribution selection was based on the historical trial data. Second, the shape parameter estimate of the
historical trial was used to define an informative a priori distribution for the shape of the 30-month pivotal trial data. The
method was compared with standard approaches, fitting parametric distributions to the 30-month data with noninformative
prior. The predicted survival of each method was compared with the observed survival (DAUC) in the 75-month trial data.

Results: The Weibull had the best fit to the historical trial and the log-normal to the 30-month pivotal trial data. The DAUC of
the Weibull with informative priors was considerably smaller compared with the standard Weibull. Also, the predicted
median survival based on the Weibull with informative priors was more accurate (melphalan and prednisone [MP]
40 months, and bortezomib [V] combined with MP [VMP] 62 months) than based on the standard Weibull (MP
45 months and VMP 72 months) when compared with the observed median (MP 41.3 months and VMP 56.4 months).

Conclusions: Extrapolation of clinical trial data is improved by using historical trial data–based informative a priori
distributions.

Keywords: Bayesian statistics, multiple myeloma, oncology, overall survival, survival analysis
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Introduction the external data and applying the relative efficacy from the trial
Survival extrapolations beyond the clinical trial overall survival
(OS) data are often needed for cost-effectiveness analysis
submitted to health technology assessment (HTA) agents. The
extrapolations are generally done based on standard parametric
distributions. Standard parametric distributions might result in
clinically implausible survival predictions and to a considerable
uncertainty around the survival estimations hampering the HTA
decision making.1 As such, better utilization of available external
information may lead to more accurate survival estimates.

According to the HTA guidelines, external data can be used
either to assess the plausibility of extrapolations or to inform
long-term survival estimates.1 These data can be derived from
general population survival, disease registries, historical clinical
trials, or clinical expert opinion.2 Few methodological studies
incorporated external data in mean survival estimations.3-6 This
was usually done by either replacing the control arm of the trial by
ss correspondence to: Fanni Soikkeli, MSc, Hofplein 20, 3032 AC Rotterdam
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to the external data or by incorporating the external data in the
parametric fit in either frequentist or Bayesian way.

The current study presents a Bayesian method using historical
trial data. In the method, mature historical trial data guide the
parametric curve selection, and a priori distributions are used to
inform the shape parameter of the parametric distributions fitted
on the immature pivotal trial data. The OS data from the VISTA
study in multiple myeloma (MM) is used by applying the
methodology to the 30-month data-cut and validating the
extrapolations with the 75-month follow-up data.

Methods

Data Sources and Extraction

The VISTA clinical trial7,8 is a randomized controlled trial (RCT)
comparing bortezomib (V) combined with melphalan and
, The Netherlands. Email: fanni.soikkeli@ingress-health.com
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Table 1. Comparison of baseline characteristics of the MP
patients in the VISTA and historical trials.

VISTA MP arm,
n = 344

Historical trial
MP arm, n = 234

Age, years
Median 71.2 71
Range 57-90 41.4-90.6

Sex
Male, % 51 43

Type of myeloma, %
IgG 64 62
IgA 24 28
IgD 1 1
IgM 1 0
Light chain 8 9
Biclonal 2 0
.1 class 0 3

MP indicates melphalan and prednisone; Ig, immunoglobulin; VISTA, Velcade as
Initial Standard Therapy in Multiple Myeloma.
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prednisone (MP) versus MP alone for previously untreated
transplant ineligible patients with MM. The OS data from the first
data-cut of the VISTA trial (follow-up data up to 30 months)7 were
used to create a typical decision-making scenario in which early
results from a clinical trial are extrapolated. For validation of the
presented methodology, the 75-month data of the VISTA trial
were used.8 To inform extrapolations from the 30-month VISTA
data, we used the study of Shustik et al,9 which was an RCT of MP
versus melphalan with dexamethasone (M-Dex) with 8 years of
follow-up. This trial included patients with similar baseline
characteristics compared with those contained in the VISTA trial.
Table 1 compares the key patients’ characteristics in the MP arms
of the VISTA and historical clinical trial.9 The similarity of the
patient population and clinical trial design of historical and VISTA
Figure 1. Overall survival (OS) trial data used for the analyses.
trials was seen sufficient that parameter estimates based on the
historical trial can be used for the creation of informative a priori
distributions for the parameters for the VISTA trial.

Individual patient-level data (IPD) were not available for the
applied studies. Therefore, the OS Kaplan-Meier (KM) curves
were reconstructed based on the published data. The reported
KM curves were extracted by digitizing the data with Engauge
Digitizer (version 9.2) software. The number of patients at risk
at each time interval was retrieved and used together with the
extracted KM data to construct IPD. The construction of the
IPD was done with a published and validated algorithm in R.10

The reconstructed KM curves were obtained from the IPD
(Fig. 1).

Standard Methods (Bayesian Method With
Noninformative Priors)

The selection of the parametric distribution for extrapolations
was assessed with the Akaike information criterion (AIC) and
Bayesian information criterion (BIC).11 From the standard
parametric distributions, the Weibull, log-normal, log-logistic,
exponential, and generalized gammawere assessed. Also, Weibull,
log-normal, and log-logistic spline models with one knot placed at
median uncensored survival were tested. The estimated AIC and
BIC scores are presented in the Appendix (see Appendix Table 2 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.201
9.03.017).

All the analyses were carried out by Bayesian Markov Chain
Monte Carlo simulation using BUGS software.12 Three chains were
run with 150 000 iterations. The chain convergence was
determined by the plot of quantiles. Two approaches to select the
parametric distribution were tested. Also, in these approaches, the
historical trial data were not used to influence the estimation of
the shape of the 30-month VISTA data. In the first approach, the
selection of the parametric distribution to extrapolate the
30-month VISTA data was based on the historical trial data. In the
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Figure 2. Observed and predicted overall survival (OS) when (A) Weibull NI, (B) Weibull I, (C) Weibull SI, (D) log-normal NI, (E) log-normal
I, and (F) log-normal SI was applied.

I indicates informative prior; NI, noninformative prior; SI, strong prior.
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second approach, the selection of the parametric distribution
was based on the 30-month VISTA trial data. Because the
parameterization of some parametric distributions differs in BUGS
and R,6 the Bayesian method with noninformative priors was
used. In general, Bayesian approaches with noninformative priors
provide similar results as standard frequentist approaches.

Bayesian Method With Informative Priors

In this study, the Bayesian method with the historical trial data
is used in 2 stages:
Table 2. Overview of results of the Bayesian methods with the corr

Weibull distribution DAUC
% difference in DAUC
Median OS
Mean OS (95% CrI)
Incremental OS (95% CrI)

log-normal distribution DAUC
% difference in DAUC
Median OS
Mean OS (95% CrI)
Incremental OS (95% CrI)

AUC indicates area under the curve; CrI, credible interval; OS, overall survival.
1 selection of the best fitting parametric distribution for survival
extrapolations from the VISTA 30-month data and

2 creation of a priori distribution for the shape parameter of the
30-month VISTA data

The Weibull distribution, W(r, li), is taken here for illustration
and fitted to the historical data to estimate priors for the shape
parameter. The survival function of the Weibull takes the
following form:

SðtiÞ ¼ eð2l1t
r1
i Þ
esponding uncertainty.

75-month VISTA data

The Bayesian method with noninformative
prior (NI)

MP VMP

41 56
55.05 (48.30-62.82) 75.05 (66.01-87.83)

20.00 (9.12-34.23)

39 59
75.57 (66.93-84.87) 93.51 (83.65-103.89)

17.95 (5.09-29.88)
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where l1 ¼ eb0 is the scale parameter of the historical trial and r1

is the shape parameter of the historical trial, t denotes time, and i
refers to an individual patient in the historical trial. For a priori
distributions, we used gamma (a, b) distribution and normal (m, s)
distribution, where m stands for the mean and s for precision
(s = 1/variance). To fit the historical trial data, a noninformative
gamma distribution (1.0E23, 1.0E23) was used for the shape r1 and
a noninformative normal distribution (0, 1.0E29) for the scale l1.
The mean (r1) and the standard deviation (SD) of the posterior
distribution of the shape r1 were converted to parameters for a
gamma distribution defined by (a, b) with b ¼ r1

SD2 and a = r1 b. This
gamma distribution was used as a priori distribution for the shape
of the VISTA trial. For the scale of the MP of 30-month VISTA data,
a noninformative normal (m, s) distributionwas applied (0, 1.0E29).
This distribution is also used for the relative treatment effect of
VMP versus MP (being the reference).

The posterior distribution of the parameters for all the tested
methods was implemented into a survival partition framework. OS
was extrapolated over time using a 30-year time horizon. The un-
certainty around the point estimate of the mean was derived by
taking the last 1000 iterationsof theposteriormeanof the shapeand
scale parameters. In the partitioned survival model, the survival
extrapolations were restricted with the general population survival
becausepatientswithMMareexpected tohaveahigher riskofdeath
owing to their disease comparedwith the general population. Itwas
assumed that in case the hazards in the estimated survival become
lower than thehazards in thematchedage-sexU.K. population,13 the
hazards of the U.K. general populationwere to be taken.

The performance of each method was assessed by comparing
the extrapolated survival against the observed survival in the
75-month VISTA data-cut. This was both visually assessed and
evaluated by examining the difference in the area between the
predicted curve and the 75-month–based KM data (DAUC). At
monthly intervals, the absolute difference between the predicted
and observed survival curve was estimated and summed up to
75 months. The best performing method had the lowest DAUC up
to 75-month follow-up.

Several summary statistics were derived from the tested
methods, including median OS and mean OS, with the
corresponding credible intervals for both MP and VMP arms in the
VISTA trial. Additionally, the incremental difference in the mean
OS between the VMP and MP armwas calculated. These outcomes
Table 2. Continued

30-month VISTA data

The Bayesian method with
noninformative prior (NI)

The Bayesian meth
informative prior (I

MP VMP MP

2.25 3.26 0.87
262%

45 72 40
65.89 (48.91-91.53) 98.89 (70.03-127.23) 55.69 (44.27-71.33)

33.00 (7.93-53.47) 27.44 (5.

7.86 5.27 3.58
254%

72 108 47
110.9 (94.14-125.46) 127.35 (109.24-142.02) 87.24 (74.07-100.67)

16.92 (0.04-32.97) 16.07 (0
were compared with the predicted mean and incremental mean
OS of the 75-month VISTA trial data.

The parametric distributions were fitted combinedly to the MP
and VMP data, implying that the MP data were used as a reference
curve and VMP was determined by a treatment coefficient. The
combined fits can be used in case the proportional hazards (PH)
assumption is met.2 This was assessed based on log-cumulative
hazard plots and was confirmed with the Schoenfeld residuals
test (see Appendix Table 1, Fig. 1, and Fig. 2 in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.03.017). The
log-cumulative hazards plot showed that the curves cross at the
time point of 5 months and then become parallel, which might
indicate that after 5 months the assumption holds. This was
confirmed by the Schoenfeld test, which was not significant.

Scenario Analysis

In the Bayesian analyses, priors are considered subjective. As
such, Bayesian guidelines recommend14 that sensitivity analysis
on the selected prior distribution should be conducted. As a
scenario analysis, the shape of the historical trial was taken as true
by reducing the standard deviation of the mean shape from the
historical trial to the point that the posterior shape for the VISTA
trial was identical to the shape in the historical trial. This implies
that a broad range of possible priors was covered; the standard
approach relies on a noninformative prior, whereas the scenario
with strong priors takes the historical trial shape as true. We
believe that all realistic priors would be in between the
noninformative prior and the strong prior.

Although the assumption of the PH was met based on a visual
assessment and Schoenfeld test, the KM curves in the VISTA trial
cross. When parametric distributions are fitted individually to
each treatment arm, there is no assumption on the proportionality
of the hazards between the treatment arms. Thus, the parametric
distributions were fitted independently to each treatment arm. In
this case, the shape of the historical trial was used as an
informative prior for the shape parameter of the VMP fit and
separately to the shape parameter of the MP fit.

Results

The first step of the 2-stage approach was the selection of the
parametric distribution to extrapolate 30-month VISTA data. The
od with
)

Scenario: The Bayesian method with
strong informative prior (SI)

VMP MP VMP

1.69 1.94 1.37
248% 214% 258%
62 38 57

83.13 (63.28-108.34) 50.32 (41.70-59.37) 74.25 (60.19-92.45)
82-50.23) 23.93 (7.60-43.51)

2.78 2.08 3.81
247% 274% 228%
65 37 48

103.31 (88.32-119.12) 67.20 (62.9-79.8) 80.69 (78.2-98.6)
.2-32.61) 13.49 (3.9-29.9)

https://doi.org/10.1016/j.jval.2019.03.017
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Weibull distribution had the best statistical fit to the historical
trial data. The log-normal distribution had the best statistical fit to
the 30-month VISTA data (see Appendix Table 2 in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2019.03.017).

Figure 2A,D shows the observed 75-month VISTA data and
the predicted survival based on the Weibull with non-
informative prior (Weibull NI) and log-normal with non-
informative prior (log-normal NI) fitted to the 30-month VISTA
data. The marked areas in orange (MP) and green (VMP)
represent the AUC between the predicted and observed survival.
Visually, the Weibull NI predicts 75-month survival better than
the log-normal NI.

The observed median OS in the VISTA trial6 was 41.3 months in
the MP group and 56.4 months in the VMP group. The median OS
based on the Weibull NI was 45 for MP (vs 41.3 months observed)
and 72 months for VMP (vs observed 56.4 months) (Table 2). The
log-normal NI–based median OS was 72 (vs observed 41.3) and
108 (vs observed 56.4) months for MP and VMP, respectively
(Table 2). The DAUC for the Weibull NI (2.25 and 3.26 for MP and
VMP, respectively) was lower than the DAUC for the log-normal NI
(7.86 and 5.27 for MP and VMP groups, respectively). Therefore,
the choice for the Weibull based on the historical trial
outperforms the choice for the log-normal based on the VISTA
30-month data.

As the second step, an informative priori distribution for
the shape parameter of the 30-month VISTA data was created.
Figure 2B,E shows the observed 75-month VISTA data and the
predicted survival based on the informative prior distributions.
Visually, the Weibull with informative prior (Weibull I) and
the log-normal with informative prior (log-normal I) predicted
the 75-month survival better than the Weibull NI and
log-normal NI.

Of the tested methods, Weibull I predicted the observed
median OS in the VISTA trial6 most accurately (40 months Weibull
I vs 41.3 months observed for the MP group, and 62 months
Weibull I vs 56.4 months for the VMP group). The Weibull I also
showed the lowest DAUC of 0.87 for MP group and 1.69 for VMP
group when compared with the corresponding results of the
Weibull NI and log-normal I (Table 2).

In the cost-effectiveness analysis the accurate estimation of
incremental survival between the VMP and MP groups over a
lifetime time horizon is a crucial estimate, as is the uncertainty
around the estimated incremental survival. The estimated mean
OS and incremental OS of different methods are presented in
Table 2. The estimated mean OS with the Weibull NI was
65.89 months (95% credible interval [95% CrI]: 48.91-91.53) for MP
and 98.89 months (95% CrI: 70.03-127.23) for VMP, resulting in the
incremental survival of 33.00 months (95% CrI: 7.93-53.47). The
corresponding results with the Weibull I was 55.69 months (95%
CrI: 44.27-71.33) for MP and 83.13 months (95% CrI: 63.28-108.34)
for VMP months, resulting in the incremental survival of 27.44
months (95% CrI: 5.82-50.23). The figures presenting the
extrapolations over the lifetime from the tested methods are
provided in the Appendix (see Appendix Figs. 3 and 4 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.201
9.03.017).

The scenario analyses with strong priors show that the Weibull
with strong prior (Weibull SI) improved the predicted survival
compared with the Weibull NI by having a DAUC of 1.94 for MP
group and 1.37 for VMP group (Table 2). The improvement in the
predicted survival can also be seen in Figure 2C. Similar results
were found with the log-normal with strong prior (log-normal SI;
Table 2 and Fig. 2F). The results with individually fitted
distributions were similar to the combined fits to the 30-month
VISTA data. The results of that scenario are provided in the
Appendix (see Appendix Table 5 in Supplemental Materials found
at https://doi.org/10.1016/j.jval.2019.03.017).
Discussion

In this study, we presented a Bayesian method in which
historical trial data were used to inform survival extrapolations.
The historical trial was applied in 2 stages, by first guiding the
selection of the parametric distribution and then by creating a
priori distribution to inform the shape parameter of the pivotal
clinical trial. The method was illustrated with an application in the
first-line treatments to MM. First, the 75-month VISTA data were
more accurately predicted by the Weibull NI, which fitted best the
historical trial data, compared with the log-normal NI, which
fitted best the 30-month VISTA data. Second, the use of
informative a priori distribution to the shape parameter of the
30-month VISTA trial improved the predictions compared with
the noninformative approach. The conducted scenario analyses
supported these findings.

In this application, the patient characteristics in the VISTA trial
and historical trial were similar. In case the patient characteristics
between the trials differ, population-adjusted indirect compari-
son15 methods can be used to correct for these differences. In
those methods, the patient characteristics and corresponding
survival may be adjusted to reflect the historical trial data.
Nevertheless, in case the patient-level data of both the pivotal and
historical trial are available, the historical trial data can be
included as a third treatment group in the parametric curve
fitting.5 This approach assumes that the shape of the hazard is the
same in both clinical trials, whereas in this study the historical
data are guiding the shape. Another alternative is the approach
proposed by Bagust and Beale,16 which does not rely on external
data but assumes that an exponential distribution can be applied
to the remaining data after left truncation of the data at the point
when the constant hazards are found.

There are some limitations in the conducted analyses. First, such
Bayesian method is the most appropriate when proportionality of
the hazards holds. Generally, when this assumption does not hold,
the parametric distributions are fitted individually to each treat-
ment group rather than using a combined fit. This can be done with
the presented Bayesian method, but the stronger the prior on the
shape parameter, the more likely that both treatment groups will
have a similar posterior shape parameter. This equals the combined
fit method where the shape parameter is assumed to be a shared
parameter, and the scale parameter explains the differences be-
tween the treatment groups. A second limitation of the study relates
to assessing the performance based on the DAUC because it does not
consider the impact of decreasing patient numbers at risk over time.

In the future, the proposed Bayesian method could also be
applied by using more flexible models such as spline models in
case they provide a better fit to the data.17 Also, external data
from registries or real-world evidence could be used. In
addition, the approach can be tested within a parametric NMA
(network meta-analysis) framework.18

In conclusion, the presented Bayesian approach with infor-
mative a priori distributions for the shape parameter improved
the survival extrapolations. Given that there is an external source
of adequately similar historical evidence, this approach may be
valuable for HTAs that deal with immature data.
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