
 

 

 University of Groningen

Spontaneously broken spacetime symmetries and the role of inessential Goldstones
Klein, Remko; Roest, Diederik; Stefanyszyn, David

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP10(2017)051

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Klein, R., Roest, D., & Stefanyszyn, D. (2017). Spontaneously broken spacetime symmetries and the role
of inessential Goldstones. Journal of High Energy Physics, 2017(10), [051].
https://doi.org/10.1007/JHEP10(2017)051

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1007/JHEP10(2017)051
https://research.rug.nl/en/publications/6c6eb862-9588-449e-9303-0b57d14090fc
https://doi.org/10.1007/JHEP10(2017)051


J
H
E
P
1
0
(
2
0
1
7
)
0
5
1

Published for SISSA by Springer

Received: September 26, 2017

Accepted: September 29, 2017

Published: October 9, 2017

Spontaneously broken spacetime symmetries and the

role of inessential Goldstones

Remko Klein, Diederik Roest and David Stefanyszyn

Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: remko.klein@rug.nl, d.roest@rug.nl, d.stefanyszyn@rug.nl

Abstract: In contrast to internal symmetries, there is no general proof that the coset

construction for spontaneously broken spacetime symmetries leads to universal dynamics.

One key difference lies in the role of Goldstone bosons, which for spacetime symmetries

includes a subset which are inessential for the non-linear realisation and hence can be

eliminated. In this paper we address two important issues that arise when eliminating

inessential Goldstones.

The first concerns the elimination itself, which is often performed by imposing so-

called inverse Higgs constraints. Contrary to claims in the literature, there are a series

of conditions on the structure constants which must be satisfied to employ the inverse

Higgs phenomenon, and we discuss which parametrisation of the coset element is the most

effective in this regard. We also consider generalisations of the standard inverse Higgs

constraints, which can include integrating out inessential Goldstones at low energies, and

prove that under certain assumptions these give rise to identical effective field theories for

the essential Goldstones.

Secondly, we consider mappings between non-linear realisations that differ both in the

coset element and the algebra basis. While these can always be related to each other

by a point transformation, remarkably, the inverse Higgs constraints are not necessarily

mapped onto each other under this transformation. We discuss the physical implications

of this non-mapping, with a particular emphasis on the coset space corresponding to the

spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.
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1 Introduction

The spontaneous breaking of symmetries is of critical importance in many areas of physics.

For an internal symmetry groupG which is spontaneously broken to a subgroupH, the tools

to construct the non-linear realisation of the group G were developed by Callan, Coleman,

Wess and Zumino (CCWZ) in the late 1960’s [1, 2]. In this coset construction there is

a single Goldstone boson for each broken generator and the dynamics of the Goldstones

is dictated by the coset space G/H. Moreover, for compact, semi-simple groups, it has

been proven that all non-linear realisations of such a spontaneously broken symmetry are

related by invertible field redefinitions, and as a consequence can be derived from the coset

construction. This guarantees the universality of all corresponding observables.

The generalisation of the coset construction of CCWZ to spontaneously broken space-

time symmetries came a few years later [3, 4] and has been used extensively in the context

of constructing and understanding effective field theories used for model building in cos-

mology and gravity. Two notable examples are the scalar sector of the d-dimensional DBI

Lagrangian which non-linearly realises the (d+1)-dimensional Poincaré group, see e.g. [5],

and the Volkov-Akulov Lagrangian which non-linearly realises supersymmetry with a single

fermion [6]. Both of these theories, and their higher order corrections, can be derived using
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the coset construction. Complimentary methods include the study of hypersurfaces fluctu-

ating in transverse directions, e.g. [7–10], and the study of soft limits of general scattering

amplitudes, e.g. [11–15]. See also [16] for a discussion on spontaneous breaking of spacetime

symmetries in condensed matter systems, [17, 18] for a discussion on the coset construction

for superfluids etc and [19–22] for more examples related to cosmology and gravity.

However, the coset construction for spacetime symmetries involves added subtleties

compared to the case of internal symmetries. Chief amongst these is a distinction be-

tween the Goldstone modes corresponding to all broken generators: not all Goldstones are

essential in order to non-linearly realise the broken symmetry group. Instead, consistent

non-linear realisations exist where the number of Goldstone fields is less than the number of

broken generators, with only the essential Goldstones enjoying the special symmetry pro-

tection of the non-linear realisation. In order to dispense of the inessential modes one can

impose inverse Higgs constraints [4].1 A very clear example of this is the conformal group

in four dimensions spontaneously broken to its four dimensional Poincaré subgroup [26].

There are five broken generators yet a consistent non-linear realisation exists with a single

Goldstone field, the dilaton, while the vector of the broken special conformal transforma-

tions is redundant.

The process of elimination of the inessential Goldstone bosons complicates the relation

between different non-linear realisations. In particular, it is not known whether different

coset constructions that non-linearly realise the same symmetry are equivalent. In order

to make progress in this direction, this paper deals with two crucial aspects pertaining to

the elimination of the inessential Goldstone modes.

The first part is focused on the intricate link between the existence of inverse Higgs

constraints and the parametrisation of the coset element. After reviewing the most impor-

tant aspects of the coset construction for both internal and spacetime symmetry breaking

in section 2, in section 3 we present the conditions on the structure constants which must

be satisfied in order to employ the inverse Higgs phenomenon. Here we focus on standard

inverse Higgs constraints i.e. where the inessential Goldstones are eliminated algebraically

by setting a covariant derivative to zero. Contrary to what is often stated in the literature,

there are a series of conditions which need to be met rather than a single one. Notably,

the standard parametrisation considered in the original work [3, 4] is not the optimum

one in this regard, and already fails for the very simple case of spontaneous breaking of

the d-dimensional Poincaré group down to its (d − 1)-dimensional subgroup. Instead, the

parametrisation which requires the least stringent conditions for the existence of an in-

verse Higgs constraint involves a further splitting of the broken generators compared to

the standard parametrisation.

In section 3 we also discuss the possibility of imposing “generalised” inverse Higgs

constraints. These constraints again allow one to eliminate inessential Goldstone fields but

they do not follow from the usual inverse Higgs phenomenon as outlined in [4]. An example

would be an equation of motion either where an inessential Goldstone is an auxilliary field

and can be eliminated algebraically in comparison to the standard inverse Higgs constraint

1For discussions on the physical origin of inverse Higgs constraints we refer the reader to [23–25].
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or where an inessential Goldstone is integrated out at low energies. The latter is possible

since inessential Goldstones can acquire a mass consistent with all the symmetries. In some

cases equations of motion are equivalent to the standard inverse Higgs constraints [27] but

this is not always the case. In any case we show that as long as the series of inverse Higgs

conditions are met, the effective field theory constructed from only the essential Goldstone

fields is the same, up to variations in coupling constants which are not fixed by symmetry,

regardless of how one chooses to eliminate the inessential Goldstones. This equivalence has

been mentioned in the literature, e.g. [28, 29], but to our knowledge this is the first time

it has been shown to be true.

The second part of this paper is focused on how differerent non-linear realisations of

a broken symmetry group are related to each other. We investigate the relations between

coset constructions employing different parametrisations of the coset element as well as

algebra bases in section 4. Prior to imposing inverse Higgs constraints, the relationship be-

tween the different non-linear realisations is straightforward and involves transformations

between the coset coordinates, which for spontaneously broken spacetime symmetries in-

cludes the spacetime coordinates and the fields. These are known as point transformations,

and are the natural generalisation of field redefinitions in the internal case. However, the

construction of possible transformations becomes much more complicated after we impose

inverse Higgs constraints, since the constraints are not necessarily mapped onto each other

under point transformations. If they are, the point transformation on the coset coordinates

induces a transformation involving the spacetime coordinates, the essential Goldstone fields

and their derivatives; these are so-called contact transformations or extended contact trans-

formations. If the inverse Higgs constraints are not mapped onto each other, the situation

is less clear; there can still be extended contact transformations relating the two coset

constructions, but they do not follow from the point transformation.

Allowing for changes in the algebra basis may seem like a unnecessary complication,

but different bases can have different physical motivation. For example, consider the

spontaneous breaking of the d-dimensional conformal group SO(d, 2) by a n-dimensional

Minkowski probe brane embedded in (d+1)-dimensional Anti-De Sitter (AdS) space. There

are two natural bases for the conformal algebra: the standard conformal basis and the AdS

basis. The AdS basis is of interest since the resulting non-linear realisation matches the

one derived from the usual probe brane construction using the induced metric and its

derivatives. To relate this non-linear realisation to the one derived using the coset con-

struction and the standard conformal basis requires exactly the type of transformations we

are considering. Interestingly, for d = n (codimension one) both inverse Higgs constraints

are mapped onto each other, thus establishing a contact transformation relating the two

non-linear realisations [31, 32]. This transformation reduces to that of the galileon dual-

ity [33, 34] after taking the appropriate contractions.2 However, as we will discuss in detail

in section 5, in higher codimensions with d > n, the inverse Higgs constraints of both bases

are not mapped onto each other. As a consequence, it is unclear if the equivalence is main-

2The galileon duality transformation can also be extracted more straightforwardly by considering the

coset construction for spontaneous breaking of the Galileon group [34, 35].
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tained. In this sense, different algebra bases are a useful way of examining the universality

of non-linear realisations of spacetime symmetries.

We end with a conclusion and outlook with particular attention paid to the question

of universality for spontaneously broken spacetime symmetries.

Notation. Unless otherwise stated, throughout we denote an arbitrary generator of the

group G using indices I, J, . . ., a broken generator using A,B, . . ., an unbroken generator

using i, j, . . . and the spacetime coordinates using µ, ν, . . .. When we discuss the inverse

Higgs phenomenon we will assume that A is reducible under the subgroup H and hence

splits into multiple irreps, for which we will use a, b, . . . for essential and m,n, . . . for

inessential Goldstones.

2 Coset construction

In this section we review the coset construction as a tool for constructing non-linear real-

isations. We begin with the case where the non-linearly realised symmetry is an internal

one i.e. the generators commute with those of the Poincaré group, then we move onto

spontaneously broken spacetime symmetries. Readers familiar with the coset construction

can jump to section 3, where a discussion of the inverse Higgs phenomenon with various

clarifications which to our knowledge are absent from the literature can be found.

2.1 Internal symmetries

Consider a group G with subgroup H, where the broken generators of G/H are denoted

by TA and the unbroken ones of H by Ti. For the coset construction to be applicable, one

must assume that the generators TA form a (reducible) representation of the subgroup H.

In other words we have the following commutators

[Ti, Tj ] = fkijTk, [TA, Ti] = fBAiTB, [TA, TB] = f IABTI . (2.1)

The aim of the game is to derive the building blocks used to construct Lagrangians which

when made manifestly H-invariant are automatically G-invariant. We note that the coset

construction is not restrictive inasmuch as we can take the extreme cases where H = 1

or H = G.

To construct the non-linear realisation consider an element g from the group G. Locally

one can parametrise this group element in terms of the generators of G as

g = eφ
ATAeφ

iTi , (2.2)

which is of course not a unique choice. At the heart of the coset construction is the coset

space G/H which is the set of equivalence classes of G under right multiplication of H and

one can parametrise an element of the coset as

γ(φ) = eφ
ATA , (2.3)
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which is again not a unique choice but merely a standard one, see section 4. From this

coset element we can define a non-linear realisation of the group G on the fields φA, the

coset coordinates corresponding to the generators TA, by considering the multiplication

gγ(φ)h−1(φ, g) ≡ γ(φ′) = eφ
′ATA , (2.4)

where we used a H transformation from the right to put the coset representative in the

specified form since in general multiplication by any element of G does not preserve this

choice. Now this action on the coset representative defines a non-linear realisation of G on

the coordinates φA as

g · φA ≡ φ′A(φ, g). (2.5)

Next consider some other fields ψ which transform under some linear representation of H

but not under the full group G. Using the coset coordinates, the linear action of H can be

extended to a non-linear realisation of G via

ψ′α = Dα
β (h)ψ

β , (2.6)

where the definition of h(φ, g) follows from (2.4). Together, the transformation laws (2.5)

and (2.6) define a consistent non-linear realisation on φA and ψα. As we noted in the

introduction, the power of this formalism is that any non-linear realisation of a com-

pact, semi-simple internal symmetry can be put into this form by doing a suitable, locally

invertible, field redefinition. Such universal statements are not proven for non-compact

and/or non-semi-simple groups; however, in this case at least all possible coset construc-

tions (with e.g. different coset elements (2.3)) are related to each other by field redefinitions,

see section 4.

One can now construct Lagrangians which are invariant under these transformations.

The trick here is to construct objects which transform covariantly, similar to e.g. ψα.

These objects can be extracted from the Maurer-Cartan form γ−1dγ which is part of the

Lie algebra of G and can therefore be decomposed with respect to the generators as

γ−1dγ = ωATA + ωiTi = ((ωA)µTA + (ωi)µTi)dx
µ , (2.7)

where the Maurer-Cartan components ωA, ωi are functions of the coset coordinates. Given

the transformation of γ under the action of G we have

g · (γ−1dγ) = h(γ−1dγ − h−1dh)h−1 , (2.8)

or in terms of the components

g · (ωA)µ = D(h)AB(ω
B)µ , g · (ωi)µ = D(h)ij(ω

j)µ −D(h)ij(h
−1∂µh)

j , (2.9)

where we used thatH is a subgroup and that the broken generators TA form representations

under H.

From these transformations we see that the components of the Maurer-Cartan form

corresponding to the broken generators transform covariantly as desired. The components

– 5 –



J
H
E
P
1
0
(
2
0
1
7
)
0
5
1

corresponding to the unbroken generators do not transform covariantly; instead, they pro-

vide the connection terms that one needs to build covariant derivatives for the fields ψα

and higher order derivatives for the Goldstones. To see this first note that the ordinary

derivative does not transform covariantly since

g · ∂µψα = ∂µ(D(h)αβψ
β) = D(h)αβ∂µψ

β + ∂µ(D(h)αβ)ψ
β ,

= D(h)αβ(∂µψ
β + (D(h)−1∂µD(h))βγψ

γ) , (2.10)

but this can be compensated for by introducing the following covariant derivative

∇µψ
α = ∂µψ

α + (ωi)µ(Ti)
α
βψ

β , g · ∇µψ
α = D(h)αβ(∇µψ

β). (2.11)

We now have a set of covariantly transforming objects, including ψα, ∇µ and (ωA)µ. Any

Lagrangian built from these that is invariant under the linearly realised H will be invariant

under the non-linearly realised G.

In addition to invariant Lagrangians one can also consider Lagrangians that shift by a

total derivative. In this case the d-form Lddx shifts by an exact d-form. As a consequence

its exterior derivative is an invariant (d+1)-form. Thus by constructing all invariant exact

(d + 1)-forms, α = dβ, using the covariant building blocks of the coset construction, one

can find all d-forms β which are invariant either exactly or up to a total derivative. These

β’s can be used to construct Lagrangians and those that shift by a total derivative are

Wess-Zumino terms [36, 37].

2.2 Spacetime symmetries

Now we consider the case where G and H are no longer purely internal symmetries, but

also contain spacetime symmetries. We assume that the subgroup H contains the Lorentz

generators. In addition to the commutators considered above (2.1), we assume that the

translations Pµ form a representation of H. Therefore the commutators are

[Ti, Tj ] = fkijTk, [TA, Ti] = fBAiTB, [TA, TB] = f IABTI ,

[Pµ, Ti] = fνµiPν , [Pµ, TA] = f IµATI . (2.12)

A key difference here compared to internal symmetries is that the generators of translations

should be included in the coset element, with their coefficient being the spacetime coor-

dinates, since translations act non-linearly on the spacetime coordinates: xµ → xµ + ǫµ.

Therefore spacetime coordinates should be interpreted as the Goldstone modes for

translations.

Again we can parametrise a group element of G in several ways but for now let us

choose the following standard parametrisation

g = ex
µPµeφ

ATAeφ
iTi , (2.13)

where the Ti contain unbroken internal as well as spacetime symmetries, and the TA are

the broken internal and spacetime symmetries. Again we consider the coset G/H whose

standard parametrisation is [3, 4]

γ(x, φ) = ex
µPµeφ

ATA , (2.14)

– 6 –
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and we can define a consistent non-linear realisation on the fields as follows

gγ(x, φ)h−1(x, φ, g) ≡ γ(x′, φ′(x′)), g · x ≡ x′, g · φ(x) ≡ φ′(x′) . (2.15)

Likewise a non-linear realisation on fields transforming under some linear representation of

H can be defined as

ψ′α(x′) = Dα
β (h)ψ

β(x). (2.16)

In order to construct invariant Lagrangians we again use the Maurer-Cartan form which

now has the following structure

γ−1dγ = ωµPµ + ωATA + ωiTi , (2.17)

and transformation properties

g · (ωµ)νdxν = D(h)µν (ω
ν)ρdx

ρ, g · (ωA)νdxν = D(h)AB(ω
B)ρdx

ρ

g · (ωi)νdxν = D(h)ij(ω
j)ρdx

ρ −D(h)ij(h
−1∂µh)

jdxµ, (2.18)

i.e. the components (ωI)µ do not transform covariantly and we must use the ωI to build

invariant Lagrangians since now the coordinates transform. Also, since it is the object

(ωµ)νdx
ν that has nice transformation properties rather than the dxµ themselves, one

interprets the components (ωµ)ν as vielbeins

eµν ≡ (ωµ)ν , (2.19)

enabling one to define a metric and corresponding invariant measure as follows

gµν = eρµe
σ
νηρσ,

√−gd4x = ǫµνρσω
µ ∧ ων ∧ ωρ ∧ ωσ. (2.20)

We can also define a covariant derivative of the fields, which has the desired covariant

transformation properties, by using the Maurer-Cartan components along the directions of

the broken generators as

∇µφ
A = (e−1)νµ(ω

A)ν , g · ∇µφ
A = D(h)ABD(h)νµ∇νφ

B, (2.21)

and similarly we can define the covariant derivative of the matter fields ψα using the

components along the directions of the unbroken generators as

∇µψ
α = (e−1)νµ(∂νψ

α + (ωi)ν(Ti)
α
βψ

β) , g · ∇µψ
α = D(h)αβD(h)νµ∇νψ

β . (2.22)

Similar to the internal symmetry case, one can now construct H-invariant Lagrangians out

of the objects ∇µφ
A, ψα and ∇µ and multiply them with the invariant measure

√−gddx

in order to build G-invariant actions. Alternatively, one can construct H-invariant d-forms

out of the covariantly transforming objects ωµ, ωA, ∇µ, ψ
α to yield an invariant action.

Again one can construct Lagrangians invariant up to a total derivative by adding Wess-

Zumino terms. A well known example of Wess-Zumino terms for spacetime symmetries is

Galileons [5].
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3 Eliminating inessential Goldstone modes

As we discussed in the introduction, for spontaneously broken spacetime symmetries one

does not necessarily need a Goldstone field for every broken generator. Rather there is

some reduced set of Goldstones corresponding to a restricted set of broken generators

which can still non-linearly realise the broken symmetry. In this section we discuss how

one can eliminate the inessential Goldstones. For clarity we focus on cases where there are

two Goldstone fields; one essential and one inessential and therefore a single inverse Higgs

constraint but our results can be easily extended to more complicated cases too.

3.1 Standard inverse Higgs constraints

The main message we wish to convey in this subsection is that i) the existence of inverse

Higgs constraints is heavily dependent on the parametrisation of the coset element and ii)

the optimum parametrisation in this regard is not the standard one (3.8) as used in [3, 4]

but rather a parametrisation with further splitting of the broken generators (3.11).

Once we have chosen a parametrisation for the coset element we can calculate all

objects of interest with regards to the non-linear realisation as explained in section 2. In

terms of eliminating inessential Goldstone fields the object of most interest is the covariant

derivative which in terms of the Maurer-Cartan components is given by

∇µφ
A = (e−1)νµ(ω

A)ν . (3.1)

Now we assume that A is reducible under H and hence splits in multiple irreps. Let us

distinguish between two, namely, a and m. Concentrating on the covariant derivative for

the φa field we have

∇µφ
a = (e−1)νµ(ω

a)ν , (3.2)

which can be expressed in terms of structure constants once we choose a parametrisation

for the coset element. The idea of the inverse Higgs phenomenon, as outlined in [4], is to use

this covariant derivative to algebraically solve for φm in terms of φa and ∂µφ
a. Assuming

µ× a ⊃ m, it is often stated in the literature that if

faµm|n 6= 0, (3.3)

i.e. there exists a non-zero component of the structure constant faµm once we project µ× a

on n, one can solve for φm in terms of φa and ∂µφ
a by setting

∇µφ
a|n = cφn + ∂µφ

a|n + . . . (3.4)

to zero. This is because (3.3) ensures that φm appears linearly. However, in general (3.4)

contains ∂µφ
m terms which might restrict one from solving for φm algebraically. In this

sense (3.3) is merely a necessary condition in order to be able to employ the standard inverse

Higgs phenomenon and additional conditions on the structure constants must be met. This

was touched upon by McArthur in [27] and in the following we give a complimentary

discussion with some important differences.
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It turns out that (3.3) is a necessary condition for all parametrisations of the coset

element, however the additional conditions are heavily parametrisation dependent. We

illustrate this below with three examples where for clarity we will assume that the covariant

derivative forms an irreducible representation of the subgroupH such that the inverse Higgs

constraint comes from setting (3.2) to zero, rather than a projection. Now given that the

vielbein is non-zero this is equivalent to setting the Maurer-Cartan component (ωa)ν to

zero. In this case we require a commutator of the form

[Pµ, Tm] ⊃ Ta , (3.5)

if φm is to appear linearly in (ωa)ν . Since (ωa)ν is linear in derivatives, in order to be able

to algebraically solve for φm no ∂µφ
m terms are allowed to be present.

The first coset parametrisation one might consider is

γ = ex
µPµ+φATA = ex

µPµ+φaTa+φmTm , (3.6)

where all generators appear in a single exponential. This turns out to be a bad choice,

not least because the resulting non-linear realisation will have explict coordinate depen-

dence and translations act in a non-standard way on the coset coordinates, but also the

condition (3.5) guarantees that (ωa)µ contains ∂µφ
m terms. Explicitly we have

(ωa)µ ⊃ −1

2
faνmx

ν∂µφ
m , (3.7)

and therefore one cannot employ the standard inverse Higgs constraint to eliminate the

inessential Goldstone field φm algebraically. This example already clearly demonstrates

that ones choice of the coset parametrisation is important with regards to the existence of

inverse Higgs constraints.

The next obvious choice is the following standard parametrisation

γ = ex
µPµeφ

ATA = ex
µPµeφ

aTa+φmTm , (3.8)

as used in the original papers [3, 4]. Unlike the previous example this choice ensures

that the non-linear realisations have no explict coordinate dependence. By calculating the

Maurer-Cartan form for this coset element it follows that

(ωa)µ = φAfaµA + ∂µφ
a − 1

2!
φA(φBf IµAf

a
BI + ∂µφ

BfaAB)

+
1

3!
φAφB(φCf IµAf

J
BIf

a
CJ + ∂µφ

Cf IBCf
a
AI)

− 1

4!
φAφBφC(φDf IµAf

J
BIf

K
CJf

a
DK + ∂µφ

Df ICDf
J
AIf

a
BJ) . . . , (3.9)

and therefore we require the sequence

faAm, f IBmf
a
AI , f ICmf

J
AIf

a
BJ , . . . (3.10)

to vanish for (ωa)µ to be independent of ∂µφ
m.
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Another possibility is to further split the broken generators into three separate expo-

nentials like so

γ = ex
µPµeφ

aTaeφ
mTm . (3.11)

Computing the Maurer-Cartan form for this coset element, it follows that

(ωa)µ = . . .− 1

2!
(φm∂µφ

nfamn + . . .) +
1

3!
(φmφq∂µφ

nf Imnf
a
qI + . . .)+

− 1

4!
(φmφqφr∂µφ

nf Imnf
J
qIf

a
rJ + . . .) + . . . , (3.12)

where for brevity we have concentrated only on the ∂µφ
n dependence. In this case we

therefore require the sequence

famn, f Imnf
a
qI , f Imnf

J
qIf

a
rJ , . . . (3.13)

to vanish for (ωa)µ to be independent of ∂µφ
m. It is clear that the two sets of condi-

tions (3.10) and (3.13) are different but interestingly the later conditions are the least

stringent. In fact, out of all the possible parametrisations of the coset element, this

parametrisation leads to the least stringent conditions on the structure constants and is

therefore the best parametrisation to use if one wishes to find a non-linear realisation on a

reduced set of fields.

We illustrate these points below with an example which also emphasises the importance

of considering the conditions on the structure conditions beyond linear order as we have

done here.

Example. Consider the spontaneous breaking of the d-dimensional Poincaré group down

to its (d− 1)-dimensional subgroup i.e. the coset space

ISO(d− 1, 1)/SO(d− 2, 1). (3.14)

The d-dimensional Poincaré algebra has the following non-vanishing commutators

[MAB, PC ]=ηACPB−ηBCPA, [MAB,MCD]=ηACMBD−ηBCMAD+ηBDMAC−ηADMBC ,

(3.15)

where the indices A,B,C, . . . are d-dimensional spacetime indices and we use the Minkowski

metric ηAB = (−,+,+, · · · ). We initially use the standard parametrisation (3.8) for the

coset element such that

γ = ex
µPµeπPd+ΩµMµd , (3.16)

where µ = 0, 1, . . . d− 1 and Pd, Mµd are respectively the generators of broken translations

and rotations. The commutator

[Pµ,Mνd] = −ηµνPd , (3.17)

informs us that Ωµ appears linearly in the Maurer-Cartan component associated with Pd,

(ωPd
)µ. The covariant derivative associated with Pd is indeed irreducible so in principle
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the inverse Higgs constraint would come from setting (ωPd
)µ = 0. However the structure

constants do not satisfy the series of constraints (3.10) and so this Maurer-Cartan compo-

nent will contain derivatives of Ωµ so we cannot set it to zero to solve for Ωµ as a function

of π and ∂µπ. Indeed the would-be inverse Higgs constraint is

sin
√
Ω2

√
Ω2

∂µπ − sin
√
Ω2

√
Ω2

Ωµ +
π√
Ω2Ω2

(
√
Ω2 − sin

√
Ω2)Ων∂µΩ

ν = 0. (3.18)

As can be seen from expanding sin
√
Ω2, the leading order derivative piece is of the form

∼ πΩν∂µΩ
ν indicating that the leading order condition on the structure constants is sat-

isfied but the next to leading order one i.e. f IBmf
a
AI = 0 is not. So for this particu-

lar parametrisation of the coset element it is not possible to non-linearly realise the d-

dimensional Poincaré group with a reduced set of fields.

If we instead employ the split parametrisation (3.11) then an inverse Higgs constraint

does exist. Now the coset element reads

γ = ex
µPµeπPdeΩ

µMµd , (3.19)

and by setting the Maurer-Cartan component along the broken generator Pd to zero we

arrive at the inverse Higgs constraint

cos
√
Ω2∂µπ − sin

√
Ω2

√
Ω2

Ωµ = 0 , (3.20)

which has a linear piece, and is fully algebraic, in Ωµ so we can use this equation to eliminate

all dependence of the Maurer-Cartan form on Ωµ in favour of the essential Goldstone π.

The resulting non-linear realisation corresponds to the DBI galileons [8] in d−1 dimensions

with the leading order term simply the scalar sector of the (d−1)-dimensional DBI action.

We refer the reader to [5] for more details.

3.2 Generalised inverse Higgs constraints

In some cases it is possible to impose a “generalised” inverse Higgs constraint, i.e. another

way of eliminating the inessential Goldstone without spoiling the non-linear realisation.

As we mentioned in the introduction, this could be an equation of motion if the inessen-

tial Goldstone is an auxilliary field, or it could arise from integrating out the inessential

Goldstone at low energies. In this subsection we show that, as long as one satisfies the

series of conditions for the inverse Higgs constraints discussed above, the structure of the

effective field theory which non-linearly realises the broken symmetry group in terms of

only the essential Goldstone is always the same. In particular, it is independent of whether

the standard inverse Higgs constraint or a generalised one is imposed; the only possible

differences lie in those coupling constants which are not fixed by symmetry.

To see this we first note that the most general transformation rules for the coordinates

and the fields are

g · xµ = xµ + hµ(ci, x, φ, ξ) , g · φa = φa + fa(ci, x, φ, ξ) , g · ξm = ξm + gm(ci, x, φ, ξ) ,

(3.21)
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where ci are the symmetry parameters and by virtue of the Baker-Campbell-Hausdorff

(BCH) formula the functions h, f, g admit a standard Taylor expansion around the origin.

For each function the leading order piece is bi-linear in the coset coordinates and the

symmetry parameters.

Now we assume that the conditions outlined in the previous section to use the inverse

Higgs phenomenon have been met. That is, the covariant derivative ∇µφ
a is irreducible

and the Maurer-Cartan component (ωa)µ does not depend on ∂µξ
m such that if we wanted

to use the standard inverse Higgs constraint we could set (ωa)µ = 0. We therefore have

ωa = (ωa)µ(φ, ∂φ, ξ)dx
µ and since this object transforms covariantly we have

g · (ωa)µ(φ, ∂φ, ξ)dxµ = (ωa)µ(g ·φ, g ·∂φ, g · ξ)g ·dxµ = Da
b (h)(ω

b)µ(φ, ∂φ, ξ)dx
µ. (3.22)

It follows that the product (ωa)µ(g ·φ, g ·∂φ, g ·ξ)g ·dxµ must be independent of ∂µξ
m. Now

given the transformation rule (3.21) we have g ·dxµ = (δµν +∂νh
µ+hµφa∂νφ

a+hµξm∂νξ
m)dxν

and therefore consistency of the coset construction requires

(ωa)µ(g · φ, g · ∂φ, g · ξ)∂νξm(δµα + ∂αh
µ + hµφa∂αφ

a + hµξm∂αξ
m)dxα

+(ωa)µ(g · φ, g · ∂φ, g · ξ)hµξmdxν = 0. (3.23)

Now we wish to derive the conditions on the symmetry transformations such that (3.23) is

solved. This solution must hold for all symmetry parameters and all field values so we can

perform an order by order analysis. At lowest order in fields and parameters equation (3.23)

reduces to

(ωa)µ(g · φ, g · ∂φ, g · ξ)∂νξm = 0 , (3.24)

due to the δµν dxν piece of g · dxµ and since g · φ and g · ξ are already independent of ∂µξ
m

this is equivalent to

(g · ∂µφa)∂νξm = 0 . (3.25)

It follows from (3.21) that

g · ∂µφa = (δνµ+∂µh
ν+hνφa∂µφ

a+hνξm∂µξ
m)−1(∂νφ

a+∂νf
a+faφb∂νφ

b+faξm∂νξ
m) , (3.26)

and then by computing (g · ∂µφa)∂νξm to lowest order in fields it is clear that the only

solution to (3.25) is

faξm = 0 , hµξm = 0 . (3.27)

Using an iterative argument we can then conclude that to all orders in fields and symmetry

parameters fa and hµ must be independent of ξm.

Therefore if one constructs the non-linear realisation with only the true Goldstone from

the bottom up using the first two symmetry transformations of (3.21), the structure of the

effective field theory does not depend on how one eliminates the inessential Goldstone since

it drops out of the symmetry transformations. This equivalence has been discussed in the

literature before, for example [28, 29], but to our knowledge this is the first time it has

been proven to be true. Below we illustrate this equivalence with an informative example.3

3We thank Joaquim Gomis for drawing our attention to this example.
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Example. Consider the spontaneous breaking of the conformal group in one dimension

corresponding to the coset space

SO(1, 2)/1. (3.28)

The generators are P,D and K and the algebra is

[P,D] = P, [D,K] = K, [P,K] = −2D. (3.29)

Given our discussion in the previous subsection, we take the coset element as

γ = etP eφDeψK , (3.30)

to maximise our chances of finding a standard inverse Higgs constraint. One can straight-

forwardly compute the corresponding Maurer-Cartan form which is given by

γ−1dγ = eφdtP + (dφ− 2ψeφdt)D + (dψ + ψdφ− ψ2eφdt)K . (3.31)

Now consider the following invariant action

S =

∫

eφdt(g1 − 2g2ψ + g3(e
−φψφ̇− ψ2)) , (3.32)

where we have taken a linear sum of the Maurer-Cartan components each with a coupling

constant gi and dropped total derivatives.

It is clear that one can set the Maurer-Cartan component associated with the generator

D to zero such that we can solve for ψ in terms of φ and its derivatives. Doing so yields

ψ =
1

2
e−φφ̇. (3.33)

Imposing this constraint on our invariant action we arrive at (up to total derivatives)

S =

∫

eφdt
(

g1 +
g3
4
e−2φφ̇2

)

. (3.34)

However, given that (3.32) is algebraic in the field ψ we can also eliminate it via its equation

of motion yielding the new constraint

ψ = −g2
g3

+
1

2
e−φφ̇ , (3.35)

which differs by a constant from the standard inverse Higgs constraint. Upon imposing

this constraint on our invariant action we arrive at (again dropping total derivatives)

S =

∫

eφdt

(

g1 +
g22
g3

+
g3
4
e−2φφ̇2

)

. (3.36)

We see that imposing the two different constraints indeed yields the same effective field

theory but with different coupling constants.
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4 Mapping non-linear realisations

In this section we examine how non-linear realisations obtained from different coset

parametrisations are related, both before and after the inessential Goldstones have been

eliminated. We will only discuss this relation in the absence of external sources and we

refer the reader to [35] for a discussion of the subtleties which arise there. During our

analysis, we will encounter various types of transformations relating the different coset

constructions. Let us first discuss these very briefly to set the stage for this section.

Prior to inverse Higgs, the natural transformations are standard redefinitions of the

coset coordinates. In the purely internal case these are simply field redefinitions φ̄A = φ̄A(φ)

whereas for spacetime symmetries they are so-called point transformations which mix both

fields and the spacetime coordinates: x̄µ = x̄µ(x, φ) and φ̄A = φ̄A(x, φ).

Post inverse Higgs, the natural transformations also involve derivatives, since the

inessential Goldstones have been eliminated in favour of the essential ones and their

derivatives. Here we encounter so-called contact transformations and their generalisa-

tion extended contact transformations. Starting with the former, an n-th order contact

transformation is any transformation of the form

x̄µ = x̄µ(x, φ, . . . , ∂nφ), φ̄a = φ̄a(x, φ, . . . , ∂nφ), (4.1)

that maps the following sets onto each other:

(xµ, φa, ∂φa, . . . , ∂nφa) ↔ (x̄µ, φ̄a, ∂̄φ̄a, . . . , ∂̄nφ̄a). (4.2)

Interestingly, non-trivial contact transformations only exist when φa has a single compo-

nent. Moreover, they are always first order i.e. n = 1 [30]. Well known contact transforma-

tions are the AdS-conformal mapping considered in [31, 32] and the galileon duality4 [33, 34]

that follows as a limiting case.

Since one often deals with multiple component fields, we are naturally led to extended

contact transformations [40]. An n-th order extended contact transformation is a trans-

formation of the form (4.1), but without the additional requirement (4.2). Non-trivial

transformations of this type do exist for any order n. These are the most general local

redefinitions one can perform, i.e. they are the local subset of the Lie-Bäcklund trans-

formations [30]. As such, they include as special cases all of the previously mentioned

transformations, i.e. field redefinitions, point- and contact transformations.

4.1 Prior to inverse Higgs: point transformations

As already noted, for a given coset space one can parametrise the coset element in many

different ways. For some particular basis for the broken generators TA we can put all the

generators in a single exponential, every generator in a separate exponential, or anything

inbetween. In addition, the order of the exponentials is freely specifiable. To be more

precise, one can consider any partition A = (a1, . . . , ak) and subsequently parametrise the

4See [38] for a very recent discussion on this duality in the context of UV properties of galileons [39].
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coset element as

γ = eφ
a1Ta1 · · · eφakTak , (4.3)

where we have temporarily include Pµ in TA for notational convenience.

A further freedom lies in the choice of algebra basis for the broken generators. That

is, one can consider an alternative basis T̄A invertibly related to the original one by

T̄A = cBATB + ciATi, det(cBA) 6= 0. (4.4)

Again in this basis, one can pick any partition A = (a′1, . . . , a
′

l) and use the corresponding

parametrisation

γ̄ = e
φ̄a

′

1 T̄a′
1 · · · eφ̄

a′
l T̄a′

l . (4.5)

A physically interesting example of such different bases arises in the context of the confor-

mal group and branes in AdS space and will be discussed in section 5.

Given any two bases related by (4.4) and any two corresponding arbitrary partitions,

it follows from the BCH formula that there exists a (locally) invertible redefinition of the

coset coordinates relating the corresponding parametrisations. That is, one has

γ = eφ
a1Ta1 · · · eφakTak = e

φ̄a
′

1 T̄a′
1 · · · eφ̄

a′
l T̄a′

l · eφ̄iTi = γ̄h, (4.6)

where

φ̄A = φ̄A(φB) = (c−1)ABφ
B + terms higher order in coset coordinates, (4.7)

φ̄i = φ̄i(φB) = −ciA(c
−1)ABφ

B + terms higher order in coset coordinates, (4.8)

and invertibility of (4.7) is guaranteed by the presence of the linear term. The exact form

of the resulting mapping can be highly non-trivial on account of the BCH formula.

The relation (4.6) induces an equivalence of the corresponding non-linear realisations.

If their transformation laws are g · (xµ, φA) and g · (x̄µ, φ̄A) then

x̄µ(g · (x, φ)) = g · x̄µ, φ̄A(g · (x, φ)) = g · φ̄A. (4.9)

Thus starting from any action S[x, φ] which is invariant under g · (xµ, φA), one can obtain

an equivalent barred action S̄[x̄, φ̄] invariant under g · (x̄µ, φ̄A) by performing the point

transformation (4.7). In other words

S =

∫

L(x, φ)
√−gddx ≡

∫

L̄(x̄, φ̄)
√−ḡddx̄ = S̄, (4.10)

where we have defined

L̄(x̄, φ̄) ≡ L(x, φ)

√−g√−ḡ
det

(dxµ

dx̄ν

)

. (4.11)

Therefore using either of the parametrisations results in equivalent physical theories.
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Universality of the coset construction, in the sense that any non-linear realisation can

be brought back to a specific coset form, has only been proven for compact, connected and

semi-simple Lie groups. For more general internal symmetries and spacetime symmetries,

there is no proof of universality and therefore it is not clear that any non-linear realisation

can be brought back to the coset form, even prior to inverse Higgs. There are, however,

examples where it is possible.

An interesting example relates to supersymmetry, corresponding to the spontaneous

breaking of super-Poincaré to the Poincaré group. The corresponding coset element con-

tains a fermion field, the Goldstino, but no inessential Goldstone modes and hence there

are no inverse Higgs constraints. However, other methods can be used to arrive at a non-

linear realisation of supersymmetry, for example, by imposing a supersymmetric constraint

on a linear supermultiplet (see e.g. [41–43]). In this case an explicit point transformation

relating this non-linear realisation to the one coming from the coset construction of [6] has

been constructed [44].

4.2 Post inverse Higgs: extended contact transformations

We will now examine whether the equivalence between realisations is maintained after elim-

inating the inessential Goldstones. We again consider parametrisations (4.3) and (4.5) and

assume that for both we can consistently employ the standard inverse Higgs mechanism to

remove the inessential fields. For clarity we again focus on a single inverse Higgs constraint:

IHC : ∇µφ
a|m = 0 ⇔ φm −Fm(φa, ∂µφ

a) = 0 , (4.12)

IHC : ∇̄µφ̄
a|m = 0 ⇔ φ̄m − F̄m(φ̄a, ∂̄µφ̄

a) = 0. (4.13)

If the point transformation relating the two sets of coset coordinates prior to imposing

inverse Higgs constraints is to induce an invertible transformation relating the essen-

tial coordinates to each other post inverse Higgs, one must demand compatibility in the

following sense

φ̄A(φ|IHC) = φ̄A|IHC . (4.14)

This is precisely the case when

∇µφ
a|m = 0 ⇔ ∇̄µφ̄

a|m = 0, (4.15)

i.e. when the two inverse Higgs constraints imply each other based on the point transfor-

mation relating the coset elements (see [34, 45] for a discussion related to Galileons). If

this is indeed the case then the induced transformation relating the spacetime coordinates

and the essential Goldstones is simply the point transformation evaluated on the inverse

Higgs constraints

x̄µ = x̄µ(x, φ,F(φ, ∂φ)), φ̄a = φ̄a(x, φ,F(φ, ∂φ)). (4.16)

The result is an invertible first order5 extended contact transformation which reduces to a

standard contact transformation when φa contains a single component. Its invertibility is

guaranteed by that of the point transformation.

5We note that this potentially generalises to a n-th order extended contact transformation when there

are n inverse Higgs constraints.
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Due to the compatibility of the inverse Higgs conditions and the point transforma-

tion, the transformation rules for the essential Goldstones (and spacetime coordinates) are

mapped onto each other under the extended contact transformation. Again this ensures

physical equivalence of the post inverse Higgs non-linear realisations. In particular, two

equivalent Lagrangians prior to inverse Higgs remain equivalent post inverse Higgs. It is

interesting to note, however, that due to the derivative nature of the extended contact

transformations, the order of a Lagrangian is generically not maintained.

On the other hand if (4.15) is not satisfied, it is far from clear if equivalence is main-

tained post inverse Higgs. What we can say for sure is that if an invertible mapping does

exist, it does not directly follow from the point transformation relating the coset elements.

This is a somewhat surpising possibility but it is very easy to find situations where it

occurs. To see this, consider two Maurer-Cartan forms prior to imposing inverse Higgs

constraints where the corresponding coset elements are related by (4.6) but we restrict to

the case where T̄A = cBATB + ciATi + cµAPµ. Obviously here we do not combine Pµ and TA.

The Maurer-Cartan forms are related by

γ−1dγ = h−1(γ̄−1dγ̄)h+ h−1dh , (4.17)

or in terms of their components we have

ωµ = D(h−1)µν ω̄
ν + cµbD(h−1)bcω̄

c + cµmD(h−1)mn ω̄
n,

ωA = cAb D(h−1)bcω̄
c + cAmD(h−1)mn ω̄

n,

ωi = D(h−1)ijω̄
j + cibD(h−1)bcω̄

c + cimD(h−1)mn ω̄
n + (h−1dh)i. (4.18)

For simplicitly let us assume that the covariant derivatives which lead to the inverse Higgs

constraints are irreducible such that the unbarred inverse Higgs conditions are ωa = 0 and

the barred ones are ω̄a = 0. It follows from (4.17) that in general we have

ω̄a = 0 , < ωa = cabD(h−1)bcω̄
c + camD(h−1)mn ω̄

n = 0 , (4.19)

since in general ω̄n 6= 0 on the inverse Higgs solutions. Here the inverse Higgs constraints

are not mapped onto each other under the point transformation and therefore the point

transformation does not induce a transformation relating the two non-linear realisations

constructed from only the essential Goldstones.

We also note that if one considers two parametrisations with the same basis of broken

generators, i.e. when cAB = δAB and thus cam = 0, one finds

ω̄a = 0 , ⇔ ωa = D(h−1)ab ω̄
b = 0 , (4.20)

such that the inverse Higgs constraints are indeed mapped. It follows that in this case the

equivalence between the non-linear realisation is guaranteed to be maintained even after

the inessential Goldstones have been eliminated.

Below we show that the non-mapping of the inverse Higgs constraints can indeed occur

but does not necessarily imply inequivalence of the two non-linear realisations.
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Example. Consider spontaneous breaking of the Poincaré group in two dimensions i.e.

the coset space

ISO(1, 1)/1. (4.21)

We work in two different bases for the algebra, the first with generators P0, P1 and M , and

the second with P̄0 = P0, P̄1 = P1 and M̄ = M +αP1. Since the generators of translations

commute with each other the commutators are the same in each basis and are given by

[P0,M ] = P1, [P0, M̄ ] = P1 , [P1,M ] = P0 , [P1, M̄ ] = P0. (4.22)

We parametrise the two coset elements as

γ = etP0eπP1eΩM , γ̄ = et̄P0eπ̄P1eΩ̄M̄ , (4.23)

yielding the two Maurer-Cartan forms

γ−1dγ = P0(coshΩdt+ sinhΩdπ) + P1(sinhΩdt+ coshΩdπ) +MdΩ,

γ̄−1dγ̄ = P0(cosh Ω̄dt̄+ sinh Ω̄dπ̄) + P1(sinh Ω̄dt̄+ cosh Ω̄dπ̄) + M̄dΩ̄ , (4.24)

which of course have the same structure given that the commutators are the same. The

point transformation which relates these two Maurer-Cartan forms is

t̄ = t+ α coshΩ , π̄ = π − α sinhΩ , Ω̄ = Ω , (4.25)

which is extracted by equating both expressions in (4.24). The inverse Higgs constraints

in both cases come from setting the co-efficient of P1 in the Maurer-Cartan forms to zero,

due to the commutators [P0,M ] = P1 and [P0, M̄ ] = P1, yielding the solutions

Ω = tanh−1(−π̇) , Ω̄ = tanh−1(−π′) , (4.26)

where a prime denotes a derivative with respect to t̄. Now these solutions are not mapped

onto each other under the point transformations (4.25) therefore the two Maurer-Cartan

forms after we impose the inverse Higgs constraints are also not mapped onto each other.

This is obvious given that in the unbarred variables the co-efficient of P1 now vanishes

due to the inverse Higgs constraint while it is non-zero in the barred basis after we set

M̄ = M + αP1.

The resulting building blocks of invariant Lagrangians are

√

1− π̇2dt,
π̈

(1− π̇2)3/2
, and

√

1− π̄′2dt̄,
π̄′′

(1− π̄′2)3/2
, (4.27)

and are therefore mapped onto each other in the trivial manner t̄ = t and π̄ = π post

inverse Higgs but this has nothing to do with how the coset elements are related. Of course

any Wess-Zumino terms will also be mapped.

– 18 –



J
H
E
P
1
0
(
2
0
1
7
)
0
5
1

5 Correspondence between AdS and conformal cosets

It turns out that both cases of interest discussed above, i.e. with the inverse Higgs con-

straints mapped or not, apply to the spontaneous breaking of the d-dimensional conformal

group by a codimension d−n+1 Minkowski brane embedded in AdSd+1. The two different

bases for the algebra are the standard conformal basis and the AdS basis [31]. The coset

space is

SO(d, 2)/(SO(n− 1, 1)× SO(d− n)) , (5.1)

where the unbroken SO(d−n) transformations correspond to the unbroken Lorentz trans-

formations in the directions transverse to the brane. Whether a mapping between invariant

Lagrangians which follows from the point transformation relating the coset elements exists

is dependent on the codimension of the brane. It turns out that for codimension one branes

there is indeed a well defined mapping of this kind, as discussed in [31, 32], but for any

other codimension this is not the case as we illustrate below.

5.1 Codimension one

Let us begin with the codimension one case corresponding to the coset space

SO(d, 2)/SO(d− 1, 1). (5.2)

In the standard basis of the conformal algebra the non-vanishing commutators are

[PA, D] = PA

[KA, D] = −KA

[PA,KB] = 2MAB+2ηABD

[MAB, PC ] = ηACPB − ηBCPA

[MAB,KC ] = ηACKB − ηBCKA

[MAB,MCD] = ηACMBD−ηBCMAD+ηBDMAC−ηADMBC ,

where again we use A,B,C, . . . for d-dimensional spacetime indices. The d + 1 broken

generators correspond to dilatations D and special conformal transformations KA. Given

our discussion in section 3 we parametrise the coset element as

γ = ex
APAeφDeψ

AKA . (5.3)

Now the commutator [PA,KB] = 2MAB + 2ηABD tells us that ψA appears linearly in

the covariant derivative associated with D and since this covariant derviative is an irrep

the standard inverse Higgs constraint would come from setting the Maurer-Cartan com-

ponent ωD to zero. Indeed the structure constants satisfy the conditions (3.13) and so we

can use this constraint to algebraically eliminate ψA in favour of φ and ∂Aφ. The result-

ing non-linear realisation is equivalent to building diffeomorphism invariant scalars out of

the effective metric gAB = e2φηAB. In four dimensions the leading terms in a derivative

expansion yield the familiar Lagrangian

L = −1

2
(∂ϕ)2 +

λ

4!
ϕ4, (5.4)

after the field redefinition ϕ = eφ.
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The AdS basis is defined by6 [31]

K̄A = KA +
1

2
PA, (5.5)

in which case the non-vanishing commutators are

[PA, D] = PA

[K̄A, D] = −K̄A + PA

[PA, K̄B] = 2MAB+2ηABD

[K̄A, K̄B] = 2MAB

[MAB, PC ] = ηACPB − ηBCPA

[MAB, K̄C ] = ηACK̄B − ηBCK̄A

[MAB,MCD] = ηACMBD−ηBCMAD+ηBDMAC−ηADMBC .

We now parametrise the coset element as

γ̄ = ex̄
APAeφ̄Deψ̄

AK̄A , (5.6)

and again due to the commutator [PA, K̄B] = 2MAB + 2ηABD, and the fact that the

structure constants satisfy the conditions (3.13), we can set ω̄D = 0 to leave us with a

non-linear realisation constructed solely from the dilaton φ̄.

Now the point transformation which maps the two coset elements can be extracted

by equating the two corresponding Maurer-Cartan forms. This is because whenever the

unbroken generator MAB is generated in (5.6) by the BCH formula, the indices are always

contracted with copies of ψ̄A and so it drops out by symmetry. In other words the h

of (4.17) is trivial in this case. Importantly, since (5.5) does not involve the generator D,

i.e. we have cam = 0 when comparing to (4.4), the two inverse Higgs constraints are mapped

by this point transformation, see equation (4.19). A contact transformation relating the

non-linear realisations constructed from the dilatons φ and φ̄ then follows by evaluating

this transformation on the inverse Higgs solutions. This has been done explictly in [31, 32]

and we refer the reader there for more details.

5.2 Higher codimensions

In higher codimensions the situation is more complicated. Now consider a d − n + 1 > 1

codimension brane where the broken generators now also include translations and Lorentz

transformations. If we let µ, ν, . . . label n-dimensional spacetime indices and i = n+1, . . . , d,

then the broken generators in the conformal basis are

Pi,Mµi, D,Kµ,Ki, (5.7)

and similarly for the AdS basis with KA → K̄A. In general there are now 2(d − n) + 1

Goldstone scalars and d−n+1 Goldstone vectors. If we parametrise the coset elements as

γ = ex
µPµeπ

iPieφDeΩ
µiMµieψ

µKµeσ
iKi , (5.8)

for the conformal basis and similarly for the AdS basis again with KA → K̄A, we can

use standard inverse Higgs constraints to remove all inessential Goldstones leaving us with

6To compare with [32] we are working in units where L = 1/
√
2.
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d − n + 1 essential Goldstone scalars. Of course here there is more than a single inverse

Higgs constraint and not all of the relevant covariant derivatives are irreps. Indeed we

have to perform traces to eliminate the σi fields using the covariant derivatives associated

with ωMµi
. In any case, one of the essential Goldstones is the dilaton and the other d− n

correspond to the broken translations and are SO(d− n) invariant.

Let us concentrate on one of these inverse Higgs constraints since this will be

enough to draw conclusions about possible mappings. In both bases the commutator

[MAB, PC ] = ηACPB − ηBCPA tells us that the vectors Ωµi (conformal basis) and Ω̄µi (AdS

basis) associated with a broken Lorentz transformation Mµi appear linearly in the covariant

derivatives associated with the broken generator Pi. Since these covariant derivatives are

irreps the inverse Higgs constraints can come from setting ωPi
= 0 and ω̄Pi

= 0. With (5.8)

we can eliminate Ωµi and Ω̄µi algebraically.

However, now given the definition of the AdS basis (5.5), these inverse Higgs constraints

will not be mapped onto each other under the point transformation which takes us from

one coset element to the other unless the Maurer-Cartan component ωKi
vanishes on the

inverse Higgs solutions. This is because we now have cam 6= 0 in equation (4.4). We have

checked explictly for codimension two that ωKi
6= 0 on the inverse Higgs solutions and one

would expect this to hold for higher codimensions too. As we discussed above this leaves

us with two possibilities. Either the standard basis and the AdS basis lead to physically

different non-linear realisations for the essential Goldstones when the codimension is higher

than one or there is a mapping relating invariant Lagrangians which does not follow from

the point transformation which maps the coset elements.

6 Conclusion and outlook

Coset constructions are a powerful tool for constructing theories with non-linearly realised

symmetries. For spacetime symmetries, however, they generically involve a number of

inessential Goldstone modes that are dispensable for the non-linear realisation. This makes

it hard to see whether all coset constructions are equivalent. Motivated by this, in this

paper we have addressed two crucial aspects with regards to the inessential Goldstones.

First of all, we have investigated different ways of eliminating the inessential Gold-

stones. In the literature, this often proceeds via imposing inverse Higgs constraints. In

contrast to existing claims, we have demonstrated that the existence of such constraints

actually requires the structure constants to satisfy a sequence of conditions as also dis-

cussed in [27]. Moreover, the severity of these conditions depends on the form of the coset

element, with the standard parametrisation being a suboptimal choice. Instead, the least

stringent conditions arise for a coset element that consists of the largest number of expo-

nential factors. We have also proven, under certain assumptions, that any other method of

eliminating the inessential Goldstones, algebraically or otherwise, boils down to the same

physics: the resulting theory can only differ in the choice of coupling constants and hence

forms an identical effective field theory.

The second issue concerns the relation between coset constructions employing different

parametrisations and/or basis choices. Again the inessential Goldstones play a crucial role.
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Prior to the process of elimination, all coset constructions are related to each other by

means of a point transformation, involving the set of essential and inessential Goldstones

as well as spacetime coordinates. This naturally generalises the field redefinitions relating

all coset constructions for internal symmetries. However, such a point transformation does

not necessarily relate the inverse Higgs constraints for the inessential Goldstone modes. In

the case where they are related, one inherits an extended contact transformation, involving

the essential Goldstones, their derivatives and the spacetime coordinates, that maps the

different non-linear realisations onto each other. In the case of a single inverse Higgs

constraint we have

internal symmetries: field redefinitions on φA ,

spacetime symmetries:















point transformations on (xµ, φa, φm) ,

⇓ (when IHC mapped)

extended contact transformations on (xµ, φa, ∂µφ
a) .

More generally, if we have n inverse Higgs constraints then the extend contact transforma-

tion could in principle be n-th order.

However, we have seen that in the cases where the inverse Higgs constraints are not

related by the point transformation, there is no such inherited extended contact trans-

formation. A natural expectation would be that the resulting theories for the essential

Goldstones are inequivalent. However, we have shown that this is not necessarily the case

in a simple example where the inverse Higgs constraints are unrelated but the non-linear

realisations result in equivalent physics. Whether the same holds for all such theories or

whether this is a consequence of the simplicity of our example remains a question of high

interest for future reseach.

This crucial distinction concerning the relation of inverse Higgs constraints is beau-

tifully illustrated in our main physical example, focussing on the relation between the

conformal and the AdS basis of the SO(2, d) algebra. We have considered the spontaneous

breaking of this algebra as described by a n-dimensional Minkowski probe brane embedded

in (d+ 1)-dimensional AdS space.

For both bases, our choice for the coset parametrisation (5.8) was inspired by our

discussion in section 3. Even though there we primarily concentrated on a single inverse

Higgs constraint for clarity, the general principle still applies for multiple inverse Higgs

constraints: use the largest number of exponentials which allows one to write the coset

element in a H-invariant way, and place the inessential Goldstones to the right. However,

of course for multiple inverse Higgs there is also the added subtlety of the order of the

inessential Goldstones and this can play an important role. For example, if instead of (5.8)

we had chosen

γ = ex
µPµeπ

iPieφDeΩ
µiMµieσ

iKieψ
µKµ , (6.1)

where we have reversed the order of the final two exponentials, then in the AdS basis we

would not have been able to remove all inessential Goldstones algebraically since σi would

appear with derivatives in the Maurer-Cartan form along the broken generator Mµi. This

is only problematic in the AdS basis since Kµ and Ki commute in the conformal basis.
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In any case we found that whether the constraints in the conformal and the AdS

basis are mapped onto each other depends on the codimension of the brane and hence

on the number of essential Goldstone modes. For codimension one, i.e. a single essential

Goldstone, the solutions for the inessential Goldstone modes are mapped onto each other,

as implicitly used in [31, 32]. However, we find that this ceases to be true for higher

codimensions which necessarily involve more essential Goldstones. This implies that in the

latter case there is no straightforward extended contact transformation relating the two

different coset constructions. Clearly this deserves further attention.

Whether or not the coset construction for spacetime symmetry breaking does indeed

produce universal dynamics for the essential Goldstones remains an interesting open ques-

tion. Either way the inessential Goldstones will certainly play an important role.
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