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A growing amount of evidence over the last two decades points to the fact

that many enzymes exhibit fluctuations in their catalytic activity, which are

associated with conformational changes on a broad range of timescales. The

experimental study of this phenomenon, termed dynamic disorder, has

become possible thanks to advances in single-molecule enzymology

measurement techniques, through which the catalytic activity of individual

enzyme molecules can be tracked in time. The biological role and impor-

tance of these fluctuations in a system with a small number of enzymes,

such as a living cell, have only recently started being explored. In this

work, we examine a simple stochastic reaction system consisting of an

inflowing substrate and an enzyme with a randomly fluctuating catalytic

reaction rate that converts the substrate into an outflowing product. To

describe analytically the effect of rate fluctuations on the average substrate

abundance at steady state, we derive an explicit formula that connects the

relative speed of enzymatic fluctuations with the mean substrate level.

Under fairly general modelling assumptions, we demonstrate that the rela-

tive speed of rate fluctuations can have a dramatic effect on the mean

substrate, and lead to large positive deviations from predictions based on

the assumption of deterministic enzyme activity. Our results also establish

an interesting connection between the amplification effect and the mixing

properties of the Markov process describing the enzymatic activity fluctu-

ations, which can be used to easily predict the fluctuation speed above

which such deviations become negligible. As the techniques of single-molecule

enzymology continuously evolve, it may soon be possible to study the

stochastic phenomena due to enzymatic activity fluctuations within living

cells. Our work can be used to formulate experimentally testable hypotheses

regarding the nature and magnitude of these fluctuations, as well as their

phenotypic consequences.
1. Introduction
First made almost two decades ago, observations of enzymatic turnovers for

single enzyme molecules have allowed scientists to probe enzyme behaviour

beyond the regime of high copy numbers and ensemble averages [1]. Thanks

to the advances brought by experimental techniques such as single-molecule

fluorescence spectroscopy [2,3], the field of single-molecule enzymology devel-

oped rapidly in the subsequent years. The key observation made possible by

single-molecule assays is that the catalytic rates of single enzyme molecules

often display very large dynamic fluctuations over timescales much longer

than the typical reaction cycle times, most probably driven by slow

(spontaneous or induced) transitions in conformation [1,4–6].

Around the time when the first single enzyme molecules were observed in

action, the mathematical theory of dynamic disorder was introduced by Zwanzig

[7], motivated by several observations of different physico-chemical processes
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with a seemingly common underlying cause that boiled

down to random fluctuations of key process properties. The

phenomenon of dynamic disorder refers to fluctuations in

enzymatic reaction rates that occur at a timescale that is

either slower than or comparable with the reaction timescale

[8]. These fluctuations are often caused by slow transitions in

the conformational state of enzymes. The most simple

example of dynamic disorder first considered by Zwanzig

[7] involved a so-called ‘rate process controlled by passage

through a fluctuating bottleneck’ [9]. In the language of

chemical kinetics, it describes the removal of a substrate, S,

from a system at rate g(t)S(t), where the time-varying rate

g(t) is a (typically Markovian) stochastic process (figure 1).

As the speed of g(t) fluctuations tends to zero, the reaction

rate g(t) becomes a random variable which does not change

with time, and we transition to the regime of static disorder

[7]. On the other hand, as the speed of g(t) fluctuations

tends to infinity, the dynamic disorder vanishes on the time-

scale of substrate kinetics, and we recover the classical case

where the reaction rate g(t) becomes a deterministic constant.

Our goal in this paper is to investigate the effects of g(t) fluc-

tuations between these two extremities, where most realistic

systems are likely to lie.

Thanks to the mathematical theory of dynamic disorder,

stochastically fluctuating enzyme activities can be under-

stood and studied within a consistent mathematical

framework that can also generate testable experimental pre-

dictions [1,5,8,10–12]. Already in [7], it was observed that

dynamically disordered systems can give rise to macroscopic

observations that differ from those expected in the absence of

disorder. In subsequent years, a large body of theoretical

and computational work has examined various alternative

enzymatic reaction schemes, mostly focusing on the enzyme

dynamics itself, e.g. on the autocorrelation of fluctuations

and the distribution of waiting times between turnover

events [13]. On the other hand, dynamic disorder has been

observed for several biologically relevant enzymes [14],

suggesting that it is ubiquitous in the cellular context. Early

work [5] had already noted that enzymatic fluctuations

could play an important biological role in a system containing

only a small number of enzyme molecules, as often happens

within a living cell, and the recent in vivo observation of

fluctuating enzymatic activity confirms this claim [15].

Besides studying the intrinsic mathematical properties of

dynamically disordered enzymes, it would be also highly

instructive and relevant for biology to examine the conse-
quences of dynamic disorder on substrate statistics (a first

example of such a study is given in [15]). Experimental

work in this area is still done in vitro using constant and

large substrate pools. Here on the contrary, we provide a

mathematical treatment of how dynamic disorder alters the

substrate mean abundance in the presence of substrate

inflow, a condition closer to biological reality that has also

been considered in [16,17]. To this end, we analytically exam-

ine a highly simplified stochastic system with a randomly

fluctuating catalytic reaction rate and describe the effect of

rate fluctuations on the average substrate abundance. Under

fairly general conditions, we demonstrate that the relative

speed of rate fluctuations can have a dramatic effect on the

mean substrate, and lead to large positive deviations from

predictions based on the assumption of deterministic

enzyme activity. Using a Markovian model for enzyme kin-

etics, we mathematically characterize this effect by deriving
an explicit formula for the steady-state substrate-mean as a

function of the relative speed of enzymatic fluctuations.

From this formula, we show that for any finite speed value,

the steady-state substrate-mean is sandwiched between the

two values obtained in the static and the deterministic

regimes. Furthermore, we demonstrate that the mapping

between the relative speed of enzyme kinetics and the

substrate-mean at steady state can be well approximated by

a convex, monotonically decreasing function whose key

shape parameter depends on the ‘mixing strength’ of the

Markov process describing enzyme kinetics. This mixing

strength can be measured by computing an appropriate

Dirichlet form [18] of the Markov process. Even though we

consider a highly simplified situation, our analysis can

serve as a guide in the case of more realistic, but analytically

intractable enzymatic reaction schemes. Our results depend

only on the enzymatic fluctuations, but they do not depend

on the fluctuations caused by the low abundance of substrate

molecules [19], although we account for these fluctuations by

modelling the substrate kinetics as a jump Markov chain.

Indeed, the results we present remain unchanged even if

we discard these fluctuations and describe the substrate

kinetics as an ordinary differential equation (ODE) with a

fluctuating rate constant g(t).
Enzymatic fluctuations can also arise from sources other

than dynamic disorder. The abundance or the availability

of enzyme molecules may also fluctuate due to gene

expression noise [19,20], and their chances of finding sub-

strate molecules can be diffusion-limited [21]. In this work,

we do not distinguish between the various sources of fluctu-

ations and model the aggregate enzymatic activity by a

Markovian stochastic process.

The biological significance of our findings is manifold

because enzymatic interactions are ubiquitous is cell biology

and the effects of enzymatic noise in metabolic networks

have only recently started being explored [20]. Using the rela-

tive speed of enzymatic fluctuations as parameter, our results

provide a clear way to determine if the deterministic approxi-

mation is a faithful representation of reality. Our results can

shed light on the timescale disparities that exist between

enzyme and substrate kinetics. In particular, we see that

enzyme kinetics needs to be ‘fast’ in order to avoid any unde-

sirable amplification of the mean substrate abundance due to

inevitable variations in the enzymatic states. On the other

hand, one can envisage situations where it would be ben-

eficial for enzymes to be ‘slow’ so that their fluctuations

amplify a weak signal and enable its detection by the intra-

cellular machinery (see §3.1). Such a signal-detection

mechanism was the main motivation behind stochastic focus-
ing, a sensitivity amplification phenomenon introduced in

[22]. We illustrate our results on the reaction scheme of [22]

in §3.2, where we characterize how the substrate-mean

changes with the speed of the enzyme abundance dynamics.

Note that in situations where enzyme kinetics is ‘slow’, unde-

sirable amplification effects can be eliminated by feedback

mechanisms [23]. In this context, our results can help in pos-

tulating the presence of feedback loops using experimental

data. We discuss the biological importance of our results in

greater detail in §4.

It is interesting to note that some of the expressions we

derive are related to those obtained in the analysis of various

physico-chemical quantum dynamical systems coupled to a

randomly fluctuating environment. This theory dates back
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Figure 1. Schematic of the modelled system. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:201703

3

to the original work of Kubo & Anderson [24,25] and, more

recently, has been generalized to arbitrary quantum systems

described by the Liouvile–von Neumann equation with

Markovian and non-Markovian parametric noise [26–28].

The example system of [28] can be interpreted as a substrate

decaying with a stochastically fluctuating rate. While similar

to it, the system we consider here includes the inflow of sub-

strate, which results in a non-zero steady state and requires

a different mathematical treatment.
11
2. Results
2.1. The model
We consider a system into which a substrate, S, enters at a

constant rate kin and is degraded or (equivalently) converted

into a product P that in turn leaves the system. The rate of

substrate outflow depends on the activity state or abundance

level of an enzyme E. In turn, the catalytic activity of E,

denoted by (g(t))t�0, is assumed to fluctuate in time t accord-

ing to a continuous-time Markov chain (CTMC) over a finite

state-space G ¼ fg1, . . ., gng. Here, each gi is a positive

constant denoting the degradation rate constant at the ith
enzymatic state or abundance level. Owing to fluctuations

in the catalytic activity of E, the degradation rate of substrate

S will also fluctuate in time according to a stochastic process

(kd,S(t))t�0 whose value at time t is given by kd,S(t) ¼ g(t)S(t),
where S(t) is the molecular count or concentration of the

substrate. This model is summarized in figure 1.

As mentioned before, the degradation reaction S !gðtÞ ; can

also be viewed as a conversion reaction S !gðtÞ P which are

catalyzed by the enzyme. Generally, this catalytic step pro-

ceeds through the reversible formation of an intermediate

complex S . E which is formed when an enzyme molecule

binds to a substrate molecule. In other words, the single reaction

S !gðtÞ P is an abstraction for the following three reactions:

Sþ E O S � E! Pþ E:

If the binding/unbinding rates of S and E molecules are much

higher than the rate of the conversion reaction, then we can

apply the quasi-stationary assumption to conclude that the

model in figure 1 is a good approximation to the catalytic

conversion dynamics (for more details, see the electronic

supplementary material in [23]).

To describe the CTMC (g(t))t�0, we need to specify its n � n
transition rate matrix Q¼ [qij] [29]. For any distinct i, j [ f1, 2,

. . ., ng, qij � 0 denotes the rate at which the process leaves state

gi and enters state gj. The diagonal entries of Q are given by

qii ¼ �
P

j=i qij. From now on, we assume that the rate

matrix Q is irreducible1 which implies that there exists a

unique stationary distribution p ¼ (p1, . . . ,pn) [ Rn
þ

satisfying

Q1 ¼ 0, pTQ ¼ 0T and pT1 ¼ 1,

where 0 and 1 denote the n � 1 vectors of all zeroes and ones,

respectively. As the state-space is finite and the transition rate

matrix Q is irreducible, the CTMC (g(t))t�0 is ergodic which

means that the probability distribution of g(t) converges to

the stationary distribution p as t!1. As we are interested

in the steady-state limit, without loss of generality we can

assume that the initial state g(0) is distributed according

to p, i.e. P(g(0) ¼ gi) for each i ¼ 1, . . ., n. This ensures that

the process (g(t))t�0 is a stationary stochastic process whose

various statistical properties do not depend on time.2

In particular, its mean E(g(t)) is equal to

E(g(t)) ¼ Ep(g) ¼
Xn

i¼1

gipi for all t � 0, ð2:1Þ

where g is a G-valued random variable with probability

distribution p and Ep(�) denotes the expectation w.r.t. this

distribution.

From now on, we regard (g(t))t�0 as the baseline process

which corresponds to enzymatic dynamics at the natural

timescale. In order to study the substrate behaviour, we

need to view enzymatic dynamics at the timescale of sub-

strate kinetics. For this, we define a family of processes

(gc(t))t�0 parametrized by the ‘relative speed’ parameter c
as follows:

gc(t) ¼ g(ct) for all t � 0: ð2:2Þ

Note that one time-unit of process (gc(t))t�0 corresponds to c
time-units of process (g(t))t�0. In this sense, the parameter c
sets the speed of the fluctuation dynamics for the enzyme

relative to the speed of the substrate kinetics. Like (g(t))t�0,

the process (gc(t))t�0 is also a CTMC over state-space G ¼

fg1, . . ., gng with transition rate matrix Qc ¼ cQ and initial

distribution p. Since (g(t))t�0 is stationary, this process is

also stationary with the same mean given by

Ep(g) ¼ E(gc(t)) for all times t � 0. Replacing (g(t))t�0 by

(gc(t))t�0 in the model depicted in figure 1, we will study

how the steady-state mean of substrate abundance depends

on the fluctuation speed c.

Given a sample path of the enzyme dynamics (gc(t))t�0

with relative speed c, we regard the dynamics of substrate

molecular counts as a jump Markov chain (Sc(t))t�0 over

the set of non-negative integers N0 ¼ {0, 1, 2, . . . }. This

Markov chain can be written in the random time change

representation [30] as

Sc(t) ¼ Sc(0)þ Y1(kint)� Y2

ðt

0

gc(u)Sc(u) du
� �

, ð2:3Þ

where Y1 and Y2 are independent, unit rate Poisson pro-

cesses. From this representation, it is immediate that the

substrate-production rate is constant (kin) in time, but the sub-

strate-degradation rate is time-varying and it is equal to

gc(t)Sc(t) at time t. Here, the Poisson processes Y1 and Y2

capture the intermittency in the firing of production and

degradation reactions. This intermittency becomes unimpor-

tant if the substrate is present in high copy numbers [31]

and in this case one can regard (Sc(t))t�0 as the dynamics of

substrate concentration,3 specified by the following ODE:

dSc(t)
dt
¼ kin � gc(t)Sc(t): ð2:4Þ
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Note that even if the intermittency in production/

degradation reactions is ignored and (Sc(t))t�0 is described

by the ODE (2.4), the process (Sc(t))t�0 is still stochastic
because it is driven by the stochastic process (gc(t))t�0 that

represents enzymatic fluctuations.

Let mc(t) ¼ E(Sc(t)) for each t � 0. We shall soon see that

mc(t) does not depend on whether we use representation

(2.3) or (2.4) for the substrate dynamics (Sc(t))t�0. Our goal

in this paper is to understand the role of fluctuations in

the catalytic activity of enzyme E in determining the

steady-state value of the mean

meq(c) ¼ lim
t!1

mc(t): ð2:5Þ

In particular, we study how this steady-state mean meq(c)

depends on the relative fluctuation speed c and the variability

in degradation rates g1, . . ., gn at various enzymatic activity

levels.
:20170311
2.2. Expressions for meq(c): the general case
We can approximately find meq(c) by estimating mc(t) for a

very large t, using simulations of the whole system. However,

this naive approach is highly unsatisfactory because these

simulations can be computationally expensive and the

approximation error incurred by replacing the steady-state

mean by a finite-time mean is generally difficult to quantify.

Moreover, this approach does not provide us with an explicit

formula for meq(c) that can enable us to study its dependence

on the relative speed parameter c. In the light of these difficul-

ties, we look for alternative ways to compute meq(c). In this

section, we assume that enzymatic kinetics is given by a gen-

eral stationary stochastic process with an arbitrary state-space

G , (0, 1), and so we do not rely on the CTMC structure

mentioned in §2.1. We specialize the results of this section

to the CTMC case in §2.3.

Using representation (2.3) or (2.4), we can show that

mc(t) ¼ E(Sc(t)) is given by the following formula:

mc(t) ¼ E(Sc(0) e
�
Ð t

0
gc(s) ds

)þ kin

ðt

0

E(e
�
Ð t

s
gc(u) du

) ds: ð2:6Þ

From the stationarity of the process (gc(t))t�0, we can con-

clude thatðt

0

Eðe�
Ð t

s
gcðuÞduÞds ¼

ðt

0

Eðe�
Ð t�s

0
gcðuÞduÞds

¼
ðt

0

Eðe�
Ð s

0
gcðuÞduÞds:

Substituting this in (2.6) and letting t!1, we obtain our first

formula for meq(c), which is

meq(c) ¼ lim
t!1

mc(t) ¼ kin

ð1

0

E(e
�
Ð s

0
gc(u) du

) ds: ð2:7Þ

From (2.2), we obtainðs

0

gc(u) du ¼ s
1

cs

ðcs

0

g(u) du
� �

: ð2:8Þ

As the process (g(t))t�0 is stationary, from theorem 10.6 in

[32] we know that as c!1, the quantity (2.8) converges

a.s. to sEp(g) (recall (2.1)). As a consequence,

E(e
�
Ð s

0
gc(u) du

)! e�sEp(g) and hence we get

lim
c!1

meq(c) ¼ kin

ð1

0

e�sEp(g) ds ¼ kin

Ep(g)
:¼ m(det)

eq : ð2:9Þ
This shows that as the relative speed c of enzymatic fluctu-

ations approaches 1, these fluctuations become equilibrated
at the timescale of substrate kinetics, and so they do not

affect the mean substrate level. In other words, from the

point of view of the substrate, the enzyme kinetics is so fast

that it is as if the enzyme state is constant at the equilibrium

level Ep(g). This corresponds to the classical case where there

is no dynamic disorder in the enzyme activity and so this

activity is well approximated by a deterministic rate constant

for the substrate degradation reaction. As the mapping

x 7! e2x is convex, Jensen’s inequality tells us that

Eðe�
Ð s

0
gcðuÞduÞ � e

�
Ð s

0
EðgcðuÞÞdu ¼ e�sEpðgÞ,

where the last relation follows from the fact that (gc(t))t�0 is

a stationary process with mean E(gc(t)) ¼ Ep(g) for all times

t � 0. Substituting this in (2.7), we see that for any c � 0

meq(c) � kin

ð1

0

e�sEp(g) ds ¼ kin

Ep(g)
¼ m(det)

eq : ð2:10Þ

Therefore for a finite relative speed c, enzymatic fluctuations

always amplify the mean substrate abundance, in comparison to

the classical deterministic case. The natural question that

now arises is—how large should speed c be in order for the

deterministic approximation to be acceptable within a certain

tolerance level e? We address this question in §2.4.

Let us now consider the situation where the relative speed

parameter c! 0 and so at the timescale of substrate kinetics,

the enzyme dynamics (gc(t))t�0 approaches a static process,

i.e. gc(t) ¼ g(0) for all t � 0. This case corresponds to the situ-

ation where the enzyme kinetics is very slow in comparison to

the substrate kinetics. Hence from the point of view of the

substrate, the kinetics of the enzyme is almost fixed. In this

regime, we can replace gc(u) by g(0) in (2.7) to obtain

lim
c!0

meq(c) ¼ kinE

ð1

0

e�sg(0) ds
� �

¼ kinE
1

g(0)

� �

¼ kinEp

1

g

� �
:¼ m(static)

eq , ð2:11Þ

where we have used the fact that g(0) has probability distri-

bution p to write E(1=g(0)) as Ep(1=g). Observe that m(static)
eq �

m(det)
eq , which can be readily seen by letting c! 0 in (2.10) or

by directly using Jensen’s inequality on the convex map

f(x)¼ 1/x (figure 2). The two extremal cases c! 0 and c!
1 serve as a guide to the behaviour of realistic systems with

an intermediate value of c. In particular, we can expect that

for such intermediate c-values, the steady-state substrate mean

will lie somewhere between m(det)
eq and m(static)

eq . This is precisely

what happens as we shall soon see. We will also discuss how

the precise value of meq(c) can be computed or estimated

from any Markovian model of enzymatic fluctuations.

Until now, the conclusions we have drawn regarding

meq(c) rely on the formula (2.7) that holds for any real-

valued stationary stochastic process (gc(t))t�0 as long as its

states are positive and bounded away from 0, i.e. the state-

space G satisfies

inf {x: x [ G} � e ð2:12Þ

for some e . 0. This makes this formula very general but it is

difficult to work with, because it involves an indefinite inte-

gral which is generally analytically intractable as the

mapping s 7! E(e
�
Ð s

0
gc(u) du

) does not have an explicit form.

We remedy this problem in the next section by specializing
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this formula to the case where (gc(t))t�0 is a finite state-space

CTMC as described in §2.1. Before we come to that, we provide

a numerical recipe for statistically estimating meq(c) without

the need for evaluating the indefinite integral. This scheme is

based on the assumption that we can efficiently generate

sample paths of the stationary process (gc(t))t�0 [33,34].

Define a random variable tc by

tc ¼ inf t � 0:

ðt

0

gc(s) ds ¼ � ln u
� �

, ð2:13Þ

where u is an independent random variable with the uniform

distribution on [0, 1]. To sample tc, we can adopt the follow-

ing strategy. We first sample u from the uniform distribution

on [0, 1], draw an initial condition gc(0) from p, and then

simulate the sample path (gc(t))t�0, keeping track of the inte-

gral
Ð t

0 gc(s) ds. We take tc to be first time t when this integral

hits the value (2lnu). From the samples of the random

variable tc, we can estimate its expectation E(tc) which

gives us an estimate for meq(c) because it can be shown that

meq(c) ¼ kinE(tc): ð2:14Þ

Note that the estimator for meq(c) based on formula (2.14) will

be unbiased, but it will suffer from statistical error due to a

finite sample size. However, this error can be estimated and

managed far more easily than the error one would incur by

approximating the steady-state mean meq(c) by a finite-time

mean mc(t) (recall (2.5)). This makes this formula (2.14)

useful in practice (e.g. §3.2).

The results from this section are collected in our next

proposition which is proved in the electronic supplementary

material.

Proposition 2.1. Suppose (g(t))t�0 is a real-valued stationary sto-
chastic process with stationary distribution p and state-space G

satisfying (2.12). Let (gc(t))t�0 be the speed c version of this process
given by (2.2) and define the substrate dynamics (Sc(t))t�0 either by
(2.3) or by (2.4). Let mc(t) ¼ E(Sc(t)) and let the steady-state limit
meq(c) be given by (2.5). Then we have the following:
(A) The value meq(c) is well defined (i.e. the limit in (2.5) exists)

and it is given by (2.7).
(B) If tc is the random variable defined by (2.13), then (2.14)

holds.

(C) The limits (2.9) and (2.11) are satisfied as c!1 and c! 0,

respectively.

2.3. Expressions for meq(c): the finite continuous-time
Markov chain case

In this section, we specialize expression (2.7) to the case

where (g(t))t�0 is a stationary CTMC with a finite state-

space G ¼ fg1, . . ., gng, as described in §2.1. Define the

CTMC (gc(t))t�0 by (2.2) and recall that its n � n transition-

rate matrix is given by Qc ¼ cQ. Let D be the n � n diagonal

matrix

D ¼ Diag(g1, . . . ,gn) ð2:15Þ

whose entries are the degradation rates at different enzymatic

states or abundance levels. One of the main results in our

paper is to show that meq(c) can be expressed as

meq(c) ¼ kin[pT(D� cQ)�11]: ð2:16Þ

Two alternative proofs of this result are given in the electronic

supplementary material. The first proof exploits some ideas

from the theory of occupation measures for Markov chains

[35] while the second proof is based on the methods of
conditional moments approach recently developed by Hasenauer

et al. [36]. Note that this formula assumes matrix (D 2 cQ) is

invertible for any c � 0, but this can be easily verified from

the properties of matrix Q. Using formula (2.16), we can

prove that for any c � 0

m(det)
eq � meq(c) � m(static)

eq : ð2:17Þ

Therefore for any relative speed c of enzymatic fluctuations,

the steady-state mean of the substrate is always sandwiched

between the values obtained for the deterministic and

the static cases. Moreover, since meq(c) depends continuously

on c, the limits (2.11) and (2.9) imply that for any value m*

in the open interval (m(det)
eq , m(static)

eq ) there exists a relative

speed value c* . 0 such that meq(c*) ¼ m*. Hence, the posi-

tive deviations caused by enzymatic fluctuations (in

the mean substrate abundance) range from 0 to exactly
(m(static)

eq 2 m(det)
eq ).

To determine the map c 7! meq(c), we need to evaluate

meq(c) at several values of c. This can be difficult with

formula (2.16) because each evaluation requires inversion

of a potentially large matrix. Fortunately, we can resolve

this issue using simple ideas from the theory of resolvents
for linear operators [37], as we now describe. Let
~Q ¼ D�1Q be the transition rate matrix of another CTMC

over state-space G ¼ fg1, . . ., gng. The difference between

this new CTMC and the original CTMC is that the rates

of outflow from state gi to each state gj (for j = i) are

divided by the state value gi. Let C denote the field of

complex numbers. The resolvent for the Markov semigroup

corresponding to this CTMC is the matrix-valued function

over C defined by

R(z) ¼ (zI � ~Q)�1, ð2:18Þ

where I is the n � n Identity matrix. This function is

well defined for any z which is not an eigenvalue of
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matrix ~Q. Let l1, . . ., ln be the n eigenvalues of matrix
~Q, repeated according to their algebraic multiplicity.

Since ~Q is the transition rate matrix of a CTMC, it has a

simple4 eigenvalue (say l1) equal to 0, while its other

eigenvalues have negative real parts. This implies that the

resolvent function R is well defined on the positive real

line (0, 1).

From now on, we assume that matrix ~Q is diago-

nalizable5 over the field C of complex numbers. This

assumption is not very restrictive because almost every

matrix is diagonalizable [38] and so if ~Q is not diagonaliza-

ble, we can perturb matrix Q slightly to make ~Q
diagonalizable and not affect the enzyme dynamics

significantly. The diagonalizability of ~Q allows us to

write matrix ~Q as ~Q ¼ ULU�1, where L ¼ Diag(l1, . . ., ln)

and U is an invertible matrix whose columns contain the

right eigenvectors for matrix ~Q corresponding to the eigen-

values l1, . . ., ln. Similarly the rows of U21 contain the left

eigenvectors for matrix ~Q corresponding to the eigenvalues

l1, . . ., ln. Let ui and wi be n � 1 vectors denoting the ith
column and ith row of matrices U and U21, respectively.

Therefore,

~Q ¼
Xn

i¼1

liuiwT
i ð2:19Þ

and we can express the resolvent function R (see ch. 5 in [37])

as

R(z) ¼
Xn

i¼1

1

z� li

� �
uiwT

i : ð2:20Þ

Let k . , . l denote the standard inner product on Rn. Note that

formula (2.16) can be expressed as

meqðcÞ ¼ kin½pTðI � c ~QÞ�1D�11� ¼ c�1kin½pTRðc�1ÞD�11�

for any c . 0. Plugging R(c21) from (2.20) and defining

ai ¼ kp, uilkwi, D�11l ¼ (pTui)(wT
i D�11)

for each i ¼ 1, . . . , n,
ð2:21Þ

we obtain the following formula for meq(c):

meq(c) ¼ kin

Xn

i¼1

ai

1� cli

� �
: ð2:22Þ

Observe that since ai-s and li-s are independent of c, they

only need to be computed once to construct this expression

and then we can easily compute meq(c) for several values of

c without the need of evaluating the matrix inverses in

(2.16). Moreover if n is large, then using the values of ai

and li as a guide, one can derive suitable approximations

of formula (2.22) for meq(c). We derive one such appro-

ximation in the next section and use it as a tool to further

understand the phenomenon of stochastic amplification

induced by dynamic disorder in enzymatic activity.

The results from this section are collected in our next

theorem which is proved in the electronic supplementary

material.

Theorem 2.2. Suppose (g(t))t�0 is a stationary CTMC with tran-
sition rate matrix Q, stationary distribution p and state-space G ¼
fg1, . . ., gng (see §2.1). Let (gc(t))t�0 be the speed c version of this
process given by (2.2) and define the substrate dynamics (Sc(t))t�0

either by (2.3) or by (2.4). Let the steady-state substrate mean
meq(c) be given by (2.5) and the diagonal matrix D be defined by
(2.15). Then we have the following:

(A) The matrix (D 2 cQ) is invertible and meq(c) can be expressed
as (2.16).

(B) Suppose the matrix ~Q ¼ D�1Q is diagonalizable and let l1, . . .,

ln be its eigenvalues. For each i ¼ 1, . . ., n define ai by (2.21).

Then meq(c) can be expressed as (2.22).

(C) The relation (2.17) is satisfied for any c � 0.
2.4. Approximate formula for meq(c)
The goal of this section is to derive an approximate formula

for meq(c) using (2.22) and then use it to obtain some interest-

ing insights. Recall from the previous section that l1, . . ., ln

are the eigenvalues of matrix ~Q. Among these l1 ¼ 0, while

the eigenvalues l2, . . ., ln have negative real parts. Define a

positive constant emax by

emax ¼ �maxfReðliÞ : i ¼ 2, . . . , ng,

where Re(z) denotes the real part of a complex number z.

Setting l1 ¼ 0 in (2.22) we obtain

meq(c) ¼ kin a1 þ
Xn

i¼2

ai

1� cli

� �" #
: ð2:23Þ

This formula is valid for any c in the interval (2emax, 1) and its

form shows that the function meq(c) is real-analytic6 at c ¼ 0.

Therefore, all the information about function meq(c) is contai-

ned in the value of this function and its derivatives at c ¼ 0.

Using limits (2.9) and (2.11), we can conclude that

a1 ¼
m(det)

eq

kin
and

Xn

i¼2

ai ¼
m(static)

eq �m(det)
eq

kin

 !
: ð2:24Þ

Let u denote the following weighted combination of eigen-

values l2, . . ., ln:

u ¼ �
Pn

i¼2 liaiPn
i¼2 ai

: ð2:25Þ

We now propose an approximate formula for meq(c)

m̂eq(c) ¼ m(det)
eq þ

m(static)
eq �m(det)

eq

1þ cu

 !
: ð2:26Þ

Note this formula is much easier to use than (2.23) because it

contains only one rational term. From (2.24), it is immediate

that m̂eq(c) also obeys the limits (2.9) and (2.11). Moreover,

it is straightforward to check that the first derivatives of

m̂eq(c) and meq(c) match at c ¼ 0. Hence, the approximation

error is given by a difference of second-order derivatives

and we explain in the electronic supplementary material

why this error is likely to be small. We can also view the

approximation m̂eq(c) of meq(c) as replacing a weighted

arithmetic mean of several quantities with the corresponding

harmonic mean. To see this note that from (2.23) and (2.24)

we can express meq(c) as

meq(c) ¼ m(det)
eq þ (m(static)

eq �m(det)
eq ) �x, ð2:27Þ

where

�x ¼
Pn

i¼2 aið1� cliÞ�1Pn
i¼2 ai

is the weighted arithmetic mean of quantities (1 2 cl2)21, . . .,

(1 2 cln)21 with weights a2, . . ., an.7 The corresponding
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weighted harmonic mean of these quantities is given by

x̂ ¼
Pn

i¼2 aiPn
i¼2 aið1� cliÞ

¼ 1

1þ cu

and observe that m̂eq(c) can be expressed as the r.h.s. of (2.27)

with arithmetic mean �x replaced by the harmonic mean x̂.

We now illustrate the accuracy of this approximation

using a couple of randomly generated n � n, transition rate

matrices Q with n ¼ 5 and n ¼ 10, respectively. In both

cases, we choose the input rate to be kin ¼ 1 and the enzy-

matic state values to be gi ¼ i for 1, 2, . . ., n. The exact

function m̂eq(c) along with its approximation m̂eq(c) are

plotted in figure 3. The accuracy of this approximation can

be easily seen. Note that the exact function is slightly above
its approximation. Assuming the significant weights (ai-s)

are positive reals, this can be explained by the fact that arith-

metic mean is always higher than the corresponding

harmonic mean.

From (2.26), it is immediate that the shape of the function

m̂eq(c) depends crucially on the parameter u computed

according to (2.25). We now examine u more closely and

see how it is connected to an existing notion from the

theory of Markov processes. Let us denote the numerator of

(2.25) by

Q ¼ �
Xn

i¼2

liai: ð2:28Þ

Since ai-s are given by (2.21), using (2.19), ~Q ¼ D�1Q and

l1 ¼ 0, we can express Q as

Q ¼ �
Xn

i¼1

liai ¼ �pT
Xn

i¼1

liuiwT
i

 !
D�11

¼ �pT ~QD�11 ¼ �pTD�1QD�11: ð2:29Þ

This relation shows that Q (and hence u) is always real-valued

even though some li-s or ai-s may have imaginary parts.

Moreover to compute Q, we do not need to compute the

eigenvalues l1, . . ., ln of a potentially large matrix ~Q. Instead,

we only need to evaluate the expression pTD21QD211 which

is computationally much easier. Interestingly, the definition

of Q coincides with the well-known notion of Dirichlet forms
that is extensively used in the study of mixing properties
of Markov processes [18,39]. We now discuss this connection

in more detail.

Consider the CTMC (g(t))t�0 with state-space G ¼ fg1, . . .,

gng and transition rate matrix Q ¼ [qij]. The generator Q8 of

this CTMC maps any real-valued function f on G to another

such real-valued function Qf given by

Qf ðgiÞ ¼
X
j=i

qijðf ðgjÞ � f ðgiÞÞ:

Define a function f : G! (0, 1) by f(g) ¼ 1/g. Then one can

see that Q (2.28) can be expressed as

Q ¼ �Ep(f(g)Qf(g)): ð2:30Þ

In other words, if a G-valued random variable g has distri-

bution p, then Q is the expectation of the random variable

(�f(g)Qf(g)). Relation (2.30) shows that Q is a Dirichlet

form associated with the Markovian semigroup generated

by Q [18]. An important consequence of this connection is

that Q is always positive (see lemma 2.1.2 in [18]) irrespective

of the entries of the rate matrix Q or the state values g1, . . ., gn.

The positivity of Q implies that u is also positive and hence

the mapping c 7! m̂eq(c) is convex and monotonically

decreasing from m(static)
eq at c ¼ 0 to m(det)

eq as c! 1. Intuitively,

the magnitude of Dirichlet form Q corresponds to the mixing
strength of the underlying Markov process. Therefore as Q

increases, u also increases and the mapping c 7! m̂eq(c) has

a sharper ‘drop’ to the deterministic value m(det)
eq . Our next

goal is to make this mathematically precise and quantitati-

vely estimate the relative speed values c beyond which the

deterministic assumption is acceptable.

In the rest of this section, our object of interest will be the

relative stochastic amplification factor defined by

r(c) ¼
meq(c)�m(det)

eq

m(det)
eq

, ð2:31Þ

which measures the difference of steady-state substrate

means in the presence and absence of enzymatic fluctuations,

normalized by the the steady-state substrate mean in the deter-

ministic case. Note that r(c) does not depend on the input rate

kin and using (2.17) we can see that r(c) satisfies

0 � r(c) � rmax :¼
m(static)

eq

m(det)
eq

� 1 ¼ Ep

1

g

� �
Ep(g)� 1

for any c � 0:

ð2:32Þ

In order to study the dependence of r(c) on c, we now look at

its approximation r̂(c) which is defined analogously to (2.31),

with meq(c) replaced by m̂eq(c). Using (2.25), (2.28) and (2.24),

we see that u is the same as the normalized Dirichlet form

defined by

u ¼ QEp(g)

rmax

: ð2:33Þ

Dividing (2.26) by m(det)
eq , we obtain the following formula

after some simple algebraic manipulations:

r̂(c) ¼ rmax

1þ cu
: ð2:34Þ

This formula clearly indicates that as u gets larger, the ampli-

fication factor decreases more sharply to 1 with the relative

speed parameter c. One can regard r(c) � r̂ (c) as the ‘relative

error’ between the actual substrate mean and the mean com-

puted with deterministic assumption on the enzymatic

kinetics. From relation (2.34), it is immediate that in order
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to test if this error will exceed some tolerance level e . 0, we

just need to check if the relative enzyme speed c is smaller

than the threshold ce defined by

ce :¼ rmax � e

ue

� �
: ð2:35Þ

We can expect this test to be rather conservative because as

we have argued before, the exact values meq(c) will usually

lie above their approximation m̂eq(c).

Note that ce is inversely proportional to u but directly pro-

portional to rmax. The first parameter u is the normalized

Dirichlet form and it captures the ‘mixing strength’ of the

underlying enzymatic dynamics (e.g. §3.1), while the

second parameter rmax can be viewed as a proxy for the var-

iance of the stationary distribution p9 (e.g. §3.1). Generally,

both these parameters will increase with higher levels of

noise in the enzymatic dynamics. However, since they affect

ce in opposing ways, it is difficult to ascertain the overall

effect of dynamical noise in setting the threshold value ce.
We explore this issue in greater detail in §3.2 and numerically

show that increasing levels of dynamical noise in the enzy-

matic kinetics of that reaction network gives rise to

decreasing values of ce. This is surprising and counterintui-

tive because it suggests that this dynamical noise is actually

beneficial in improving the accuracy of the deterministic

assumption for the enzyme activity.

Finally, we remark that even though most of the analysis

in this paper assumes that enzymatic kinetics is described by

a finite Markov chain, the formulae we derive can provide

insights for a more general class of stationary stochastic pro-

cesses. This is because finite Markov chains can serve as good

approximations of such processes [41]. Moreover if the pro-

cess is Markov, even with an arbitrary state-space, we can

compute expression (2.34) for r̂(c) by sampling its stationary

distribution and using this sample to estimate rmax and the

normalized Dirichlet form u. We illustrate this for the

example network in §3.2 where the enzyme dynamics follows

a Markov process over a countable state-space.
3. Examples
In this section, we present a couple of examples to illustrate

our results. Our first example of a two-state switching

enzyme is such that all calculations can be easily done

analytically allowing us to clearly understand the stochastic

amplification effect. We also see how enzymes can utilize

their fluctuations to serve as high-gain amplifiers. Our

second example is the reaction network of Paulsson et al.
[22] which displays stochastic focusing. We apply our results

to this network and demonstrate that in some cases dyna-

mical fluctuations can actually be beneficial in reducing the

unwanted stochastic amplification effects.
3.1. Stochastic amplification induced by a two-state
switching enzyme

Consider a simple instance of the system in figure 1, in which

a single enzyme molecule is present and can fluctuate between

two states of activity: with enzyme E in the low-activity (0)

state, the degradation rate of substrate S is assumed to be

g0, while it is equal to g1 when E is highly active (1). The
0-to-1 and 1-to-0 rates are given by kon and koff, respectively.

A schematic of this model is presented in figure 4.

The time-varying degradation rate (g(t))t�0 induced by

this fluctuating enzyme E is a CTMC with state-space G ¼

fg0, g1g and transition-rate matrix

Q ¼ �kon kon

koff �koff

� 	
:

One can check that the unique stationary distribution p ¼

(p0, p1) for this CTMC is simply given by

p0 ¼
koff

kon þ koff
and p1 ¼

kon

kon þ koff
: ð3:1Þ

For each i ¼ 0, 1, we can regard pi as the steady-state prob-

ability of the enzyme being in state i. Owing to the ergodic

theorem (see theorem 10.6 in [32]), we can also view pi as

the proportion of time that the enzyme spends in state i in

the long run. Let g be a G-valued random variable with prob-

ability distribution p. Then its mean and variance can be

computed as

Ep(g) ¼ koffg0 þ kong1

kon þ koff

� �
and

Varp(g) ¼ konkoff

(kon þ koff)
2

(g0 � g1)2:

9>>>=
>>>;

ð3:2Þ

Suppose that the speed of enzymatic kinetics relative to

the substrate is c and so the degradation rate is given by

the process (gc(t))t�0 defined by (2.2). Let meq(c) (2.5) be the

steady-state substrate mean in this case. Using part (A) of

theorem 2.2, we obtain

meqðcÞ ¼ kin½p0 p1�
g0 þ ckon �ckon

�ckoff g1 þ ckoff

� 	�1
1
1

� 	
:

This formula involves the inverse of a 2 � 2 matrix, which can

be easily computed explicitly. Substituting this inverse along

with the expressions for p0 and p1 (see (3.1)) we get

meqðcÞ¼
kin

g0g1þcg0koffþcg1kon
½p0 p1�

g1þckoff ckon

ckoff g0þckon

� 	
1

1

� 	

¼ kin

ðg0g1þcg0koffþcg1konÞðkonþkoffÞ
½koff kon�

g1þcðkonþkoffÞ
g0þcðkonþkoffÞ

� 	

¼kin
g1koffþg0konþcðkonþkoffÞ2

ðg0g1þcg0koffþcg1konÞðkonþkoffÞ

" #
:

ð3:3Þ
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It is interesting to point out the formal similarity of

(3.3) with the formula for the mean transfer time of a relax-

ation process whose rate is modelled by a two-state CTMC

[28]. From (3.3), it can be readily seen that the steady-state

substrate means in the static and deterministic cases are

given by

mðdetÞ
eq ¼ lim

c!1
meqðcÞ ¼ kin

kon þ koff

g0koff þ g1kon

� 	
and

mðstaticÞ
eq ¼ lim

c!0
meqðcÞ ¼ kin

g1koff þ g0kon

g0g1ðkon þ koffÞ

� 	
:

Hence, we can compute the maximum relative amplification

factor rmax (2.32) as

rmax ¼
mðstaticÞ

eq

mðdetÞ
eq

� 1 ¼ ðg0koff þ g1konÞðg1koff þ g0konÞ
ðkon þ koffÞ2g0g1

� 1

¼ konkoffðg0 � g1Þ2

ðkon þ koffÞ2g0g1

: ð3:4Þ

Recall the formula for Varp(g) from (3.2) and observe that

rmax can be expressed as

rmax ¼
VarpðgÞ
g0g1

,

which reinforces the point we made in §2.4 that rmax serves as

a proxy for the variance of the stationary distribution.

The Dirichlet form Q (2.30) for this CTMC is given by

Q ¼ �½p0 p1�
1
g0

0

0 1
g1

" #
Q

1
g0

0

0 1
g1

" #
1

1

� 	
¼ g0 � g1

g0g1

� �2 konkoff

kon þ koff
:

This yields the following formula for the normalized Dirichlet

form u (2.33):

u ¼ QEpðgÞ
rmax

¼ koffg0 þ kong1

g0g1

which determines the shape of our approximate formula

m̂eq(c) (2.26) for the steady-state substrate mean. It is straight-

forward to check that for this example, this approximate

formula is exact because the expression (3.3) for meq(c) can

be written as

meqðcÞ ¼ mðdetÞ
eq þ

mðstaticÞ
eq �mðdetÞ

eq

1þ uc

 !
:

Note that u is a measure of the mixing strength of the enzy-

matic kinetics and so it is not surprising that it increases

linearly with the transition rates kon and koff.

Define the relative amplification factor by (2.31). It can be

exactly expressed as

rðcÞ ¼ rmax

1þ uc
¼ konkoffðg0 � g1Þ2

ðkon þ koffÞ2ðg0g1 þ cg0koff þ cg1konÞ
:

We now consider the situation when the degradation

rate induced by the enzyme E in the low-activity state (‘0’)

is negligible. In this case, g0 � 0 and r(c) simplifies to

rðcÞ � koffg1

ðkon þ koffÞ2

 !
1

c
¼ p0g1

kon þ koff

� �
1

c
,

which shows that the relative amplification factor is pro-

portional to 1/c and the proportionality constant is simply

the product of the proportion of time (p0) the enzyme

spends in the low-activity state, the degradation rate (g1) at
the high-activity state and the reciprocal of the sum of tran-

sition rates kon and koff. In particular, as c approaches 0, the

relative amplification factor r(c) can be enormous, thereby

indicating that such a switching enzyme E can exploit its

fluctuations to function as a biological amplifier with a very

high gain.
3.2. Stochastic focusing network
In this section, we apply our results to the famous stochas-

tic focusing network given in [22]. This network involves

three species: substrate S, product P and enzyme E.10

The molecules of substrate S are produced constitutively

at rate kin and converted into product P through a first-

order reaction with rate constant kp. Both substrate and

product molecules degrade spontaneously at rates kae and

dp, respectively, where e denotes the current state or abun-

dance level of enzyme E. The schematic of these reactions is

as follows:

;O
kin

kae
S !

kp

P!
dp
;: ð3:5Þ

The enzymatic dynamics in this example is given by the

Markovian birth–death process with birth-rate ks and

death-rate kd:

;�!ks
E�!kd ;: ð3:6Þ

This process evolves on state-space N0, which is the set of all

non-negative integers and its unique stationary distribution is

Poisson with mean ks/kd. We assume that the initial enzy-

matic state is a random variable with this stationary

distribution.

Multiplying the rate constants ks and kd by c, we obtain

enzymatic kinetics whose speed relative to the substrate is

c. Let m(S)
eq (c) and m(P)

eq (c) denote the steady-state means of

substrate and product, respectively, when the relative

enzyme speed is c. From the first-order moment equations for

the network (3.5), one can easily show (see the electronic

supplementary material) that for any c � 0

m(P)
eq (c) ¼

kp

dp
m(S)

eq (c): ð3:7Þ

To study the amplification of steady-state means due to enzy-

matic fluctuations, we use the relative stochastic amplification

factor defined by (2.31). Owing to the linear relationship (3.7)

between m(S)
eq (c) and m(P)

eq (c), these amplification factors are the

same for both product and substrate. Therefore, we can

understand the amplification phenomenon by replacing

network (3.5) with our simplified scheme (figure 1), where

the degradation rate at time t is given by

gcðtÞ ¼ kp þ kaEcðtÞ,

and Ec(t) denotes the state at time t of enzymatic kinetics with

relative speed c. Let gi ¼ kp þ kai for each i ¼ 0, 1, . . .. Note

that (gc(t))t�0 is a CTMC with state space

G ¼ kp þ kaN0 ¼ fg1, g2, . . .g

and stationary distribution11

p(gi) ¼
e�ks=kd

i!
ks

kd

� �i

for any gi ¼ kp þ kai [ G: ð3:8Þ

This CTMC transitions from state gi to state giþ1 at rate cks

and from state gi to state gi21 at rate cikd. In other words,



0.20

0.15

0.10

0.05

re
la

tiv
e 

am
pl

if
ic

at
io

n 
fa

ct
or

0

–0.05

–0.10
0 2 4 6 8 10

speed c
12 14 16 18 20

ε

estimated
approximation

cε

Figure 5. Stochastic focusing network. Comparison of the estimated values of the exact relative amplification factor r(c) (2.31) with the approximate factor r̂(c)
obtained from formula (2.34). The threshold speed ce for the 1% tolerance level (e ¼ 0.01) is also marked. The estimated values are obtained using the estimator
based on formula (2.14) with 105 samples. The shaded region represents the symmetric 1 s.d. interval around the mean. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170311

10
the generator for this CTMC is given by

Qcf(gi) ¼ cks(f(giþ1)� f(gi))þ cikd(f(gi�1)� f(gi)) ð3:9Þ

for any bounded function f :G! R.

In the rest of this section, we denote the steady-state sub-

strate mean by meq(c) instead of m(S)
eq (c). As the state-space G is

not finite, we cannot use the results from §2.3 to compute

meq(c). However, we can easily simulate the paths of process

(gc(t))t�0 with Gillespie’s algorithm [33], and obtain samples

of the random variable tc defined by (2.13). The correspond-

ing sample mean then serves as an estimator for meq(c) (see

part (C) of proposition 2.1). Note that the steady-state

substrate mean in the absence of enzymatic fluctuations is

simply given by

mðdetÞ
eq ¼ kin

kp þ kaðks=kdÞ
:

Dividing meq(c) by m(det)
eq and subtracting 1, we obtain an esti-

mate for the relative stochastic amplification factor r(c) (see

(2.31)). This factor only depends on four rate constants kp,

ka, ks and kd which we now set as

kp ¼ 0:35, ka ¼ 0:25, kd ¼ 1 and ks ¼ 1: ð3:10Þ

We estimate r(c) for several values of c in the interval (0, 20)

and plot these estimates in figure 5. For each value of c, r(c)

was estimated using 105 samples of tc and the resulting stan-

dard error12 is also displayed in figure 5. In §2.4, we develop

an approximate expression r̂(c) (2.34) for the relative amplifi-

cation factor which is likely to hold even though the state-

space G is not finite. Using the stationary distribution p

(3.8) and the generator Qc (with c ¼ 1), we estimate the maxi-

mum amplification factor rmax (2.32) and the normalized

Dirichlet form u (2.33) as rmax ¼ 0.1703 and u ¼ 2.1988,

respectively. With these values we evaluate the map

c 7! r̂(c) and plot it in the interval (0, 20) in figure 5. The

close agreement between the estimated and the approximate

values of the relative amplification factor can be easily seen.

In figure 5, we also indicate the threshold speed ce (2.35)

for the 1% threshold level (i.e. e ¼ 0.01). This threshold

speed is ce ¼ 7.2903 which indicates that if c , 7.2903, then

enzymatic fluctuations will amplify the steady-state substrate

mean by more than 1% in comparison to the deterministic
case. In other words, the relative error in assuming that the

enzyme activity is deterministic exceeds 1% if c , 7.2903.

We now explore the effects of changing the levels of noise

in the enzymatic activity on the relative amplification factor

for the steady-state substrate mean. This noise can be

measured using the coefficient of variation (CV)13 of the station-

ary distribution for the enzyme abundance. As this

distribution is Poisson with mean ks/kd, the CV isffiffiffiffiffi
kd

p
=
ffiffiffiffi
ks

p� �
which shows that for a fixed kd, we can decrease

the relative noise level by simply increasing ks. With this in

mind, we repeat the above computations (figure 5) for three

additional values of ks, 5, 10 and 20, and the results are pro-

vided in figure 6. For each value of ks, the corresponding

estimates for the maximum relative amplification factor

rmax, the normalized Dirichlet form u and the threshold

speed ce (for e ¼ 0.01) are given in table 1.

Recall the discussion at the end of §2.4 on the effects of

noise in the enzymatic dynamics. From table 1, it is clear

that as expected, decreasing noise (or increasing ks) results

in the decline of both rmax and u. These parameters influence

the threshold speed ce (see (2.35)) in opposite ways, but their

overall effect is to increase ce, indicating that as the noise levels

go down, the relative enzyme speed needs to be higher and

higher for the assumption of deterministic enzymatic activity

to be acceptable. In other words, even though noise in

enzyme activity causes the stochastic amplification effect, it

also helps in eliminating it.
4. Discussion
We examined the mathematical properties of a system con-

sisting of a substrate that is degraded through an enzyme

with stochastically fluctuating activity levels. Our analysis

focused on the effect of enzymatic fluctuations on the mean

substrate abundance and its deviations from the deterministic

model predictions. It should be pointed out that even if

the substrate inflow rate is assumed to be an independent

stationary stochastic process with mean kin, our results will

not be affected.

Whereas a stochastically varying production rate would

leave the mean substrate level unaffected and equal to that
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Table 1. Estimates for rmax, u and ce for various values of ks.

ks rmax u ce

1 0.1703 2.1988 7.2903

5 0.1543 1.6907 8.5349

10 0.0930 0.6782 12.2383

20 0.0494 0.2550 15.4510
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of the deterministic model, fluctuations in the removal rate of

the substrate result in a system that behaves very differently

in the stochastic and deterministic regimes due to the product

term in the degradation rate of S. Our formulae help quantify

this discrepancy and study its behaviour as the speed of

enzymatic fluctuations varies from zero to infinity. They

also provide an interesting connection between the amplifica-

tion effect and the mixing properties of the Markov process

describing the enzymatic activity fluctuations, which allow

us to determine the speed above which this amplification

becomes negligible for a given system parametrization.
Note that the study of such systems through the use of

approximate stochastic models such as the linear noise

approximation [42] is particularly challenging, since these

methods typically fail to capture the very strong negative cor-

relations between enzyme activity and substrate that can arise

at slow enzyme fluctuations (see also discussion in [23]). On

the contrary, the results presented here are valid under much

milder simplifying assumptions, and can thus accurately

reveal the magnitude of the discrepancy between stochastic

and deterministic descriptions of the system.

Given the prevalence of enzymatic interactions in cell

biology, stochastic fluctuations in enzyme activity and/or

abundance are expected to play a large role in shaping the

mean intracellular abundances of substrates [15], which

could potentially also deviate significantly from the deter-

ministically predicted amounts. Since many enzymes are

allosterically regulated [43] by their products, substrates or

other small signalling molecules, it would be very interesting

to also study the effects of this regulation on the statistics of

substrates and products, and examine potential noise

reduction [23] or signal amplification strategies. As the sensi-

tivity of single-molecule enzymology experimental techniques
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increases, it may soon be possible to study the phenomena

described theoretically in this work within living cells.
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Endnotes
1A matrix Q is called irreducible if there does not exist a permutation
matrix P such that the matrix PQP21 is block upper-triangular.
2For a more rigorous definition of a stationary stochastic process,
see the electronic supplementary material.
3The concentration of any species is its copy number divided by
the system volume.
4An eigenvalue is said to be simple if its algebraic multiplicity is 1.
5A square matrix M is diagonalizable if it can be written as M ¼ PLP21

for some diagonal matrix L and some invertible matrix P. The diagonal
entries of D are the eigenvalues of matrix M.
6A function is called real analytic at a point if it is infinitely differen-
tiable at that point and it agrees with its Taylor series expansion
around that point.
7These weights may not be positive real numbers, as is customary in
the definition of arithmetic means. However, in our examples, we
generally find that the most significant weights indeed have a positive
real part and a negligible imaginary part.
8The generator of a Markov process is an operator which specifies
the rate of change of the distribution of the process. For more details,
see ch. 4 in [30].
9To see this note that rmax defined by (2.32) represents the ‘error’ in
Jensen’s inequality for the convex map x 7! 1/x. It can be easily
shown that this error is proportional to the variance of the distribution
p (see [40] for instance).
10In [22], S was called I and E was called S. We have changed the
notation to ensure consistency with the notation in this paper.
11This stationary distribution is obtained by applying the linear
change of variables g ¼ kp þ kae on the Poisson distribution with
mean ks/kd.
12The standard error is simply the standard deviation of the
distribution of the sample mean.
13The coefficient of variation of a probability distribution is its stan-
dard deviation divided by its mean. It measures the dispersion of a
distribution relative to its mean.
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