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Abstract. Let {·, ·}P be a variational Poisson bracket in a field model on an affine bundle π
over an affine base manifold Mm. Denote by × the commutative associative multiplication in
the Poisson algebra A of local functionals Γ(π) → k that take field configurations to numbers.
By applying the techniques from geometry of iterated variations, we make well defined the
deformation quantization map × 7→ ? = × + ~ {·, ·}P + ō(~) that produces a noncommutative
k[[~]]-linear star-product ? in A.

Introduction. Starting from a Poisson bi-vector P on a given finite-dimensional affine
Poisson manifold (Nn,P), the Kontsevich graph summation formula [32] yields an explicit
deformation × 7→ ?~ of the commutative product × in the algebra A := C∞(Nn) of
smooth functions. The new operation ?~ on the space A[[~]] = C∞(N)[[~]] of power
series is specified by the Poisson structure on N : namely, f ?~ g = f ×g+~ {f, g}P + ō(~)
such that all the bi-differential terms at higher powers of the formal parameter ~ are
completely determined by the Poisson bracket { , }P in the leading deformation term.
The deformed product ?~ is no longer commutative if P 6= 0 but it stays associative,

Assoc?~(f, g, h) :=
(
f ?~ g

)
?~ h− f ?~

(
g ?~ h

) .= 0 for all f, g, h ∈ C∞(N)[[~]],

by virtue of bi-vector’s property Jac(P) := [[P,P]] = 0 to be Poisson, cf. [5].
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In this paper we extend the Poisson set-up and graph summation technique in the
deformation × 7→ ?~ to the jet-space (super)geometry of Nn-valued fields φ ∈ Γ(π) over
another, (m > 0)-dimensional affine base manifoldMm in a given bundle π and secondly,
of variational Poisson bi-vectors P that encode the Poisson brackets { , }P on the space
of local functionals taking Γ(π) → k. We explain why an extension of the Kontsevich
graph technique [32] is possible and how it is done by using the geometry of iterated
variations [19, 22]. For instance, we derive a variational analogue of the Moyal associa-
tive ?-product, f ? g = (f) exp

(←−
∂i ·~Pij ·

−→
∂j
)

(g), in the case where the coefficients Pij of
bi-vector P are constant (hence the Jacobi identity [[P,P]] = 0 holds trivially). To process
variational Poisson structures with nonconstant coefficients, we analyse (see [5, 6]) the fac-
torization mechanism Assoc?~(f, g, h) = ♦

(
P, JacP(·, ·, ·)

)
(f, g, h) using the Kontsevich

graphs at higher powers of the deformation parameter ~. We explain why, holding up
to ō(~2), the associativity of ?~ can start leaking at orders ~>3 in the variational Poisson
geometry of field-theoretic models.

Its concept going back to Weyl–Groenewold [16] and Moyal [37], the problem of
associativity-preserving deformation quantisation × 7→ ?~ of commutative product ×
in the algebras C∞(Nn) of functions on smooth finite-dimensional symplectic mani-
folds (Nn, ω) was considered by Bayen–Flato–Frønsdal–Lichnerowicz–Sternheimer [2].
Further progress within the symplectic picture was made by De Wilde–Lecomte [10]
and independently, Fedosov [14, 13]. To tackle the deformation quantisation problem
in the case of finite-dimensional affine Poisson geometries

(
Nn, {·, ·}P

)
—that is, in ab-

sence of the Darboux lemma which guarantees the existence of canonical coordinates
on a chart Uα ⊆ Nn in the symplectic case—Kontsevich developed the graph complex
technique [29, 28]; it yields an explicit construction of each term in the series × 7→ ?~,
see [32, 30]. We recall this approach and analyse some of its features in Section 1. Specif-
ically, the sum over a suitable set of weighted oriented graphs determines on Nn 3 u a
star-product ?~ which (i) contains a given Poisson bracket {·, ·}P in the leading defor-
mation term at ~1 and (ii) is associative modulo the Jacobi identity for {·, ·}P ,

Assoc?~(f, g, h) = ♦
(
P, JacP(·, ·, ·)

)
(f, g, h), f, g, h ∈ C∞(Nn)[[~]], (1)

where

JacP(a, b, c) = 1
2

∑
σ∈S3

(−)σ{{σ(a), σ(b)}P , σ(c)}P , a, b, c ∈ C∞(Nn).

The construction of polydifferential operator ♦ has been analysed up to order ō(~4)
in [5, 6].

A key distinction between associativity mechanisms for the Darboux-symplectic and
Poisson cases is a possibility of the star-product self-action on non-constant coefficients
P ij(u) of the bracket {·, ·}P . It is readily seen that whenever those coefficients are con-
stant, the graph summation formula for ?~ then yields the Moyal star-product [37],

?
∣∣∣
u=(u1,...,un)

= exp
( ←−
∂

∂vi

∣∣∣
vi=ui

· ~P ij(u) ·
−→
∂

∂wj

∣∣∣
wj=uj

)
. (2)
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This formula’s geometric extension to the infinite-dimensional space of Nn-valued fields
over a given m-dimensional affine manifold Mm will be obtained in §2.3.1, see Eq. (14).

Valid in finite-dimensional set-up, the result of [32] was known to be not working in the
infinite dimension. It could not be applied to field-theoretic models, should one attempt
to assemble such geometries via a limiting procedure by first taking infinitely many
“zero-dimensional field theories” over the discrete topological space M0 =

⋃
x∈Mm{x}.

In fact, not only is the geometry of Nn-valued fields (here, n internal degrees of freedom
attached at every base point x ∈ Mm) infinite-dimensional if m > 0 but also does the
mathematical apparatus to encode it become substantially more complex, cf. [19, 22].
Many elements of differential calculus are known to be fragile in the course of transition
from finite-dimensional geometry of Nn to the infinite jet spaces J∞(π) for the bundles π
of Nn-valued fields over Mm, or to the infinite jet spaces of maps J∞(Mm → Nn), cf.
[26] vs [43] and [23] vs [1] or contrast [19] vs [40], [22] vs [27], and [32] vs this paper.

The aim of this paper is to develop a tool for regular deformation quantisation
(A,×) 7→

(
A[[~]], ?~

)
of field theory models. The commutative associative unital alge-

bras (A,×) of local functionals equipped with variational Poisson structures {·, ·}P are
the input data of quantisation algorithm; in the output one obtains the noncommutative
products ?~, associative up to ō(~>2), in the unital algebras A[[~]].

This paper is structured as follows. In the next section we review the concept of de-
formation quantisation [32] for finite-dimensional affine Poisson manifolds

(
Nn, {·, ·}P

)
:

the deformation × 7→ ?~ is approached via summation over a class of weighted oriented
graphs. In Section 2 we proceed with finite-dimensional affine bundles π over affine man-
ifolds Mm; the infinitesimal parts of deformations are now specified by the variational
Poisson brackets {·, ·}P for algebras A of local functionals taking Γ(π) → k. To extend
the deformation quantisation technique to such set-up, we let elements of the Gel’fand cal-
culus of singular linear integral operators enter the game in §2.2. Each graph in the Kon-
tsevich summation formula now encodes a local variational (poly)differential operator.
We then inspect in §2.3 the geometric mechanism through which the new star-products
can stay associative. Taking star-product (2) by Weyl–Groenewold–Moyal as prototype,
we illustrate the algorithm of variational deformation quantisation by presenting this
structure’s associative analogue ? for the class of Hamiltonian total differential operators∥∥P ijτ (x) d|τ |/dxτ

∥∥j=1,...,n
i=1,...,n whose coefficients do not depend on sections u = φ(x). On the

other hand, for field-dependent Hamiltonian operators we indicate a channel for the as-
sociativity to leak at orders ō(~>2). This effect was altogether suppressed in the seminal
picture; originally invisible, it can appear only in the framework of fibre bundles π over
the base manifold Mm of positive dimension m.

1. The Kontsevich ?~-product on finite-dimensional Poisson manifolds. In this
section we recall the graph technique [32] for deformation quantisation × 7→ ?~ on finite-
dimensional affine Poisson manifolds

(
Nn, {·, ·}P

)
.

1.1. Let us first consider the direct problem of producing Lie algebra structures from
a given associative product in the algebra of functions on Nn.
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Lemma 1. Let A be an associative algebra. Denote by ? the associative multiplication
in A. Then the bi-linear skew-symmetric operation

{f, g} := f ? g − g ? f, f, g ∈ A, (3)

is a Lie bracket satisfying the Jacobi identity.1

Proof. Indeed, the Jacobiator Jac{·,·}(f, g, h) =
∑
σ∈�{{σ(f), σ(g)}, σ(h)} is assembled

by using the sum of associators:

Jac{·,·}(f, g, h) =
∑
τ∈S3

(−)τ Assoc?
(
σ(f), σ(g), σ(h)

)
, f, g, h ∈ A.

This tells us that the Jacobi identity for the bracket {·, ·} is an obstruction to the asso-
ciativity of the product ?.

Corollary 2. Let {·, ·}P be a Poisson bracket on Nn and × be the multiplication in
the algebra A = C∞(Nn). Suppose that a deformation × 7→ ? = × + ~ {·, ·}P + ō(~) of
the product in A to a multiplication in A[[~]] is such that ? is associative at all orders
of the deformation parameter ~. Then this deformation × 7→ ? yields a transformation
{·, ·}P 7→ {·, ·} = {·, ·}P+ ō(1) of the Poisson bracket {·, ·}P to a Lie—but not necessarily
Poisson—bracket (3).

Lemma 3 ([32]). Denote by × the associative multiplication in the algebra A = C∞(Nn).
Suppose that a deformation × 7→ ? = × + ~B1(·, ·) + ~2B2(·, ·) + ō(~2) is such that
B1(·, ·) is a bi-derivation and let ?mod ō(~2) be associative up to ō(~2), that is,

Assoc?(f, g, h) = ō(~2) for f, g, h ∈ A[[~]].

Then the bi-linear skew-symmetric bi-derivation2

{f, g}? := f ? g − g ? f
~

∣∣∣∣
~:=0

= 2B−1 (f, g)

is a Poisson bracket.

Proof. In the leading order, Assoc?mod ō(~2)(f, g, h) = Assoc×(f, g, h)+ō(1) = ō(1). At ~1,
Assoc?mod ō(~2)(f, g, h) = ~

[
B1(f, g)×h+B1(f×g, h)−f×B1(g, h)−B1(f, g×h)

]
+ō(~) =

ō(~) because B1 is a derivation with respect to each argument. Next, at ~2 we obtain

Assoc?mod ō(~2)(f, g, h) = ~2 [B1(B1(f, g), h)−B1(f,B1(g, h))
−
(
f ×B2(g, h)−B2(f, g)× h+B2(f, g × h)−B2(f × g, h)

)]
+ ō(~2).

We are given that this expression’s leading term vanishes. By taking an alternating sum
over the group of permutations of three arguments and recalling that the product × is

1For example, let A be the algebra A = C∞(Nn) of smooth functions or the algebra A[[~]] of
formal power series on a given manifoldNn. Then Lie bracket (3) is not necessarily a bi-derivation
and its differential order with respect to either of the arguments is not necessarily bounded.

2By assumption, the leading deformation term ~B1(·, ·) in ? is a bi-derivation, hence same
are its symmetric and skew-symmetric parts, B+

1 (f, g) = 1
2 (B1(f, g) +B1(g, f)) and B−1 (f, g) =

1
2 (B1(f, g)−B1(g, f)), respectively.
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commutative, we deduce that∑
σ∈S3

(−)σ Assoc?mod ō(~2)
(
σ(f), σ(g), σ(h)

)
=
∑
σ∈S3

(−)σ
[
B1
(
B1(σ(f), σ(g)), σ(h)

)
−B1

(
σ(f), B1(σ(g), σ(h)

)]
+ ō(~2),

that is, all the four terms containing B2(·, ·) cancel out; in the sum over permutations
they are grouped by (1st − 2nd) + (3rd) − (4th). Finally, let us split B1(·, ·) = B+

1 (·, ·)+
B−1 (·, ·) and infer that in fact, its symmetric part also cancels out in the alternating sum:∑

σ∈S3

(−)σ Assoc?mod ō(~2)
(
σ(f), σ(g), σ(h)

)
= Jac{·,·}?(f, g, h) + ō(~2),

whence the assertion readily follows.
Example 1. Let f, g be functions in the Cartesian coordinates p and q on R2. Consider
the associative star-product

(f ? g)(p, q; ~) = f
∣∣
(p,q) exp

(←−
∂ /∂p · ~ ·

−→
∂ /∂q

)
g
∣∣
(p,q).

We have
∂f

∂p
· ∂g
∂q

= 1
2

(
∂f

∂p
· ∂g
∂q

+ ∂g

∂p
· ∂f
∂q

)
+ 1

2

(
∂f

∂p
· ∂g
∂q
− ∂g

∂p
· ∂f
∂q

)
.

By construction, we obtain
{f, g}? = (f)

←−
∂ /∂p ·

−→
∂ /∂q(g)− (g)

←−
∂ /∂p ·

−→
∂ /∂q(f),

which is the two functions’ Poisson bracket referred to the canonical Darboux coordi-
nates p and q.
Remark 1. From now on we shall always assume that the leading deformation term
B1(·, ·) at ~1 in ? is skew-symmetric. In the Kontsevich star-product, the symmetric
part B+

1 of a given deformation term B1 might not be vanishing identically ab initio
but it can then be trivialised—at the expense of using suitable gauge transformations
f 7→ f + ~D1(f) + o(~), g 7→ g + ~D1(g) + o(~) of its arguments (see [32]).

1.2. Now suppose that a Poisson bracket {·, ·}P is given on Nn in advance. Can the
commutative associative multiplication × in the algebra C∞(Nn) 3 f, g be deformed
to an associative star-product ?~ such that the formal power series f ?~ g = f × g + ~ ·
{f, g}P+

∑+∞
k=2 ~k Bk(f, g) is well defined? More specifically, the bi-linear, not necessarily

commutative, star-product ?~ = × + ~{·, ·}P +
∑
k>1 ~kBk(·, ·) must satisfy the four

axioms:
1. it is associative,

(f ?~ g) ?~ h
.= f ?~ (g ?~ h) via {{f, g}P , h}P + c. p. = 0, f, g, h ∈ C∞(Nn), (1′)

i.e. modulo the property of bracket {·, ·}P on Nn to be Poisson;
2. the unit function 1 ∈ C∞(Nn) remains the neutral element for ?~; whatever f ∈
C∞(Nn), one has that f ?~ 1 = f = 1 ?~ f ;

3. each term Bk(·, ·), including the skew-symmetric Poisson bracket {·, ·}P = B1(·, ·) to
start with at ~, is a bi-linear differential operator of bounded order;

4. the product ?~ is (let to be) k[[~]]-linear over C∞(Nn)[[~]].
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Theorem 4 ([32]). For every affine n-dimensional Poisson manifold (Nn<∞,P) there
exists a star-product ?~ = × + ~ {·, ·}P +

∑+∞
k=2 ~k Bk(·, ·) in A[[~]] satisfying the above

four axioms.

The proof is constructive (cf. [7] and [31, 42]); the graph technique [32, 30, 29, 28]
is a convenient way to encode the bi-differential terms Bk(·, ·) in perturbation series ?~.
Every term in Bk(f, g) at ~k, k > 0, is encoded by an oriented graph Γ with k+2 vertices,
of which two sinks contain the respective arguments f and g and each of the remaining
k internal vertices is a source for two oriented edges. (In total, there are k such wedges
with 2k arrows in every such graph Γ.) Neither tadpoles nor multiple edges are permitted
(cf. [7]). Next, install a copy of the given Poisson bi-vector P at each of the k tops of the
wedges and decorate every edge in the graph Γ at hand with a summation index running
from 1 to n = dimNn. The two edges issued from each internal vertex are ordered, so
that the precedent and antecedent edges correspond to the first and second indexes in
a copy of the Poisson bi-vector P.

1.3. To encode multi-vectors Ξ ∈ Γ
(∧∗

TNn
)
in a standard way, consider the parity-

odd neighbour ΠT ∗Nn of cotangent bundle to the manifold Nn and denote by ξ =
(ξ1, . . . , ξn) the n-tuple of Z2-parity odd fibre coordinates over a chart Uα ⊆ Nn with an
n-tuple u = (u1, . . . , un) of local coordinates. Whenever the values {ui, uj}P(u) = P ij(u)
are given, construct the bi-vector P = 1

2 〈ξiP
ij
∣∣
u
ξj〉 ∈ Γ(

∧2
TUα); bi-vectors are Poisson

if they satisfy the classical master-equation [[P,P]] = 0, see footnote 5.

Convention 1. The correspondence between every decorated oriented edge and analytic
expressions occurring in Bk(·, ·) is established in Fig. 1; at every set of index values, the

�
�

�
�
�
�	s

s
i

−→
∂/∂ξi

←−
∂/∂ui

Objtail

Objhead

-
n∑
i=1

(Objtail)
←−
∂

∂ξi
×
−→
∂

∂ui
(Objhead)

Fig. 1. The matching of indexes in the derivative falling on the arrowhead object
and in the Poisson bi-vector stored in the arrow tail vertex is due to the coupling

of the two objects’ differentials taken with respect to the canonical conjugate variables

respective content of vertices in a connected graph component is multiplied using ×
(cf. footnote 4). The expressions determined by different connected components of one
graph Γ in their formal sum are also multiplied by using the original product ×.

Remark 2. Because other arrows may stick into the vertices connected by an edge i−−→
in Fig. 1, the objects Objtail and Objhead contained there can be derivatives (with re-
spect to uα’s) of the bi-vector P or, specifically to Objhead but never possible to Objtail,
arguments f and g of the star-product. On the same grounds, because there is another
arrow issued from the tail vertex with Objtail, the formula encoded by a graph Γ does in
fact not depend on any of the auxiliary, parity-odd variables ξj .
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In the Kontsevich star-product, every graph is accompanied with its weight w(Γ) ∈ R;
these numbers are obtained by calculating certain explicitly given integrals over the con-
figuration spaces of k distinct points—in fact, the graphs’ vertices containing P—on the
Lobachevsky plane (in its Poincaré model in the upper half-plane), see [32]. The full set
of rational values of weights for all graphs in an expansion ?~ mod ō(~4) of the Kontsevich
star-product has been obtained in [6].

Example 2. For any functions f, g ∈ C∞(Nn), the expansion f ?~ gmod ō(~2) reads as
follows:3r r?

f g

= r r
f g

+ ~1

1! r r
f g

r
�
��
A
AU + ~2

2! r r
f g

rr��
�

B
B
BN��/SSw + ~2

3

( r r
f g

rr
?

@@R
@@R��	 − r r

f g

r
@@R��	

r
?

��	
)

+ ~2

6 r r
f g

r r
??

�
	

+ ō(~2). (4)

Referred to any system of affine local coordinates u = (u1, . . . , un) on Uα ⊆ Nn, for a
given Poisson bi-vector P

∣∣
u

= 1
2 〈ξiP

ij(u)ξj〉 this sum of weighted graphs is realised by
the formula4

f ?~ g = f × g+ 1
1!(f)

←−
∂

∂ui
·~P ij ·

−→
∂

∂uj
(g) + 1

2! (f)
←−
∂

∂ui1

←−
∂

∂ui2
·~2P i1j1P i2j2 ·

−→
∂

∂uj2

−→
∂

∂uj1
(g)

+ 1
3

{
(f)
←−
∂

∂ui

←−
∂

∂uk
· ~P ij ·

−→
∂

∂uj
(~P k`) ·

−→
∂

∂u`
(g)− (f)

←−
∂

∂uk
· (~P k`)

←−
∂

∂uj
· ~P ij ·

−→
∂

∂ui
(g)
}

+ 1
6(f)

←−
∂

∂ui
· (~P ij)

←−
∂

∂uk
·
−→
∂

∂uj
(~P k`) ·

−→
∂

∂u`
(g) + o(~2). (5)

The values of (derivatives of) both arguments and coefficients of the Poisson bi-vector P
are calculated at u ∈ Uα ⊆ Nn in the right-hand side of the above formula.

Example 3 (Moyal–Weyl–Groenewold). Suppose that all coefficients P ij of the Poisson
bi-vector P are constant, which is a well defined property with respect to all local coor-
dinate systems on the affine manifold Nn at hand. In effect, the graphs with at least one
arrow arriving at a vertex containing P make no contribution to the star-product ?. The
only contributing graphs are portrayed in this figure,

f ? g = s s
f g

+ ~1

1! ss �� BBN
sP

f g

+ ~2

2! ss �� BBN
s

f g

�
�
�
���

C
C
C
CCW

s
+ ~3

3! ss �� BBN
s

f g

�
�
�
���

C
C
C
CCW

s
�
�
�

B
B
BN

s
+ . . .+ ~k

k! ss �� BBN
s...

f g

�
�
�
���

C
C
C
CCW

s }
k

+ . . . .

3The precedence-antecedence of edges is given by the ordering of indexes i ≺ j, i1 ≺ j1,
i2 ≺ j2, and k ≺ ` in the analytic formula, see (5).

4Note that a graph itself suggests the easiest-to-read way to write down the respective dif-
ferential operator’s formula; this will be particularly convenient in the variational setting of
Section 2, see p. 233.
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These graphs are such that their weights in the power series combine it to the Moyal
exponent,

(f ? g)(u; ~) =
[
(f(u)) exp

( ←−
∂

∂ui
· ~P ij ·

−→
∂

∂vj

)
(g(v))

]∣∣∣∣
u=v

. (2)

Here we accept that the use of every next copy of the bi-vector P creates a new pair of
summation indexes.

Remark 3. The introduction of two identical copies, u ∈ Uα ⊆ Nn and v ∈ Uα ⊆ Nn,
of the geometry where the objects f and g are defined reveals an idea that will be used
heavily in what follows.

Proposition 5. The associativity of Moyal star-product (2) is established by the a pos-
teriori congruence mechanism.

Proof (see [8]). From the identity

(f(u)× g(v)
∣∣
u=v)

←−
∂

∂u
=
[
(f(u)× g(v))

(←−
∂

∂u
+
←−
∂

∂v

)]∣∣∣∣
u=v

we infer that

((f ? g) ? h− f ? (g ? h))(u; ~)

=
[[

(f |u) exp
( ←−

∂

∂ui
~P ij

−→
∂

∂vj

)
(g|v)

]∣∣∣∣
u=v

exp
( ←−

∂

∂uk
~P k`

−→
∂

∂w`

)
(h|w)

]∣∣∣∣
u=w

−
[
(f |u) exp

( ←−
∂

∂ui
~P ij

−→
∂

∂vj

)[
(g|v) exp

( ←−
∂

∂vk
~P k`

−→
∂

∂w`

)
(h|w)

]∣∣∣∣
v=w

]∣∣∣∣
u=v

=
[
(f |u) exp

( ←−
∂

∂ui
~P ij

−→
∂

∂vj

)
(g|v) exp

(( ←−
∂

∂uk
+
←−
∂

∂vk

)
· ~P k`

−→
∂

∂w`

)
(h|w)

]∣∣∣∣
u=v=w

−
[
(f |u) exp

( ←−
∂

∂ui
~P ij ·

( −→
∂

∂vj
+
−→
∂

∂wj

))
(g|v) exp

( ←−
∂

∂vk
~P k`

−→
∂

∂w`

)
(h|w)

]∣∣∣∣
u=v=w

≡ 0,

which is due to the Baker–Campbell–Hausdorff formula for the exponent of sums of
commuting derivatives, and by having indexes relabelled.

1.4. Whenever the coefficients P ij(u) are not constant on the domain Uα ⊆ Nn, the
classical master-equation5 [[P,P]] = 0 is a nontrivial constraint for the bi-vector P.
Where is the Jacobi identity for the Poisson bracket {·, ·}P hidden in the associator
(f ?~ g) ?~ h− f ?~ (g ?~ h) for the full star-product ?

Example 4. It is easy to see that Assoc?~(f, g, h) = 2
3 JacP(f, g, h) + ō(~2).

5 The Jacobi identity for Poisson bracket {·, ·}P is equivalent to the zero-value condition
[[P,P]](f, g, h) = 0 for all Hamiltonians f, g, h; the tri-vector [[P,P]] is viewed here as a tri-linear
totally antisymmetric mapping and we denote by [[·, ·]] the Schouten bracket (i.e. parity-odd
Poisson bracket); in coordinates, one proves that [[P,P]] Th.= (P)

←−
∂
∂ui
·
−→
∂
∂ξi

(P)− (P)
←−
∂
∂ξi
·
−→
∂
∂ui

(P).
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By definition, we put
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i j k = 0. (6)

In formulae, by ascribing the index ` to the unlabeled edge, the identity reads
(∂`PijP`k + ∂`PjkP`i + ∂`PkiP`j) ∂i(1 ) ∂j(2 ) ∂k(3 ) = 0.

The coefficient of ∂i ⊗ ∂j ⊗ ∂k is the familiar form of the Jacobi identity.
To understand how sums of graphs can vanish by virtue of differential consequences

of Jacobi identity (6), let us note that for a given Poisson bi-vector P and for every
derivation ∂i falling on the Jacobiator JacP(a, b, c), the Leibniz rule yields
∂i
(
JacP(a, b, c)

)
=
(
∂i
(
Jac(P)

))
(a, b, c)+JacP(∂ia, b, c)+JacP(a, ∂ib, c)+JacP(a, b, ∂ic).

The last three terms in the right-hand side of the above formula amount to a redefinition
of Jacobiator’s arguments; hence every such term vanishes. Consequently, the first term
in which the derivation ∂i acts on the two internal vertices of the Jacobiator itself is equal
to zero:

(
∂i
(
Jac(P)

))
(·, ·, ·) = 0. One now proceeds recursively over arbitrarily large finite

set of derivations that simultaneously fall on the Jacobiator, then acting independently
from each other according to the Leibniz rule.

Definition 1. A Leibniz graph is a graph whose vertices are either sinks, or the sources
for two arrows, or the Jacobiator (which is a source for three arrows); there must be at
least one Jacobiator vertex. The three arrows originating from a Jacobiator vertex must
land on three distinct vertices (and not on the Jacobiator itself).6

Example 5. An example of a Leibniz graph is given in Fig. 2.
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• There is a cycle,
• there is a loop,
• there are no tadpoles in this graph,
• an arrow falls back on Jac(P),
• and Jac(P) does not stand on all of the three sinks.

Fig. 2. An example of Leibniz graph

Leibniz graphs encode (poly)differential operators ♦(P, Jac(P)) whose arguments are
at least one copy of the tri-vector Jac(P) and possibly, the bi-vector P itself.7

Proposition 6. For every Poisson bi-vector P the value—at the Jacobiator Jac(P)—of
every (poly)differential operator encoded by the Leibniz graph(s) is zero.

6Each edge falling on a Jacobiator works by the Leibniz rule on the two internal vertices in it.
Combined with expansion (6) of the Jacobiator using graphs, this tells us that every Leibniz
graph expands to a sum of Kontsevich graphs which were introduced before.

7In Example 4 the Leibniz graph amounts to just one tri-vector vertex and no extra copies
of the Poisson bi-vector in other internal vertices, of which there are none.
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Corollary 7. To prove that the associator for the Kontsevich star-product ?~ vanishes
for every Poisson structure contained in each internal vertex within a graph expansion
of ?~, it suffices to realize the associator as a sum of Leibniz graphs:8

Assoc?~(f, g, h) = ♦
(
P, JacP(·, ·, ·)

)
(f, g, h). (1)

From Example 4 we already know that the factorizing polydifferential operator in (1) is
♦ = 2

3 1 + ō(1).
Example 6. The assembly of factorizing operator ♦mod ō(~), i.e. at order 3 in the
expansion Assoc?~(·, ·, ·) mod ō(~3), is explained in [5]; linear in its argument at ~1, the
operator ♦mod ō(~) has differential order one with respect to the Jacobiator.

The next step ♦mod ō(~2) in factorization (1), now at order 4 with respect to ~ in
the associator, is achieved in [6].
Proposition 8 ([6]). No solution ♦mod ō(~2) of factorization problem (1) can have
differential order less than two with respect to the Jacobiator Jac(P); conversely, there
always exists a Leibniz graph at ~2 in the polydifferential operator ♦ such that at least
two arrows fall on the Jacobiator.

2. Deformation quantisation × 7→ ?~ in the algebras A of local functionals for
field models. In this section we lift the Kontsevich graph technique from a quantisation
× 7→ ?~ of the product × in the algebra A of smooth functions on a finite-dimensional
affine Poisson manifold

(
Nn, P

)
to the deformation × 7→ ?~ of the product of local func-

tionals in the geometry of Nn-valued fields over an affine base manifold Mm. We shall
analyse the construction of local variational polydifferential operators which are encoded
by the Kontsevich graphs (in particular, by the Leibniz graphs), now containing at each
internal vertex a copy of the variational Poisson structure {·, ·}P . It is the Gel’fand for-
malism of singular linear integral operators supported on the diagonal [15] that becomes
our working language.

2.1. Field model geometry. To extend the affine geometry of Section 1, let us list the
ingredients of the affine bundle set-up.9

Let
(
Mm,dvol(·)

)
be an m-dimensional oriented affine real manifold equipped with a

volume element.10 Let π : Em+n →Mm be an affine bundle with n-dimensional fibres Nn

over the base Mm. Denote by u = (u1, . . ., un) an n-tuple of local coordinates in the
fibre Nn.

Denote by J∞(π) the total space of the bundle π∞ of infinite jets j∞(s)(·) for sec-
tions s ∈ Γ(π) of the bundle π over Mm; the infinite jet space J∞(π) is the projective
limit proj limk→+∞ Jk(π) of the sequence of finite jet spaces Jk(π),

Mm π←− Em+n = J0(π)← J1(π)← . . .← Jk(π)← . . .← J∞(π).
8The same technique, showing the vanishing of a sum of Kontsevich graphs by writing it as

a sum of Leibniz graphs, has been used in [4] to solve another problem in the graph calculus.
9In retrospect, the construction in Section 1 can be viewed as a special case of such “bundles”

over a point M0.
10Not excluding the case where the volume element dvol(x) can nontrivially depend on the

jets j∞x (φ) of sections φ ∈ Γ(π) over points x ∈Mm, for the sake of brevity let us not write such
admissible second argument in dvol

(
·, j∞(φ)(·)

)
.
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It is clear that affine reparametrisations x̃(x) of local coordinates on the baseMm induce
linear transformations of smooth sections’ derivatives up to positive order k for all k > 0.
By definition, we put [u] for an object’s dependence on sections s and their derivatives
up to arbitrarily large but still finite order, which is well defined by the above.

Denote by H̄m(π) the vector space of integral functionals Γ(π) → k of form F =∫
f
(
x1, [u]

)
· dvol(x1) such that F (s) =

∫
Mm f

(
x1, j

∞
x1

(s)
)
· dvol(x1). Viewed as func-

tionals Γ(π) → k that take sections φ ∈ Γ(π) over Mm to numbers, the integral objects
F,G,H ∈ H̄m(π) can be shifted by using the null functionals Z : Γ(π) → 0 ∈ k. Those
can be of topological nature,11 Z ∈ Hm(π). We always quotient them out in this paper by
taking the factorgroup H̄m(π)/Hm(π). Secondly, null integral functionals Γ(π)→ 0 ∈ k
can mark the zero class

∫
dh(Θ) ∼=

∫
0 ∈ H̄m(π) in the top-degree horizontal cohomology

group12 for J∞(π) over Mm.
By brute force, introduce the multiplication × : F ⊗ G 7→ F × G =

∫
f
(
x1, [u]

)
·

dvol(x1)×
∫
g
(
x2, [u]

)
·dvol(x2) =

∫∫
f
(
x1, [u]

)
×g
(
x2, [u]

)
·dvol(x1) dvol(x2) : Γ(π)→ k

for G =
∫
g
(
x2, [u]

)
· dvol(x2). This yields the algebra A of local functionals,13 also

denoted by M
m(π) in [19, 22].

Referring only to the fibre’s local portrait but not to its global organisation, we in-
troduce the Z2-parity odd coordinates ξ = (ξ1, . . . , ξn) in the reversed-parity cotan-
gent spaces ΠT ∗(x,s(x))N

n to the fibres Nn ' π−1(x) of the bundle π, see [22, §2.1]
and [19, §2.1]. Let us note that for vector spaces Nn = Rn, the vector space isomor-
phism T(x,s(x))N

n ' Nn reduces this construction of Kupershmidt’s variational cotan-
gent bundle [33] over π∞ : J∞(π)→Mm to the Whitney sum J∞

(
π ×M Ππ̂

)
.

Convention 2. The notation π×M Ππ̂ will be used in what follows to avoid an agglom-
eration of formulae. Indeed, the case of affine bundle π already impels the construction
of horizontal jet bundle J∞π∞

(ΠT ∗π) over the space J∞(π).

The variational bi-vectors P ∈ H̄m
(
π ×M Ππ̂

)
are integral functionals of the form

P = 1
2

∫
〈ξ ·A

∣∣
(x,[u])(ξ)〉 = 1

2

∫
ξi P

ij
τ (x, [u]) ξj,τ · dvol(x),

11For instance, set m = 1, let Mm := S1 ∪ S1, take the usual angle variables ϕ1, ϕ2 : R1 → S1

on the two circles, and consider the null Lagrangian L =
∫

dϕ1−
∫

dϕ2 that takes every section
of an affine bundle π over such M1 to 2π − 2π = 0 ∈ k. Obviously, the cohomology class L
in H1(π) is nonzero for the top-degree form dϕ1 − dϕ2; for it is only locally but not globally
exact.

12The integrations by parts ∼= overMm are nominally present in the construction of horizontal
cohomology groups H̄i(π) for the jet space J∞(π) over the bundle π. By default, let us technically
assume that no boundary terms would ever appear from ∂Mm in any formulae. For that, either
let the base Mm be a closed manifold (hence ∂Mm = ∅; for instance, take M1 = S1) or
choose the class Γ(π) of admissible sections for the bundle π in such a way that they decay so
rapidly towards the boundary ∂Mm that all the integrands under study also vanish at ∂Mm.
For instance, suppose that M1 = R and all the field profiles u = φ(x) are Schwarz.

13We recall that in the (graded-)commutative set-up one has
(
F

M
m(π)
× G

)
(s) = F (s)

k
×G(s)

but a known mechanism destroys this algebra homomorphism in a larger setting of formal non-
commutative variational symplectic geometry and its calculus of cyclic words ([22], cf. [27, 39]).
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where the linear total differential operators A =
∥∥P ijτ ·( d

dx
)τ∥∥j=1,...,n

i=1,...,n are skew-adjoint (to
make the object P well defined); for all multi-indexes τ , the parity-odd symbols ξj,∅ = ξj ,
ξj,xk , ξj,xkx` , . . . , ξj,τ , . . . are the respective jet fibre coordinates.

The construction of variational k-vectors with k > 0 is alike, see [22]. Due to the
introduction of parity-odd variables ξ as canonical conjugates of the n-tuples u, the
vector space of all variational multivectors is naturally endowed with the parity-odd
variational Poisson bracket, or variational Schouten bracket [[·, ·]]. Its construction—as
descendent structure with respect to the Batalin–Vilkovisky Laplacian ∆—was recalled
in [19, 22].

Definition 2. A variational bi-vector P is called Poisson if it satisfies the classical
master-equation [[P ,P ]] ∼= 0. The horizontal cohomology class equivalence ∼= 0 means,
in particular, that the variational tri-vector [[P ,P ]], viewed as an integral functional,
takes Γ(π)→ 0 ∈ k.

Every variational Poisson bi-vector P induces the respective variational Poisson
bracket {·, ·}P : H̄m(π)×H̄m(π)→ H̄m(π) on the space of integral functionals Γ(π)→ k.
An axiomatic construction of {·, ·}P is explained in Definition 3; it is the derived bracket
[[[[P , ·]], ·]] of two Hamiltonians (see [22, §3]).14

The bracket {·, ·}P is extended, via the Leibniz rule, from the vector space H̄m(π) of
integral functionals H1, H2, . . . to the Poisson structure on the algebra A of (sums of)
such functionals’ formal products H1 × . . .×H` : Γ(π)→ k.

Remark 4. The value of {·, ·}P in H̄m(π) at two integral functionals does not depend on
a choice of representatives for the two arguments and for the variational Poisson bi-vector
P ∈ H̄m

(
π ×M Ππ̂

)
, taken modulo those integral functionals which map all sections of

the respective (super)bundle to 0 ∈ k. This is no longer necessarily so for the higher-order
terms, beyond the variational Poisson bracket {·, ·}P at ~1, in expansions (4).

Remark 5. Let us remember that every integral functional—e.g., taken as a building
block in a local functional—does carry its own integration variable which runs through
that integral functional’s own copy of the base Mm for the respective (super)bundle. For
a given model over

(
Mm,dvol(·)

)
, the variational Poisson bi-vector

P = 1
2

∫
ξi P

ij
τ (x, [u])

(
d

dx

)τ
(ξj) · dvol(x)

and two Hamiltonians, F =
∫
f(x1, [u]) · dvol(x1) and G =

∫
g(x2, [u]) · dvol(x2), are

integral functionals defined at sections of the bundles π ×M Ππ̂ and π, respectively. In
total, these three objects carry three copies of the given volume element dvol(·) on Mm.

On the other hand, the variational Poisson bracket {F,G}P of F and G with respect
to P is an integral functional Γ(π) → k that carries one copy of the volume element.
Why and where to have the two copies of dvol(·) gone? We now recall an answer to this
question.

14Note that an attempt to modify the volume element dvol(·) on Mm can affect the output
of {·, ·}P .
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2.2. Elements of the geometry of iterated variations

2.2.1. Let (s, s†) be a two-component section of the Whitney sum π×M Ππ̂ of bundles.
Suppose that this section undergoes an infinitesimal shift along the direction

(δs, δs†)
(
x, s(x), s†(x)

)
=

n∑
i=1

(
δsi(x) · ~ei(x) + δs†i (x) · ~e †,i(x)

)
,

which we decompose with respect to the adapted basis (~ei, ~e †,i) in the tangent space
T(x,s(x))π

−1(x) ⊕ Ts†(x)T
∗
(x,s(x))π

−1(x). At their attachment point, the vectors ~ei and
~e †,j are—by definition—tangent to the respective coordinate lines for variables ui and ξj .
By construction, these vectors ~ei and ~e †,j are dual; at every i running from 1 to n, the
two ordered couplings of (co)vectors attached over x ∈ Mm at the fibres’ points—with
values s(x) and s†(x) of the respective coordinates—are〈first

~ei ,
second
~e †,i

〉
= +1 and

〈first
~e †,i,

second
~ei

〉
= −1. (7)

Likewise, the coefficients δsi( · , s( · )) and δs†i ( · , s( · ), s†( · )) of the virtual shifts along
the ith coordinate lines ui and ξi are normalised via

δsi(x, s(x)) · δs†i (x, s(x), s†(x)) ≡ 1 (no summation!) (8)
over all internal points x ∈ supp δsi ⊆Mm.

Convention 3. The differentials of functionals’ densities are expanded with respect to
the bases ~e †,j , ~ei in the fibres tangent spaces; the plus or minus signs in the sections’
shifts are chosen in such a way that the couplings always evaluate to +1.

The directed variations
−→
δs and

−→
δs†, as well as

←−
δs and

←−
δs†, are singular linear integral

operators supported, due to (7), on the diagonal. Each variation contains n copies of
Dirac’s δ-distribution weighted by the respective coefficients δsi and δs†i . We have

−→
δs =

∫
dy
〈

(δsi)
(←−
∂

∂y

)σ
(y) ·

first
~ei(y) |

second
~e †,i( · )

−−−−−−−−−→

〉 −→
∂

∂uiσ
,

−→
δs† =

∫
dz
〈

(δs†i )
(←−
∂

∂z

)σ
(z) ·

first
(−~e †,i)(z) |

second
~ei( · )−−−−−−−−−−−−→

〉 −→
∂

∂ξi,σ
,

←−
δs =

∫
dy
←−
∂

∂uiσ

〈 second
~e †,i( · ) |

first
~ei(y)

←−−−−−−−−−
·
(−→
∂

∂y

)σ
(δsi)(y)

〉
,

←−
δs† =

∫
dz
←−
∂

∂ξi,σ

〈second
~ei( · ) |

first
(−~e †,i)(z)

←−−−−−−−−−−−−−
·
(−→
∂

∂z

)σ
(δs†i )(y)

〉
,

see [19, §2.2–3] for details; for brevity, the indication of fibre points for given s(·) and s†(·)
is omitted in such formulae. Whenever acting on local functionals, these linear operators
yield those functionals’ responses to infinitesimal shifts of their arguments, i.e. of the
sections at which the functionals are evaluated.

Let us now recall the mechanism of integration by parts (see [19] and [22, §2.5]).

Lemma 9. In absence of boundary terms, the on-the-diagonal integration by parts con-
verts derivatives along one copy of the integration domain Mm into (−1)× derivatives
with respect to the same variables, now referred to another copy of the base.
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Proof. Consider a point y of the affine manifold Mn and denote by y + δy ∈ Mn a
near-by point with coordinates yi + δyi, here and immediately below 1 6 i, α 6 n; the
notation limδy→0 makes obvious sense. For the sake of brevity, put σ := {xα}. We have
that, due to the absence of boundary terms and then by definition,15∫

dy
〈

(δsi)
←−
∂

∂yα
(y) · ~ei(y), ~e †,i(x)

−−−−−−−−−→

−→
∂

∂uixα
f(x, [u], [ξ])

∣∣
j∞

x (s,s†)

〉
=
∫

dy δsi(y)
(
−
−→
∂

∂yα

)〈
~ei(y), ~e †,i(x)
−−−−−−−−−→

−→
∂

∂uixα
f(x, [u], [ξ])

∣∣
j∞

x (s,s†)

〉

def= −
∫

dy δsi(y) lim
δyα→+0

1
δyα



〈
~ei(y + δyα), ~e †,i(x)︸ ︷︷ ︸

+1 if x = y + δyα

−→
∂

∂uixα
(x, [u], [ξ])

∣∣
j∞

x (s,s†)

〉

−
〈
~ei(y), ~e †,i(x)︸ ︷︷ ︸

+1 if x = y

−→
∂

∂uixα
f(x, [u], [ξ])

∣∣
j∞

x (s,s†)

〉


def=
∫

dy δsi(y)
〈
~ei(y), ~e †,i(x)
−−−−−−−−−→

(
−
−→
∂

∂xα

) −→
∂

∂uixα
f(x, [u], [ξ])

∣∣
j∞

x (s,s†)

〉
def=
∫

dy δsi(y)
〈
~ei(y), ~e †,i(x)
−−−−−−−−−→

〉
·
((
−
−→d

dxα

) −→
∂

∂uixα
f(x, [u], [ξ])

)∣∣∣
j∞

x (s,s†)
.

For multi-indexes σ longer than {xα} the powers (
←−
∂ /∂y)σ are processed by repeated

integrations by parts; this yields (−−→d /dx)σ. In
the course of derivation of densities with respect
to not aiσ but bj,τ and so, in the course of using
the other of two (co)vectors’ couplings, all rea-
sonings are still performed in exactly the same
way.
Corollary 10. The derivatives with respect to
base variables are transported along an edge to
the arrowhead according to the scenarios drawn
in Fig. 3; each derivative is referred to the copy
of base manifold Mm over which the object or
structure it acts on is defined.
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�
��	

u

−→
∂/∂z

−∂/∂y

+←−d/dx

−
←−d/dx

−→
∂/∂y

Fig. 3. Each on-the-diagonal push
of a derivative along the edge creates

an extra minus sign

2.2.2. Let us now explain how the edges in Kontsevich’s graphs get oriented; this mech-
anism is unseparable from the integration by parts. Every edge is realised by the linking
of variations—with respect to the canonical conjugate variables ui and ξi—of objects

15The definition of total derivative d/dx, which is(
j∞(s)∗

(( d
dxf

)
(x, [u])

))
(x0) def=

(
∂

∂x

(
j∞(s)∗

(
f(x, [u])

)))
(x0),

explains why the partial derivatives ∂/∂x reshape into d/dx as soon as they arrive to the graph’s
vertices and there, they act on the objects f which are defined over jet bundles and which are
evaluated at the infinite jets j∞(s) of sections s.
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that are contained in the two adjacent vertices. The orientation of such edge is the order-
ing δs† ≺ δs of singular linear integral operators; initially, they act as shown in Fig. 4.

�
�
�

�
�
�	t

t
i

−→
δs†i (z)

←−
δsi(y)

Obj(dvol(x1))

Obj(dvol(x2))

s
s

Fig. 4. Decorated by i, such oriented edge appeared in the operation • in [32]; here we extend
the formula which the edge encodes to the set-up of affine bundles over Mm by letting

the points x1, x2, y and z run through the integration domain Mm of positive dimension m.

Every edge in an oriented graph Γ contributes to the summand (which Γ encodes in the
star-product ?~) by the linking of variations and by the linking of differentials of objects
contained in the vertices. Novel with respect to the classical set-up of Section 1, the
variations δs and δs† absorb the derivatives—previously, non-existent—along the base
manifold Mm.

The singular linear integral operators δs and δs† now act not only on the spaces of
local functionals but also on elements of their native space of singular distributions. At the
same time, regular integral functionals—like P and F or G from A, which are contained
in vertices of a graph Γ at hand—themselves can discard the copy of volume elements
dvol( · ) which they are equipped with and by this, reshape into singular integral operators.
The linking of normalised variations yields singular linear integral operators that act via
multiplication by ±1. At the end of the day, the linking of every two neighbouring objects
converts one of them into a singular linear integral operator such that the (co)vectors
contained in it act on their duals, resulting in the multiples +1 or −1.

Example 7. The edge P i−→ F encodes the formula16∫∫
dx1 ·

( 1
2ξαP

αβ
σ

∣∣
(x1,[u])ξβ,σ

) ←−∂
∂ξi,τ〈 first

~ei(x1)|
∫∫

dy1 dy2

〈 first
(−~e †,i)(y1) · δs†i (y1)|δsi(y2) ·

second
~ei(y2)

〉
|

second
~e †,i(x2)

〉
d(

+
−→d

dx2

)τ(
−
−→d

dx2

)σ2 e −→∂
∂uiσ2

(f)(x2, [u]) · dvol(x2). (9)

The singular distributions work out the diagonal x1 = y1 = y2 = x2; both couplings eval-
uate to +1, and normalisation (8) makes the edge’s cargo invisible (indeed, it contributes
via multiplication by +1).

Remark 6. The three singular operators in (9) can be directed in the opposite way, i.e.
against the edge orientation along which the derivatives are transported in any case. This
would keep the volume element at the arrow tail.

16The notation d. . .e, not yet essential in the one-time variations here, will be explained in
Convention 4 on p. 236.
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Example 8. Consider the edge P j−→ G encoding the formula∫∫
dvol(x1) dx2 ·

( 1
2ξαP

αβ
σ

∣∣
(x1,[u])ξβ,σ

) ←−∂
∂ξj,τ〈 second

~ej(x1)|
∫∫

dy1 dy2

〈 second
(−~e †,j)(y1) · δs†j(yj)|δs

j(y2) ·
first

~ej(y2)
〉
|

first
~e †,j(x2)

〉
d(

+
−→d

dx2

)τ(
−
−→d

dx2

)σ2 e −→∂
∂ujσ2

(g)(x2, [u]).

In this case, both couplings evaluate to −1 by (7) still their values’ product is +1; the
diagonal-making and normalisation mechanism remain the same as before.

Summarising, the ordering in (7) is the only mechanism that creates sign factors; the
direction in which the operators act along the edge does not necessarily coincide with
that edge’s orientation in a graph Γ. The arrow specifies the direction to transport the
derivatives by using the integrations by parts.

Definition 3. The variational Poisson bracket {F,G}P of two integral functionals F
and G with respect to a given variational Poisson bi-vector P is the graph

�
�
��

A
A
AUqq

qP
i j

F G

. (10)

By using two pairs of normalised variations and by letting the volume element stay in
the vertex containing G, we realise the geometry of singular distributions encoded by this
picture via the formula∫∫∫

dx1 dx(f |(x1,[u]))
←−
∂

∂uiσ1

d(
−
←−d

dx1

)σ1(
+
←−d

dx1

)τ1 e

〈 first
~e †,i(x1)|

∫∫
dy1 dy2

〈 first
~e i(y2) ·δsi(y2)|δs†i (y1)·

second
(−~e †,i) (y1)

〉
|
second
~ei(x)

〉
·

·
−→
∂

∂ξi,τ1

( 1
2ξαP

αβ
ζ

∣∣
(x,[u])ξβ,ζ

) ←−∂
∂ξj,τ2

·

·
〈 first
~ej(x)|

∫∫
dz1 dz2

〈 first
(−~e †,j)(z1) ·δs†j(z1)|δsj(z2)·

second
~ej(z2)

〉
|

second
~e †,j(x2)

〉
d(

+
−→d

dx2

)τ2(
−
−→d

dx2

)σ2 e −→∂
∂ujσ2

(g|(x2,[u])) · dvol(x2).

The two pairs of couplings evaluate to (−1) · (−1) × (+1) · (+1) = +1. The algorithm’s
output is (cf. [33, 38])

{F,G}P = 1
2

∫ 〈
δF

δu
·
−→
A

(
δG

δu

)〉
− 1

2

∫ 〈(
δF

δu

)
←−
A · δG

δu

〉
, (11)

where A is the Hamiltonian operator built into the variational Poisson bi-vector P =
1
2
∫
〈ξ ·
−→
A (ξ)〉.
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Remark 7. Because the operator A is skew-adjoint, one could now integrate by parts,
obtaining an even shorter expression,

∼=
∫ 〈

δF

δu
·
−→
A
(δG
δu

)〉
.

Still let it be remembered that it is the wedge graph in (10) that does define the variational
Poisson bracket, whereas this formula is its remote consequence.

Remark 8. When the variational Poisson bracket of two given functionals is assem-
bled by Definition 3 —to be evaluated at a section s ∈ Γ(π)—the total derivatives d/dx
immediately follow the partial derivative ∂/∂uiσ in the construction of variational deriva-
tives δ/δu. Such inseparability of the horizontal and vertical derivations referring to their
own geometries Mm and Nn, respectively, is specific only to one-step reasonings (for
instance, derivation of the Euler–Lagrange equations of motion from a given action func-
tional). However, a necessity to iterate the virtual shifts of a section s ∈ Γ(π) reveals a
difficulty of the classical jet bundle geometry (e. g., this was acknowledged in [17, §15.1]).

We shall now explain how the graded permutability of iterated variations is achieved in
the course of both all the couplings evaluation and transporting the derivatives alongMm

to their final positions.

2.2.3. Consider a vertex where two or more arrows arrive—or a vertex that contains P
(so that two partial derivatives,

−→
∂ /∂ξi1,τ1 and

←−
∂ /∂ξi2,τ2 , retro-act on its content) and

that serves as the head for another arrow (hence, bringing the partial derivative ∂/∂uiσ
followed by (−d/dx)σ and possibly, by the total derivative(s) (+d/dx)τ specified by that
arrow’s tail)

@
@
@R

�
�
�	s
F

i1 i2
A
A
AU
��	 @@R

sPj

i1 i2 . (12)

In which consecutive order are those partial and total derivatives, related to different
edges, applied to the content of a vertex?

Furthermore, the associativity of Kontsevich star-product ?~ is achieved in particular
due to many cancellations of similar terms in the associator (·?~ ·)?~ ·−·?~(·?~ ·). Consider
those three-sink graphs which can be built using at least two pairs of weighted graphs in
the inner and outer products, respectively. Their cancellation prescribes that the resulting
analytic expressions, encoded by every such non-contributing graph with three sinks, must
not depend on a scenario to compose that graph. We conclude that the action of total
derivatives d/dx` in the inner star-products in the associator (F ?~G)?~H−F ?~(G?~H)
is delayed until all the partial derivatives ∂/∂uσ would have finished acting in the outer
star-products.17

17This allowed an intrinsic regularisation of the Laplacian ∆ and variational Schouten
bracket [[·, ·]] in the Batalin–Vilkovisky formalism (see [19, 20, 21] and [7, 17]), the concept
was furthered to the formal noncommutative symplectic supergeometry and calculus of cyclic
words (see [22] and [27]).
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Proposition 11 (see [19, 20, 21, 22]). The vertical derivations ∂/∂uiσ and (the lifts
d/dx` of ) horizontal derivations ∂/∂x` are performed at different stages. First, the ver-
tical derivations ∂/∂uσ along Nn, together with their counterparts ∂/∂ξτ from the parity-
odd symplectic dual, frame the edges of entire graph Γ. In the meantime, the derivatives
along the base Mm are stored inside the variations δs by using ∂/∂yk. Lastly, all the
horizontal derivatives (±∂/∂yk)σ are channelled from δsi to (∓∂/∂x`)σ, at the end of
the day acting on the objects which are targets of ∂/∂uiσ.

Convention 4. To indicate the delayed arrival of total derivatives to their final places
(where we write them at once), let us embrace these operators by using d. . .e in all
formulas (e.g., see Definition 3).

Remark 9. We emphasize that by the definition of total derivative (see footnote 15),
the derivatives ∂/∂yk(δsi) of virtual shifts δsi for sections ui = si(x`) reshape, under
integration by parts, into the derivatives −∂/∂x`(si) of those sections but they do not
affect the parity-odd variables ξj,ζ which parametrise the fibres of another bundle. Conse-
quently, the total derivatives (+−→d /dx`)τ ◦ (−−→d /dx`)σ refer only to the jet space J∞(π)
where they act on the respective fibre variables uσ in a vertex’ content.

Example 9. The first graph in (12) corresponds to the formula(
f |(x1,[u])

) ←−∂
∂ui1σ1

←−
∂

∂ui2σ2

d(
−
←−d

dx1

)σ1∪σ2

◦
(

+
←−d

dx1

)τ1∪τ2 e
, (13)

where the multi-indexes τ1 and τ2 arrive from the respective arrow tails.
The second graph in (12) contributes with the expression

d(
+
←−d

dxk

)τ1 e −→∂
∂ξi1,τ1

∫ 1
2ξα

{d(
+
−→d
dx

)τ(
−
−→d
dx

)σ e −→∂
∂ujσ

(
Pαβζ

∣∣
(x,[u])

)}
ξβ,ζ dvol(x)

←−
∂

∂ξi2,τ2

d(
+
−→d

dx`

)τ2e
,

where the multi-index τ arrives from the tail of arrow decorated with j and where the
copies of base Mm for objects at the heads of arrows that carry i1 and i2 are marked
using k and `, respectively.

Summarising, the local portrait of oriented edges around every vertex in a given
graph Γ determines the vertex-incoming partial derivatives with respect to variables uσ,
in-coming graded partial derivatives with respect to the parity-odd variables ξτ , and
(powers of) delayed (±1)× total derivatives. All these derivations act on the object
contained in a vertex at hand, that is, on either a Hamiltonian density or structure
constants Pαβζ

(
x, [u]

)
of the variational Poisson bracket. Note that in both cases, the

arguments are referred to the geometry of J∞(π), hence those objects are expressed in
terms of sections of the parity-even jet bundle π∞ : J∞(π)→Mm.

Globally, each oriented graph Γ in the Kontsevich summation formula (4) encodes
a singular linear integral operator that acts on a local functional contained in one of
the sinks.
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2.3. On the associativity of star-product

2.3.1. Let P = 1
2
∫
〈ξ · Pτ |x(ξ)〉 be a variational Poisson bi-vector such that its coef-

ficients P ijτ (x) do not depend explicitly on the jet fibre variables uσ in the bundle π∞
over Mm 3 x. Let F =

∫
f(x1, [u]) · dvol(x1) and G =

∫
g(x2, [v]) · dvol(x2) be integral

functionals referred to two identical copies of the jet space J∞(π). A variational gener-
alisation F ? G of the Moyal–Groenewold–Weyl star-product ? for F and G is the local
functional which is constructed from (2) for the variational Poisson bracket {·, ·}P by
using the techniques from §2.2. The variational Moyal product of two integral functionals
is expressed by the formula

F ? G =
∫ (

f |(x1,[u]) exp
( ←−

∂

∂uiσ

d(
−
←−d

dx1

)σ( ←−d
dx1

)τ e
·
−→
∂

∂ξi,τ

(
~
2 ξαP

αβ
λ (x)ξβ,λ

) ←−
∂

∂ξj,ζ
·

·
d( −→d

dx2

)ζ(
−
−→d

dx2

)χ e −→∂
∂vjχ

)
g
∣∣
(x2,[v])

)∣∣∣∣∣x1=x=x2
[u]=[v]

· dvol(x). (14)

The angular brackets d. . .e in (14) embrace the total derivatives whose action—in ev-
ery term of the towered wedge graph expansion of ?—antecedes18 the action of partial
derivatives with respect to uiσ and vjχ. For instance, the expansion starts as follows:

F ? G = F ×G+ ~1

1! {F,G}P + ~2

2!

∫ (
f
∣∣
(x,[u])

) ←−∂
∂ui1σ1

←−
∂

∂ui2σ2

(
−
←−d
dx

)σ1∪σ2

·

·
(←−d

dx

)τ1∪τ2 −→
∂

∂ξi1,τ1

( 1
2ξα1P

α1β1
λ1

(x)ξβ1,λ1

) ←−
∂

∂ξj1,ζ1

·
−→
∂

∂ξi2,τ2

( 1
2ξα2P

α2β2
λ2

(x)ξβ2,λ2

)
·

·
←−
∂

∂ξj2,ζ2

(−→d
dx

)ζ1∪ζ2(
−
−→d
dx

)χ1∪χ2 −→∂
∂uj2

χ2

−→
∂

∂uj1
χ1

(
g
∣∣
(x,[u])

)
· dvol(x) + o(~2).

Let x̃ = Iαβ x + ~µ, ũ = Jαβ u + ~ν(x) be an affine change of variables in π such that
the Jacobian matrix J is locally constant on the intersection Vα ∩ Vβ of two charts Vα,
Vβ ⊆Mm. Then formula (14) is invariant with respect to such coordinate reparametrisa-
tion. The associativity of (14) is proved in a standard way (see the proof of Proposition 5).
The associator (F ? G) ? H − F ? (G ?H) of three given integral functionals over J∞(π)
itself is an integral functional whose density is identically zero at all points of J∞(π)
over Mm.

Proposition 12. Formula (14) provides the deformation quantisation of first and, via
factorisation by using the junior Poisson bracket for the modified system, of second vari-
ational Poisson structures for the Drinfel’d–Sokolov hierarchies.

Example 10 (root system A1). Consider the Korteweg–de Vries equation

wt = − 1
2wxxx + 6wwx =

(
− 1

2D
3
x + 2wDx + 2Dx ◦ w

)( δ

δw

∫
1
2w

2 dx
)

18We recall that the action of total derivatives contained, e.g., in F ? G itself constituting a
part of the object (F ?G) ?H −F ? (G?H) is also delayed until all the partial derivatives would
have acted on the densities f , g, or h.
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realised by using its second, field-dependent variational Poisson structure.19 Consider the
Miura substitution [35, 36] w = 1

2 (u2
x−uxx); let us explain in advance that the conserved

current w dx = 1
2 (u2

x−uxx) dx stems—via the First Noether theorem—from the Noether
symmetry ϕ1 = ux of the action L =

∫∫ ( 1
2uxuy+ 1

2e
2u) dx∧dy for the Liouville equation

ELiou = {uxy = exp(2u)}.
The mapping w = w(x, [u]) is determined by the integral w ∈ ker d

dy
∣∣
ELiou

; we recall
that the coefficient “2” in the right-hand side of uxy = exp(2u) is the only entry of the
Cartan matrix K = ‖2‖11 for Lie algebra sl2(C).

By definition, put ϑ = 1
2ux so that `(u)

ϑ = 1
2

d
dx is the first Hamiltonian operator

B̂mKdV
1 of modified KdV hierarchy and so that w = 2ϑ2−ϑx. Denote by � = 4ϑ+Dx =

2ux + Dx the adjoint (`(ϑ)
w )† of linearisation `

(ϑ)
w = 4ϑ − Dx. By using the chain rules

δ/δϑ = (`(ϑ)
w )† ◦ δ/δw and δ/δu = (`(u)

ϑ )† ◦ (`(ϑ)
w )† ◦ δ/δw, we cast the (potential) modified

KdV equations,

ut = − 1
2uxxx + u3

x = �(w), ϑt = − 1
2ϑxxx + 12ϑ2ϑx,

into their canonical De Donder–Weyl’s representation [9, 11]

ut = δH[w[ϑ]]
δϑ

, ϑt = −δH[w[ϑ[u]]]
δu

with H =
∫

1
2w

2 dx.

Clearly, we then recover the KdV evolution

wt =
(
`(ϑ)
w (ϑt)

)
[w] =

(
− 1

2D
3
x + 4wDx + 2wx

)(
δH
(
x, [w]

)
/δw

)
.

This factorisation pattern involving the Fréchet derivatives (or linearisations),

ÂKdV
2 = `(ϑ)

w ◦ `
(u)
ϑ ◦

(
`(ϑ)
w

)†
,

is common to all the root systems of ranks r > 1, that is, for the (modified) Drinfel’d–
Sokolov hierarchies [12]. It is seen that the hierarchy for respective analogue of potential
modified KdV equation for u constitutes the maximal commutative subalgebra in the
Lie algebra of Noether symmetries for Leznov–Saveliev’s nonperiodic 2D Toda chains [34]
uixy = exp

(∑r
j=1

2〈αi,αj〉
〈αj ,αj〉 ·u

j
)
. The algorithm for construction of r integrals [44] w1, . . . , wr

is known from [41], see [24] for an illustration. The De Donder–Weyl formalism [9, 11]
furthers the approach: the variables ϑ1, . . . , ϑr are the canonical conjugate momenta,
ϑi = ∂L/∂uiy, for the genuine coordinates u1, . . ., ur satisfying the 2D Toda equations.
The Lagrangian density is L = 1

2κiju
i
xu

j
y+〈ai, exp(Ki

ju
j)〉, where each row of the Cartan

matrix K = ‖Ki
j‖ is symmetrised to κ = ‖ai · Ki

j‖
j=1,...,r
i=1,...,r by using the root lengths,

ai := 1/〈αi, αi〉 at every i. Consequently, the junior variational Poisson structure for the
modified Drinfel’d–Sokolov hierarchy is

B̂1 =
∥∥∥∥ 〈αi, αj〉
〈αi, αi〉〈αj , αj〉

d
dx

∥∥∥∥j=1,...,r

i=1,...,r

for every root system α1, . . . , αr. Its coefficients are constants ∈ k.

19Through the Fourier transform, the Hamiltonian operator ÂKdV
2 encodes the Virasoro

algebra, cf. [3].
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Having thus factorised a higher, field-dependent variational Poisson structure through
the junior variational Poisson structures whose coefficients do not depend explicitly on the
new fields φ ∈ Γ(π), we reduce the large deformation quantisation problem for functionals
F [w], G[w], H[w] : Γ(π̃) → k to a much smaller Moyal–Groenewold–Weyl case (14) of
the same functionals F

[
w[u]

]
, G
[
w[u]

]
, H

[
w[u]

]
: Γ(π) → k, now referred to the jet

bundle π∞ of (potential) modified hierarchies.
Indeed, let π and π̃ be two affine bundles over the baseMm. Consider a jet space mor-

phism w(∞) : J∞(π) → J∞(π̃) specified by a Miura-type substitution w = w(x, [u]) :
Γ(π∞) → Γ(π̃) of positive differential order. The Hamiltonian differential operators fac-
torise via20

A
∣∣
(x,[w]) =

−→
` (u)
w ◦B

∣∣
(x,[u]) ◦

−→
` (u) †
w , (15)

where {·, ·} 1
2

∫
〈χ,A(χ)〉 is the variational Poisson bracket induced for functionals H[w] :

Γ(π̃) → k from a given variational Poisson structure {·, ·} 1
2

∫
〈ξ·B(ξ)〉 for the pull-backs

H
[
w[u]

]
: Γ(π)→ k.

Formula (15) correlates senior Poisson structures {·, ·} 1
2

∫
〈χ,Ai+1(χ)〉 for multi-Hamil-

tonian hierarchies with the junior Hamiltonian operators Bi for the respective modified
hierarchies of completely integrable PDE systems (see [18, 25] and references therein).
Solutions

(
π, w

(
x, [u]

)
, B
)
are “good” if the coefficients of differential operator B, re-

ferred to (x, ujσ), do not contain the jet variables ujσ explicitly (that is, the star-product
for the Hamiltonian operator B amounts to formula (14)). In this case the output of
deformation quantisation procedure × 7→ ? is associative at all orders of the deformation
parameter ~. However, for a given Hamiltonian differential operator A over J∞(π̃), its
factorisation problem can be very hard.

2.3.2. Finally, let us take a generic variational Poisson brackets {·, ·}P with field-
dependent coefficients P ijτ (x, [u]). For instance, suppose that factorisation (15), reducing
a given Hamiltonian differential operator Â2 on J∞(π̃) to the Moyal case for B̂1 on J∞(π),
is not yet known.

It is readily seen that the splitting of differential consequences from the Jacobi identity
into the separately vanishing homogeneous components, see Proposition 6 in §1.4, no
longer takes place without reservations in the variational setting. This is because not only
the vertical derivatives along the fibre of J∞(π) work by the Leibniz rule over the five
vertices in every Jacobiator (6) but also do the total derivatives in their trail, as in (13),
convert the Jacobiator on its three arguments into an indivisible object. Therefore, in the
variational picture only those Kontsevich graph expansions of Leibniz graphs can vanish

20Integrating by parts,

1
2

∫ 〈
(ξ)
(←−
` (u)
w

)† · (Pτ ∣∣(x,[u])

( d
dx

)τ
◦
−→
` (u) †
w

)
(ξ)
〉

∼= 1
2

∫ 〈
ξ ·
(−→
` (u)
w ◦ Pτ

∣∣
(x,[u])

( d
dx

)τ
◦
−→
` (u) †
w

)
(ξ)
〉

= 1
2

∫
〈ξ,
−→
A (ξ)〉 ,

we construct the Hamiltonian differential operator in total derivatives that takes variational
covectors to (the generating sections of) evolutionary vector fields.
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in which the Jacobiator is not split. Yet we remember from [5] that this is already not
the case at ~3 in the associator for ?~, see §1.4.

Secondly, for every triple of arguments, the Jacobiator JacP(·, ·, ·) ∼= 0 : Γ(π)→ 0 ∈ k
is the map which, in terms of [19, 21, 22], can be a synonym of zero. Namely, if the density
of this cohomologically trivial integral functional is not vanishing over all points of Mm,
the local variational polydifferential operator ♦ in

Assoc?~(F,G,H) = ♦
(
P , JacP(·, ·, ·)

)
(F,G,H), F,G,H ∈ A[[~]], (1)

can produce a nonzero integral functional from its zero-value argument Jac(P). Indeed,
whenever two or more arrows arrive at a vertex in the argument of ♦, see (12), the
order in which partial and then total derivatives act is (13). Therefore, the mechanism
δ/δu◦d/dx ≡ 0 that guarantees the vanishing of the first variation for a cohomologically
trivial argument is stepped over.

Corollary 13. In the field-theoretic setting, the associativity of star-product ?~ can
start leaking at order ~>3 for a variational Poisson structure {·, ·}P with field-dependent
coefficients in the leading deformation term, so that Assoc?~(·, ·, ·) .= ō(~>2).
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