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Objectives: Visual assessment of the electroencephalogram by 
experienced clinical neurophysiologists allows reliable outcome 
prediction of approximately half of all comatose patients after car-
diac arrest. Deep neural networks hold promise to achieve similar 
or even better performance, being more objective and consistent.
Design: Prospective cohort study.
Setting: Medical ICU of five teaching hospitals in the Netherlands.
Patients: Eight-hundred ninety-five consecutive comatose 
patients after cardiac arrest.
Interventions: None.

Measurements and Main Results: Continuous electroencephalo-
gram was recorded during the first 3 days after cardiac arrest. 
Functional outcome at 6 months was classified as good (Cerebral 
Performance Category 1–2) or poor (Cerebral Performance Cate-
gory 3–5). We trained a convolutional neural network, with a VGG 
architecture (introduced by the Oxford Visual Geometry Group), 
to predict neurologic outcome at 12 and 24 hours after cardiac 
arrest using electroencephalogram epochs and outcome labels 
as inputs. Output of the network was the probability of good out-
come. Data from two hospitals were used for training and internal 
validation (n = 661). Eighty percent of these data was used for 
training and cross-validation, the remaining 20% for independent 
internal validation. Data from the other three hospitals were used 
for external validation (n = 234). Prediction of poor outcome was 
most accurate at 12 hours, with a sensitivity in the external valida-
tion set of 58% (95% CI, 51–65%) at false positive rate of 0% 
(CI, 0–7%). Good outcome could be predicted at 12 hours with a 
sensitivity of 48% (CI, 45–51%) at a false positive rate of 5% (CI, 
0–15%) in the external validation set.
Conclusions: Deep learning of electroencephalogram signals out-
performs any previously reported outcome predictor of coma after 
cardiac arrest, including visual electroencephalogram assess-
ment by trained electroencephalogram experts. Our approach 
offers the potential for objective and real time, bedside insight 
in the neurologic prognosis of comatose patients after cardiac 
arrest. (Crit Care Med 2019; XX:00–00)
Key Words: brain hypoxia; cardiac arrest; deep neural networks; 
electroencephalography; machine learning

More than half of the patients who remain comatose 
after cardiac arrest never regain consciousness (1). 
Early and accurate prediction of neurologic out-

come supports clinical decision-making and may limit futile 
treatments of patients without relevant recovery perspectives 
(1–3). Furthermore, early knowledge about potential neuro-
logic recovery is of high importance for family members (4). 
However, in current standard care, reliable prediction of poor DOI: 10.1097/CCM.0000000000003854
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outcome is possible in only 20% of patients, based on neuro-
logic examination and absent N20 responses in median nerve 
somatosensory evoked potential (SSEP) testing (4).

Visual assessment of early electroencephalogram (EEG) 
recordings has shown to comprise substantial additional value 
allowing reliable prediction of poor neurologic outcome in ap-
proximately half of all comatose patients after cardiac arrest (1, 
5–8). Further, EEG allows for prediction of good neurologic 
outcome. In particular, suppressed EEG patterns at 24 hours 
after cardiac arrest or later or burst-suppression patterns with 
identical or synchronous bursts are invariably associated with 
poor outcome (1, 5–7). Otherwise, return of a continuous 
EEG pattern within 12 hours after cardiac arrest is a strong 
predictor of good outcome (1, 5–7). In addition to the anal-
ysis of the EEG background activity, modulation of EEG pat-
terns in response to an external stimulus, EEG reactivity, has 
been explored (8–10). However, the potential relevance of re-
activity in addition to assessment of the EEG background pat-
tern has not been studied (11) and the reproducibility appears  
limited (12).

An important drawback of visual, qualitative analysis is the 
inability to capture the integral richness of the EEG signal. 
Furthermore, visual analysis by an experienced electroenceph-
alographer is time consuming, requires a long training period 
(13) and suffers from both intra- and interobserver variability 
(14). Computer-assisted interpretation of EEG may overcome 
these limitations, allowing continuous assessment of the EEG, 
with promise of better discrimination between patients with 
various outcomes, higher consistency, and lower costs.

We previously reported on the Cerebral Recovery Index 
(CRI) to support visual assessment of the EEG for outcome 
prediction of patients with a postanoxic coma, using five quan-
titative EEG features, including continuity, amplitude, and fre-
quency content (15). Significant improvement of the CRI was 
realized by adding more quantitative EEG features and using 
a random forest classifier (16). The CRI allows prediction of 
poor or good outcome as reliable as visual EEG assessment and 
SSEP, at higher sensitivity.

In this study, we take a different approach by using a deep 
convolutional neural network, avoiding the need for explicit 
feature extraction (16, 17) and using the unique ability from 
deep neural networks to learn from data (18–20). Deep learn-
ing has proven its potential for general and highly variable 
tasks, such as speech recognition and image grouping (19, 21). 
Recently, classification of skin lesions with a convolutional 
neural network trained on a large dataset of clinical images 
achieved performance on par with experienced dermatolo-
gists (20). Motivated by these successful approaches, we train a 
neural network end-to-end directly from the EEG and the cor-
responding labels, to predict neurologic outcome of comatose 
patients after cardiac arrest.

MATERIALS AND METHODS
In this prospective cohort study, all consecutive adult com-
atose (Glasgow Coma Scale score ≤ 8) patients after cardiac 
arrest admitted at the ICUs of five large teaching hospitals 

in the Netherlands (Medisch Spectrum Twente, Rijnstate, St. 
Antonius Hospital, University Medical Center Groningen, 
and VieCuri Medical Center) were included. Exclusion crite-
ria were other types of severe brain injury (stroke, traumatic 
brain injury, or progressive neurodegenerative disease), either 
preexisting or coinciding with cardiac arrest. As EEG is part of 
routine care in all five centers, the Medical Ethical Committee 
Twente waived the need for informed consent for continuous 
EEG monitoring. Oral informed consent was obtained from 
surviving patients at the time of follow-up at 3 and 6 months.

Patients were treated according to standard protocols for 
comatose patients after cardiac arrest. Targeted temperature 
management (33°C or 36°C) was induced as soon as possible 
and maintained for 24 hours. Patients received propofol, mid-
azolam, or both for sedation and morphine, fentanyl, or remi-
fentanil for analgesia. In one center, the majority of patients 
was anesthetized with sevoflurane instead of propofol or mid-
azolam. Withdrawal of treatment was considered during nor-
mothermia, off sedation, and later than 72 hours after cardiac 
arrest. Decisions on treatment withdrawal were based on in-
ternational guidelines including bilateral absence of the SSEP, 
absent or extensor motor responses, and absence of brain-
stem reflexes (2, 22). Decisions on treatment withdrawal were 
sporadically taken between 48 and 72 hours in case of absent 
brainstem reflexes or SSEP responses. The EEG recorded in the 
first 72 hours after cardiac arrest was not taken into account in 
decision-making. More details on the treatment protocol and 
main outcomes regarding the predictive value of EEG (based 
on visual assessment) of the first 388 patients who were in-
cluded in this study have been previously published (23). Data 
of the first 283 patients of two hospitals (Medisch Spectrum 
Twente and Rijnstate hospital) were used for the development 
of the CRI (16).

Outcome Assessment
Primary outcome measure was neurologic outcome at 6 
months after cardiac arrest defined as the score on the Cere-
bral Performance Category (CPC) scale, dichotomized as good 
(CPC 1–2, no or mild neurologic impairment) or poor (CPC 
3–5, severe neurologic impairment, vegetative state, or death). 
Outcome was assessed by a standardized telephone interview 
by one of two investigators (M.C.T.-C. or B.J.R.) or a trained 
research nurse.

Continuous EEG Recordings
Continuous EEG recordings were started as soon as possible 
after ICU admission, typically within 12–24 hours after cardiac 
arrest, and continued up to 3–5 days, unless patients regained 
consciousness or died at an earlier stage. EEGs were recorded 
with 21 silver/silver chloride cup electrodes placed on the scalp 
according to the international 10–20 system. A computer al-
gorithm, as used in a previous quantitative EEG study (15), 
was used to select 5-minute artifact-free epochs at 12 and 24 
hours after cardiac arrest. If no epoch was available at these 
time points, because of artifacts, the closest available artifact-
free epoch in the range ± 2 hours was used.
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Visual Analysis
Visual analysis of EEG data was performed offline. Before 
visual assessment, EEG data were band-pass filtered in the 0.5–
35 Hz frequency range and re-referenced to the longitudinal 
bipolar montage. EEG epochs were presented in random order 
to reviewers who were blinded to the timing of the epoch, the 
clinical condition of the patients, medication, and outcome. All 
EEG epochs were assessed by two experienced reviewers from 
a pool of six (M.C.T.-C., B.J.R., M.J.A.M.v.P., H.K., A.G., or 
J.H.), independently. If two reviewers disagreed, the final clas-
sification was determined by consensus. If necessary, a third 
reviewer was consulted. Reviewers were allowed to choose the 
option “No classification possible” if the epoch was considered 
unreliable due to artifacts.

EEG patterns were classified as generalized suppression 
(all activity < 10 μV), low voltage (activity between 10 and 20 
μV), burst suppression (≥ 50% suppression), discontinuous 
(10–50% suppression), continuous (< 10% suppression), or 
epileptiform. Burst suppression was further specified as syn-
chronous burst-suppression patterns (burst suppression with 
generalized, sharp-onset bursts, with suppressed background; 
this includes burst suppression with identical bursts) or other 
burst-suppression patterns (including spatially heterogeneous 
burst-suppression patterns). Continuous patterns were subdi-
vided according to their dominant frequency (< 4, 4–8, or > 8 
Hz). Epileptiform patterns were further subdivided as general-
ized periodic discharges (GPDs) on a suppressed background 
(background activity < 10 μV), GPDs on a nonsuppressed 
background or other epileptiform patterns (including electro-
graphic seizures).

Convolutional Neural Network
Training and validation of the neural network was performed 
using the 5-minute epochs at 12 and 24 hours after cardiac 
arrest. Epochs were partitioned into 10-second nonoverlap-
ping fragments, resulting in 30 fragments at a given time point 
for each patient. Before presenting to the network, data were 
band-pass filtered in the 0.3–25 Hz frequency range, downs-
ampled to 64 Hz and re-referenced to 1) the longitudinal bi-
polar montage (using 19 electrodes) and 2) the Laplacian 
montage (using 19 electrodes).

Data from two hospitals (Medisch Spectrum Twente and 
Rijnstate hospital) were used for training, cross-validation, 
and internal validation. Data of 80% of these patients were 
randomly selected and used for training, the remainder for in-
ternal validation. Training was performed with 10-fold cross-
validation. Data of the remaining three centers (St. Antonius 
Hospital, University Medical Center Groningen, and VieCuri 
Medical Center) were used for external validation to assess the 
general applicability of the models.

A deep learning convolutional neural network was imple-
mented in Python using Keras and Theano and a computer 
unified device architecture-enabled NVIDIA GPU (GTX-1080) 
(NVIDIA, Santa Clara, CA), running on CentOS 7. The architec-
ture of the network is shown in Supplemental Figure 1 (Supple-
mental Digital Content 1, http://links.lww.com/CCM/E643  

and based on a VGG model C network, created in 2014 in 
Oxford by Simonyan and Zisserman (24) from the Visual 
Geometry Group. This architecture was chosen because of its 
success in detection and image classification (25), including 
health-related problems (26, 27). Stochastic optimization 

TABLE 1. Patient Characteristics and 
Medication Use in Patients With Good and 
Poor Outcomes

Characteristics

Good  
Outcome  
(n = 397)

Poor  
Outcome  
(n = 467)

Sex, male, n (%) 312 (79) 343 (73)

Age, yr, mean ± sd 60 ± 13 65 ± 14

Location, n (%)

 Out-of-hospital cardiac arrest 369 (93) 419 (90)

 In-hospital cardiac arrest 28 (7) 48 (10)

Initial electrocardiogram  
rhythm, n (%)

 VF/VT rhythm 360 (91) 264 (63)

 Non VF/VT rhythm 30 (8) 176 (38)

 Unknown 7 (2) 27 (6)

Presumed cause of cardiac  
arrest, n (%)

 Cardiac etiology 353 (89) 321 (69)

 Noncardiac etiology 21 (5) 97 (21)

 Unknown 23 (6) 49 (10)

Targeted temperature  
management, n (%)

391 (98) 440 (94)

Hypothermia (32–34°C), n (%) 179 (45) 220 (47)

Treated with propofol, n (%) 354 (89) 388 (83)

Dose (mg/kg/hr), mean ± sd 3.2 ± 1.2 2.8 ± 1.1

Treated with midazolam, n (%) 105 (26) 135 (29)

Dose (µg/kg/hr), mean ± sd 118 ± 71 122 ± 88

Treated with fentanyl, n (%) 156 (39) 216 (46)

Dose (µg/kg/hr), mean ± sd 1.7 ± 0.8 1.4 ± 0.8

Treated with remifentanil, n (%) 21 (5) 33 (7)

Dose (µg/kg/hr), mean ± sd 7.2 ± 4.5 4.4 ± 3.1

Treated with morphine, n (%) 193 (46) 174 (37)

Dose (µg/kg/hr), mean ± sd 27 ± 11 29 ± 14

Treated with sevoflurane, n (%) 21 (5) 30 (6)

End-tidal volume %, mean ± sd 1.4 ± 0.3 1.3 ± 0.3

Somatosensory evoked potential 
performed, n (%)

43 (11) 280 (60)

N20 bilaterally absent, n (%) 0 (0) 124 (27)

VF = ventricular fibrillation, VT = ventricular tachycardia.

http://links.lww.com/CCM/E643
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was realized using Adam (learning rate = 0.00002, β
1
 = 0.91, 

β
2
 = 0.999, and ε = 10–8) (28). As the loss function, the binary 

cross-entropy was used. Outcome of the network was the prob-
ability of good neurologic outcome, defined as the mean prob-
ability of the 30 EEG fragments in the 5-minute recording.

We trained separate networks for the two different mon-
tages at 12 and 24 hours after cardiac arrest. We also studied 
the prognostic value by using information from the temporal 
evolution of the EEG, combining data from 12 and 24 hours 
after cardiac arrest. To this end, we trained the neural network 
with 18-channel 10-second EEG fragments, containing both 
recordings obtained at 12 hours (n = 9 channels) and at 24 
hours (n = 9 channels) after cardiac arrest.

Cerebral Recovery Index
To compare the results of the deep learning model with our 
recently published CRI (16), we calculated this index for all 
patients in the external validation set group as well.

Statistical Analyses and Creation of Receiver 
Operating Characteristic Curves
After training, classification performance was evaluated in the 
independent internal validation set as well as in the external 
validation set using Matlab R2017a (The MathWorks, Natick, 

MA). Predictions for poor and good outcomes are represented 
as receiver operating characteristic (ROC) curves. Based on 
these ROC curves, the montage with the highest accuracy 
(largest area under the curve [AUC]) was chosen, for which 
two thresholds were set, one for predicting poor neurologic 
outcome and the other for predicting good neurologic out-
come. For the prediction of poor outcome, we only considered 
threshold values at zero false positive rate (FPR). For the pre-
diction of good outcome, we allowed for a maximum of 5% 
false positives. The sensitivity, FPR, and positive and negative 
predictive value set at these thresholds were calculated for the 
validation set with their corresponding 95% CIs.

RESULTS
Of the 895 patients who were included, 31 were lost to fol-
low-up. Of the remaining patients, 397 (46%) had good neuro-
logic outcome. Patient characteristics are presented in Table 1.

Training and Internal Validation
The internal set consisted of 661 patients after cardiac arrest 
from the Medisch Spectrum Twente and Rijnstate hospital. At 
12 hours after cardiac arrest, EEG epochs of 374 patients were 
available, divided over a training (n = 300) and internal valida-
tion set (n = 74). At 24 hours after cardiac arrest, EEG epochs 

Figure 1. Examples of electroencephalogram (EEG) fragments of six different patients at 12 hr after cardiac arrest. The probability of good outcome 
predicted by the deep neural network is shown above each panel. Left: Two EEG fragments, classified as “unfavorable,” both patients indeed had a poor 
neurologic outcome and died (Cerebral Performance Category [CPC] = 5). Center: Two EEG fragments, classified as “uncertain” neurologic outcome. 
Right: Two EEG fragments that are classified as “favorable,” both patients had good neurologic outcome (CPC = 1).
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of 534 patients were available, again divided over a training 
(n = 428) and validation set (n = 106). More EEG epochs 
were available at 24 hours than at 12 hours after cardiac arrest 
since continuous EEG recordings were often started within 
12–24 hours after cardiac arrest. In 342 patients, EEG epochs 
at both time points (12 and 24 hr) after cardiac arrest were 
available. Combinations of these epochs were also distributed 
over a training (n = 274) and a validation set (n = 68).

Training of the convolutional neural network with up to 
7772 EEG samples of 10 seconds took approximately 80 min-
utes. Examples of 10-second EEG fragments at 12 hours after 
cardiac arrest are shown in Figure 1, including the probabili-
ties for good outcome predicted by the deep neural network.

The ROC curves for the prediction of poor outcome in the 
internal test and internal validation set are shown in Figure 2. 
Similar accuracies were obtained for 12 and 24 hours after 
cardiac arrest, with AUCs of 0.86–0.90. Combining data from 
12 and 24 hours did not increase the predictive accuracy. 
Comparison between the longitudinal bipolar and Laplacian 
showed no statistically significant differences in the AUC. 
Therefore, for further analyses, the longitudinal bipolar mon-
tage was used. In the internal independent validation set, sensi-
tivities for the prediction of poor outcome were 42% and 57% 
at 12 and 24 hours after cardiac arrest, respectively, both at a 
FPR of 0%. Good outcome could be predicted with sensitivities 

Figure 2. Receiver operating characteristic (ROC) curves for the prediction of poor outcome (Cerebral Performance Category [CPC] 3–5) in the internal 
test set (left), internal validation set (center), and external validation set (right). Shown are ROC curves at 12 hr after cardiac arrest (CA) (top), at 24 hr 
after CA (middle), and at 12 and 24 hr combined (bottom). The solid red and green circles indicate the chosen threshold for the prediction of poor and 
good outcomes, respectively. The gray area indicates the 95% CI. AUC = area under the curve.
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of 48% and 33% at 12 and 24 hours after cardiac arrest, respec-
tively, both at a FPR of 5% (Table 2).

External Validation
The external validation set consisted of 234 patients after car-
diac arrest from the St. Antonius Hospital, University Medical 
Center Groningen, and VieCuri Medical Center. At 12 hours 
after cardiac arrest, EEG epochs of 91 patients were available. 
At 24 hours after cardiac arrest, EEG epochs of 163 patients 
were available. In 76 patients, EEG epochs at both time points 
(12 and 24 hr) after cardiac arrest were available.

The ROC curves for the prediction of poor outcome 
in the external validation set are shown in Figure 2-right 
column. In this external validation set, outcome prediction 
was most accurate at 12 hours after cardiac arrest. For the 
prediction of poor outcome, sensitivity was 58% at a FPR 
of 0% at 12 hours after cardiac arrest. Good outcome could 
be predicted with a sensitivity of 48% at a FPR of 5% at 12 
hours after cardiac arrest. Whereas at 24 hours after cardiac 
arrest, sensitivity for poor outcome was 51% at a FPR of 

0%, the sensitivity for good outcome was 22% at a FPR of 
5% (Table 2).

The comparison of the performance of the deep learning 
algorithm with the CRI in the external validation set is shown 
in Supplemental Figure 2 (Supplemental Digital Content 2, 
http://links.lww.com/CCM/E644). At 12 hours after cardiac 
arrest, the performance of the deep learning algorithm and 
CRI are almost equal (both AUC of 0.92), whereas at 24 hours, 
the deep learning algorithm outperforms the CRI (AUC of 
0.88 vs 0.79).

Visual Assessment
In the complete dataset (internal test, internal validation, and 
external validation set combined), EEG patterns that were clas-
sified as suppressed, synchronous burst suppression, or GPDs 
on a suppressed background were invariably associated with a 
poor neurologic outcome, with a sensitivity of 37% (CI, 31–
44%) and 25% (CI, 20–29%), respectively, at 12 and 24 hours 
after cardiac arrest, both with a FPR of 0% (CI, 0–2% and 0–1%). 
A continuous EEG pattern (irrespective of frequency content) 
was associated with good neurologic outcome with sensitivity 

TABLE 2. Predictive Values Including Corresponding 95% CIs for the Prediction of Both 
Poor and Good Outcomes in the Internal Test Set, Internal Validation Set, and External 
Validation Set Using the Longitudinal Bipolar Montage

Time After  
Cardiac Arrest Dataset Sensitivity (CI)

False Positive  
Rate (CI)

Positive  
Predictive  
Value (CI)

Negative  
Predictive  
Value (CI)

Prediction of poor outcome

 12 hr Internal test 56% (44–68%) 0% (0–12%) 100% (95–100%) 70% (64–76%)

Internal validation 42% (36–48%) 0% (0–8%) 100% (99–100%) 62% (60–65%)

External validation 58% (51–65%) 0% (0–7%) 100% (96–100%) 61% (59–63%)

 24 hr Internal test 50% (41–59%) 0% (0–12%) 100% (95–100%) 65% (60–71%)

Internal validation 57% (54–60%) 0% (0–10%) 100% (96–100%) 69% (64–74%)

External validation 51% (49–53%) 0% (0–5%) 100% (97–100%) 59% (58–60%)

 12 and 24 hr 
combined

Internal test 54% (41–67%) 0% (0–11%) 100% (94–100%) 68% (63–73%)

Internal validation 58% (51–65%) 0% (0–9%) 100% (96–100%) 67% (64–70%)

External validation 61% (59–63%) 0% (0–8%) 100% (92–100%) 64% (61–67%)

Prediction of good outcome

 12 hr Internal test 30% (22–38%) 5% (0–15%) 90% (87–93%) 68% (64–73%)

Internal validation 48% (45–51%) 5% (0–13%) 94% (93–95%) 67% (65–68%)

External validation 48% (45–51%) 5% (0–15%) 89% (85–93%) 73% (70–76%)

 24 hr Internal test 56% (50–61%) 5% (0–18%) 90% (87–94%) 67% (62–72%)

Internal validation 33% (30–36%) 5% (0–19%) 81% (75–87%) 67% (65–69%)

External validation 22% (20–25%) 5% (0–14%) 65% (61–69%) 84% (79–90%)

 12 and 24 hr 
combined

Internal test 29% (20–39%) 5% (0–17%) 79% (75–82%) 64% (62–66%)

Internal validation 61% (60–62%) 5% (0–13%) 92% (91–93%) 78% (76–79%)

External validation 27% (24–31%) 5% (0–15%) 65% (61–69%) 80% (76–84%)

http://links.lww.com/CCM/E644
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of 50% (CI, 43–57%) and a FPR of 9% (CI, 6–14%) at 12 hours 
after cardiac arrest and a sensitivity of 68% (CI, 63–73%)  
at a FPR of 20% (CI, 16–24%) at 24 after cardiac arrest. The 
distribution of the probabilities given by the deep learning net-
work for each visual EEG class is shown in Figure 3.

DISCUSSION
Visual assessment of the EEG background pattern by experi-
enced clinical neurophysiologists provides reliable information 
for the prediction of poor or good neurologic outcome in up to 
half of all comatose patients after cardiac arrest (1, 5–7). Since 
qualitative, visual assessment may neglect a significant part of 
the information present in evolving EEG rhythms, we hypoth-
esized that deep convolutional neural networks can extract sub-
stantially more information, in turn providing equally reliable 
predictions in more patients as compared with visual EEG. 
With this approach, we were indeed able to reliably predict 
neurologic outcome of comatose patients after cardiac arrest in 
substantially more patients than with visual EEG assessment. 
Predictive values were also higher in comparison to neurologic 
examination or SSEP (1, 6, 7, 29). We could predict poor out-
come with a sensitivity of 58% at a FPR of 0% at 12 hours after 
cardiac arrest. Good neurologic outcome could be predicted at 
12 hours after cardiac arrest with a sensitivity of 48% at a FPR of 
5%. This performance equals that of our previously published 

CRI (16), which was based on 
combinations of handmade 
quantitative EEG features. In 
all other patients, instead of a 
classification as “good,” “inter-
mediate,” or “poor,” the deep 
learning algorithm presents 
a quantitative probability of 
good outcome. In patients with 
intermediate recovery perspec-
tives, this can contribute to a 
multimodal decision process 
(3).

To the best of our know-
ledge, this is the first large-scale 
application of deep learning 
on EEG data from comatose 
patients after cardiac arrest. 
With this approach, the algo-
rithm “learns” particular char-
acteristics of the data that are 
difficult or even impossible to 
assess by a human expert and 
overcomes limitations associ-
ated with defining “handmade” 
quantitative features. Other 
benefits include extremely fast 
processing, allowing real-time 
bedside application, and use 
by non-EEG experts such as 
intensivists. As human exper-

tise for trustworthy visual assessment of these EEG recordings 
is not available in all medical centers, deep learning can extend 
this to these clinics and allows 24/7 reliable and consistent in-
terpretation of the EEG. An important strength of the current 
study is that we validated our network on an external valida-
tion set with EEG data from three medical centers.

A limitation is that feature discovery is not straightforward, 
as the convolutional neural network does not directly expli-
cate which particular EEG features are recognized as favor-
able or unfavorable (30). Although various techniques exist to 
probe deep neural networks to elucidate the features used, thus 
allowing feature discovery (31), this is outside the scope of the 
current work. EEG interpretation in this study may have been 
influenced by the use of sedative medication. However, pre-
vious studies demonstrated that visual analysis of the EEG is 
reliable in these patients, despite the use of mild therapeutic 
hypothermia and sedation. Specific unfavorable patterns (i.e., 
suppressed or burst suppression with identical bursts) cannot 
be solely induced by hypothermia, propofol, or midazolam 
in the relatively low doses that were used in these patients. 
Likewise, quantitative EEG measures seem to be more influ-
enced by the anoxic encephalopathy itself than by the effects of 
sedation (32, 33). For primary outcome, we used the CPC score 
at 6 months, a few patients had full neurologic recovery but 
died due to a second cardiac arrest or another nonneurologic 
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Figure 3. Box plots showing the deep neural network assigned probability for a good outcome, grouped 
according to the electroencephalogram (EEG) pattern determined by visual interpretation. On each box plot, 
the central mark (thick black line) indicates the median, and the bottom and top edges of the box indicate 
the 25–75th percentiles, respectively. The whiskers extend to the most extreme data points not considered 
outliers. Note that the EEG patterns that are visually classified as “favorable” (in green) indeed have much 
higher probabilities of good outcome than “unfavorable” EEG patterns (in red). BS (synchr.) = burst suppression 
with bilateral synchrony and suppressed interburst intervals, BS other = other burst-suppression patterns, 
including spatially heterogeneous bursts with gradual transitions, Cont. = continuous, Discont. = discontinuous, 
Epi. other = epileptiform, other than GPDs on a suppressed background, GPDs supp. = generalized periodic 
discharges on a suppressed background, Low volt. = low voltage (10–20 µV), Supp. = suppressed (< 10 µV).
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problem, which might have slightly increased the FPR for the 
prediction of good neurologic outcome.

Current performance might be further improved by using the 
full temporal evolution of the complete EEG recording, instead 
of analyzing brief 5-minute epochs (at 12 or 24 hr after cardiac 
arrest). Other network architectures, for example, networks with 
more convolutional layers or recurrent neural networks, may 
also result in an improvement in classification accuracy  (34, 35).

Deep neural networks hold promise to assist in the inter-
pretation of the EEG in other clinical conditions, ranging from 
sleep staging (36) to detection of epileptiform discharges (37) 
or seizures (38, 39), and it is foreseen that deep learning will 
significantly affect how physicians will assess EEG recordings 
in the near future.

CONCLUSIONS
We present a classifier for the prediction of neurologic out-
come after cardiac arrest, providing fast, reliable, and objec-
tive prognostic information for all patients, with the potential 
to be used bedside. The classifier is based on the whole spec-
trum of information that is included in evolving EEG patterns 
extracted by a convolutional neural network. For almost 100 
years, the gold standard in the clinic for the interpretation of 
the EEG has been visual analysis by human experts (40). We 
show that a trained convolutional neural network can perform 
this task with similar or even better prognostic accuracy in 
patients with a postanoxic coma.
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