

 University of Groningen

Managing technical debt through software metrics, refactoring and traceability
Charalampidou, Sofia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Charalampidou, S. (2019). Managing technical debt through software metrics, refactoring and traceability.
University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/1bd01c63-542a-41df-b68d-fce19ce73e44

Introduction

119

5 A THEORETICAL MODEL FOR
CAPTURING THE IMPACT OF DESIGN
PATTERNS ON QUALITY:
THE DECORATOR CASE STUDY

Abstract
Design patterns are widely recognized as reusable solutions that can be applied for
improving design quality. However, empirical results suggest that patterns may
sometimes support and other times hurt a quality attribute. Thus, there is a need for
guidance on when a pattern is beneficial and when it is not. To provide such guid-
ance, we propose a theoretical model for understanding the effect of patterns on
quality. The obtained results are expected to improve the theoretical body of
knowledge on design patterns, and facilitate informed decision making about when
to insert or remove a pattern from a system. As an example, we present and discuss
the results of modelling and exploring the effect of Decorator instances on quality.
The results suggest that Decorator instances that are not expected to evolve through
the addition of components in composite objects decrease system cohesion and
therefore, modularity and maintainability are weakened.

Based on: Charalampidou, S. Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Sencer, S., Arvanitou, E. M., and
Stamelos, I. (20017b). A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case
Study. In 32nd ACM Symposium on Applied Computing (SAC), ACM, New York, NY, USA, 1231-1238.

Chapter 5

120

5.1 Introduction
GoF design patterns (Gamma et al. 1995) are widely adopted as reusable solutions
to common design problems. Although these patterns were not originally explicitly
linked to quality attributes, a recent systematic secondary study (Ampatzoglou et
al. 2013b) identified an extensive corpus of research aiming at assessing the effect
of GoF patterns on quality. However, the study indicates that GoF patterns cannot
be uniformly evaluated with respect to their effect on quality; specifically, different
empirical studies suggest that the same pattern exhibits exactly the opposite effect
on the same quality attribute (Ampatzoglou et al. 2013b), e.g., Visitor has been
evaluated both as positively (Khomh and Guéhéneuc 2008) and as negatively (e.g.,
(Vokác et al. 2004)) related to understandability.

To investigate the aforementioned contradictory results, a few theoretical ap-
proaches have been proposed. These approaches (see Section 5.2) develop mathe-
matical models that capture the effect of patterns on quality, by considering the
generic representation of a pattern, rather than a specific instance. Such approaches
have modeled the effect of patterns on various qualities. Nevertheless, only limited
patterns have been explored, while the effect of patterns is mostly studied on the
directly affected quality attributes (e.g., the effect of patterns involving polymor-
phism on the number of polymorphic methods). Therefore, we need to explore
additional patterns, and model their effect on a variety of qualities, so as to identify
possible trade-offs, i.e., positive effect on one quality attribute and negative effect
to others.

The goal of this chapter is to thoroughly investigate the effect of the Decorator
pattern on various qualities and study the corresponding trade-offs. To achieve this
goal, we reuse and extend a two-step method (Ampatzoglou et al. 2012): (a) we
first develop a theoretical model that captures the effect of patterns on quality at-
tributes, based on numerical indicators, and (b) we then simulate all possible pat-
tern instances based on the aforementioned model, in order to explore changes in
the effect of patterns on quality. Specifically, during the second step of the method
we perform statistical analysis to explore how frequently the pattern has a positive
effect on quality. For patterns that do not have a uniform effect, we ‘dig deeper’ to

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

121

5.1 Introduction
GoF design patterns (Gamma et al. 1995) are widely adopted as reusable solutions
to common design problems. Although these patterns were not originally explicitly
linked to quality attributes, a recent systematic secondary study (Ampatzoglou et
al. 2013b) identified an extensive corpus of research aiming at assessing the effect
of GoF patterns on quality. However, the study indicates that GoF patterns cannot
be uniformly evaluated with respect to their effect on quality; specifically, different
empirical studies suggest that the same pattern exhibits exactly the opposite effect
on the same quality attribute (Ampatzoglou et al. 2013b), e.g., Visitor has been
evaluated both as positively (Khomh and Guéhéneuc 2008) and as negatively (e.g.,
(Vokác et al. 2004)) related to understandability.

To investigate the aforementioned contradictory results, a few theoretical ap-
proaches have been proposed. These approaches (see Section 5.2) develop mathe-
matical models that capture the effect of patterns on quality, by considering the
generic representation of a pattern, rather than a specific instance. Such approaches
have modeled the effect of patterns on various qualities. Nevertheless, only limited
patterns have been explored, while the effect of patterns is mostly studied on the
directly affected quality attributes (e.g., the effect of patterns involving polymor-
phism on the number of polymorphic methods). Therefore, we need to explore
additional patterns, and model their effect on a variety of qualities, so as to identify
possible trade-offs, i.e., positive effect on one quality attribute and negative effect
to others.

The goal of this chapter is to thoroughly investigate the effect of the Decorator
pattern on various qualities and study the corresponding trade-offs. To achieve this
goal, we reuse and extend a two-step method (Ampatzoglou et al. 2012): (a) we
first develop a theoretical model that captures the effect of patterns on quality at-
tributes, based on numerical indicators, and (b) we then simulate all possible pat-
tern instances based on the aforementioned model, in order to explore changes in
the effect of patterns on quality. Specifically, during the second step of the method
we perform statistical analysis to explore how frequently the pattern has a positive
effect on quality. For patterns that do not have a uniform effect, we ‘dig deeper’ to

identify the parameters that constitute the pattern beneficial or harmful. To demon-
strate the method in this manuscript, we compare Decorator to a specific design
alternative, and report the results. In an accompanying technical report29 we present
results on the State/Strategy and the Template Method patterns.

The rest of the chapter is organized as follows: in Section 5.2, we present related
work; in Section 5.3, we introduce our method for comparing patterns to alternative
solutions. In Section 5.4 we present the application of the method on Decorator,
while in Section 5.4.5 the obtained results. In Section 5.5, we discuss the findings
and present implications for researchers and practitioners. Section 5.7 outlines
threats to validity, and Section 5.8 concludes this chapter.

5.2 Related Work
As related work we have considered studies that investigate the effect of patterns
on quality through theoretical models. First, Huston (2001) studied the effect of
three patterns (Mediator, Bridge and Visitor) on coupling, inheritance and size
metrics. According to Huston, there are several thresholds that, when surpassed,
the pattern application is beneficial. The differences between our work and (Huston
2001) are that: (a) we explore more qualities, quantified by different metrics, and
(b) we investigate different patterns.

The second study by Hsueh et al. (2008) investigated the effect of six patterns on a
single quality attribute that each pattern directly affects (e.g. the effect of: Observer
on Coupling, Strategy on Polymorphism etc.). However, investigating the effect of
a pattern on a single quality attribute can result in neglecting possible trade-offs
that pattern usage induces. For example, when a pattern is employed, the coupling
of the system may decrease, but as a side effect the size may increase. Compared to
Hsueh et al. (2008), we do not limit our study to a single quality attribute, but we
examine all metrics of the selected metric suite. Although both works examine the
Decorator pattern, we advance the state of knowledge by studying 10 additional
quality attributes.

29 www.cs.rug.nl/search/uploads/Resources/patterns_TR_20151015.pdf

Chapter 5

122

Finally, in (Ampatzoglou et al. 2012) the authors used the methodology proposed
by Huston (2001) and Hsueh et al. (2008), to perform a comprehensive evaluation
on the effect of three patterns (Bridge, Abstract Factory, and Visitor) on various
qualities. The results of that study validated the existence of thresholds (named as
“cut-off points”) that when surpassed pattern application becomes beneficial. Our
current work is based on this work, i.e., (Ampatzoglou et al. 2012), investigating a
new pattern and using additional pattern-related characteristics.

5.3 Method
In this section we describe the method we applied for the needs of our study. The
method is an enhanced version of the one introduced by Ampatzoglou et al. (2012).
Our method is based on three fundamental observations, made on GoF patterns:

- Existence of a set of comparable solutions: For each pattern, we can propose
several alternative design solutions (i.e. pattern and non-pattern) that can substitute
its functionality and can be used in cases when the pattern is not beneficial (Am-
patzoglou et al. 2013c).

- Existence of characteristics related to software quality attributes: GoF patterns
contain certain structural characteristics that are related to quality. For example, in
Bridge, such characteristics (i.e., class hierarchies, polymorphic method behavior,
and class composition) improve maintainability and flexibility of the design (Am-
patzoglou and Chatzigeorgiou 2007). Hence, measures on pattern-related character-
istics, which evolve during maintenance, such as the number of polymorphic meth-
ods, or the classes in a hierarchy, can be used as parameters to our method to pre-
dict the effect on these qualities.

- Different instances of patterns vary with respect to the previously mentioned
characteristics: Depending on how the patterns are instantiated in a particular sys-
tem, measures of their structural characteristics may differ substantially, e.g., num-
ber of participating classes (Ampatzoglou et al. 2011). This might be an objective
factor for the varying effect of different pattern instances on the same quality at-
tribute.

Based on these observations, we developed a method consisting of two parts. In the
first part (model construction) we derive equations that calculate quality metric
scores for different pattern instances as a function of pattern-related characteristics.

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

123

Finally, in (Ampatzoglou et al. 2012) the authors used the methodology proposed
by Huston (2001) and Hsueh et al. (2008), to perform a comprehensive evaluation
on the effect of three patterns (Bridge, Abstract Factory, and Visitor) on various
qualities. The results of that study validated the existence of thresholds (named as
“cut-off points”) that when surpassed pattern application becomes beneficial. Our
current work is based on this work, i.e., (Ampatzoglou et al. 2012), investigating a
new pattern and using additional pattern-related characteristics.

5.3 Method
In this section we describe the method we applied for the needs of our study. The
method is an enhanced version of the one introduced by Ampatzoglou et al. (2012).
Our method is based on three fundamental observations, made on GoF patterns:

- Existence of a set of comparable solutions: For each pattern, we can propose
several alternative design solutions (i.e. pattern and non-pattern) that can substitute
its functionality and can be used in cases when the pattern is not beneficial (Am-
patzoglou et al. 2013c).

- Existence of characteristics related to software quality attributes: GoF patterns
contain certain structural characteristics that are related to quality. For example, in
Bridge, such characteristics (i.e., class hierarchies, polymorphic method behavior,
and class composition) improve maintainability and flexibility of the design (Am-
patzoglou and Chatzigeorgiou 2007). Hence, measures on pattern-related character-
istics, which evolve during maintenance, such as the number of polymorphic meth-
ods, or the classes in a hierarchy, can be used as parameters to our method to pre-
dict the effect on these qualities.

- Different instances of patterns vary with respect to the previously mentioned
characteristics: Depending on how the patterns are instantiated in a particular sys-
tem, measures of their structural characteristics may differ substantially, e.g., num-
ber of participating classes (Ampatzoglou et al. 2011). This might be an objective
factor for the varying effect of different pattern instances on the same quality at-
tribute.

Based on these observations, we developed a method consisting of two parts. In the
first part (model construction) we derive equations that calculate quality metric
scores for different pattern instances as a function of pattern-related characteristics.

In the second part (analytical exploration) we use statistical analysis on these
models, to compare pattern and alternative design solutions.

Part A – Model Construction

1) Identification of Alternatives: Derive one or more alternative design solutions
from literature, open-source solutions or designers’ personal experiences.

2) Identification of Pattern-related Parameters: Identify the major modification
operations, with respect to structural characteristics (i.e., add classes in hierar-
chies, or add pattern-related methods). Based on the modification operations
that can be applied on the pattern, extract a list of pattern-related parameters
(numerical indicators) that can characterize a specific instance. For example,
in the Template Method, there is one parameter related to the number of con-
crete classes (altered through the add concrete subclasses modification opera-
tion) and two parameters related to methods: the number of template methods
(add inherited methods) and the number of primitive operations (add overrid-
den methods).

3) Modeling of Solutions: Model the alternative solutions identified in step 1,
based on all the involved parameters of step 2.

4) Quality model selection: Select a quality model that fits the designer’s needs,
or simply a set of metrics. Any development team can select if they want to
evaluate their solutions with respect to an existing quality model, or a custom-
ized model, or just a set of metrics that are not aggregated or composed.

5) Construction of equations: Construct equations that calculate quality attrib-
utes/metric scores as functions of pattern-related parameters (see step 2 and
step 3).

Part B – Analytical Exploration

6) Statistical Analysis: Substitute the variables of the equations with the values
that the pattern-related parameters are expected to get along pattern evolution.
Perform descriptive statistics and hypothesis testing on the dataset.

7) Cut-off Points Analysis: If the results of the statistical analysis do not indicate
which design solution is better, compare the equations of step 5 and identify
the cut-off points (i.e., the solutions of the inequalities). The identified cut-off
points suggest the values of pattern-related parameters for which each design
solution (pattern or alternative) is beneficial.

Chapter 5

124

The major difference between this method, compared to the original one (Am-
patzoglou et al. 2012), which considered only one class-related parameter30 (i.e.,
number of concrete subclasses) (Ng et al. 2007), lies on the identification of addi-
tional parameters31 (i.e., number of pattern-related methods). Especially for the
case of Decorator, studying pattern-related methods is important, since according
to Di Penta et al. (2008) adding and removing methods is the most frequently ap-
plied modification operation. Instead of using the number of pattern-related meth-
ods, we decided to use more fine-grained parameters, based on the type of the
method: (a) number of abstract methods, (b) number of overridden methods, and
(c) number of inherited methods. The rationale of this decision is based on the fact
that for some patterns (e.g., Strategy) the basic criterion for applying them can be
the number of inherited methods compared to the number of overridden ones. In
particular, if the number of overridden methods (varying behavior) is negligible
compared to inherited methods (common behavior), then an alternative design
(e.g., set of if-statements) might be preferable.

5.4 Model Construction
This section presents the application of the proposed method on Decorator, orga-
nized based on the first five steps of the method that correspond to the model con-
struction. The last two steps (analytical exploration) are presented in Section 5.5.

5.4.1 Identify alternatives
Decorator is used for “adding behavior or state to individual objects at run-time”
(Gamma et al. 1995). We selected to demonstrate the method on Decorator, due to
its inherent complex structure and the fact that method-related parameters cannot

30 We have not considered the “add clients” (Ng et al. 2007) parameter due to its uniform
effect on both solutions. “Adding abstract classes” (Ng et al. 2007) was not considered,
since the addition of an abstract class in a pattern instance would create a coupled pattern.
31 This does not imply that the results of (Ampatzoglou et al. 2012) are invalidated, since for
all examined patterns in (Ampatzoglou et al. 2012), the number of pattern-related methods
is associated to the number of concrete subclasses.

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

125

The major difference between this method, compared to the original one (Am-
patzoglou et al. 2012), which considered only one class-related parameter30 (i.e.,
number of concrete subclasses) (Ng et al. 2007), lies on the identification of addi-
tional parameters31 (i.e., number of pattern-related methods). Especially for the
case of Decorator, studying pattern-related methods is important, since according
to Di Penta et al. (2008) adding and removing methods is the most frequently ap-
plied modification operation. Instead of using the number of pattern-related meth-
ods, we decided to use more fine-grained parameters, based on the type of the
method: (a) number of abstract methods, (b) number of overridden methods, and
(c) number of inherited methods. The rationale of this decision is based on the fact
that for some patterns (e.g., Strategy) the basic criterion for applying them can be
the number of inherited methods compared to the number of overridden ones. In
particular, if the number of overridden methods (varying behavior) is negligible
compared to inherited methods (common behavior), then an alternative design
(e.g., set of if-statements) might be preferable.

5.4 Model Construction
This section presents the application of the proposed method on Decorator, orga-
nized based on the first five steps of the method that correspond to the model con-
struction. The last two steps (analytical exploration) are presented in Section 5.5.

5.4.1 Identify alternatives
Decorator is used for “adding behavior or state to individual objects at run-time”
(Gamma et al. 1995). We selected to demonstrate the method on Decorator, due to
its inherent complex structure and the fact that method-related parameters cannot

30 We have not considered the “add clients” (Ng et al. 2007) parameter due to its uniform
effect on both solutions. “Adding abstract classes” (Ng et al. 2007) was not considered,
since the addition of an abstract class in a pattern instance would create a coupled pattern.
31 This does not imply that the results of (Ampatzoglou et al. 2012) are invalidated, since for
all examined patterns in (Ampatzoglou et al. 2012), the number of pattern-related methods
is associated to the number of concrete subclasses.

be subsumed by the number of classes. The class diagram of a typical Decorator is
presented in Figure 5.1, whereas an alternative design is presented in Figure 5.2.
While building the alternative, we replaced: (a) the composition to objects of the
superclass (i.e., link between Component and Decorator) with direct compositions
to all leafs (i.e., link between Leaf1 and Decorator, etc.), which can be considered
as a common design decision from novice software developers; and (b) the use of
polymorphism (Decorator hierarchy) with conditional statements, based on the
value of the decoratorType variable. Similarly, this is a common design decision—
see refactoring: “prefer conditional over polymorphism” (Fowler et al. 1999).

We note that the specific alternative is not a pattern variant, but an artificial design
constructed by ignoring some pattern principles. We acknowledge that the results
reported in this chapter depend on this alternative, and would be different if we
used a different alternative (see threats to validity in Section 5.7). In any case, one
who wishes to apply the proposed method with another design alternative can re-
produce the steps of the method, as illustrated in Section 5.4 to compare any set of
design options.

5.4.2 Identify pattern-related parameters
In the structure of the Decorator design pattern we have identified six pattern-
related parameters (see Figure 5.1): three based on the class hierarchies and three
based on methods.

Number of Classes

 Let n be the number of Leafi in the design.
 Let p be the number of ConcreteDecoratorA1i—those that provide additional

methods than the ones provided by the given methods of the hierarchy.
 Let q be the number of ConcreteDecoratorA2i—those that only exhibit differ-

ent behavior on the given methods of the hierarchy, without providing new
ones.

Number of Methods

 Let m be the number of operationi methods—abstract methods in the Decorator
class hierarchy.

Chapter 5

126

 Let k be the number of otherOperation methods—non-abstract (inherited)
methods in the Component class.

 Let r be the number of additionalOperation methods, offered by ConcreteDec-
oratorA1i classes.

In Figure 5.1 we demonstrate how the specific pattern-related parameters are
mapped to the Decorator UML class diagram.

Figure 5.1: Decorator Design Pattern Class Diagram

5.4.3 Model solutions based on parameters
As explained in Section 5.4.1 the Decorator Design Alternative holds different lists
for each type of Leaf, in order to provide equal functionality on the aggregation to
Component class in the design pattern. In order for the decorator to change type
during run-time, the Decorator class holds a decoratorType attribute that takes (p +
q) possible values. Inside the (m) operation, we placed (p+q) if statements, to han-
dle all possible ConcreteDecoratori classes. The way that the pattern-related param-
eters are mapped into the alternative UML class diagram is depicted in Figure 5.2.
We note that (p) and (q) are not represented, since if-statements are not visible at
class diagrams.

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

127

 Let k be the number of otherOperation methods—non-abstract (inherited)
methods in the Component class.

 Let r be the number of additionalOperation methods, offered by ConcreteDec-
oratorA1i classes.

In Figure 5.1 we demonstrate how the specific pattern-related parameters are
mapped to the Decorator UML class diagram.

Figure 5.1: Decorator Design Pattern Class Diagram

5.4.3 Model solutions based on parameters
As explained in Section 5.4.1 the Decorator Design Alternative holds different lists
for each type of Leaf, in order to provide equal functionality on the aggregation to
Component class in the design pattern. In order for the decorator to change type
during run-time, the Decorator class holds a decoratorType attribute that takes (p +
q) possible values. Inside the (m) operation, we placed (p+q) if statements, to han-
dle all possible ConcreteDecoratori classes. The way that the pattern-related param-
eters are mapped into the alternative UML class diagram is depicted in Figure 5.2.
We note that (p) and (q) are not represented, since if-statements are not visible at
class diagrams.

Figure 5.2: Decorator Design Alternative Class Diagram

5.4.4 Select a metric suite
For this study, we used the QMOOD metrics (Bansiya and Davis 2002). These
metrics can directly quantify a set of low-level Quality Attributes (QA)—e.g., cou-
pling, cohesion, etc., which in turn can be grouped to assess high-level ones (e.g.,
reusability, etc.). These low-level qualities and the metrics that quantify them are
presented in Table 5.1 (Bansiya and Davis 2002). We note that in this study we use
only the QMOOD metric definitions and their positive/negative relationship to high
level quality attributes, rather than the mathematical formulas that are suggested for
their quantification, so as not to raise a threat to construct validity (Hsueh et al.
2008) (see Section 5.7).

Chapter 5

128

Table 5.1: QMOOD Metrics and Low-Level Quality Attributes

Low-Level QA Metric Description

Design Size Design Size in Classes (DSC) - Count of classes.

Messaging Class Interface Size (CIS) - Count of public methods

 Polymorhism Number of Polymorphic Methods (NOP) - Number of meth-
ods that can exhibit polymorphic behavior

Abstraction Average Number of Ancestors (ANA) - Average number of
classes from which a class inherits.

Encapsulation Data Access Metric (DAM) - Ratio of the number of pri-
vate/protected fields to the total number of fields

Coupling Direct Class Coupling (DCC) - Number of other classes that
the class is directly related to.

Composition Measure of Aggregation (MOA) - Number of data declara-
tions whose types are user defined classes.

Inheritance Measure of Functional Abstraction (MFA) - Ratio of number
of methods inherited by total number of accessible methods.

Cohesion Cohesion Among Methods (CAMC) - Sum of the intersection
of a method parameters with the maximum set of all parameter
types in the class.

Hierarcies Number of Hierarchies (NOH) - Count of hierarchies in the
design.

Complexity Number of Methods (NOM) - Number of methods in the class.

5.4.5 Construct equations
By calculating the metric presented in Table 5.1 on the designs of Section 5.4.1, we
formulated the metric scores for low-level quality attributes, for both solutions (f(x)
for the pattern and g(x) for the alternative). The calculations are reported together
with the obtained results for two additional patterns (i.e., Strategy and Template
Method), in an accompanying technical report1, due to space limitations. However,

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

129

Table 5.1: QMOOD Metrics and Low-Level Quality Attributes

Low-Level QA Metric Description

Design Size Design Size in Classes (DSC) - Count of classes.

Messaging Class Interface Size (CIS) - Count of public methods

 Polymorhism Number of Polymorphic Methods (NOP) - Number of meth-
ods that can exhibit polymorphic behavior

Abstraction Average Number of Ancestors (ANA) - Average number of
classes from which a class inherits.

Encapsulation Data Access Metric (DAM) - Ratio of the number of pri-
vate/protected fields to the total number of fields

Coupling Direct Class Coupling (DCC) - Number of other classes that
the class is directly related to.

Composition Measure of Aggregation (MOA) - Number of data declara-
tions whose types are user defined classes.

Inheritance Measure of Functional Abstraction (MFA) - Ratio of number
of methods inherited by total number of accessible methods.

Cohesion Cohesion Among Methods (CAMC) - Sum of the intersection
of a method parameters with the maximum set of all parameter
types in the class.

Hierarcies Number of Hierarchies (NOH) - Count of hierarchies in the
design.

Complexity Number of Methods (NOM) - Number of methods in the class.

5.4.5 Construct equations
By calculating the metric presented in Table 5.1 on the designs of Section 5.4.1, we
formulated the metric scores for low-level quality attributes, for both solutions (f(x)
for the pattern and g(x) for the alternative). The calculations are reported together
with the obtained results for two additional patterns (i.e., Strategy and Template
Method), in an accompanying technical report1, due to space limitations. However,

to enhance the readers’ understandability, we provide the calculation of one metric
(DCC) for the pattern (Decorator) solution, as an example. We clarify that to ag-
gregate metric scores from the class level to the pattern level we use the average
function. More specifically the numerator is calculated as the sum of the DCC of
all classes, whereas the denominator equals the number of classes.

According to the class diagram presented in Figure 5.1, for the pattern solution, the
numerator is calculated as follows: The Client class includes an object, of type
Component, so its DCC equals 1. Similarly, the Component class includes an ob-
ject, of type Decorator, so its DCC also equals 1. The (n) Leafi classes inherit from
the Component class, so their DCC equals 1. Similarly, the (p) ConcreDecorato-
rA1i classes and the (q) ConcreDecoratorA2i inherit from the Decorator class, so
their DCC equals 1. The DCC of the Decorator class equals 0 since it does not
include any dependencies. The denominator on the other hand, as already men-
tioned above is the number of classes in the pattern solution, i.e., the sum of the
number of Leafi classes (n), the number of ConcreDecoratorA1i classes (p), the
number of ConcreDecoratorA2i classes (q), plus 3 (i.e. Decorator, Component and
Client). Thus,

qpn
qpnPATTERNDCC 




3
)*1()*1()*1(11

Similarly, we calculate the metric for the alternative solution, by considering the
classes and methods of the respective design.

5.5 Analytical Results
In this section we present the results obtained while applying the second part of our
method, in which we analyze the theoretical models constructed in Section 5.4. In
Section 5.5.1 we present the results of the performed statistical analysis, so as to
present quality attributes for which the pattern or the alternative solution is always
beneficial (step 6). In Section 5.5.2 we explore the cases that no optimal design
solution could be identified, by investigating the range values of pattern-related
parameters for which each design solution is beneficial (step 7).

Chapter 5

130

5.5.1 Statistical Analysis
In this section we present the results of our study obtained by substituting the vari-
ables of the equations with the most common values of pattern-related parameters,
according to the literature32. In particular, based on a case study performed by Am-
patzoglou et al. (2011) on 108 open source projects, Decorator instances tend to
have on average 13 classes. Additionally, regarding the method-related parameters,
literature suggests that classes (regardless of their pattern participation) rarely have
more than 15 methods (Kalpana 2011). Based on the aforementioned claims, we
can assume that:

 n + p + q + 3 = 13
 n, q, p [1, 8]
 m, k, r [1, 13]
 max (m + k + r) ≤15

By using the aforementioned rules as a way to obtain a sample that represents the
most frequently occurring pattern instances, we developed a dataset consisting of
16,500 cases. By exploring this dataset using statistical analysis we aim at identify-
ing the existence of differences between the two solutions in the most common
design pattern occurrences.

In Table 5.2 each row represents one low-level quality attribute, whereas in the
columns we present: (a) the mean value and the standard deviation of both the pat-
tern and the alternative solution, (b) the results of the Wilcoxon test “Z” that check
the statistical significance of differences (we omit the sig. values since for all cases
the obtained results have been statistically significant), and (c) the frequency of
cases when the pattern “P” or the alternative “A” have higher metric scores, as well
as the frequency of ties “T”. The cases when one design solution clearly has higher
values compared to the other are highlighted with grey cell shading in the table.
From Table 5.2 we have excluded the values for encapsulation (DAM) and hier-

32 Since the aim of this study is not the evaluation of a specific system, we used the most
common values of pattern-related parameters, so that our results to be as generic, and as
close to practice as possible.

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

131

5.5.1 Statistical Analysis
In this section we present the results of our study obtained by substituting the vari-
ables of the equations with the most common values of pattern-related parameters,
according to the literature32. In particular, based on a case study performed by Am-
patzoglou et al. (2011) on 108 open source projects, Decorator instances tend to
have on average 13 classes. Additionally, regarding the method-related parameters,
literature suggests that classes (regardless of their pattern participation) rarely have
more than 15 methods (Kalpana 2011). Based on the aforementioned claims, we
can assume that:

 n + p + q + 3 = 13
 n, q, p [1, 8]
 m, k, r [1, 13]
 max (m + k + r) ≤15

By using the aforementioned rules as a way to obtain a sample that represents the
most frequently occurring pattern instances, we developed a dataset consisting of
16,500 cases. By exploring this dataset using statistical analysis we aim at identify-
ing the existence of differences between the two solutions in the most common
design pattern occurrences.

In Table 5.2 each row represents one low-level quality attribute, whereas in the
columns we present: (a) the mean value and the standard deviation of both the pat-
tern and the alternative solution, (b) the results of the Wilcoxon test “Z” that check
the statistical significance of differences (we omit the sig. values since for all cases
the obtained results have been statistically significant), and (c) the frequency of
cases when the pattern “P” or the alternative “A” have higher metric scores, as well
as the frequency of ties “T”. The cases when one design solution clearly has higher
values compared to the other are highlighted with grey cell shading in the table.
From Table 5.2 we have excluded the values for encapsulation (DAM) and hier-

32 Since the aim of this study is not the evaluation of a specific system, we used the most
common values of pattern-related parameters, so that our results to be as generic, and as
close to practice as possible.

archies (NOH) attributes, since their scores are equal for both solutions (these met-
rics are not affected by any pattern-related parameter).

Table 5.2: Effect of Decorator on low-level Quality Attributes

Quality
Attribute

Pattern Alternative
Z

Solutions

Mean STD Mean STD P% A% T%

Size 13,000 0,09 6,330 1,97 -111,2 99,99 0,01 0,00

Inheritance 0,352 0,16 0,425 0,20 -49,2 38,01 61,92 0,06

Coupling 0,922 0,02 1,307 0,20 -110,8 0,00 100 0,00

Cohesion 0,401 0,16 0,437 0,17 -25,5 40,23 55,18 4,57

Polymorphism 0,615 0,41 0,693 0,52 -32,9 41,66 58,33 0,00

Messaging 5,794 2,49 7,039 2,37 -101,4 8,65 91,27 0,07

Complexity 5,794 2,49 7,039 2,38 -101,3 8,65 91,27 0,07

Composition 0,154 0,02 0,653 0,10 -111,1 0,01 99,99 0,00

Abstraction 1,615 0,26 0,653 0,10 -110,8 100 0,00 0,00

Based on the results of Table 5.2, we observe that for Inheritance, Cohesion and
Polymorphism the frequency of occurrences that Decorator has lower metric scores
than the alternative solution is close to a 60%-40% distribution. Additionally, con-
cerning Messaging and Complexity the alternative solution shows 90% higher
scores. On the other hand, concerning Size, Coupling, Composition and Abstraction
the pattern solution has, to a large extent, higher metric scores compared to the
alternative solution. A possible interpretation of the higher Size (DSC) and Ab-
straction (ANA) values is the increase of the depth of the inheritance tree, and the
extra classes placed on the last level of the tree. The result concerning Composition
(MOA) and Coupling (DCC) is intuitive in the sense that in the alternative design
the direct composition of Leafi to the Decorator was preferred. We note that con-
cerning: (a) some metrics (e.g., Coupling) the optimal solution is not the one
achieving the highest score, since it is a negative quality indicator; and (b) the same
metric can have a different effect on different quality attributes (e.g., DSC is bene-

Chapter 5

132

ficial concerning functionality, but worsens the understandability of the design)
(Bansiya and Davis 2002). Finally, the results show that ties are negligible, since
they occur rarely (max: approx. 5% for cohesion).

Summing up, the results of the statistical analysis reveal that for Size and Abstrac-
tion the Decorator pattern solution has higher scores than the alternative solution,
while for Coupling, Composition, Messaging and Complexity the opposite applies.
Finally, although for Inheritance, Cohesion, and Polymorphism the alternative
solution shows more frequently higher scores, the cut-off points split the problem
space almost in the middle (60% vs. 40%), suggesting that it is not possible to state
if the pattern or the alternative solution is more beneficial, and thus each problem
should be individually considered (see Section 5.5.2).

5.5.2 Identification of Cut-off Points
To further investigate the cases where no conclusion can be derived by statistical
analysis one needs to work on the model level. By using the equations defined in
Section 5.4.5 we subtract the alternative from the pattern function for every quality
attribute. In this way, we define a new function (diff) that detects when a solution
gets better, with respect to this quality attribute:

diff (n, p, q, m, k, r) = pattern (n, p, q, m, k, r) – alternative (n, m, k, r) > 0 (1)

diff (n, p, q, m, k, r) <0

The existence of solutions to the aforementioned inequalities (1) suggests that there
are multiple cut-off points, where the design pattern solution is getting better or
worse than the alternative solution, with respect to a quality attribute33. In particu-
lar, positive values of diff denote that the pattern version presents higher metric
scores, while negative values suggest the opposite. Although in the majority of
cases (e.g., cohesion), higher metric scores suggest better levels of the quality at-
tributes, in some cases (e.g., coupling) higher scores imply declined quality. In

33 Despite the fact that these solutions cannot be defined as single points, we prefer to use
this term to ensure consistency with previous work (Ampatzoglou et al. 2012). In practice
the solutions to such equations are cut-off surfaces.

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

133

ficial concerning functionality, but worsens the understandability of the design)
(Bansiya and Davis 2002). Finally, the results show that ties are negligible, since
they occur rarely (max: approx. 5% for cohesion).

Summing up, the results of the statistical analysis reveal that for Size and Abstrac-
tion the Decorator pattern solution has higher scores than the alternative solution,
while for Coupling, Composition, Messaging and Complexity the opposite applies.
Finally, although for Inheritance, Cohesion, and Polymorphism the alternative
solution shows more frequently higher scores, the cut-off points split the problem
space almost in the middle (60% vs. 40%), suggesting that it is not possible to state
if the pattern or the alternative solution is more beneficial, and thus each problem
should be individually considered (see Section 5.5.2).

5.5.2 Identification of Cut-off Points
To further investigate the cases where no conclusion can be derived by statistical
analysis one needs to work on the model level. By using the equations defined in
Section 5.4.5 we subtract the alternative from the pattern function for every quality
attribute. In this way, we define a new function (diff) that detects when a solution
gets better, with respect to this quality attribute:

diff (n, p, q, m, k, r) = pattern (n, p, q, m, k, r) – alternative (n, m, k, r) > 0 (1)

diff (n, p, q, m, k, r) <0

The existence of solutions to the aforementioned inequalities (1) suggests that there
are multiple cut-off points, where the design pattern solution is getting better or
worse than the alternative solution, with respect to a quality attribute33. In particu-
lar, positive values of diff denote that the pattern version presents higher metric
scores, while negative values suggest the opposite. Although in the majority of
cases (e.g., cohesion), higher metric scores suggest better levels of the quality at-
tributes, in some cases (e.g., coupling) higher scores imply declined quality. In

33 Despite the fact that these solutions cannot be defined as single points, we prefer to use
this term to ensure consistency with previous work (Ampatzoglou et al. 2012). In practice
the solutions to such equations are cut-off surfaces.

other words, concerning coupling, which has a negative effect on quality, when diff
is positive the design alternative is better than the pattern, while when dealing with
cohesion, a positive diff implies that the pattern excels. Presenting the mathemati-
cal representation of such cut-off points is out of the scope of this manuscript, due
to their large number and complexity. Nevertheless, we visualize the existence of
these cut-off points by demonstrating a tool created for this purpose.

To assist practitioners in using the proposed method, we have extended the
DesignPAD tool (Ampatzoglou et al. 2012), by adding functionality related to the
three newly studied design patterns and by migrating it to the web. Currently,
DesignPAD is available as a web-service through the Percerons platform34. The
tool requires as input the type of design pattern that the user is interested in
(Bridge, Abstract Factory, Visitor, Template Method, State, Strategy, or Decora-
tor), a set of quality metrics or a quality model, and a set of values for the pattern-
related parameters (single values or range of values). The tool provides as output
descriptive statistics on the metric scores, as well as a visualization of the cut-off
points. The results can guide software engineers to make a decision on whether
pattern application is beneficial or not.

For example, in Figure 5.3 our method is applied on a Decorator instance with 1
Leaf and 1 Concrete Decorator. In this example the Decorator hierarchy offers 1
polymorphic method and 3 inherited ones, while the Concrete Decorator extends
the functionality of the hierarchy by offering 1-8 additional operations. The results
of the tool suggest, that the pattern solution gradually becomes more understanda-
ble than the alternative, and surpasses it when the solution has 5 additional opera-
tions. This finding is according to the intent of the Decorator pattern, which is ex-
pected to be useful when adding extra responsibilities to an object (increase of
Additional Operations (r)). We note that concerning Decorator at this stage the tool
is able to simulate instances of only one alternative (the one presented in this
study), but in the future we plan to update the tool with further alternatives for all
patterns.

34 http://www.percerons.com

Chapter 5

134

Figure 5.3: Percerons Design Pattern Advisor Output

The most interesting findings on the identification of cut-off points for the Decora-
tor pattern are presented below. We remind that the results correspond to the com-
parison between the Decorator pattern and the alternative design presented in Sec-
tion 5.4.1. Functions representing abstraction (quantified through the ANA met-
ric), size (DSC), composition (MOA), and coupling (DCC) do not present any cut-
off points (i.e. the direction of the inequality does not change among different pat-
tern instances) as indicated by the statistical analysis (see Table 5.2).

Concerning cohesion (CAMC), the obtained results suggest that the larger the
number of Leafi classes (n), the more probable the alternative design solution to
become more coherent. Additionally, we observe that as the number of Decorator
operationi methods (m) increases the alternative solution becomes more prominent,
whereas the opposite applies when adding additionalOperations to ConcreteDeco-
ratorA1i classes (i.e. increasing (r)). This behavior is caused by the addition of the
non-coherent methods of a class. For example, in the pattern, operationi are not

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

135

Figure 5.3: Percerons Design Pattern Advisor Output

The most interesting findings on the identification of cut-off points for the Decora-
tor pattern are presented below. We remind that the results correspond to the com-
parison between the Decorator pattern and the alternative design presented in Sec-
tion 5.4.1. Functions representing abstraction (quantified through the ANA met-
ric), size (DSC), composition (MOA), and coupling (DCC) do not present any cut-
off points (i.e. the direction of the inequality does not change among different pat-
tern instances) as indicated by the statistical analysis (see Table 5.2).

Concerning cohesion (CAMC), the obtained results suggest that the larger the
number of Leafi classes (n), the more probable the alternative design solution to
become more coherent. Additionally, we observe that as the number of Decorator
operationi methods (m) increases the alternative solution becomes more prominent,
whereas the opposite applies when adding additionalOperations to ConcreteDeco-
ratorA1i classes (i.e. increasing (r)). This behavior is caused by the addition of the
non-coherent methods of a class. For example, in the pattern, operationi are not

coherent with addParts and removeParts. Therefore, as we add such methods, lack
of cohesion increases.

During system evolution along two change parameters (adding Leafi and opera-
tioni) the use of the pattern leads to less cohesive solutions, whereas when the pat-
tern evolves through the addition of additionalOperations, the cohesion increases.

Next, we present the obtained results regarding the Class Interface Size (CIS) and
Complexity (NOM). The results on these two metrics are presented together, since
their values are equal due to the fact that the pattern does not impose the use of any
private or protected methods. For these metrics we can observe that for larger val-
ues of (r), i.e., adding additonalOperations methods, there are specific combina-
tions of number of classes that the pattern solution offers a larger interface (more
methods) per class. Nevertheless, the increase of (r) is not the only condition for
the pattern solution to exhibit more methods, since the existence of a high number
of ConcreteDecoratorA1i classes (p) is required. This result can be explained by
the fact that the addition of extra methods in ConcreteDecoratorA1i classes in-
crease the system’s average CIS/NOM only in the pattern solution (the changes in
ConcreteDecoratorA2i are reflected in the alternative as well); thus, the more clas-
ses of this role are added, the more the two metrics increase. The existence of pub-
lic methods is usually considered as a proxy of functionality, and the probability of
reusing a specific class in a different system.

Therefore, although small pattern instances (i.e., small number of ConcreDecorato-
rA1i classes (p) and additionalOperation methods (r)) are offering smaller interfac-
es than the equivalent alternative designs, along evolution the pattern solution tends
to excel in this characteristic.

Concerning polymorphism (NOP), the only parameter that affects the extent of its
use in any of the two designs is the number of classes. Specifically, small numbers
of ConcreteDecoratorA1i (p) and ConcreteDecoratorA2i (q) lead to limited poly-
morphism in the alternative solution, and therefore the use of the pattern is prefera-
ble. On the other hand, when along evolution more classes are added to the system,
the alternative solution takes advantage of polymorphism. However, if the major
change is the addition of Leafi (n), then the pattern becomes more beneficial. This
result is expected since polymorphism is present in the Leafi classes. Nevertheless,
since the use of polymorphism is one of the cornerstones of the object-orientation,
designs that make use of it excel in terms of efficiency and extendibility.

Chapter 5

136

Similarly to cohesion, decisions that are based on polymorphism should take into
account the most anticipated extension scenarios. Thus, when the number of Con-
creDecoratorA1i classes (p) and ConcreDecoratorA2i classes (q) is small and the
number of Leafi classes (n) is large, the pattern solution is beneficial.

Finally, concerning the use of inheritance (MFA), we can suggest that the addition
of operationi (m) and additionalOperation methods (r) leads to a more extensive
use of inheritance in the pattern solution. On the other hand, the larger the number
of otherOperation (k) methods, the better the alternative solution becomes. This
outcome can be considered as intuitive since when there is no room for the applica-
tion of polymorphism (all Leafi and Decorators have very similar behavior) the use
of Decorator, might just be too complex for the designer’s needs. Also, the results
indicate that some parameters affect more strongly the results. For example, as both
(m) and (k) increase the pattern solution becomes less prominent, which suggests
that the effect of (k) is stronger, like the aggregate effect of (r) and (k). Finally, the
results when all parameters are increased simultaneously show that the effect
caused by the addition of otherOperation (k) is stronger than the joint effect of both
adding operationi (m) and additionalOperation methods (r).

Thus, to understand the effect of Decorator on the use of inheritance one should
consider if along evolution the architect expects the addition of operationi methods
that are the same in all Leafi and Decorators. As the number of such methods in-
creases, the pattern becomes less beneficial concerning polymorphism.

5.6 Discussion
In this section we discuss the main findings of this study and present implications
to researchers and practitioners. In Section 5.6.1 we synthesize our findings to as-
sess six high-level quality attributes, while in Section 5.6.2, we elaborate on the
potential value of our method for researchers and practitioners.

5.6.1 Synthesis of Results
To facilitate the discussion on high-level quality attributes, we summarize the main
outcomes of Section 5.5, in a synthesized form in

Figure 5.4. In particular, we present six radar charts (one for each high-level quali-
ty attribute of QMOOD (Bansiya and Davis 2002)). For each metric that is used to
assess a quality attribute we present the percentage of cases when each design so-
lution is optimal (PAT: green line, ALT: blue line—by considering the score and

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

137

Similarly to cohesion, decisions that are based on polymorphism should take into
account the most anticipated extension scenarios. Thus, when the number of Con-
creDecoratorA1i classes (p) and ConcreDecoratorA2i classes (q) is small and the
number of Leafi classes (n) is large, the pattern solution is beneficial.

Finally, concerning the use of inheritance (MFA), we can suggest that the addition
of operationi (m) and additionalOperation methods (r) leads to a more extensive
use of inheritance in the pattern solution. On the other hand, the larger the number
of otherOperation (k) methods, the better the alternative solution becomes. This
outcome can be considered as intuitive since when there is no room for the applica-
tion of polymorphism (all Leafi and Decorators have very similar behavior) the use
of Decorator, might just be too complex for the designer’s needs. Also, the results
indicate that some parameters affect more strongly the results. For example, as both
(m) and (k) increase the pattern solution becomes less prominent, which suggests
that the effect of (k) is stronger, like the aggregate effect of (r) and (k). Finally, the
results when all parameters are increased simultaneously show that the effect
caused by the addition of otherOperation (k) is stronger than the joint effect of both
adding operationi (m) and additionalOperation methods (r).

Thus, to understand the effect of Decorator on the use of inheritance one should
consider if along evolution the architect expects the addition of operationi methods
that are the same in all Leafi and Decorators. As the number of such methods in-
creases, the pattern becomes less beneficial concerning polymorphism.

5.6 Discussion
In this section we discuss the main findings of this study and present implications
to researchers and practitioners. In Section 5.6.1 we synthesize our findings to as-
sess six high-level quality attributes, while in Section 5.6.2, we elaborate on the
potential value of our method for researchers and practitioners.

5.6.1 Synthesis of Results
To facilitate the discussion on high-level quality attributes, we summarize the main
outcomes of Section 5.5, in a synthesized form in

Figure 5.4. In particular, we present six radar charts (one for each high-level quali-
ty attribute of QMOOD (Bansiya and Davis 2002)). For each metric that is used to
assess a quality attribute we present the percentage of cases when each design so-
lution is optimal (PAT: green line, ALT: blue line—by considering the score and

the relation between the metric and the QA), based on the results presented in Ta-
ble 5.2. We note that from the radar charts we have omitted the metrics that are
equal in both solutions (i.e., NOH and DAM). Specifically, the larger the number
of metrics that the two lines are close (e.g., CAMC), the larger the gain from using
the method, in the sense that the designers can make informed decisions based on
the values of the pattern-related parameters.

Figure 5.4: Effect of Decorator on Quality Attributes

The aforementioned results suggest that in most of the cases, the application of the
pattern enhances the quality attribute of interest. For example, concerning Extendi-
bility, we observe that the design pattern solution improves the values for two out
of four metrics. Extendibility is the only high-level quality attribute for which the
alternative solution does not excel concerning any factor. This result is in accord-
ance to the literature (Ampatzoglou et al. 2013b), which suggests that Decorator
application eases any future maintenance activity. However, there are special cases
that some aspects of design quality might be weakened. For example, concerning
Understandability the pattern is always beneficial concerning NOM and DCC. In
approximately 40% of the examined cases it is also beneficial concerning CAMC,
and in 60% of cases concerning NOP. However, there is no case where the pattern

Chapter 5

138

solution is better concerning ANA and DSC. Thus, it becomes clear that since the
values of factors influencing understandability are so mixed, we are unable to de-
rive a conclusion on the effect of the pattern using statistics. This result provides a
solid explanation on the contradictive results concerning the effect of Decorator on
understandability (Ampatzoglou et al. 2011). In particular Ampatzoglou et al.
(2011) report that one study has negatively evaluated the effect of Decorator on
understandability, whereas two other have reported a positive relation. For such
cases further analysis is required.

To assist the process of design solution selection when cut-off points exist, in Table
5.3 we provide a more fine-grained analysis on the factors that influence the effect
of patterns on software quality. Specifically, every row of the table presents a met-
ric that is used for the quantification of high-level quality attributes (and presents
cut-off points), whereas every column a pattern-related parameter (as presented in
Section 5.4.2). Every cell of the table denotes which design is beneficial with re-
spect to the specific metric, whenever one parameter is increasing (i.e., when we
extent the system by adding a corresponding class or method). For example, the
results of CAMC metric indicate that the alternative solution is more beneficial
when the number of Leafi or the number of operationi methods increase, while the
pattern solution is preferable in the case that the additionalOperation methods in-
crease. We remind that concerning ANA and DSC the pattern solution is always
having higher scores than the alternative; regarding MOA and DCC the opposite
applies, whereas for DAM and NOH they are always equal (see Section 5.5.1).

Table 5.3: Effect of Decorator Parameters

Metric Modification Parameters
(n) (p) (q) (m) (k) (r)

CAMC ALT ALT PAT

CIS PAT PAT

NOM PAT PAT

NOP PAT ALT ALT

MFA PAT ALT PAT

Total 2 3 1 2 1 4

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

139

solution is better concerning ANA and DSC. Thus, it becomes clear that since the
values of factors influencing understandability are so mixed, we are unable to de-
rive a conclusion on the effect of the pattern using statistics. This result provides a
solid explanation on the contradictive results concerning the effect of Decorator on
understandability (Ampatzoglou et al. 2011). In particular Ampatzoglou et al.
(2011) report that one study has negatively evaluated the effect of Decorator on
understandability, whereas two other have reported a positive relation. For such
cases further analysis is required.

To assist the process of design solution selection when cut-off points exist, in Table
5.3 we provide a more fine-grained analysis on the factors that influence the effect
of patterns on software quality. Specifically, every row of the table presents a met-
ric that is used for the quantification of high-level quality attributes (and presents
cut-off points), whereas every column a pattern-related parameter (as presented in
Section 5.4.2). Every cell of the table denotes which design is beneficial with re-
spect to the specific metric, whenever one parameter is increasing (i.e., when we
extent the system by adding a corresponding class or method). For example, the
results of CAMC metric indicate that the alternative solution is more beneficial
when the number of Leafi or the number of operationi methods increase, while the
pattern solution is preferable in the case that the additionalOperation methods in-
crease. We remind that concerning ANA and DSC the pattern solution is always
having higher scores than the alternative; regarding MOA and DCC the opposite
applies, whereas for DAM and NOH they are always equal (see Section 5.5.1).

Table 5.3: Effect of Decorator Parameters

Metric Modification Parameters
(n) (p) (q) (m) (k) (r)

CAMC ALT ALT PAT

CIS PAT PAT

NOM PAT PAT

NOP PAT ALT ALT

MFA PAT ALT PAT

Total 2 3 1 2 1 4

Based on Table 5.3 and the radar charts of Figure 5.4 we can guide practitioners in
making pattern-related decisions, based on their preference on different quality
attributes as follows:

Reusability. We can observe that 2/4 metrics that influence reusability (DSC and
DCC) are always favored by the use of the pattern. Concerning the other two (CIS
and CAMC), we can observe that in majority the alternative design is more benefi-
cial. However, in the special case that along evolution, the practitioner expects an
increase in the number of concrete decorators (p), which offer increased number of
class-specific operations (r), then the use of the pattern seems like a better choice.

Flexibility. One metric (DCC) supports the use of the pattern, another (MOA) sup-
ports the alternative, and one (NOH) is neutral. The fourth metric that presents cut-
off points (NOP), shows a balanced behavior. The use of the pattern can be sug-
gested when more types of components are expected to be added inside the decora-
tor container (n), or more concrete decorators that offer class-specific operations
(p). Nevertheless, according to Di Penta et al. (2008) adding classes to an existing
Decorator instance is not the most frequently applied modification operation. This
observation can partially explain the negative effect of Decorator on adaptability,
reported in the literature (Ampatzoglou et al. 2013b).

Understandability. Similarly to reusability, the existence of cut-off points is im-
portant, since 2/6 relevant metrics (DCC and NOM) are always positively affected
by the use of the pattern and two metrics (DSC and ANA) are always favored by
the alternative. For the rest (CAMC and NOP), we observe that adding concrete
decorators that offer class-specific operations (p) makes the pattern more beneficial
in terms of understandability, whereas adding concrete decorators that do not offer
class-specific operations (q) or operationi methods (m), favor the application of the
alternative solution.

Functionality. Concerning this quality attribute only one metric (DSC) is always
positively affected by the pattern, and three others (CAMC, NOP, and CIS) exhibit
cut-off points. The rules that apply for functionality are the same as for under-
standability (high number of ConcreDecoratorA1i classes (p): benefit from pattern,
high number of ConcreDecoratorA2i classes (q) or operationi methods (m): benefit
from alternative).

Effectiveness. This quality attribute is related to two metrics that present cut-off
points (MFA and NOP). These metrics, in most of the cases, benefit from the alter-

Chapter 5

140

native design. However, they are influenced by completely different parameters
(NOP is influenced by class-related parameters, whereas MFA by method-related
parameters), and therefore, they cannot be discussed uniformly and every evolution
scenario should be treated individually. For the other two metrics that influence
effectiveness one favors pattern (ANA) application and other the alternative
(MOA).

Extendibility. This is the only quality attribute that the alternative solution does not
present higher scores for any of the metrics that influence it. Therefore, we can
assume that for the majority of the cases the design pattern solution can be more
easily extended. The two metrics presenting cut-off points (MFA and NOP) are
exactly the same as in the case of effectiveness and therefore the same observations
apply.

5.6.2 Implications to Researchers/Practitioners
Based on the aforementioned discussion on the effect of the Decorator pattern on
quality attributes, we can highlight that design quality is diminishing by the addi-
tion of concrete decorators that do not offer class-specific operations (q) or meth-
ods that are common in all decorators (k) and in such cases alternative designs
should be preferred. A possible explanation is that these types of change do not
conform to the rationale of the pattern. For example, if the majority of methods that
exist in the hierarchy are the same, then its benefit is limited to a small number of
polymorphic methods. The results of the study lead us to some useful implications
for researchers and practitioners, as follows:

 Researchers can use the proposed method (subjected to some modifications)
for studying similar issues in the design phase, e.g. formulating the effect of re-
factorings on software quality.

 Researchers can generalize the method so as to be able to compare equivalent
design solutions, across software evolution, regardless of pattern participation.

 Researchers can use the proposed analytical method for investigating the effect
of patterns on source code metrics.

 Practitioners can use the derived formulas for making design decisions during
both Greenfield and Brownfield development. In the first case (during design)
the designer can consider factors, like the number of the pattern-participating
classes of an instance to decide prior to the application of a pattern whether this
would be beneficial. In the case of Brownfield development, the same approach

A Theoretical Model for Capturing the Impact of Design Patterns on Quality: The Decorator Case Study

141

native design. However, they are influenced by completely different parameters
(NOP is influenced by class-related parameters, whereas MFA by method-related
parameters), and therefore, they cannot be discussed uniformly and every evolution
scenario should be treated individually. For the other two metrics that influence
effectiveness one favors pattern (ANA) application and other the alternative
(MOA).

Extendibility. This is the only quality attribute that the alternative solution does not
present higher scores for any of the metrics that influence it. Therefore, we can
assume that for the majority of the cases the design pattern solution can be more
easily extended. The two metrics presenting cut-off points (MFA and NOP) are
exactly the same as in the case of effectiveness and therefore the same observations
apply.

5.6.2 Implications to Researchers/Practitioners
Based on the aforementioned discussion on the effect of the Decorator pattern on
quality attributes, we can highlight that design quality is diminishing by the addi-
tion of concrete decorators that do not offer class-specific operations (q) or meth-
ods that are common in all decorators (k) and in such cases alternative designs
should be preferred. A possible explanation is that these types of change do not
conform to the rationale of the pattern. For example, if the majority of methods that
exist in the hierarchy are the same, then its benefit is limited to a small number of
polymorphic methods. The results of the study lead us to some useful implications
for researchers and practitioners, as follows:

 Researchers can use the proposed method (subjected to some modifications)
for studying similar issues in the design phase, e.g. formulating the effect of re-
factorings on software quality.

 Researchers can generalize the method so as to be able to compare equivalent
design solutions, across software evolution, regardless of pattern participation.

 Researchers can use the proposed analytical method for investigating the effect
of patterns on source code metrics.

 Practitioners can use the derived formulas for making design decisions during
both Greenfield and Brownfield development. In the first case (during design)
the designer can consider factors, like the number of the pattern-participating
classes of an instance to decide prior to the application of a pattern whether this
would be beneficial. In the case of Brownfield development, the same approach

can be used during the maintenance phase, for scheduling a refactoring of a
pattern-based solution to an alternative one, or vice versa. In both cases the ob-
tained benefit is the capability to evaluate pattern-related design decisions be-
fore they are implemented, contributing to reduced development or mainte-
nance costs.

5.7 Threats to Validity
In this section we discuss threats to validity. Concerning construct validity, the
mapping between quality attributes and metrics, as provided by QMOOD, is
acknowledged as a threat. However, QMOOD has been rigorously validated during
its introduction (Bansiya and Davis 2002). Nevertheless, we note that the riskiest
part of the model (i.e., assignments of weights to low-level metrics) has been omit-
ted. Additionally, the conducted experiments do not necessarily capture the con-
struct of design evolution accurately, since it is possible that design may evolve in
certain directions, but our sample scenarios count as if they are all equally probable
to happen. Thus, it is possible some of the generated data points to represent infea-
sible evolutions, but contribute equally to the results.

In terms of external validity, the use of the QMOOD suite certainly poses some
threats, since the use of a different model might produce different results. Similar-
ly, the generalizability of our results is influenced by the use of specific design
alternatives, expecting that alternatives with poor design could result to even better
scores for the pattern solution. However, we note that the applicability of the meth-
od depends neither on the use of the selected model nor the selected alternative.
The method can be used with any metric suite that takes into account some pattern
parameters (e.g., (Chidamber and Kamerer 1994)), as well as with any alternative
solution that is equivalent to a GoF design pattern; the selection of the design solu-
tions depends on the judgment of the software engineer who applies the method.
Thus, we do not imply that the selected alternative is the best Decorator alternative;
after all there is no objective way to compare all available solutions.

The study has limited reliability threats, since all research questions were answered
by mathematical operations, which involve no researcher bias. Although, the selec-
tion of the pattern related parameter ranges is subjective, it is based on empirical
results obtained from OSS development. Finally, internal validity may be influ-
enced by the pattern related parameters selection, in the sense that omitted parame-

Chapter 5

142

ters can be considered as confounding factors. However, in this study we selected
to explore the most frequently changing parameters, according to Ng et al. (2007).

5.8 Conclusions
This chapter presented a study which aimed at developing a method that can pro-
vide guidance to designers while making pattern-related decisions, driven by quali-
ties. The results of applying the method on decorator highlighted that in most cases
pattern application is beneficial for the design-time qualities; however, there are
specific cases when alternative solutions should be considered. In particular, we
provided evidence that when the decorator pattern is applied in the right context,
i.e., many concrete decorators, with high variability of offered functionalities
(methods), it positively affects quality. On the other hand, in cases that the pattern
is extended by concrete decorators, which inherit most of their offered functionali-
ties, some quality attributes diminish. Based on the above we can claim that the
provided method can be useful to practitioners, and at the same time it opens some
interesting research directions.

This chapter addressed the second limitation of the problem statement of this the-
sis, i.e. the lack of systematic support for identifying incorrectly instantiated pat-
terns, as well as the lack of guidance on how to refactor the design for the purpose
of repaying design TD. In the following chapters we will shed light on the third
limitation which is related to another TD type, i.e., the Documentation TD.

	Chapter 5

