

 University of Groningen

16th SC@RUG 2019 proceedings 2018-2019
Smedinga, Reinder; Biehl, Michael

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Biehl, M. (Eds.) (2019). 16th SC@RUG 2019 proceedings 2018-2019. Bibliotheek der
R.U.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/cc7486e6-ca9f-4092-aa3e-900545144867

faculty of science
and engineering

computing science

SC@RUG 2019 proceedings

Rein Smedinga, Michael Biehl (editors)

16th SC@RUG
2018-2019

1
6

th
 S

C
@

R
U

G
 2

0
1

8
-2

0
1

9

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

SC@RUG 2019 proceedings

Rein Smedinga
Michael Biehl

editors

2019
Groningen

ISBN (e-pub): 978-94-034-1664-9
ISBN (book): 978-94-034-1665-6

Publisher: Bibliotheek der R.U.
Title: 16th SC@RUG proceedings 2018-2019
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2019 proceedings

About SC@RUG 2019

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the six-
teenth time in the academic year 2018-2019. Students
wrote a paper, participated in the review process, gave a
presentation and chaired a session during the conference.

The organizers Rein Smedinga and Michael Biehl
would like to thank all colleagues who cooperated in this
SC@RUG by suggesting sets of papers to be used by the
students and by being expert reviewers during the review
process. They also would like to thank Femke Kramer for
giving additional lectures and special thanks to Agnes Eng-
bersen for her very inspiring workshops on presentation
techniques and speech skills.

Organizational matters
SC@RUG 2019 was organized as follows:

Students were expected to work in teams of two. The stu-
dent teams could choose between different sets of papers,
that were made available through the digital learning envi-
ronment of the university, Nestor. Each set of papers con-
sisted of about three papers about the same subject (within
Computing Science). Some sets of papers contained con-
flicting opinions. Students were instructed to write a sur-
vey paper about the given subject including the different
approaches discussed in the papers. They should compare
the theory in each of the papers in the set and draw their
own conclusions, potentially based on additional research
of their own.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors through Nestor.

All papers could be rewritten and resubmitted, also tak-
ing into account the comments and suggestions from the
reviews. After resubmission each reviewer was asked to re-
review the same paper and to conclude whether the paper
had improved. Re-reviewers could accept or reject a paper.
All accepted papers1 can be found in these proceedings.

In her lectures about communication in science, Femke
Kramer explained how researchers communicate their find-
ings during conferences by delivering a compelling story-

line supported with cleverly designed graphics. Lectures on
how to write a paper and on scientific integrity were given
by Michael Biehl and a workshop on reviewing was offered
by Femke.

Agnes Engbersen gave workshops on presentation tech-
niques and speech skills that were very well appreciated by
the participants. She used the two minute madness presen-
tation (see further on) as a starting point for improvements.

Rein Smedinga was the overall coordinator, took care
of the administration and served as the main manager of
Nestor.

Students were asked to give a short presentation
halfway through the period. The aim of this so-called two-
minute madness was to advertise the full presentation and
at the same time offer the speakers the opportunity to prac-
tice speaking in front of an audience.

The actual conference was organized by the students
themselves. In fact half of the group was asked to fully or-
ganize the day (i.e., prepare the time tables, invite people,
look for sponsoring and a keynote speaker, create a web-
site, etc.). The other half acted as a chair and discussion
leader during one of the presentations.

Students were graded on the writing process, the re-
view process and on the presentation. Writing and rewrit-
ing accounted for 35% (here we used the grades given by
the reviewers), the review process itself for 15% and the
presentation for 50% (including 10% for being a chair or
discussion leader during the conference and another 10%
for the 2 minute madness presentation). For the grading of
the presentations we used the assessments from the audi-
ence and calculated the average of these.

The gradings of the draft and final paper were weighted
marks of the review of the corresponding staff member
(50%) and the two students reviews (25% each).

On 2 April 2019, the actual conference took place.
Each paper was presented by both authors. We had a to-
tal of 20 student presentations this day.

In this edition of SC@RUG students were videotaped
during their 2 minute madness presentation and during the
conference itself using the video recording facilities of the
University. The recordings were published on Nestor for
self reflection.

1this year, all papers were accepted

3

About SC@RUG 2019

Website
Since 2013, there is a website for the conference, see

www.studentcolloquium.nl.

Sponsoring
The student organizers invited Nanne Huiges and Jelle

van Wezel as keynote speakers from BelSimpel. The com-
pany sponsored the event by providing lunch and coffee and
drinks at the end of the event.
Hence, we are very grateful to

• BelSimpel

for sponsoring this event.

Thanks
We could not have achieved the ambitious goals of this

course without the invaluable help of the following expert
reviewers:

• Lorenzo Amabili
• Sha Ang
• Michael Biehl
• Frank Blaauw
• Kerstin Bunte
• Mauricio Cano
• Heerko Groefsema
• Dimka Karastoyanova
• Jiri Kosinka
• Michel Medema
• Jorge A. Perez
• Jos Roerdink
• Jie Tan

and all other staff members who provided topics and pro-
vided sets of papers.
Also, the organizers would like to thank the Graduate
school of Science for making it possible to publish these
proceedings and sponsoring the awards for best presenta-
tions and best paper for this conference.

Rein Smedinga
Michael Biehl

4

SC@RUG 2019 proceedings

Since the tenth SC@RUG in 2013 we added a new
element: the awards for best presentation, best paper and

best 2 minute madness.

Best 2 minute madness presentation awards
2019

Kareem Al-Saudi and Frank te Nijenhuis
Deep learning for fracture detection in the cervical spine

2018
Marc Babtist and Sebastian Wehkamp

Face Recognition from Low Resolution Images: A
Comparative Study

2017
Stephanie Arevalo Arboleda and Ankita Dewan
Unveiling storytelling and visualization of data

2016
Michel Medema and Thomas Hoeksema

Implementing Human-Centered Design in Resource
Management Systems

2015
Diederik Greveling and Michael LeKander

Comparing adaptive gradient descent learning rate
methods

2014
Arjen Zijlstra and Marc Holterman

Tracking communities in dynamic social networks
2013

Robert Witte and Christiaan Arnoldus
Heterogeneous CPU-GPU task scheduling

Best presentation awards
2019

Sjors Mallon and Niels Meima
Dynamic Updates in Distributed Data Pipelines

2018
Tinco Boekestijn and Roel Visser

A comparison of vision-based biometric analysis methods
2017

Siebert Looije and Jos van de Wolfshaar
Stochastic Gradient Optimization: Adam and Eve

2016
Sebastiaan van Loon and Jelle van Wezel

A Comparison of Two Methods for Accumulating Distance
Metrics Used in Distance Based Classifiers

and
Michel Medema and Thomas Hoeksema

Providing Guidelines for Human-Centred Design in
Resource Management Systems

2015
Diederik Greveling and Michael LeKander

Comparing adaptive gradient descent learning rate
methods

and
Johannes Kruiger and Maarten Terpstra

Hooking up forces to produce aesthetically pleasing graph
layouts
2014

Diederik Lemkes and Laurence de Jong
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa

Image inpainting

Best paper awards
2019

Wesley Seubring and Derrick Timmerman
A different approach to the selection of an optimal

hyperparameter optimisation method
2018

Erik Bijl and Emilio Oldenziel
A comparison of ensemble methods: AdaBoost and

random forests
2017

Michiel Straat and Jorrit Oosterhof
Segmentation of blood vessels in retinal fundus images

2016
Ynte Tijsma and Jeroen Brandsma

A Comparison of Context-Aware Power Management
Systems

2015
Jasper de Boer and Mathieu Kalksma

Choosing between optical flow algorithms for UAV
position change measurement

2014
Lukas de Boer and Jan Veldthuis

A review of seamless image cloning techniques
2013

Harm de Vries and Herbert Kruitbosch
Verification of SAX assumption: time series values are

distributed normally

5

About SC@RUG 2019

6

Contents

1 Role of Data Provenance in Visual Storytelling
Oodo Hilary Kenechukwu and Shubham Koyal 9

2 Comparing Phylogenetic Trees: an overview of state-of-the-art methods
Hidde Folkertsma and Ankit Mittal 14

3 Technical Debt decision-making: Choosing the right moment for resolving Technical Debt
Ronald Kruizinga and Ruben Scheedler 19

4 An overview of Technical Dept and Different Methods Used for its Analysis
Anamitra Majumdar and Abhishek Patil 25

5 An Analysis of Domain Specific Languages and Language-Oriented Programming
Lars Doorenbos and Abhisar Kaushal 31

6 An overview of Technical Dept and Different Methods Used for its Analysis
Anamitra Majumdar and Abhishek Patil 37

7 Selecting a Logic System for Compliance Regulations
Michaël P. van de Weerd and Zhang Yuanqing 41

8 Distributed Constraint Optimization: A Comparison of Recently Proposed Complete Algorithms
Sofie Lövdal and Elisa Oostwal 47

9 An overview of data science versioning practices and methods
Thom Carretero Seinhorst and Kayleigh Boekhoudt 53

10 Selecting the optimal hyperparameter optimization method: a comparison of methods
Wesley Seubring and Derrick Timmerman 59

11 Reproducibility in Scientific Workflows: An Overview
Konstantina Gkikopouli and Ruben Kip 66

12 Predictive monitoring for Decision Making in Business Processes
Ana Roman and Hayo Ottens 72

13 A Comparison of Peer-to-Peer Energy Trading Architectures
Anton Laukemper and Carolien Braams 77

14 Ensuring correctness of communication-centric software systems
Rick de Jonge and Mathijs de Jager 83

15 A Comparative Study of Random Forest and Its Probabilistic Variant
Zahra Putri Fitrianti and Codrut-Andrei Diaconu 88

16 Comparison of data-independent Locality-Sensitive Hashing (LSH) vs. data-dependent Locality-Preserving
hashing (LPH) for hashing-based approximate nearest neighbor search
Jarvin Mutatiina and Chriss Santi 94

17 The application of machine learning techniques towards the detection of fractures in CT-scans of the cer-
vical spine
Kareem Al-Saudi and Frank te Nijenhuis 99

Contents

18 An Overview of Runtime Verification in Various Applications
Neha Rajendra Bari Tamboli and Vigneshwari Sankar 105

19 An overview of prospect tactics and technologies in the microservice management landscape
Edser Apperloo and Mark Timmerman 111

20 Dynamic Updates In Distributed Data Pipelines
S.J. Mallon and N. Meima 117

8

Role of Data Provenance in Visual Storytelling

Oodo Hilary Kenechukwu (S3878708) Shubham Koyal (S3555852)

Abstract— ’A picture is worth ten thousand words’ is a popular quote by Fred R. Barnard. Thus, the use of images, graphs and
data representation in demonstrating our narration is key to making a good storyline. The introduction of graphic demonstration in
modern storytelling requires data provenance in order to enhance effective quality images used in telling interesting stories.Visual
storytelling simply means telling stories with the use of image media like photographs, videos, symbols or data representation. It
has a broad field that cuts across many disciplines, but for the purpose of this paper, we are focusing on visual storytelling that has
direct link to data visualization, photographing, artifact, digital imaging and marketing. Data provenance plays significant roles in
creating insightful storyline because of its informative attributes and the ability to explicitly explain the origin of the information. An
instance of how data provenance can be used in visual storytelling is in creating video game application. During the process of video
game design and implementation, data are sourced from many areas using different technologies. These technologies deployed
can aid in tracking progresses and algorithms used in the design of the video game through the process of data provenance. The
benefit of this is that whenever there is an error on the game application, the designer can fall back to provenance in tracking the
procedures involved in the development of the application. Hence, we are looking at different possibilities where data plays role in
enhancing visual storytelling. At the end of this paper, one can fathom the use of general purpose visual analytic technologies like
Open Provenance Model, Spark streaming and Hadoop in data visualization. One would be able to understand the pros and cons of
data provenance in visual storytelling.

Index Terms—Storytelling, Visual storytelling, Data Provenance, Data Visualization.

1 INTRODUCTION

Storytelling is synonymous with data visualization especially if it
intends to draw attention. However, the methods and process of
demonstrating your story visually can be diverse in nature. For ages,
people have been telling stories about their experiences and myths but
the impact of such stories to the audience is key. For instance, the
story of the evolution of man from genus Homo to Homo Sapiens is a
good narration of the history of man. This story seems abstract unless
is supported with image demos that can aid a better understanding of
the narration. From this story, one can deduce the linkage between
storytelling and data visualization. The significance of telling stories
cannot be overemphasized as stories play major roles in our daily lives.

The art of communicating visually in forms that can be read or
looked upon, visual storytelling emphasizes the expression of ideas
and emotions through performance and aesthetics[1]. One could
imagine how a story would look like when every bit of the storyline
is represented with texts and figures only. Definitely, the story would
not draw attention. Hence, Visual storytelling is non-trivial in the
exploration of digital images and data representation. [2] ”Humans
are visual creatures in such that we depend a lot on what our eyes
tell us”. Visual Storytelling with the application of Data Provenance
gives the story a new dimension by not only explaining the results to
the audience visually but by also exploring the ways with which the
data was retrieved and how the results were attained from the raw
data. This has allowed researchers to shape their results depending on
the audience they are presenting it to. For instance, new geological
findings can be presented to the general public with an only text-based
presentation, however, it can also be visually presented to another
geologist with the maps, graphs, and jargons.

The aim of this paper is to explicitly review the roles which data

• Oodo Hilary Kenechukwu is with University of Groningen, E-mail:
h.oodo@student.rug.nl.

• Shubham Koyal is with University of Groningen, E-mail:
s.koyal@student.rug.nl.

Manuscript submitted on 19 March 2019. For information on how to obtain
this document, please contact Student Colloquium of FSE, University of
Groningen.

provenance plays in Visualizing Storytelling and make inference on
the use of data visualization in complementing Visual Storytelling.
Since data provenance is a method of unveiling the origin of data,
we are going to juxtapose its role in visual storytelling to further
enhance visual narration. Our work[4] ties the information provided
by images, user interactions, and exploration findings into a visual
story, and thus it creates a clear connection between them. So,
this paper is arranged into six sections. Section two presents the
concepts of data provenance and visual storytelling while section three
details the applications and methodologies in which data provenance
functions in visual storytelling. section four discusses the threat of
data provenance in visual storytelling while section five summarizes
the subject and make further remarks on the future impacts of data
provenance in visual storytelling.

2 CONCEPT OF DATA PROVENANCE AND VISUAL
STORYTELLING

The role of data provenance in visual storytelling can be conceptu-
alized in different ways. We are focusing on how data provenance
can help in enhancing the services of visual storytelling through
the Open Provenance Model (OPM) and node analysis. Also, we
would critically look at the use of programmable technologies such as
Apache Spark and Hadoop in the exploration of visual storytelling.
Hadoop and spark are more related to data science especially in
MapReduce and large and complex data analysis, although this paper
will discuss to an extent some other fields where data provenance can
be applied in order to visualize data. Briefly, we discuss how spark
and Hadoop technology can be used to visualize data and the details
would be discussed in section three.

Apache Spark is a new technology designed for the visualization
of big data using a custom rendering engine. Apache spark allows
interactive analysis and visualization of big data through its visual-
ization tools such as Matplotlib, ggplot, and D3. This can be done
by minimizing query latency to the level of the user’s understanding.
Spark model allows the users to achieve descriptive and exploratory
visualization over big and complex data. The is possible with spark’s
programming model and interfaces which are very compatible with
visualization tools.

9

On the other hand, Hadoop technology can also play remarkable
roles in the visualization of large data by transforming data into valu-
able insights and exploring it with limitless visual analytics. Apache
Hadoop just like the spark has a scalable and distributed objective for
the analysis and storage of large and complex dataset. The major com-
ponent of Apache Hadoop is the Hadoop File System (HDFS). Others
are distributed processing framework based on Apache MapReduce
and a redundant distributed storage system. The connectivity between
Zoomdata, Hadoop HDFS, and SQL on Hadoop technology is what
brings about big data analytics and visualization in Hadoop. Zoom
data allows users to interact with data visualization by taking the query
to the data.

2.1 Data Provenance
Because of the increasing complexity of analytical and data tasks,
the aim of analytics software is to devise and construct visual ab-
stractions in addition to multifaceted information so to provide usable
options[5]. That is how data provenance functions in visual narrative.
Provenance has different meanings across many fields. In visual
storytelling, it refers to the tracking of procedures with which the data
is acquired and the contents of the results of the information in visual
storytelling. The final data is not given the priority but each state of
the data is of the same importance as the other. Those who work
with provenance sometimes forget that provenance is not a goal or
need in achieving better image storytelling, but a technical approach
employed in satisfying data needs and goals[6]. Data provenance can
be further described as tracks of unveiling data from its origin and
detailing the contents of such data. The major characteristics of data
provenance are the ability to keep track or archive of the system’s
input and process it for easy manipulation of the dataset for the
provision of the origin and tools of such data. The end goal of data
provenance[6] is to assist users in understanding their data. Users
may not necessarily need provenance but because of its extensive
and broad methodologies especially in query languages, it is well
presented as a directed acyclic graph (DAG)[2,7].

Fig. 1. Example of a Directed Acyclic Graph (DAG)

The provenance graph for a revised analysis product. Public sources
(Reuters, Washington Post, New York Times) Sources (US Reference
Database 1 and 2, those blessed by a particular organization), are also
used[7]. There are also personal communications and foreign intelli-
gence sources. Rectangles represent processes while ovals represent
data.

A provenance graph is a directed acyclic graph (DAG) shown
in Figure 1, G = (N, E), containing a set of nodes, N, and a set of
edges, E. Each node has a set of features describing the process or
data it represents, e.g., timestamp, description, etc [7]. Edges in
the graph denote relationships, such as usedBy, generated, inputTo,
etc., between nodes as influenced by OPM [6]. The nodes in the
graph above represent data. These data can be referred to any sets
of objects. In this case, the nodes may represent raw data, files or
arbitrary granularity. The data of provenance may have what is called
”breadcrumbs” like identifiers and access which would permit users
to have access to the information contents.[14]

2.2 VISUAL STORYTELLING
There is what seems to be a misconception about the term ”Visual
storytelling” also known as visual narratives. Whereas marketers
see it as a marketing tool which aides them in driving their business
interests through ads and upturn of word weary spectators, visual arts
view it from the point of leeway in making great images ranging from
photo shooting to painting. Somewhat, We want to digress into the
two analysis for a better understanding of visual storytelling. The
analysis of the two views of visual storytelling are as follows:-
In the perspective of visual arts, they conceptualize visual narrative
on the aspect of images being filmed or drawn within the frame and
how that can influence the attention of the viewers. For us to get a
deeper understanding of digital imaging, we can discuss how to make
great use of visual storytelling through filming (in photographing
for instance). Then, we could be discussing data representation and
visualization as tools for visual storytelling. Here, we are introducing
imaging for us to determine how lens and light in photographing
can affect the images. So, What makes a particular image have a
standard over the others? To make a desirable image through filming,
drawing or painting, there is a need to consider how to construct the
image(s) in a frame. Over the years, artists have been creating visual
images with different techniques which are still in use till today. Two
techniques that are relevant in this field are framing and composition.
These two practices are relevant in a film just as it is in painting and
classic design. Past experience shows how objects can be arranged in
the frame using alignment and shapes to make it look attractive, but
the use of framing and composition help to guide the eyes towards
the direction where the image is located. Meanwhile, there are many
regulations guiding filming especially on the area of composition but
the most significant among them is the rule of thirds[3]. So, with
the rule of thirds, the frame is normally divided into three segments,
vertically and horizontally. Thus, when an object is placed at the
intersecting point of the segment, an attractive image is being created.

Fig. 2. Rule of Thirds

Figure 2 illustrates the application of the rule of thirds based on
three segments of the frame
Source:https://www.photographymad.com/pages/view/rule-of-thirds.

Role of Data Provenance in Visual Storytelling – Oodo Hilary Kenechukwu and Shubham Koyal

10

The first person to write a book on the ”rule of thirds” is John
Thomas Smith in his book titled ”Remarks on rural scenery”. The
part of the book discussed the work of Rembrandt where he said
”Two distinct equal light should never appear in the same picture;
One should be principal and the rest subordinate, both in dimension
and degree[15]: This can be achieved by keeping the rule of thirds
through trope up of the eyes in the frame so the eyes are in focus. By
so doing, we draw the attention of the viewers to the image. Still, in
composition, we talk about leading lines. Leading line is one of the
concepts of composition where lines are used to direct the viewers
to where they want them to look. Using this field with the previous
rules, one can add to 3-dimensional space. We can also denote the
importance of the power of certain objects in a frame, but we can
as well use a shallow depth to feel the notes of important matters
and character in the story. So, bringing an image closer to the frame
makes one know how important the image is, otherwise shrinking the
subject matter denotes the feeling or the worst of the scene.

Considering the perspectives of marketers that view visual sto-
rytelling as marketing tools, spectators are the key focus here and
to draw their attention closer to your products, you need to include
in your advertisements those graphics contents of your products so
that they can be easily enticed. As Rolf Jensen aptly states, ”We are
entering the emotion-oriented dream society where customers take for
granted the functionality of products and make purchase decisions
based upon to what degree they believe a product will give them
positive experiences (storytelling advertising: A visual marketing
analysis by Sara Elise Vare). On various social media platforms, a
lot of products are marketed online through visual narrative. The
popularity of some of the big names in information technology
was able to be attained by their visual ads. For instance, Amazon
which has one the highest product services online sponsors products
and services advertisements. Also, Google runs ads called Google
shopping Network through which it directs Google searchers on the
particular product they are looking for.

2.3 Factors that determine the effectiveness of Visual
Story

We are going to look at four components that institute the effective-
ness of visual storytelling.

Authenticity and Genuineness It is inherent that when you
maintain a standard in your deals, especially as it relates to marketing,
prospective users must keenly look for you. You can imagine how
consumers react to images of a well-packaged product online; that
enthusiasm and zeal to have feelings of the product is a driving tool
for making good sales. However, more demands for the products
are experienced when there is a steady customary over a period of
years. For instance, the security architecture of Apple has made them
outstanding that you may not need to create doubt about the end to
end encryption of your Apple devices.

Cultural Relevancy and importance Here, we talk about products
that are socially recognized. Society can accept a product based
on day to day upgrade of the product especially as it reflects the
yearnings of the people. For instance, in visual arts, photographs were
earlier filmed with analog devices which do not show clear images of
the owner, but nowadays, the invention of digital images has made
filming more interesting and sharp and clearer images are produced.

Sensory Currency This factor tries to provide immediate solutions
to the problems that the audience are desperately looking for.

Portray realistic assumption On this context, your listeners are
not supposed to see your products as a function of passion quest.

3 APPLICATION OF DATA PROVENANCE IN VISUAL STORY-
TELLING

Data provenance is a special technique that is practically important
in tracing the data origin, the complete contents of the data and the
actions taken on the data. Relating this to storytelling is a bit tricky.
Nevertheless, the role of data provenance in visual storytelling cannot
be overemphasized. In many fields, data provenance combined with
visual storytelling can bring sizable changes to how data are presented.
This is not limited to experts of that field but it can also help a person
outside the field understand what the narrator is trying to tell. With
the use of visual storytelling to explore complex data, human error can
be minimized. Also, data provenance makes revisiting old data quite
easy which can shed more light on new findings and misinterpretation
of the new data is hugely reduced this way[1].

To understand the application of data provenance in visual
storytelling, it can be further discussed in two major areas; data
visualization and digital image processing.

3.1 Data Visualization
The role of data provenance in large data visualization was earlier
discussed briefly in section two of this paper. Here, this section
tends to discuss in details how apache spark and Hadoop metadata
technologies can be used to analyze and visualize complex dataset.

Apache Spark The use of spark to visualize exploratory data
through the browser is a critical part of data provenance. So, spark
plays the role of putting back large dataset into a simple workflow of
data analysis via a visual graph. This process is the most effective,
scalable, reproducible and distributive method of visualizing data.
Also, the spark can visualize expository data through the design of a
graph that is modeled into a directed acyclic graph (DAG) of the Open
Provenance Model. Then its algorithm can be shared to other users or
to the browser for live visualization. There is a saying that a graph is
worth more than a thousand words.

Fig. 3. Graph Visualization of Enron email data. Source: The Keyline
blog

Graph visualization is a task of presenting visually the active en-
tities that are networked together through the use of nodes. Graphic
visualization is said to be one of the most effective and reliable ways
of exploring and uncovering the meaning of complex data. So, for the
possibility of generating a graph like the one shown above, there are
some requirements needed to achieve that. The requirements are;

• Control over details

• Reproducible

• Shareable

• Collaborative

• Interactive

SC@RUG 2019 proceedings

11

The first two requirements (Control over details and Reproducible)
can only be achieved using visualization libraries or programming.
The use of computer programming tools like apache spark has
many advantages in data visualization because of the grammar
expressed in Application Programme Interface (API). Also, data
scientist are more flexible in working with such libraries such as
matplotlib, D3.js, ggplot, Bokeh, etc. Most of the libraries in use
are shareable on the browser and its output can be used on the
web as PNG, Canvas, WebGL and SVG. Another significance of
using these requirements is that segregating rendering from data
manipulation allows the users to work on any of their preferable
tools. There are couples of challenges in visualizing complex data.
One of the bottlenecks is that it takes a longer time in manipulating
a large dataset. Secondly, we have data points than the pixel in the
browser. To resolve all these challenges, apache spark streaming
is well equipped in solving both problems. For the first problem,
spark is very well in managing the CPU and the memory thereby
making the system more interactive. The use of spark caching
enables the user to take advantage of a memory hierarchy. For the
second challenge, it can be resolved by rendering the data. Although
there are millions of data points nowadays, spark has techniques to
bring down the functionality of data to the level that it can be actu-
ally rendered by summarizing, modeling and sampling the data points.

Hadoop Apache Hadoop is one of the applications that are
currently in use in managing cluster and MapReduce operations.
Hadoop Distributed File System (HDFS) is packaged to run hardware
tools. One of the importance of using HDFS is its high scalability
features. Just like spark, HDFS has easy access to dataset applications
and very suitable for analyzing the large and complex dataset. Some
of the achievements of HDFS are;

• Large data Sets: HDFS has capability of running applications
with large data sets.It can support millions of files at once with
capacity of gigabytes and terabytes files.

• Streaming Data Access: HDFS is primarily packaged for batch
processing. So, HDFS application requires streaming access to
their data sets.

• Hardware Failure: The large number of server machines ac-
quired by HDFS instance is meant to store system files data.

There are many other data provenance (software) which can help
in the visual analysis of data, an example of them is Qlik. Qlik is
a business solution software which can enable the users to create an
easy and intuitive business reports and analysis.

3.2 Application of Data Provenance in Digital Imaging
In visualizing digital images, we are focusing on the area of doc-
umentation process in 2D and 3D digitization through the process
of photogrammetry, laser scanning, and similar techniques. Data
provenance is required to provide digital image visualization to the
end users from diverse backgrounds such as engineering, computer
science, and cultural heritage researchers. The end product of 2D
and 3D models or orthophotos has multifarious uses ranging from
features and geometric analysis to visualization. Image-based data
and products should ideally stand as referenceable documents in their
own right with a known provenance [9].

Visualization techniques can be applied in medical image analysis
in order to access the quantitative and qualitative changes that
occurred over the period of time. The role of data provenance in
the database is to provide valid and accurate information of the data
collected. Medical imaging is essential in providing a channel for the
invention of the drugs. Here, we demonstrate how e-science can be
deployed in the analysis and experiment of rheumatoid arthritis(RA)
model. Globus Toolkit grid software and Virtual Data System can be

Fig. 4. transaxial view of an ankle Source:Researchgate; AN IXI EXEM-
PLER

used to implement visualization of the RA model.

Figure 4 shows transaxial view of an ankle at day -12(Left) and at
day +13(Right)

The web interface was implemented using Java servlet technology
and ran on the Apache Tomcat engine [7]. The essence of this prove-
nance is to have direct query access to the Globus Toolkit database
so that the RA image can be visualized. The main web page allowed
users to query VDS by the name of transformation and derivation[10].

3.3 Challenges of Data Provenance
Provenance of digital scientific objects is metadata that can be used
to determine attribution, to establish casual relationships between
objects, to find common tasks parameters that produced similar results
as well as for establishing a comprehensive audit trial to assist a
researcher wanting to reuse a particular data set[8]. Nevertheless,
it requires a lot of efforts and researches to achieve a successful
provenance in both visual and data storytelling. In order to achieve
this, a lot of provenance questions are required. For instance,
according to Shen Xu et al (May 2018), what is the means by which
the object in question was created? This question was answered
by Macko et al(2013)in this way; introducing local clustering into
provenance graphs enables the identification of a significant semantic
task through aggregation. Provenance is not used only for digital
imaging but also for artworks and marketing. So, data provenance is
achieved basically by querying the data (in this case visual storyline)
through the use of the provenance graph.

In Figure 5 we can see how provenance can be used to trace the
origin , input and processes of an image

Fig. 5. Trace of data

OPM graph showing the directed structure of the three node types.
Artifacts are drawn as circles, Processes are drawn as rectangles and
hexagons represent Agents. Source: https://www.provenance.org/

We can view this acyclic graph in reference to the Open Provenance
Model (OPM). There are three types of nodes in connection to its basic
dependency;

Role of Data Provenance in Visual Storytelling – Oodo Hilary Kenechukwu and Shubham Koyal

12

• Artifact: a set of data that has a physical or digital representation
of an object in the system.

• Process: the resultant of a new artifact as a result of a series of
actions done on the artifact.

• Agent: Conditional operation or individual acting as a catalyst
of a process, facilitating, enabling and affecting its execution.

4 THREAT OF DATA PROVENANCE IN DATA VISUALIZATION

As useful as Data provenance may sound in visualizing storytelling,
it has its own inconveniences. One of the major difficulty with
data provenance is the scalability issue. Throughout an operation,
there may be multiple updates of the data and keeping tracks of
every update may prove to be difficult given the fact that there is
no constrains for the number of changes that can be made to the
data. Secondly, The need for some levels of control over security
incidences is very significant since there are records of attacks to
the system vulnerability. So, the introduction of threat modeling in
data provenance would help to analyze the security of the systems
from the intruders. Moreover, there is a need to have adequate
tracking mechanism in place to properly trace the changes in data
and represent it correctly. This can prove to be quite costly and also
computationally challenging. Although different versions of data are
easy to store and reproduce, keeping a track of hows and whats of
that version can be problematic in real-world large operations. As
the process of storytelling visually can produce large chunks of data,
there are large chances of error creeping in the data. As the data gets
larger, which is unavoidable in this situation, the chances of error
increase exponentially. Keeping the data is a crucial step as it can
cause the data further generated to be erroneous. Thus for every data,
generating process needs to be checked for errors. This again adds to
the cost and also it makes the system slow and sluggish.
The reasons stated above are just the major ones. There exist
miscellaneous problems like storage limitations which hugely limits
one from using data provenance to its full potential.

5 CONCLUSION

We have visited the different possible roles of data provenance in vi-
sual storytelling. We have discussed cases in which they can be ben-
eficial, for instance in tracing error in visual storytelling and also we
have mentioned some situations in which data provenance can be of
little use. We have also tried to shed some light on how data prove-
nance can vary from one field to another. Even though the concept of
storytelling is as old as mankind but the usage of data provenance to
improve visual storytelling is comparatively pretty new and still needs
to be perfected upon. We have also hinted the possibilities of using
data provenance in visualizing large and complex data. Thus, in the
contemporary world, there could be no better story without data prove-
nance considering the increase in the number of data we encounter.

REFERENCES

[1] Source: Verticalrail (Knowledge base).What is visual storytelling?
https://www.verticalrail.com/kb/what-is-visual-storytelling/

[2] S.Arevola Arboleda and A. Dewan UNVEILING STORYTELLING AND VI-
SUALIZATION OF DATA Conference: 14th Student Colloquium at Univer-
sity of Groningen

[3] Shen Xu, Tobi Rogers, Elliot Fairweather, Anthony Glenn From Appli-
cation of Data Provenace in healthcare analytics software Proceedings
-AMIA

[4] Amabili, L., Kosinka, J., van Meersbergen, M. A. J., van Ooijen,
P. M. A., Roerdink, J. B. T. M., Svetachov, P., and Yu, L. (2018).
Improving Provenance Data Interaction for Visual Storytelling in
Medical Imaging Data Exploration In J. Johansson, F. Sadlo, T.
Schreck (Eds.), EuroVis 2018 - Short Papers The Eurographic Associa-
tion.https://doi.org/10.2312/eurovisshort.20181076

[5] Chao Tong 1,*, Richard Roberts 1, Rita Borgo 1 ID , Sean Walton 1 ID
, Robert S. Laramee 1, Kodzo Wegba 2, Aidong Lu 2 ID , Yun Wang
3, Huamin Qu 3, Qiong Luo 3 and Xiaojuan Ma 3 Storytelling and
Visualization: An Extended Survey

[6] Adriane Chapman, Barbara Blaustein,M. David Allen It’s about Data
Provenance as a toll for accessing for accessing data fitness. 4th USENIX
workshop.

[7] The Jakarta Site - Apache Tomcat,
http://jakarta.apache.org/tomcat/;accessed 10-11-2003.

[8] Bechhofer S, Goble C, Buchan I. Research Objects: Towards Exchange
and Reuse of Digital

[9] N. Carboni, G. Bruseker, A. Guillem, D. Bellido Castaeda et al Data
Provenance in Photogrammetry through documentation process. July,
2016

[10] Kelvin K.L, Mark Holden, Rolf A.H, Nadeem Saeed, K.J Brooks et al
(Use of Data Provenance and the Grid in Medical Analysis and Drug Dis-
covery)

[11] Jimmy Johansson (Contributor), Filip Sadlo (Contributor), Tobias
Schreck (Contributor), L. Amabili (Creator), J. Kosinka (Creator), M.A.J.
van Meersbergen (Creator), P. M. A. van Ooijen (Creator), J. B. T. M.
Roerdink (Creator), P. Svetachov (Creator), L. Yu (Creator)

[12] Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen
Characterizing Provenance in Visualization and Data Analysis: An
Organizational Framework of Provenance Types and Purposes

[13] S. Gratzl1, A. Lex2, N. Gehlenborg3, N. Cosgrove1, and M. Streit1 From
Visual Exploration to Storytelling and Back Again

[14] Agrawal, R., Imielinski, T., and Swami, A., 1993. Mining association
rules between sets of items in large databases. SIGMOD Record, Vol. 22
No. 2

[15] Description of Rule of thirds sourced from
https://en.wikipedia.org/wiki/Rule of thirds

SC@RUG 2019 proceedings

13

Comparing Phylogenetic Trees: an overview of state-of-the-art
methods

Hidde Folkertsma, Ankit Mittal

Abstract—Tree-structured data, specifically ordered rooted trees (i.e. trees with a root node, and ordered subnodes for each node),
are commonly found in many research areas including computational biology, transportation and medical imaging. For these research
areas, comparison of multiple such trees is an important task. The goal of comparing trees is to simultaneously find similarities
and differences in these trees and reveal useful insights about the relationship between them. In biology, a prominent example of a
comparison task is the comparing of phylogenetic trees. These trees contain evolutionary relationships among biological species (their
phylogeny). In this paper, we compare several methods for the visualization and comparison of phylogenetic trees, and highlight their
strengths and limitations. These methods use one or both of two approaches: visual inspection of the data and algorithmic analysis.
However, we find that algorithmic analysis loses precision as the trees grow larger. Visual inspection becomes infeasible when the
trees grow larger. We show that a combination of both approaches is the most viable.

Index Terms—Phylogenetic trees, ordered rooted trees, data analysis, visual interaction

1 INTRODUCTION

Efficient and effective comparison of hierarchical structures such as
trees is an important but difficult task in many research areas. In the
field of biology, specifically bioinformatics, one such task is the com-
parison of phylogenetic trees [16]. These are ordered rooted trees rep-
resenting evolutionary relationships among biological species, and are
often inferred using the sequenced genomic data of a certain species.
Comparing phylogenetic trees can yield useful insights into similar-
ities and differences between species. However, since the trees tend
to be very large (more than 500 taxa; nodes in the tree representing a
taxonomic group), visualizing them becomes an increasingly difficult
task. Moreover, comparing two large trees poses an even larger prob-
lem. This problem has lead to a need for tools that can both visualize
and compare phylogenetic trees effectively.

There are several approaches to this problem [4]. First, a purely
algorithmic approach, yielding one or more metrics that indicate sim-
ilarities and differences between trees. Second, methods that rely on
the domain expert’s visual inspection, that is, not calculating the sim-
ilarity but visualizing the trees in a manner that enables the domain
expert to spot differences and similarities. Finally there are methods
that combine the previous two, in order to use one approach’s strengths
to combat the other’s weaknesses.

Currently, there are many methods available but there is a lack of a
clear overview of types of methods’ properties. In this paper, we there-
fore provide an overview of a number of phylogenetic tree comparison
methods, and highlight their strengths and limitations.

2 BACKGROUND

In order to provide a better understanding of the subject, we will briefly
describe some concepts related to the phylogenetic tree comparison
task. We will also briefly discuss the main challenges researchers face
in phylogenetic tree comparison.

2.1 Ordered rooted trees
In graph theory, trees are graphs that are undirected and contain no
cycles. In computer science, trees are typically rooted, meaning that
one of the nodes in the tree is marked as the root node, as shown in
figure 1. The root node is the base of the tree, usually shown at the

• Hidde Folkertsma is a MSc. Computing Science student at the University
of Groningen. E-mail: h.folkertsma.1@student.rug.nl.

• Ankit Mittal is a MSc. Computing Science student at the University of
Groningen. E-mail: a.mittal@student.rug.nl.

top. It can have several child nodes (A and B). Child nodes are called
leaves of the tree if they don’t have any child nodes themselves. In
figure 1, A and B are leaves.

An ordered tree is a tree where the order of the children of a node is
significant [14]. The trees in figure 1 are examples. T1 and T2 contain
the same data, but the leaves are flipped in T2. Therefore the trees are
not the same if they are ordered trees, because the ordering of the child
nodes is different.

root

A B

root

B A

Fig. 1: Left: T1, right: T2. If T1 and T2 are ordered, T1 6= T2, otherwise
T1 = T2.

2.2 Phylogenetic trees

Phylogenetic trees are both ordered and rooted, and represent evolu-
tionary relationships among organisms. The branching in these trees
indicates how species evolved from (a series of) common ancestors.
An example of a phylogenetic tree is shown in figure 2. In this exam-
ple, the root node is ”Vertebrates”, and the leaf nodes are present-day
species. Nodes with a more recent (i.e. farther up the tree) common
ancestor are more closely related than nodes with a common ancestor
less recent common ancestor. From figure 2, we can deduce that lung-
fish are more closely related to coelacanths than they are to teleosts.

Fig. 2: A phylogenetic tree [18].

14

Nodes in phylogenetic trees generally have exactly 2 children, un-
less there is an uncertainty about the branching order in that part of the
tree. Therefore it is possible to encounter phylogenetic trees that have
nodes with 3 or more children.

2.3 Inference of phylogenetic trees
The previous subsection may raise the question how phylogenetic trees
are obtained. Historically this has been done by analyzing character-
istics of the species and constructing the tree based on characteristics
shared by species [1]. Examples of such characteristics are shown in
figure 2, e.g. ”tetrapod” and ”ray-finned”.

However, in more recent years, a more popular and accurate tree-
inferring approach is the use of DNA sequencing [10]. Using the dif-
ferences in DNA sequences of homologous genes in different species,
the evolutionary relationships between those species can be deter-
mined.

2.4 Shortcomings of phylogenetic trees
In using phylogenetic trees, an important underlying assumption is
made, namely that evolution always occurs in a tree-like manner. This
is, however, not always the case, as horizontal gene transfer may oc-
cur. Horizontal gene transfer is the transfer of genes from an organism
A to an organism B that is not its offspring. B may therefore obtain
genetic traits from an ancestor of A that is not an ancestor of B. This
way of gene transfer is especially common in bacteria. A visualization
of this is shown in figure 3.

Fig. 3: Visualization of horizontal gene transfer [3]. The horizontal
crossovers indicate horizontal gene transfer.

Another shortcoming of phylogenetic trees is that they are only as
good as the inference method used to obtain them. This means they
don’t necessarily reflect the true evolutionary relationships, as the in-
ference method may have produced errors in the tree. This is why
comparison is important, because comparing the phylogenetic trees
produced by an inference method A to trees produced by some refer-
ence inference method B can be useful in evaluating if the inference of

A’s trees was correct. We can compare inference methods by compar-
ing their produced trees.

2.5 Data comparison
Comparison of data comes with its own challenges. A common prob-
lem when performing exploratory analysis is that the researcher wants
to find out if there is some relation or difference between the data that
is to be compared, but is not sure what to look for. It is therefore hard
to derive an algorithm for this task. Another problem is the visual in-
spection of large trees; this is too time-consuming for a human and
therefore requires an algorithm, which in turn suffers from the afore-
mentioned problem regarding the algorithm derivation.

3 RELATED WORK

In order to compare approaches to the phylogenetic tree comparison
task, we performed a literature study and found several methods of
comparing phylogenetic trees. These methods are either algorithmic
approaches, calculating a similarity (or difference) metric, or rely on
visual inspection, or combine these two.

3.1 Insights by Visual Comparison: The State and Chal-
lenges

Von Landesberger [4] proposes not a phylogenetic tree comparison
method specifically, but a more general framework for data compar-
ison tasks. This method advocates an iterative approach, combining
algorithmic analysis with visual inspection. A visual depiction of this
process is shown in figure 4.

Fig. 4: The visual-analytical comparison process proposed in [4].

The process can be divided into 5 steps:

1. The comparison purpose. The user should define a goal of the
comparison, e.g. finding significant similarities or differences in
trees.

2. The comparison data. The data on which the comparison is per-
formed, in this case, a set of phylogenetic trees.

3. The comparison operator. This is a very important component,
as it determines the outcome of the comparison workflow. It is
up to the user to choose the kind of approach to use here.

4. The comparison result and its visualization. This visualization
step is important for the iterative process. The results of the com-
parison should be clearly shown to the user of the workflow, in
order to allow for better results in a following iteration.

5. The comparison workflow. A comparison may not be as simple
as comparing tree A to tree B, it may be more complex, e.g. a
series of comparisons.

Each step comes with its own challenges, particularly steps 3-5. An
algorithmic approach in step 3 requires a suitable and efficient algo-
rithm, which outputs a suitable similarity metric. Visual inspection
poses the problem of scalability; screen size and the user’s cognitive
capabilities are limiting factors. Step 4 poses the same problem, es-
pecially when the both the input and output need to be displayed. As

SC@RUG 2019 proceedings

15

the proposed process is iterative, new insights may be gained as the
iterations go on, requiring new comparison workflow steps. The user
needs to edit his comparison workflow accordingly.

3.2 Metrics of Phylogenetic Tree similarity
Algorithmic approaches to tree comparison often output a scalar met-
ric indicating the similarity between trees. The similarity indicates the
”distance” from tree A to tree B. A distance of 0 would mean that
A = B. A high distance between two trees indicates that they are sig-
nificantly different.

3.2.1 Robinson-Foulds distance

An important metric still used in many comparison methods today [8]
was proposed back in 1981 by Robinson and Foulds [11]. It is a rela-
tively simple metric that is fast to compute, having implementations in
O(n) [9], n being the amount of nodes in the trees. Despite being com-
monly used, it suffers from a few shortcomings. An important short-
coming is that the algorithm outputs the maximum value fairly quickly,
even for trees that are reasonably similar. It is therefore hard to tell if
a tree is slightly different or very different based on only this metric.
Moreover, it can be imprecise when compared to other methods. Fur-
thermore, moving a leaf in the tree changes the distance score more
than moving both the leaf and its immediate neighbour. Robinson-
Foulds also assigns a lower distance score to trees that contain more
uneven partitions. Balanced trees therefore get lower distances than
asymmetric trees [13].

3.2.2 A Metric on Phylogenetic Tree Shapes

Colijn et al. [7] propose an algorithm that considers not a full tree, but
only its shape. The shape of a tree is the tree without tip labels and
branch lengths. This method considers all possible sub-tree shapes,
labels these, and compares these subtrees to compute a final metric.
Some results of the method are shown in figure 5, where it is clearly
visible that the metric is able to separate two types of flu viruses (one
from a tropical origin, the other from the United States).

Despite achieving reasonable results, the method is very costly to
compute. A tree with 500 tips generated labels with over 1 million
digits, making the method very slow. This was solved by hashing the
labels, but with a decently large tree the amount of sub-tree shapes
is so large that it exceeds the amount of hashes possible for the used
hasing method.

Besides the implementation of their metric, the authors also explain
the appeal of metrics in general; they result a single scalar value, which
is simple to work with and easy to interpret. However, they are not
always efficient to compute for large trees, and for a larger tree, the
metric is less capable of describing the similarity. Moreover, with the
dropping cost of DNA sequencing, the size of the trees inferred from it
will only grow. Therefore scalar metrics in general seem to be getting
less effective; they simply cannot capture enough of the information
in these large trees.

3.3 Phylo.io
Phylo.io [12] (accessible at phylo.io) is a web application specif-
ically developed for the comparing of phylogenetic trees. There are
many tools for visualization of phylogenetic trees, but most of them
have significant drawbacks. In particular, they lack scalability and
therefore cannot deal well with large trees. Attempting to visualize
large trees in these tools quickly leads to poor legibility of the result-
ing visualizations. Moreover, several tools are outdated in terms of its
implementation, requiring legacy systems to run. Finally some tools
are simply not available.

The drawbacks to existing tools drew the authors of this paper to
create Phylo.io, which is web-based and therefore accessible on ev-
ery machine. More importantly, it was designed specifically for the
comparison task. The tree comparison score proposed in [16] is used
to indicate the degree of similarity between the trees. Furthermore, it
aims to maximize legibility by automatically adjusting the displayed
tree to the screen size by collapsing subtrees. Moreover, Phylo.io can

automatically compute the internal node in tree B that best corresponds
with tree A.

3.4 Using motifs for visual analysis
Landesberger et al. [17] propose a method using motifs in visual anal-
ysis of large graphs. Motifs could be defined as patterns of intercon-
nections occurring in complex structures (e.g. trees) at numbers that
are significantly higher than those in randomized structures. There are
already several tools present that offer motif visualization in analysis
of trees, for example - MAVisto, FANMOD and SNAVI. Even though
these tools allow fast detection of motifs, are computationally inten-
sive and display found motifs with their frequencies, they have their
own limitations [17]. The biggest drawbacks of these tools are they
work on simple pre-defined motifs and restrict themselves to visual-
ization of small trees.

These drawbacks encouraged the authors to design their noteworthy
approach of user-defined motifs in visual analysis of trees. In this
system, the users can define their own motif definition and perform
visual analysis on their occurrence and location (see figure 6).

Fig. 6: Interactive motif definition (center) and visualization of found
user-defined motif with labeled names of persons (right). Original
graph is shown on the left side [17].

Furthermore, the set of motifs that have been found can be filtered
in order to focus on structures obeying certain constraints (see figure
7). The authors present their approach for graph aggregations using
motifs which reveals higher level structures in the trees (see figure 8).

Fig. 7: Motif filtering example [17].

Fig. 8: Aggregation of a node [17].

Comparing Phylogenetic Trees: an overview of state-of-the-art methods – Hidde Folkertsma and Ankit Mittal

16

Fig. 5: Comparisons between phylogenetic trees from two types of H3N2 flu virus samples; trees from the two types are separated by the
proposed metric [7].

The motif-based approach has been tested for directed trees on a
phone call network data set and it has proven efficient. This approach
could very well be applied on phylogenetic trees in determining the
common pattern of trees (motifs) among different species.

3.5 OInduced
In this paper, OInduced is proposed [5]. OInduced is an algorithm for
finding frequent tree patterns in ordered rooted trees and shows the
comparison of OInduced algorithm with the already well known algo-
rithms like FREQT [2], iMB3Miner [15]. A tree is called frequent if its
per-tree support (occurrence-match support) is more than or equal to a
user-specified per-tree (occurrence-match) minsup value. The already
present algorithms have certain limitations, for example - FREQT uses
an occurrence based approach for finding frequent tree pattern which
makes the algorithm inefficient for dense data sets.

Fig. 9: Pseudocode of OInduced [5].

To overcome the drawbacks of existing algorithms, the authors de-
veloped their novel algorithm: OInduced (see figure 9), which on high-
level is divided into 2 parts. 1. Candidate Generation Method: In
this method, the algorithm ensures that the new candidate could only
be extended by the only known frequent tree patterns. 2. Frequency
Counting: It basically counts the frequency of trees. It is done by two
tree encoding: M-coding and Cm-coding which are both combined
depth-first/breadth-first traversals (see figure 10).

Fig. 10: Pseudocode of m-coding and cm-coding [5].

The authors claim that they have tested their algorithm along with
the few existing algorithms like FREQT and iMB3Miner on real data
sets as well as synthetic data sets and their algorithm is significant
than other algorithm as it reduces the run time and scales linearly with
respect to the size of input trees.

4 CONCLUSION

Comparison of ordered rooted trees is a crucial requirement for the
phylogenetic trees. It offers the biologists the chance to verify the va-
lidity of their hypothesis, to share the proceedings of their hypothesis
and to further develop them. In this paper, we firstly explained about
the phylogenetic trees and their shortcomings. Following that, some
previously developed methods for comparing the phylogenetic trees
are mentioned and described. We mainly focused on the strengths and
limitations of each method and tried to give some potential ideas.

SC@RUG 2019 proceedings

17

We have reviewed several phylogenetic tree comparison methods.
Several methods [6, 9, 11] approach the problem in an algorithmic
manner, providing the user with a simple output of a scalar metric.
However, as trees grow larger, the metric becomes harder to compute
and less indicative of the actual similarity of the trees [6].

Other tools use visualization, in these methods the key is how to
provide the user with the most interesting (i.e. differing sections) parts
of the trees. Oftentimes, this still requires an algorithmic solution.

Concluding, we see that state-of-the-art methods combine algorith-
mic analysis with visual analysis. Doing this in iteration is a effective
way to acquire insights about the tree data [4].

5 FUTURE WORK

As science and technology are evolving, new efficient methods will
be discovered for the comparison of the phylogenetic trees. Future
researcher should possibly focus on designing new methods of com-
paring phylogenetic trees by probably incorporating the strengths of
previously designed methods and eliminating their drawbacks.

6 ACKNOWLEDGEMENTS

We would like to thank our expert reviewers Lorenzo Amabili and Jiri
Kosinka and our colleagues for their valuable feedback.

REFERENCES

[1] Building the tree. https://evolution.berkeley.edu/
evolibrary/article/0_0_0/evo_08. Accessed on February
28th, 2019.

[2] T. Asai, K. Abe, S. Kawasoe, H. Sakamoto, H. Arimura, and S. Arikawa.
Efficient substructure discovery from large semi-structured data. IEICE
Transactions, 87-D(12):2754–2763, Apr 2004.

[3] Barth F. Smets. Tree of life showing vertical and horizontal gene trans-
fers. https://en.wikipedia.org/wiki/Horizontal gene transfer. Accessed
on February 28th, 2019.

[4] S. Bremm, T. von Landesberger, M. He, T. Schreck, P. Weil, and
K. Hamacherk. Interactive visual comparison of multiple trees. In 2011
IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 31–40, Oct 2011.

[5] M. H. Chehreghani, M. H. Chehreghani, C. Lucas, and M. Rahgozar. Oin-
duced: An efficient algorithm for mining induced patterns from rooted
ordered trees. IEEE Trans. Systems, Man, and Cybernetics, Part A,
41(5):1013–1025, Jan 2011.

[6] C. Colijn and M. Kendall. Mapping Phylogenetic Trees to Reveal Distinct
Patterns of Evolution. Molecular Biology and Evolution, 33(10):2735–
2743, Jun 2016.

[7] C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Sys-
tematic Biology, 67(1):113–126, May 2017.

[8] K. G. D. Bogdanowicz. Visual treecmp. https://eti.pg.edu.pl/treecmp/.
Accessed on February 28th, 2019.

[9] W. H. E. Day. Optimal algorithms for comparing trees with labeled
leaves. Journal of Classification, 2(1):7–28, Dec 1985.

[10] G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastDNAml:
a tool for construction of phylogenetic trees of DNA sequences using
maximum likelihood. Bioinformatics, 10(1):41–48, Feb 1994.

[11] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Mathe-
matical Biosciences, 53(1):131 – 147, Feb 1981.

[12] O. Robinson, C. Dessimoz, and D. Dylus. Phylo.io : Interactive Viewing
and Comparison of Large Phylogenetic Trees on the Web . Molecular
Biology and Evolution, 33(8):2163–2166, Apr 2016.

[13] M. R. Smith. Bayesian and parsimony approaches reconstruct informa-
tive trees from simulated morphological datasets. Biology Letters, 15(2),
Feb 2019.

[14] R. Stanley. Enumerative Combinatorics. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2012.

[15] H. Tan, F. Hadzic, T. S. Dillon, E. Chang, and L. Feng. Tree model guided
candidate generation for mining frequent subtrees from xml documents.
ACM Trans. Knowl. Discov. Data, 2(2):9:1–9:43, Jul 2008.

[16] T. von Landesberger. Insights by visual comparison: The state and chal-
lenges. IEEE Computer Graphics and Applications, 38(3):140–148, May
2018.

[17] T. von Landesberger, M. Görner, R. Rehner, and T. Schreck. A System
for Interactive Visual Analysis of Large Graphs Using Motifs in Graph
Editing and Aggregation . Vision Modeling and Visualization, Jan 2009.

[18] K. Yamamoto, S. Bloch, and P. Vernier. New perspective on the region-
alization of the anterior forebrain in osteichthyes. Development, Growth
Differentiation, 59:175–187, May 2017.

Comparing Phylogenetic Trees: an overview of state-of-the-art methods – Hidde Folkertsma and Ankit Mittal

18

Technical Debt decision-making: Choosing the right moment for
resolving Technical Debt

Ronald Kruizinga and Ruben Scheedler, University of Groningen

Abstract— Technical debt, software development compromises in maintainability to increase short term productivity, is an often
discussed topic with respect to decision-making, due to its prevalence and accompanying costs. Typically taking up 50-70% of a
project’s time [18], maintenance should be candidate one when it comes to lowering project cost. Many approaches for handling
technical debt and deciding when to tackle it are available. These can be used in an agile context but are not restricted to it. In this
paper we perform a literature review of four approaches to decision-making with respect to technical debt.
The first approach we discuss consist of the Simple Cost-Benefit analysis, which has its roots in the financial sector. The second
approach describes the Analytic Hierarchy Process often found in decision-making literature. The next approach provides an evaluation
for the key factors that play a role in whether the debt should be paid immediately or be deferred. The final approach is a highly
formalized decision evolution approach. Each of the considered approaches have their own advantages and disadvantages. Over the
course of this paper we explain how these methods work and we discuss the strengths and weaknesses of each method. We compare
them on seven factors, amongst which the feasibility of adoption in a company and the accuracy and completeness of the approach.
Based on this, we find that the Analytic Hierarchy Process is the most feasible approach, but case studies and further research are
required for all approaches.

Index Terms—Technical debt, Decision making, Cost analysis, Software systems, Formalized evolution

1 INTRODUCTION

Technical debt (TD) was first mentioned by Ward Cunningham in
1992 [2]. It can be defined as software development compromises
in maintainability to increase short term productivity. Cunningham
compares TD to debt and interest as used in the financial sector. Similar
to financial debt, TD comes with an increasing interest cost. Companies
typically have change management teams that determine what changes
are to be included in the next iteration/evolution of a system. An
iteration then consists of a set of changes to the system also known as
evolution items. These can be new features, bugfixes, workarounds,
refactorings and more.

TD can have different causes. It can be caused by complex require-
ments, lack of skill of the developer, lack of documentation or simply
by choice by taking the easy solution instead of the proper one, all of
which impacts the way TD should be handled.

The problem of TD becomes clear by considering the size of TD
in existing software [3]. Curtis et al. found that on average $3.61
of TD exists for every line of code in over 700 large scale applica-
tions [3]. Nugroho et al. estimated during a case study a TD interest
of 11 percent in a large scale application, which would grow to 27
percent in 10 years [10]. The impact of interest becomes apparent given
that that maintenance activities consume 50−70% of typical project
development [18].

Agile working methods have gained more and more traction over
the last few years [5]. Although a variety of methods (SCRUM, XP,
FDD) is available and refactoring is already an integrated part of these
methods [6], none offer a good solution for managing technical debt.
Technical Debt Managing (TDM) requires the answer to one question,
which is the research question of this paper: How do you determine the
right moment to fix TD?

Managing TD principally comes to down to a trade-off between a
robust future-proof product that takes longer to develop and a quickly
finished product which is hard to maintain.

• Ronald Kruizinga is a Computing Science master’s student at
Rijksuniversiteit Groningen. E-mail: r.m.kruizinga@student.rug.nl.

• Ruben Scheedler is a Computing Science master’s student at
Rijksuniversiteit Groningen. E-mail: r.j.scheedler@student.rug.nl.

In this paper we explore different ways of making this trade-off. We
first discuss related work done on the topic of TD decision-making,
before elaborating on several approaches.

We start with a simple cost-benefit trade-off, followed by an ap-
proach sourced in decision-making literature. We then go over two
more complex mathematical approaches, one that quantifies the factors
that should be taken into account, such as code metrics and customer
satisfaction and another approach that highly formalizes TD decision-
making by quantifying TD.

In the discussion we compare these four approaches while placing
them in a wider context to find whether there exists a right moment to
fix TD and when to fix it. We then discuss our results and whether they
are accurate enough. Finally, we provide our conclusion to what the
optimal approach is and suggest further research that should be done.

2 RELATED WORK

Martini et al. performed a case study on a subtype of TD: Architectural
Technical Debt (ATD) [8]. They interviewed several types of actors
in the software development process (architects, developers, scrum
masters) and found that ATD comes with objectionable consequences
like vicious circles, in which fixing the ATD in a quick manner brings
even more ATD.

They were not the first to establish the danger of TD. A growing
amount of studies is being performed on the subject of TD. Managing
TD mainly consists of three procedures.

• grouping

• quantifying

• decision making

Grouping is the process of translating a system into actionable units.
Most related studies focus on TDM in an agile environment [1, 7, 12].
Therefore, we see a general trend in managing TD using a backlog
similar to the one used in agile development for feature issues but
instead containing technical small independent debt items [12]. This
item log takes care of the grouping process.

Quantifying is the process of attaching values to TD items based
on certain metrics. Li et al. [7] performed a mapping study towards
the current understanding of TD and TDM. It reviews over 90 papers
on the topic of TD(M) and gives an overview of approaches used in
managing TD. For this they use TD dimensions introduced by Tom et

19

al. [17]. This research distinguishes different dimensions of TD among
which code, architecture and environment. Code debt manifests itself
in the form of poorly written code, such as hacks and workarounds.
Architectural debt can be found in the form of code design that does
not focus enough on maintainability or adaptability. Enviromental
debt consists of processes that can be automated or using outdated
components/technologies. Li et al. extend the dimensionality into
subtypes of TD [7]: requirements, architecture, code, documentation,
versioning and more. Their overview of tools used to manage TD shows
a major focus solely on code TD. Integrated development environments,
for example, offer refactoring for poorly written code.

Interestingly, Nord et al. conducted a research in finding a metric to
express TD [9] and although available tools focus primarily on code TD,
this research found that code level metrics are insufficient to express TD.
It proposes to focus more on architecture-related debt to help optimize
releases, which requires to look to at non-functional properties like
complexity and performance.

Although tools exist for managing code TD, other types are harder
to manage. This is especially clear when it comes to decision-making:
given a list of feature items and TD items, which should be selected for
the following release?

Seaman et al. [13] propose to measure TD debt in terms of interest
and principal. Interest is the extra time required to achieve changes in
the system by incurring TD. The principal is the cost (in time) to fix the
TD. A second approach that is introduced here is Analytic Hierarchy
Process, which is grounded in decision-making literature. We will
elaborate on these methods in Sect. 3.1 and Sect. 3.2.

Ho et al. propose a similar process [4], which uses documentation,
testing, maintainability and complexity as metrics to quantify TD. They
embed the monitoring of these dimensions in a process that weighs
features against paying off TD.

Nord et al. propose a somewhat different mathematical model for
the task [9]. A model is proposed in which again implementation cost is
taken into account, but now combined with the amount of dependencies
a (new) component has. The dependencies are the key to determine
whether to refactor or whether to postpone it.

Martini et al. introduces an impressive collection of properties to be
used to prioritize items [8]. Most interestingly it adds a commercial
perspective to the decision-making process by introducing aspects like
long-term customer satisfaction and competitive advantage.

Snipes et al. [15] introduce a formal method of selecting evolution
factors based on case studies, to be used for deciding whether to pay
off TD immediately. We will elaborate on this method in Sect. 3.3.

Schmid introduces a formal mathematical method of calculating
TD using highly formalized equations [12]. We will elaborate on this
method in Sect. 3.4.

3 METHODS

This study compares 4 different approaches for TDM. In order to prop-
erly answer our research question, we will compare these approaches
on multiple criteria, taking into consideration that not all of these ap-
proaches have been formally tested or used in a realistic environment.
The approaches considered in this comparison are:

• Simple Cost-Benefit Analysis

• Analytic Hierarchy Process (AHP)

• Defining Decision Factors

• Formalized Evolution

In this section we will describe these different approaches to TDM.

3.1 Simple Cost-Benefit Analysis
Seaman et al. [14] introduce the Simple Cost-Benefit Analysis, which is
based on traditional financial cost-benefit analysis. It is the simplest ap-
proach to managing TD and therefore provides us with a good baseline
for comparison with the other approaches.

This approach focuses on a ”technical debt list”, which contains
items representing a task that is not completed (satisfactorily) and thus
might cause problems in the future. Examples of this include missing
tests, needed refactorings or missing documentation.

Each of these items has a principal and an interest. The principal
describes how much work is needed to complete the item. The interest
consists of two parts: the probability, which describes the chance
that the debt will lead to problems if not paid, and the amount, which
describes how much extra work the debt will cause if not paid. The
probability itself depends on the timeframe for which the analysis is
done. A software element that contains TD might not change in the
upcoming month, but could be highly likely to change before the end
of the year.

These three metrics are then assigned estimated values of high,
medium or low. These are rough estimates, but sufficient in making pre-
liminary decisions that can be worked out in more detail later. Example
usage of a slightly more fine-grained approach can be seen in Fig. 1,
which contains 9 god classes that should be refactored. A possible
strategy for paying the debt would be to start in the upper left corner,
which are high interest classes that require little effort (low principal)
and then moving down and right.

Fig. 1. Cost-Benefit matrix for nine god classes in an industrial software
application. [14]

This approach increases in reliability when more data is available,
especially on the impact of the TD on the rest of the application. How-
ever, even with limited amounts of data, expert opinion can be used to
provide a decent approximization of the interest of an item. In addition,
this approach integrates well with software metrics, making it easy to
adopt into a workflow.

3.2 Analytic Hierarchy Process
Seaman et al. [14] introduce a second process to work with TD, the An-
alytic Hierarchy Process (AHP). This process comes from the decision
sciences and is a well supported approach in literature [11].

It structures a problem solving process by comparing alternatives
with regards to certain criteria, resulting in a ranking of these alter-
natives. It structures this process by making a hierarchy of criteria
and then performing pair-wise comparisons of alternatives under these
criteria, resulting in a priority vector for the alternatives.

In Fig. 2 an example is available, where the alternatives (choices)
X, Y and Z are compared with respect to the criteria (factors) A, B, C
and D, in order to reach a certain goal. Factors can be quantative and

Technical Debt decision-making: Choosing the right moment – Ronald Kruizinga and Ruben Scheedler

20

qualitative which makes factors like ’product performance’ possible
with qualitative values like ’much better’ and ’worse’. All choices are
compared on all factors in order to produce a ranking of the possible
choices.

Fig. 2. Example of an AHP hierarchy. [16]

Many of the pair-wise comparisons are objective and quantitative,
and can thus be automated, resulting in an approach that reduces the
amount of human input required. In applying AHP to the TD problem,
the alternatives would be the instances of TD in the system and the
output of the process would be a ranking of these items, prioritising
items that should be paid off first.

3.3 Defining Decision Factors

Snipes et al. [15] approach the TD problem from a different direction,
as they do not consider the effects of the debt on related modules, but
only on the module in which the debt occurs. The authors performed a
survey under 7 Change Control Board (CCB) members for a product
of over one million lines of source code. The CCB is responsible for
deciding what changes and updates should be made in the next iteration
of the product.

This has lead to the classification of six categories of TD costs.

• Investigation: The cost of diagnosing and verifying a problem.

• Modification: The cost of implementing and verifying a fix.

• Workaround: The cost of providing workarounds for a known
failure.

• Customer support: The cost of providing support to customers
that encounter the problem.

• Patch: The cost of providing a temporary fix to affected cus-
tomers.

• Validation: The cost of testing the system in its entirity.

Not all of these costs have the same importance, as Investigation cost is
estimated to be 50-70% of the cost of fixing a defect [15] and Validation
cost is between 20-30%. These costs also change when a fix is deferred,
as deferring a fix might lead to more customer support or patching, in
addition to a workaround being required. However, Validation costs
are lowered, as validating the workaround is easier than validating a fix,
due to the smaller scope and impact of the workaround.

The effect of deferring on these costs can be found in Fig. 3. In
this image, it can be seen that fixing a defect incurs an Investigation,
Modification and Validation cost. Deferring increases the Investigation
cost by having to investigate twice, due to having to investigate again
when the workaround will be replaced by a proper fix. However,
deferring reduces the Validation cost as the workaround is easier to test
than a complete fix. In addition, Patch and Customer Support costs
may be incurred if the Customer requests as such.

Fig. 3. Change patterns of defect costs between fixing and deferring [15].

According to the respondents, there are multiple key factors that play
a role in deciding when to fix TD. In order of importance, they are:

• Severity: The importance of capabilities affected by the defect.

• Workaround existence: Whether it is possible to implement a
workaround and defer the fix.

• Urgency by customer: Has the fix been specifically requested by
the customer?

• Effort to implement: Estimated effort versus resources available
and the schedule.

• Risk of fix: Estimation of the extend of code and functionality
will be affected and will need to be tested.

• Scope of testing: The impact of the change and the amount of
testing required.

However, while these factors play an important role in TD decision-
making, Snipes et al. [15] also propose a more formal way of deciding
whether the TD should be paid or deferred to a later date. In order to
do this, they developed a cost-benefit analysis based on the key factors
identified. In the equation seen in Fig. 4, P is the cost of Investigation,
Modification and Validation, representing the costs of paying of the
debt right now. It therefore is the principal of the debt.

The interest is formed of multiple components. Iw represents the
cost of defining a workaround and Ic the cost of Customer support.
Ipr ∗ Ip represents the probability that a customer will request a patch,
multiplied by the cost of the patch. I f r then is the probability that the
deferred defect will eventually be fixed, making P ∗ I f r the expected
cost to pay off the debt. Whenever the cost-benefit ratio ρ < 1 it is
better to pay the principal immediately and fix the defect right now,
otherwise, there is a financial advantage to deferring the fix.

Fig. 4. Equation for Cost-Benefit Analysis Ratio [15].

3.4 Formalized Evolution
Schmid [12] provides us with a highly formalized approach to reasoning
about TD and its resolution. He defines TD in Definition 1.

Definition 1. T D(S,e) = max{CC(S,e)−CC(S′,e)|S′ ∈ Sys(S)}

In this formula, TD(S,e) is the TD for a system S together with
an evolution step e, which is a single change of the system. Sys(S)
describes all systems that are behaviorally equivalent to S, which is
all systems that have the same visible behavior as S, even though the
internal workings can be very different. Finally, CC(S,e) describes the
cost of performing evolution step e on system S. This means that the

SC@RUG 2019 proceedings

21

TD in Definition 1 describes the cost of performing the change on the
current system S compared to the most optimal implementation of S
with the same behavior.

However, evolution does not usually occur as a single change, but
commonly as a sequence of evolution steps. Given an evolution se-
quence ~e ∈ E∗, where E∗ describes the set all possible evolution se-
quences for a system, we conclude the new Definition 2.

Definition 2. T D(S,~e) = max{CC(S,~e)−CC(T,~e)|T ∈ Sys(S)}

This also describes the TD as the cost of a sequence of changes
relative to an optimal implementation.

Now the question remains whether it is better to pay this TD imme-
diately or at a later moment. In order to do this, we do not just consider
the planned evolution sequence (~eplan), but also the potential evolutions
(~epot) following it. For simplicity, we assume that refactoring or re-
structuring can only be done at the beginning or the end of a sequence.
If crest represents the cost of restructuring, we can visualize this as in
Fig. 5, where two alternatives are displayed. The second alternative can
be reached by paying the costs of restructuring.

Fig. 5. Development alternatives [12].

This means that it is beneficial to refactor immediately iff

CC(S,~eplan)+CC(Splan~epot)

≥ crest +CC(S′,~eplan)+CC(S′plan~epot)
(1)

In Equation 1, Splan is the state of system S after~eplan. If the cost of
implementing~eplan and~epot is greater than the cost of refactoring and
then implementing ~eplan and ~epot onto this restructured system, it is
beneficial to restructure.

However, this procedure has a fundamental flaw, as there is not a
single path for future development, but potentially infinite different
paths. In order to replace the precise values previously used, we thus
introduce the notion of expected cost and expected technical debt.

For each~e ∈ E∗, where E∗ describes the set all possible evolution
sequences for a system, p describes a probability measure over E∗,
i.e., p(~e) ∈ [0...1], such that ∑

~e∈E∗
p(~e) = 1. We use this to define the

Expected Cost of a system S in Definition 3. ̂

Definition 3. ĈCp(S) = ∑
~e∈E∗

p(~e)∗CC(S,~e)

The expected technical debt T̂ Dp is defined correspondingly (by us-
ing ĈCp in Definition 2). In accordance with the definition of expected
TD, the calculation to determine whether it is beneficial to restructure
immediately is given by:

CC(S,~eplan)+ĈCpot(Splan)

≥ crest +CC(S′,~eplan)+ĈCpot(S′plan)
(2)

S’ is the state after performing the restructuring corresponding with
crest . Equation 2 shows that the estimated technical debt is always
impacted by the uncertainty of development, which means that we can
never predict the optimal way of handling TD.

3.4.1 Approximating formal optimization
The analysis of formal evolution so far relies on a number of opti-
mizations that can lead to an infinite search space for identifying and
handling TD. Three problems are encountered that can be solved using
an approximation:

• The number of behaviorally equivalent systems can be very large,
potentially infinite, which makes finding an optimal system, used
in Definition 1 and Definition 2, highly time consuming. This
problem will be addressed by introducing a fixed relative system.

• The number of potential evolution sequences grows exponentially
with the length of those sequences. Under certain circumstances
we can restrict our analysis to single evolution steps (see Defini-
tion 8).

• After applying the previous two optimizations, the number of
potential evolution steps might still be infinite or too large to
consider properly. Thus we look at whether it can be replaced
with a finite set and what the consequences are of doing so.

In order to select a fixed relative system, we need a system that
approximates an optimal solution and is good enough to fill the role of
optimal solution. Often, an expert solution is available that can function
as an optimal solution S′. We use this to define relative technical debt
RTD as per Definition 4.

Definition 4. RT D(S,S′,~e) =CC(S,~e)−CC(S′,~e)

Expected relative technical debt RT̂ D can be defined correspond-
ingly using the expected cost ĈC, which can again be used to calculate
whether in it beneficial to restructure right now.

Using an expert solution instead of a theoretical optimal solution
brings this method a step closer from theory to practice. However, the
CC function still requires exhaustive probability calculation over an
infinite number of evolution steps and sequences. To deal with this, we
replace the potentially infinite space of sequences with a representative
finite subset.

Definition 5. crest ≤ ∑
el~eplan

RT D(S,S′,e)+ R̃T Dn(~eplan(S),~eplan(S′))

Definition 5 allows for approximating crest (the restructuring cost of
an evolution plan). It consists out of two components. First, the sum of
the relative technical debt (RTD, Definition 4) for each evolution step e.
That is, the TD caused by only the specific step onto the system.

Second, the approximated relative debt of the sequence as a whole.
The idea is that evolution steps implemented together may do even more
harm than implementing them separately (e.g. a harmful dependency
between the two). This type of relative debt is hard to define, but it can
be approximated using the following definitions:

Definition 6. p̃(e) =

∑
~e∈E∗,el~eplan

p(~e) e ∈ Ẽ

0 e ∈ E \ Ẽ

Definition 7. S̃T DẼ(S) = ∑
e∈Ẽ

p̃(e)∗T D(S,e)

Where earlier definitions for (R)TD are correct, they are not practi-
cally usable due to their infinite nature. In Definition 6 and Definition 7
E∗ is the set of all potential evolution sequences (infinite). E is the
set of all potential evolution steps (infinite) and Ẽ is a finite represen-
tative subset of E, containing n sequences. This set consists only of
the concrete evolution steps a business is considering and is thereby
finite. Definition 6 describes a probability function for evolution paths
consisting of only steps in Ẽ. Definition 7 describes the approximated
technical debt given the weighted potential evolution paths. This is
critical since it allows for estimation of the complex interdependent

Technical Debt decision-making: Choosing the right moment – Ronald Kruizinga and Ruben Scheedler

22

TD of evolution steps using a finite set of possible evolution sequences.
R̃T Dn can be derived from Definition 7 and Definition 4.

Although Definition 5 is usable through the use of only a finite set of
potential evolution paths, the formula is still computationally complex.
Schmid [12] proposes that the debt coming from the interdependence
of evolution is negligible. This allows for simplication of Definition 5
into the following:

Definition 8. crest ≤ ∑
e∈E ′

RT D(S,S′,e)∗ p′(e)

E ′ = Ẽ ∪{e|e ∈ eplan} and p’(e) is identical to p(e) except that it
returns probability 1 for all steps e already part of the evolution plan
eplan.

This final definition allows for relatively simple decision making
since it gives a clear definition of the TD that can be compared to
the restructuring cost. It sums the RTD of all evolution steps part of
the plan and the RTD of all other potential evolution steps, weighted
by their likelihood of occurance. This concludes the formal method
proposed by Schmid.

4 RESULTS

We now go over the different methods that are described in Sect. 3 by
comparing them on several properties.

• Accuracy: how accurately a method predicts the TD state of an
item.

• Automation: in what capabilities can the method be automated.

• Completeness: the capability of a method to consider all relevant
factors when quantifying a TD item.

• Feasibility: how likely it is that companies will adopt a method
and/or how easy it is to integrate in the workflow.

• Flexibility: how easy it is to change the method to suit the needs
of the company.

• Transparancy: how clear it is to the users how the result has been
reached.

• Workload: the effort required to use the method.

This list of properties is non-exhaustive and the properties have been
chosen based on how well they cover the entire process of decision-
making, in order to look not only at technical aspects such as complete-
ness and accuracy, but also from more user-related perspectives such as
workload and transparency. In addition, they have been selected based
on whether they could be derived from the discussed articles.

Table 1 summarizes our findings. Every method is given a score for
every property that ranges from 1 (very low) to 5 (very high).

Table 1. Overview of methods and their scores. Methods are abbreviated
as follows: Simple Cost-Benefit Analysis (SCBA), Analytic Hierarchy Pro-
cess (AHP), Defining Decision Factors (DDF) and Formalized Evolution
(FE).

SCBA AHP DDF FE
Accuracy 1 3 3 5
Automation 2 4 2 3
Completeness 1 4 2 5
Feasibility 3 4 3 2
Flexibility 2 5 3 3
Transparency 5 2 4 2
Workload 5 3 3 1
Total 19 25 20 21

4.1 Simple Cost-Benefit Analysis (SCBA)
What makes Simple Cost-Benefit Analysis stand out is its simplicity.
It has only three components (principal, interest amount and interest
probability) which makes it attractive to add to a workflow. Therefore,
SCBA scores high on feasibility, workload and transparency.

However, the simplicity is also its weakness. The equation used
by SCBA does not consider factors beside principal cost and interest
in the cost of developing new features. Take for example the factor
’performance’. If incurring TD decreases the performance of a system
by 10 percent, this will only affect end users of the system but will not
generate a growing interest of development cost. However, it might lead
to losing customers and thus a different form of interest. Completeness
and accuracy scores of this method are therefore low.

4.2 Analytic Hierarchy Process (AHP)
The strength of AHP lies in its flexibility and its pragmatism. AHP
sets no constraints to the factors that are used, making it flexible and
also potentially covering all relevant factors. Furthermore, it breaks
down the question of factor prioritization into small comparisons: each
factor is directly compared to other factors and the algorithm generates
a general prioritization from that. Besides setting up the matrix for
comparing features, most of the operations can be automated.

The disadvantages of AHP are not obvious, yet they are present. The
flexibility brings great potential but it requires the user of the method
to know how to configure it. Other methods come with their own
balancing based on research which (although less flexible) might yield
better results. The mathematics underlying the method also makes it
less transparent to some users.

4.3 Defining Decision Factors (DDF)
DDF does not stand out positively nor negatively. It achieves some
accuracy and completeness by considering all steps part of fixing or
postponing an issue. However, its equation (Fig. 4) is too simplistic,
as it does not consider the effects of time on factors such as Ic or Ipr,
nor the opportunity cost of the other tasks that could be done instead.
This method also suffers from the fact that the effect on the rest of the
system is left out of the equation.

The input on DDF then also requires broad knowledge of the system.
Factors like ’urgency by customer’ and ’risk to fix’ are best answered
by different people in an organization. This makes the method more
complex to adopt.

Finally, the method is very clear. This increases the transparency of
it and also has a positive effect on feasibility and (partial) automation.

4.4 Formalized Evolution (FE)
This approach provides some significant benefits, but also has its fair
share of drawbacks. The formalization offers a precise analysis of
TD, which also shows that we require an infinite search space and
need to identify theoretically optimal systems, which is not feasible
in practice. Approximation can alleviate these issues, but also causes
deviation from the ’real’ values. The major drawback of this method is
the workload it brings. It requires to predict many evolution paths to
calculate the restructuring cost. It is possible to use very few, but this
directly impacts the accuracy of the method.

Furthermore this method is built on one abstract cost function (CC).
This function is flexible in the sense that no hard definition of it is given
besides: ”the (minimal) cost required to perform an evolution step on
a system”. If we assume that this only entails the cost to implement an
evolution step, it is both transparent and relatively easy to use, since
cost is something businesses are already familiar with. However, it also
means that similar to SCBA and DDF some factors might be left out of
the equation.

Automation of this method is doable as it is mostly a mathematical
model that directly allows comparison of alternatives. However, the
implementation costs are still required as an input and might be hard to
calculate depending on how many factors are included in it.

In general, this method provides strong theoretical foundations for
further decision-making approaches and research, while also being
usable in realistic environment. Although the workload to use it is high

SC@RUG 2019 proceedings

23

and the algorithm is not easy to understand, it can yield very accurate
results.

5 DISCUSSION

An important note to make is that although most relevant research has
underlined the need for refactoring, it is not imperative that investing
time in decision making is beneficial.

Definition 9. Tsaved = Ttd −Tdm

In Definition 9 Ttd represents the time saved by refactoring, Tdm the
time taken for decision-making and finally Tsaved is the net time saved
for the company.

This formula makes clear that although a decision-making method
can be very good in finding the right moment to fix TD (thereby saving
time in the future) it needs to be proportional to the TD it proposes to
fix. Otherwise, the process as a whole is still not beneficial. It also
shows that improving the decision-making process ad infinitum is not
always beneficial as it might increase the workload so much that the
total Tsaved becomes negative.

In this paper, we considered four different approaches to technical
debt management. We compared these approaches based on a wide
range of factors, both technical and organisational. This offers an
overview that is relevant to varying groups of users. However, there
are always more factors that can be taken into account and doing so
might give a different result. Furthermore this overview suffers from
the problem that several of these approaches are untested in industry or
case studies. This makes their results unreliable at best, as theoretical
results do not guarantee the same results in practice. Therefore, the
results of this paper should be considered a comparison of theoretical
results.

6 CONCLUSION

Technical debt (TD) is becoming a major issue in software development
and a factor in its decision making. Therefore, methods are required
to deal with TD that help with finding the right moment to resolve it.
Research has been conducted on the topic of TD already, providing a
variety of methods to deal with it. These methods typically solve two
problems: how do we quantify TD and how do we compare candidate
solutions for resolving TD?

We discussed four methods that attempt to answer these questions.
Simple Cost-Benefit Analysis (SCBA) is a simple model that assigns
principal and interest to technical items, similar to models found in
finance. Defining Decision Factors (DDF) categorizes the cost of TD
into six defining factors which are used to choose between incurring
and resolving TD. Analytic Hierarchy Process (AHP) provides a more
general tactic that is grounded in decision-making literature. Users can
define all factors they deem relevant. AHP orders them and is able to
rank technical item importance based on feature importance and scores
given to the technical items. Finally, Formalized Evolution (FE) builds
a mathematical and statistical model based on the cost of implementing
an item and the debt it brings. It provides an accurate prediction of
whether a refactoring will pay off, given the correct item costs and
potential evolution paths.

All four methods have their benefits and disadvantages. SCBA is
easy to use but not complete. DDF provides good insight in the cost of
TD, but requires precise input and lacks non-technical factors. AHP is
flexible and well automatable. However, it requires so much input that
the approach itself does not provide much more than a framework for
decision making. FE is very accurate but more complex in use and very
time consuming, although some parts can be automated. By comparing
and scoring the methods on several criteria, we found that AHP came
out on top as the suggested approach to use.

Answering the question of whether and when to resolve TD based on
these approached is not yet feasible without any case studies. Choosing
a most feasible approach suffers from this same problem, as theoreti-
cally being the most appropriate approach does not guarantee that it will

be so in practice. Although all these methods are very promising, more
research is needed in the form of case studies that apply these methods
in practice. Furthermore, the feasibility of the decision-making pro-
cess itself should be subject to research especially when its complexity
increases.

ACKNOWLEDGMENTS

The authors wish to thank our reviewers and J. Tan as our domain
expert.

REFERENCES

[1] W. N. Behutiye, P. Rodrguez, M. Oivo, and A. Tosun. Analyzing the
concept of technical debt in the context of agile software development: A
systematic literature review. Information and Software Technology, 82:139
– 158, 2017. doi: 10.1016/j.infsof.2016.10.004

[2] W. Cunningham. The wycash portfolio management system, 1992.
[3] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating the size, cost, and

types of technical debt. In Proceedings of the Third International Work-
shop on Managing Technical Debt, MTD ’12, pp. 49–53. IEEE Press,
Piscataway, NJ, USA, 2012.

[4] T. T. Ho and G. Ruhe. When-to-release decisions in consideration of tech-
nical debt. In 2014 Sixth International Workshop on Managing Technical
Debt, pp. 31–34, Sep. 2014. doi: 10.1109/MTD.2014.10

[5] J. Jeremiah. Survey: Is agile the new norm?, 2015.
[6] D. Leffingwell. Scaling software agility: best practices for large enter-

prises. Pearson Education, 2007.
[7] Z. Li, P. Avgeriou, and P. Liang. A systematic mapping study on technical

debt and its management. The Journal of Systems & Software, 101:193–
220, 2015.

[8] A. Martini and J. Bosch. Towards prioritizing architecture technical debt:
Information needs of architects and product owners. In 2015 41st Euromi-
cro Conference on Software Engineering and Advanced Applications, pp.
422–429, Aug 2015. doi: 10.1109/SEAA.2015.78

[9] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search
of a metric for managing architectural technical debt. In 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, pp. 91–100, Aug 2012. doi: 10.
1109/WICSA-ECSA.212.17

[10] A. Nugroho, J. Visser, and T. Kuipers. An empirical model of technical
debt and interest. In Proceedings of the 2Nd Workshop on Managing
Technical Debt, MTD ’11, pp. 1–8. ACM, New York, NY, USA, 2011. doi:
10.1145/1985362.1985364

[11] T. L. Saaty. Decision making for leaders: The analytical hierarchy process
for decision in a complex world. Lifetime Learning Publications, 1982.

[12] K. Schmid. A formal approach to technical debt decision making. In
Proceedings of the 9th International ACM Sigsoft Conference on Quality
of Software Architectures, QoSA ’13, pp. 153–162. ACM, New York, NY,
USA, 2013. doi: 10.1145/2465478.2465492

[13] C. Seaman and Y. Guo. Chapter 2 - measuring and monitoring technical
debt. vol. 82 of Advances in Computers, pp. 25 – 46. Elsevier, 2011. doi:
10.1016/B978-0-12-385512-1.00002-5

[14] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and
A. Vetr. Using technical debt data in decision making: Potential de-
cision approaches. In 2012 Third International Workshop on Managing
Technical Debt (MTD), pp. 45–48. Zurich, June 2012. doi: 10.1109/MTD.
2012.6225999

[15] W. Snipes, B. Robinson, Y. Guo, and C. Seaman. Defining the decision
factors for managing defects: A technical debt perspective. In 2012 Third
International Workshop on Managing Technical Debt (MTD), pp. 54–60.
Zurich, June 2012. doi: 10.1109/MTD.2012.6226001

[16] K. Teknomo. Analytic hierarchy process (ahp) tutorial. https://people.
revoledu.com/kardi/tutorial/AHP/AHP-Example.htm, 2006. Ac-
cessed: 2019-03-11.

[17] E. Tom, A. Aurum, and R. Vidgen. An exploration of technical debt. J.
Syst. Softw., 86(6):1498–1516, Jun 2013. doi: 10.1016/j.jss.2012.12.052

[18] H. Van Vliet. Software engineering: principles and practice, vol. 13. John
Wiley & Sons, 2008.

Technical Debt decision-making: Choosing the right moment – Ronald Kruizinga and Ruben Scheedler

24

An Overview of Technical Debt and Different Methods Used

for its Analysis

Anamitra Majumdar and Abhishek Patil

Abstract— Technical debt is a widely used term in software development which is the cost of restructuring the code as a result of

flaws present in the software system. This is caused due to focusing on short-term benefits rather than thinking about the long-

term life of the software. Most of the time, developers do not worry too much about the overall health of the software during

development and use low quality code in the process to meet their goals quicker. This results in code smells, bugs, performance

issues, security loopholes and unreadable code. Ignoring these problems is the same as going into debt i.e., choosing to ignore

the problems so as to “borrow” time and push out releases quicker. Many instances of debts incurred are also unintentional like in

cases of updates or patches to a software and some can even be necessary when, for exmaple, a deadline needs to be met.

These debts pressurize the developers to revisit the same code in order to work on it again. Analysis and quantification of

technical debt is necessary as it gives an idea to the developers and the stakeholders of the time and resources required to

manage the debt. It also gives us an overall perspective as to why one should be careful while going into debt and what can be

done to alleviate the problem. In this paper, we discuss in detail about what technical debt actually is, its types, how it impacts the

software lifecycle in the long run and how developers work on paying back the accumulated debt. We then review the approaches

given in four research papers to measure different types of technical debt in open source software projects and study their effects

on maintainability and debt payback. In the end, we conclude by summarizing our paper and put forth our own idea on how to

reduce the problem of technical debt in the development stage.

Index Terms—Technical debt, restructuring, developer, software, analysis

1 INTRODUCTION

Technical debt is the cost of the extra work needed to reorganize the
code as a result of the shortcuts or loopholes used by developers to
get to meet their short-term objectives quicker. Often the debt that
builds up is due to the constant updates to the software as opposed to
the fault of the developers themselves.
 Ward Cunningham was one of the first people to coin this term
and it has been popular ever since. In his words: “Shipping first-time
code is like going into debt. A little debt speeds development so long
as it is paid back promptly with refactoring. The danger occurs when
the debt is not repaid. Every minute spent on code that is not quite
right for the programming task of the moment counts as interest on
that debt. Entire engineering organizations can be brought to a
stand-still under the debt load of an unfactored implementation,
object-oriented or otherwise.”[1].

Most teams around the world do not bother much about technical
debt as they are focused purely on the end goal rather than
developing a good quality software. This is a problem as someone at
some point has to go back to the code anyway due to the debt that
has been accumulated so it is best to take care of the problem right at
the initial phase. We discuss about this at the end of the paper in the
conclusion section.

In this paper, the concept of technical debt is explained in detail,
its types are explored and we also see how it affects the general
software code. We then summarize the different approaches used by
researchers in the past to measure technical debt in open source
software projects and compare them in terms of efficiency and
maintainability.

The rest of the review paper is organized as follows: section 2
introduces the concept of technical debt, how to identify it in a
software and the most common types of debt that we can see in a
software. Section 3 explains in detail the impact of technical debt on
software systems, the people working on the software and the users
of the software. Section 4 discusses how to manage technical debt or
in simpler terms, how developers work on paying back the debt so as
to mitigate it from the software. Section 5 discusses the different
approaches that have been used to quantify technical debt in the past.
Here, we review the techniques from four different research papers.
Section 6 highlights the threats to the validity of the findings of the

reviewed papers. Lastly, section 7 gives a brief summary of the
contents of this paper and concludes with our own theory on how to
reduce technical debt.

2 THE IDEA OF TECHNICAL DEBT

The Software Engineering Institute at Carnegie Mellon
University says that technical debt “conceptualizes the tradeoff
between the short-term benefit of rapid delivery and long-term
value”[2]. Suppose you are a software developer and have to add
some new feature to the already existing code. There are two ways
this can be achieved:

i) Use not up-to-par code or messy code, which is a lot easier.
ii) Use properly structured code without any loopholes, which
 takes time.

Technical debt is very similar to a financial debt. If a code keeps

incurring debt, the amount of work that the developer would need to
put in later will be much more, which is similar to the higher interest
paid over time in terms of financial debt. The longer the debt is
ignored, the more will be the software entropy which in turn will
result in complications.

Fig. 1. The cycle of technical debt[3]

Technical debt does not include delaying or not adding certain

functionalities to a software. It solely consists of bad code and/or

25

bugs that have been caused as a result of not using proper code.
Technical debt can be used to refer to the debt in any stage in the
entire software development cycle but the term is generally used just
for the programming phase.

2.1 Identifying Technical Debt

There can be a lot of ways to detect technical debt once the code is
analysed, including:

• Code smells, which indicates problems on the surface that
 leads to potentially deeper problems in the code
• High complexity, when the technologies used cannot

 interact with each other in the right way
• Bugs in the software
• Improper style of coding, which is generally fixed by
 following guidelines
• Increased load times, which is an indicator that the code
 may not have been optimized correctly
• Performance issues, which arise due to incorrect memory
 allocation
• Software age, which correlates to usage of outdated
 libraries, tools and technologies

 Most developers can identify debt in a software right away but
there are some cases when even the savviest programmers have a
hard time analysing the code and finding instances of debt.

2.2 Types of Technical Debt

There are four basic situations which can result in the accumulation
of technical debt.

Fig. 2. The four quadrants of technical debt[4]

Each situation has its own importance and value:

• Reckless/Deliberate Debt: where developers are only
 focused on the end goal
• Prudent/Deliberate: where developers are aware that they

 are in debt but choose to deliver now and fix later
• Reckless/Inadvertent: where developers lack proper
 expertise to identify debt
• Prudent/Inadvertent: where developers realize that the
 software has debt once they run the whole code

 There are three main types of technical debt:

 i) Strategic technical debt
 This occurs when the developers make a well-informed decision
to induce debt in the code knowing fully well the potential risks it
might have later on. These kinds of decision are most often
collective and the entire organization has a role to play in it. For this

reason, this is also known as planned technical debt. It is very
important as thorough as possible while making such compromises
and planning out the entire timeline right from the moment a shortcut
is used to actually paying it back once the debt has accumulated. An
example could be: skipping code reviews and unit tests so as to meet
an immediate deadline. In these cases, it is critical to maintain a
record of all the debts so that it is easier address them in the future.

 ii) Unintentional technical debt
 This type of debt is not planned in advance and arises due to poor
coding. This happens mainly due to the fault of the developers
working on the project or software. Many people do not care too
much about the code quality and keep pushing new releases without
taking care of the issues within the code. It is common when the best
possible solution is not followed due to not being aware of the
specific guidelines or the design of the modules. There are also times
when the goals of the overlooking board or the policy makers do not
align with that of the developers and this results in mismatch and
confusion on both sides. Without proper communication, this kind of
debt is bound to occur. This can also be called naïve technical debt.

 iii) Unavoidable technical debt
 This is the kind of debt which occurs when there is a new
technology which makes the old code obsolete or when the goals
change mid-project as a result of which new features or
functionalities have to be added in. There may also be debt due to the
patches made to a fully released software. The patches can be very
minor such as security fixes or heavy such as UI overhaul or design
changes. For example, to modify a website so that it supports better
mobile viewing, the entire design unit has to be re-coded which
increases debt. Lastly, this can result even due to the lack of
expertise on the developers’ part.

2.3 Reasons for Technical Debt
There can be both good and bad reasons for technical debt. In any
case, it is imperative to keep track of what is going on so that the
team working in the project do not get lost or slowed down. If the
team gets affected, so do the future releases of the product.
 Technical debt can be good in a situation where the release of the
product is more important than the internal structure or design of the
code. If the end user cares only about the working of the product and
not it’s quality, the focus of the organization will obviously be on
making a stable release as quick as possible. This will not only
satisfy the customer but also be wise on the company’s part as they
save time and deliver on their promises. However, if the requested
product demands that level of design, the developers will have to
spend more time on cleaning up the code so that it is not messy in
the final version.
 An example of a bad reason for technical debt is when the team
working on a project is more focused on other areas because they
feel like they can work better on them or find it more interesting.
Situations often arise when developers who have been working on a
piece of code for a long time get frustrated due to not reaching their
targets and that is when they tend to cut corners to push their
complete code sample.
 Even if there is a very good reason for inducing debt in a software
for all the right reasons, simply choosing messy code just to release a
complete software is not the end of the story. The developers
working on the software must come back to the code at some later
point to reorganize the code so as to eliminate all instances of debt.
Otherwise it will keep getting buried with all the extra coding on top
of it and eventually create problems in the functionality of the
product. Any team developing a product must consist of both types
of developers i.e., a programmer who is quick in reaching the
defined targets and a programmer who takes time and analyses the
code as it is being developed ensuring that no shortcuts are used in
the process.

An overview of Technical Dept and Different Methods Used for its Analysis – Anamitra Majumdar and Abhishek Patil

26

3 IMPACT OF TECHNICAL DEBT

The effect that technical debt has depends on a lot of factors such as
the premise with which the debt was incurred, how much debt has
been accumulated, the expertise of the developers, the type of debt,
quality of the existing codebase and much more. There are several
ways in which technical debt can affect the software, environment
and end users:

 i) Slower productivity

As the debt rises, so will the complications of adding new
features to an existing codebase. This happens due to the fact that the
code has become obsolete and/or difficult to work with as result of
poor design. This in turn creates problems for the end user as he has
to wait longer for the final version of the software.

 ii) Longer release cycles

With the rising amount of debt, the time needed to reorganize the
code will also increase and the release dates get pushed back further.
This happens due to the huge changes that need be made to the code.
What should ideally take a day can possibly take more than a week.

 iii) Slower build times

When dealing with a software with a high number of lines of
code (LOC) i.e., large projects, the time to build the overall module
is a necessary factor that should not be forgotten about. If the
codebase keeps incurring debt, this will impact the build time in a
negative way due to the improper structure and bugs present inside.

 iv) Difficult to add new features

The developers have a hard time adding new functionalities to the
existing code because of its complex nature. For example, if the
database being used in a software is not properly organized, working
with it becomes difficult.

 v) Testing becomes harder
 If the code is riddled with bugs due to accumulated debt, the
testing will be more complex. For testing to be carried out, one needs
a well-balanced system with a smooth flowing functionality between
the different modules of the software. Cases of debt hinder this
harmony and as a result, testing becomes a painstaking process.

 vi) No stability
 A software can even crash or some of its component might fail
due to the bugs present inside or certain optimization issues. This is
particularly dangerous in situations where end users are dealing with
a lot of data and demand perfect uptimes. It also contributes towards
shortening the overall life of a software.

 vii) Mindset of developers
 As the instances of debt go up, the developers working on the
project get frustrated and gradually lose interest. This also affects
new people wanting to join the venture as no one wants to work on a
sub-par software system. This carries on and becomes a bigger issue
as long as debt is ignored.

 viii) Financial burden
 Going into debt also has several financial impacts. Restructuring
the code to pay back the accumulated debt not only requires skill but
also resources which have a cost. This is one of the primary reasons
why organizations have to be careful while developing softwares.
Even a hint of carelessness while developing could cost the
organization a lot of money to fix the resulting issues.

 ix) Cumbersome updating
 If the code is a mess or has smells, updating it will be quite
difficult considering the fact that developers would need to revisit
entire portions of the code just to find out what went wrong and how
they can fix it. This delays the updating process of a software

unnecessarily. Sometimes the software cannot function at all unless
it has been updated.

 x) Maintenance becomes tough
 It is difficult for a developer to work with low quality code. Even
basic maintenance of a software system like security patches or
layout changes take time when the code structure is not right. If a
software system is not maintained regularly, it will create problems
in itself.

 xi) Hardware replacement
 There are times when developers working on a project use new
hardware to incorporate better functionality in the system or use it as
it is a necessity for the features they want to add. This can create
compatibility issues with the code itself.

 xii) Dissatisfaction for end users
 One cannot expect the end user to be content with a software if it
has issues due to technical debt. This not only annoys the customer
but also damages the reputation of the organization making the
software. As a result of the bugs, frequent patching is needed which
is once again not pleasant for the customer.

 xiii) Excessive load on helpdesk
 The customer services team also have a hard time catering to all
the issues faced by the end users. A lot of their time is used up in
addressing the problems caused due to debt. Though their job is to
help customers in any case but if there is no debt, they have time to
focus on other issues too.

4 MANAGING TECHNICAL DEBT

Managing technical debt is a complex process involving many
iterations over the lifecycle of a software. The more the debt is
ignored, the longer it will take for developers to pay back. Therefore,
it is always advisable to manage technical debt as soon as possible
[5].

Fig. 3. Technical Debt v/s Time

 Broadly speaking, technical debt follows an upwards curve while
going through the stages of refactoring the code, transforming the
code and eliminating or modernizing the software. For the same
stages, the technology adoption curve i.e., acceptance of the software
also follows a similar curve, though it has a slightly lower gradient.

There are several phases involved in properly managing technical
debt, which are discussed below.

4.1 Assessment
Assessment is usually done once there are enough identifiers that
lead towards evidence of debt in the code. Technical debt has to be

SC@RUG 2019 proceedings

27

measured in a way such that it helps the assessment process. One
way to do this is by figuring out how much time a developer needs to
put in to resolve the issues present in the system. Some issues are
fixed in seconds such as sections of code being accidentally
commented out but others are more complicated to work with such
as control flow statements being nested too deeply. The time taken to
refactor a code is directly proportional to the amount of resources to
be used. This provides an excellent time vs. cost assessment which
ultimately helps the organization. In addition to this, it is also
necessary to predict how the technical debt will change in each stage
of the software lifecycle.

4.2 Informing
The next important step is letting the stakeholders know the true
extent and cost of the debt. This is especially imperative when
dealing with softwares that have a lot of non-IT elements related to
it. In other words, proper communication is the key to managing debt
as it is crucial that both the parties (authority and developers) know
what is going on. Most developers cannot explain what the issue is in
non-technical terms so it is necessary to have a person that bridges
this gap between the developers and the stakeholders.

4.3 Implementation
Once the complete assessment of the software is done and the issues
have been communicated properly, it is time to eliminate technical
debt. This can be done in three main ways:

 i) Get rid of the requirement
 This is the simplest solution possible out of all. An organization
can make a conscious decision to not change anything in the code
and keep the software system in its current state. These decisions are
generally made after much thought about what repercussions it might
have and if the issues affect the overall functionality of the system.

 ii) Refactoring the code
 This involves restructuring the entire codebase where issues are
present and update it such that it does not affect the functionality or
behaviour of the system. This is perhaps the most common solution
and developers have to spend a lot of time while refactoring as they
have to carefully analyze each line of code.

 iii) Replace the software
 Once can always replace the entire software with a newly
designed one. While this does seem fat fetched, it is practiced
frequently in organizations where time is a limitation. The new
application might have technical debt of its own but this solution is
useful in minimizing large amounts of built up debt.

 iv) Be aware of debt during development phase
 If the developers are conscious about avoiding debt right from the
beginning, it can make a huge difference. This is basically common
knowledge but since most of the developers do not worry about
going into debt at all, this is very important. If the mentality of
maintaining the proper quality of code can be incorporated from the
start then the instances of debt go down.

 v) Refactor at regular short intervals
 The practice of restructuring the code samples as soon as they are
written or when a new module has been developed greatly reduces
the need of revisiting the code later on. If this is done, debt doesn’t
accumulate as much.

 vi) Put quality guidelines in place
 Quality guidelines are an excellent way to remind the developers
to maintain the quality of code at each step of the development
process. These guidelines should be strict, well documented and
followed religiously. This is similar to the guidelines that a product
manufacturer has to go through i.e., ensuring that the final product is
stable and debt-free.

 vii) Testing and code review
 Testing is an integral part of the development process of a
software. It enables a lot of issues and bugs to be addressed quickly,
which in turn reduces debt. Reviewing code at every major point is
also just as useful and the developers get a concrete idea of how a
particular code snippet could potentially incur debt.

 viii) Decrease the number of dependencies
 Most softwares make use of a large number of dependencies and
the libraries that go along with them. Although having no
dependencies is not possible but efforts should be made to keep them
to a minimum. Code can become messy and incompatible if the
proper dependencies are not found during runtime. If a library is
added to the project instead of referencing to an external source,
compatibility issues are alleviated.

ix) Using open source softwares
Since open source softwares do not have licenses attached to

them, anyone can use it as per their wish. Hence, the funds for
acquiring the licenses can now be used to better the code by
refactoring. This is more of an indirect approach but can be a great
way of reducing technical debt.

Fig. 4. The structure of paying back debt[6]

5 DISCUSSION

In recent years discussions regarding technical debt have dominated
research in the field of computer science. There have been numerous
studies in the past on different techniques to quantify technical debt
in a system. Some of these studies have been discussed in the
following sections.

5.1 Diffuseness of code smells and its impact on
maintainability

Fabio, Gabriele and Massimiliano (2017) conducted a study of 30

open source systems across 395 releases[7]. Thirteen different kind

of code smells were considered for research on the diffuseness and

its impact on maintainability (mainly change proneness and fault

proneness). Their research indicates that:

• Long method smells and complex class smells which are

 characterised by complex code are highly diffused. On the

 other hand, feature envy smell, lazy class smell and

 message chain smell is poorly diffused.

• Classes exhibit significantly higher change and fault

An overview of Technical Dept and Different Methods Used for its Analysis – Anamitra Majumdar and Abhishek Patil

28

 proneness when they are affected by code smells. It was

 also observed that higher the number of code smells,

 higher is the change and fault proneness.

 Although class change proneness can benefit from code smell
removal, code smell presence is not necessarily the direct cause of
class fault proneness. Both of them are rather co-occurring
phenomenon.

5.2 Self-admitted technical debt

Self-admitted technical debt (SATD) refers to technical debt

instances intentionally introduced by the programmer like temporary

defect fixes which are explicitly documented in code comments.

Gabriele and Barbara conducted a study on 159 active projects

belonging to mainly two software ecosystems Apache and

Eclipse[8]. Their study states that:

• Most diffused type of SATD is code debt (30% of all

 analysed instances) followed by defect debt (20%)

 requirement debt (20%) and design debt (15%).

• SATD instances increase with introduction of partly fixed

 patches and stays in the system for over 1000 commits. In

 majority of the cases the developer repaying the debt is the

 same who introduced it if not then it is usually a developer

 with a higher experience than the one who introduced it.

 From the results, no correlation was found between code files
internal quality and self-admitted technical debt instances.

5.3 Evolution of technical debt in Apache ecosystem

Georgios, Mircea, Alexander and Paris (2017) analysed 66 Java open

source projects from Apache ecosystem focussing on evolution of

technical debt over last five years[9]. Their findings suggest:

• There is no monotonic upward trend in evolution of

 technical debt for the analysed open source projects.

• Technical debt along with source code metrics increase in

 majority of systems. However, normalized technical debt

 decreases over a period of time. According to them this

 might be due to evolution of system over a period of time

 or developers focus on elimination of technical debt during

 software lifecycle but there is no concrete evidence to

 support this reasoning.

• During development phase top ten most frequent rule

 violations account for more than 40% issues in the

 system.

• Technical debt due to code duplication is the most

 expensive to fix, estimation of this effort depends on the

 cardinality of the clone. Technical debt due to exception

 handling is also expensive for remediation.

5.4 How technical debt is paid back by fixing issues

Georgios, Mircea, Alexander Apostolos, and Paris (2017) carried out

a case study on 57 Java open source projects from Apache ecosystem

focusing on the amount of technical debt paid back and the types of

issues that were fixed in mean time[10]. High level observations

from their case study are:

• The highest fixing rate is present in projects nutch and

 jmeter in which more than 70% of the issues that appeared

 during their evolution have been fixed. This could due to

 the fact that the development team of both these projects

 use SonarQube, a static code analysis software, to evaluate

 the quality of internal code.

• There is no relation between absolute number of issues

 found and percentage of fixes. They also found that there

 was no correlation between size of project and defect

 fixing rate.

• Only a small portion of issue types account for majority of

 the issues in the system and these most frequently

 occurring issues are the easiest to fix.

• Most frequently fixed issues do not necessarily account for

 highest amount of technical debt paid back. Technical debt

 paid back might be considerable due to code duplication,

 this is because the estimation of the payback effort is

 proportional to the number of duplicate blocks of code.

 Their results show that nearly 20% of issues are fixed within one

month from its introduction in the system, with 50% are fixed within

one year and smaller number of defects which might not be of

importance to the developers are not fixed even after 10 years.

6 THREATS TO VALIDITY

There can be the following general threats to the validity of the
acquired results in the reviewed papers:

- Since the analysis has been carried out for a fixed number
of open source projects, it is therefore not possible to
generalize the results that have been found for all the
projects in existence.

- The calculations done in each paper might be imprecise as
they are dependent on external factors like the
effectiveness of SonarQube for analysis of code and
mining the instances of SATD from the comment lines.

- Since the research questions in the reviewed papers are
investigated through a case study, the reliability of the
sources can be questioned. If the past experiments are not
carried out in the same setup and environment as it was
originally done, different results might be yielded.

- Experience of the developers who worked on the projects
is not taken into account. A developer who has less
experience and has worked on a large project with many
others won’t go into debt that much due to the combined
expertise of the team and vice versa.

- The open source projects have been analysed over a
specific period of time. There might be some or no debt in
that period which affects the results greatly.

- Manual or operational errors by the researchers can also
lead to flaws and imprecise calculations.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have explained the whole notion around what
technical debt actually is. As we have seen, there are various
identifiers which hint at instances of technical debt. There are
different types of technical debt possible based on whether it is
deliberate or inadvertent. There can also be both good and bad
reasons for incurring debt.
 We have also seen that technical debt can have a large number of
impacts on the software itself and the environment. These impacts
have mixed complexities according to their types.
 Managing technical debt is a challenge and generally involves
assessing the code first, followed by communicating the results to the
appropriate stakeholders and then implementing ways to reduce the
accumulated debt. This is crucial in handling the debts.
 Lastly, we have summarized the various approaches used in the
past by people in their research to quantify technical debt and answer
the corresponding posed research questions. In the first paper (sec.
5.1), although the analysis of the projects indicates that some types
of smells are more frequent than others, it can be safely concluded
that code smells are directly proportional to the change and fault
proneness of a system. The second paper (sec. 5.2) measures the
diffuseness of self-admitted technical debt (SATD) in a number of
active projects. The most common type of SATD is code debt and
the least common is design debt. The paper also goes on to prove
that instances of SATD increase with the change history of a project.
Finally, there was no relation found between the actual code quality
(based on attributes of coupling, complexity and readability) and the

SC@RUG 2019 proceedings

29

number of SATD instances introduced. The third paper (sec. 5.3) we
reviewed looks at the evolution of technical debt over the version
history of a number of selected projects from the Apace ecosystem.
It has been concluded based on the analysis of these projects that
there is an upwards trend of technical debt with time but the
normalized technical debt has a rather interesting downwards trend.
It was also observed that rule violations are the most frequent types
of debt. Also, code duplication is the costliest to fix in terms of time
and resources used. The final paper (5.4) analyses how much debt is
paid back or in other words, the issue fixing rate. No apparent
relation was found between the issue fixing rate and number of
issues present inside the system or between the most commonly
fixed issues and total debt paid back.

Fig. 5. Code quality v/s time[11]

 Looking at all the approaches, we can clearly conclude that
technical debt increases with time. The more we ignore the debt, the
more it will accumulate and will be difficult to pay back later.
Though the types of technical debt and the situation they are incurred
in might be different but they always have negative effects on debt
payback and maintainability. The ideal scenario should consist of
cleaning up the code as development progresses, as illustrated in the
figure above.
 A way to reduce the occurrences of debt can be to introduce an
automated tool that works on the basis of a set of rules. This tool can
point out if a developer is going into debt based on real time and
immediate inspection of the code. Since we have seen that the most
frequent types of debt are also the easiest to fix, a tool like this can
greatly help developers polish their code as much as they can during
the programming phase. Though this tool will not be able to detect
all types of technical debt, it would reduce the instances of debt by a
lot. An example of the working of this tool can be: when a developer
duplicates the same code, the tool flashes a warning sign on the
screen to notify the developer. Another method can be to implement
an auto-correcting software which will analyze the code and remove
issues of debt without the developer needing to step in. Though this
idea is not fool proof, it can alleviate the instances of simple and
frequently occurring debts. Both of these ideas are abstract and needs
further research, which we plan to carry out down the road. For now,
it is evident that the issue of technical debt is here to stay unless
developers become more aware of the flaws in their code and stick to
the quality guidelines (or practice them on their own if not
available).

ACKNOWLEDGEMENTS

We would like to thank Prof. R. Smedinga, Prof. M. Biehl and Prof.
F. Kramer for giving us the required guidance in writing this paper.

REFERENCES

[1] Neil Ernst. A Field Study of Technical Debt. SEI Blog, July 27, 2015 –

Carnegie Mellon University.

[2] Ward Cunningham. OOPSLA Conference, 1992.

[3] Tushar Sharma. Four Strategies for Managing Technical Debt.

Retrieved from http://www.designsmells.com/articles/four-strategies-

for-managing-technical-debt/.

[4] Agile Michael. Types of Technical Debt. Retrieved from

https://agilemichaeldougherty.wordpress.com/2015/07/24/types-of-

technical-debt/.

[5] Erik Frederick. The Financial Implications of Technical Debt. Retrieved

from https://www.toptal.com/finance/part-time-cfos/technical-debt.

[6] Reducing Technical Debt. Retrieved from https://xbosoft.com/software-

quality-blog/reducing-technical-debt/.

[7] Palomba, F., Bavota, G., Penta, M. et al. Empir Software Eng (2018) 23:

1188. https://doi.org/10.1007/s10664-017-9535-z.

[8] G. Bavota, B. Russo. A large-scale empirical study on self-admitted

technical debt. Proc. 13th Int. Workshop Mining Softw. Repositories,

pp. 315-326, 2016.

[9] Digkas G., Lungu M., Chatzigeorgiou A., Avgeriou P. (2017) The

Evolution of Technical Debt in the Apache Ecosystem. In: Lopes A., de

Lemos R. (eds) Software Architecture. ECSA 2017. Lecture Notes in

Computer Science, vol 10475. Springer, Cham.

[10] Georgios Digkas, Mircea Lungu, Paris Avgeriou, Alexander

Chatzigeorgiou, Apostolos Ampatzoglou. How Do Developers Fix

Issues and Pay Back Technical Debt in the Apache Ecosystem? 2018

IEEE 25th International Conference on Software Analysis, Evolution

and Reengineering (SANER).

[11] Tekin Suleyman. Paying down (technical) debt in the departments and

policy publishing platform. Retrieved from

https://insidegovuk.blog.gov.uk/2013/12/10/paying-down-technical-

debt-in-the-departments-and-policy-publishing-platform/.

An overview of Technical Dept and Different Methods Used for its Analysis – Anamitra Majumdar and Abhishek Patil

30

An Analysis of Domain Specific Languages and
Language-Oriented Programming

Lars Doorenbos and Abhisar Kaushal

Abstract— Conventional programming paradigms are not always congenial for developers to come up with efficient solutions, pri-
marily because the existing languages provide a generalized approach towards solving problems rather than a specific approach to a
particular field. Each domain has its own peculiarities and characteristics and a mainstream programming language might not be the
best choice for developers working in that domain.
To overcome this, Language-Oriented Programming (LOP) comes into play, which involves first creating one or more Domain Specific
Languages (DSLs) with which the problem will be tackled. Using such a DSL allows developers to focus better on domain specific
tasks. Currently, DSLs embedded in a mainstream programming language are the norm. Although this modus operandi is an
enrichment over traditional programming it comes with its own set of limitations, especially because it is embedded in a mainstream
language.
In this paper we evaluate the advantages and disadvantages of using DSLs, using examples from the video processing and audio
synthesis domains as a basis. We also shed light on the ”middle-out” approach employed in LOP and how it differs from the traditional
approaches. The main drawbacks include the cost of designing, implementing, and maintaining a DSL. These have to be weighed
against the benefits, such as being able to represent a problem in the terms of the domain and the reduction in system complexity.
We believe that if the domain and programming expertise are available, or can be obtained within reasonable time, LOP outperforms
the other paradigms when it comes to the development of software systems.

Index Terms—Domain Specific Languages, Language-Oriented Programming, Audio Synthesis, Video Processing.

1 INTRODUCTION

Programmers are often required to code in a conventional program-
ming language that was picked for them. As these languages are not
always the optimal choice, recently software developers have started
to increasingly develop and rely upon Domain Specific Languages
(DSLs) [5]. These are languages created for limited application in a
particular domain only. The motivation behind this trend is simple,
working with a general purpose language to develop a specific product
can be an inelegant and time consuming process, where the resulting
product often can only be understood by its creator. Problems simply
are more easily tackled with tools specifically designed for them.
One of such tools is creating a DSL for the problem at hand. An
example of this is jQuery which was developed to shorten lengthy
JavaScript codes as well as handle events better and simplify creation
of animations while working on web development. Conventional
programming simply isn’t always the most efficient choice for the
job. This is well illustrated by database management systems, where
using an object oriented language such as Java can make conceptually
simple tasks complex. Instead a DSL named SQL is often used,
which outclasses its counterparts that are implemented in a general
purpose language. Currently, there are a lot of popular DSLs like
SQL, MATLAB, LATEX, etc. which provide functionality for certain
essential and established fields like database management, numerical
computing, word processing and the like.
It is clear that DSLs can provide an advantage over the conventional
programming approaches given the right circumstances. It is however
crucial to have a robust and refined paradigm to produce them. The
Language Oriented Programming (LOP) paradigm has been the most
prominent in tackling this challenge. Instead of programming the
DSLs in a mainstream language, a language created with the LOP
paradigm in mind is used as the basis for the DSLs. This approach to
software creation and its benefits and drawbacks are the focus of this
review paper.

• Lars Doorenbos is a MSc Computing Science student at the University of
Groningen, E-mail: l.j.doorenbos@student.rug.nl.

• Abhisar Kaushal is a MSc Computing Science student at the University of
Groningen, E-mail: a.kaushal@student.rug.nl

We start by describing the concept of LOP further in section 2, fol-
lowed by a more detailed description of DSLs in section 3. We then
take a look at two applications of DSLs in real world examples, namely
the video processing and audio synthesis domains in section 4. In the
end we try to generalize our findings and give some concrete guide-
lines as to when DSLs are applicable and when the more traditional
approaches are a better fit.

2 LANGUAGE-ORIENTED PROGRAMMING

Language-Oriented Programming (LOP), introduced by Ward in 1994
[13], sets out to tackle the 4 problematic properties of large software
systems described by Brooks [3], namely:

• The large complexity of the system,

• The need for it to conform to many institutions and systems,

• Its changeability in scope and time,

• Its invisibility or the difficulty of visualizing the system due to
the lack of a geometrical representation.

As a result, LOP takes an unconventional approach to the development
of a software system. Below we discuss the traditional approaches
and how LOP differs from those. In Figure 1 an overview of the
approaches discussed below is given.

The first method we discuss is the commonly used ’top-down’
approach, where first a high-level description of the desired system
is created, followed by slowly implementing all abstractions until the
full product is reached. The problem with this method is that it is
unknown beforehand how this top level structure should be designed.
Especially for large systems this will create problems when the wrong
structure is chosen, and these problems will only become apparent
later on in the development process.
The opposite approach, ’bottom-up’, begins with implementing the
lowest level routines needed for the system and works its way up from
there. The difficulty with this approach lies in the choice of which
routines to implement next or how to figure out how lower-level
routines fit into the larger system, where again wrong choices can
significantly hamper the development process.

31

A combination of the two methods above is the ’outside-in’ approach,
where two teams start on the same system, one at the bottom on the
lowest level routines, and the other at the top with the high-level
description of the system. The goal is to meet somewhere in the
middle where the fusion of both teams creates the final product. This
method however incorporates the problems of both approaches, along
with the added difficulty of ’meeting in the middle’.
LOP instead opts for the ’middle-out’ approach. In this approach, first
a domain-oriented, very high-level language (the DSL) is formally
specified after which the development is split into two parts. The
system has to be implemented using this new language, and a
compiler, translator or interpreter has to be created for said language
[13].

The 4 problems (complexity, conformity, changeability and invisi-
bility) described above are addressed using this approach:

• The development process consists of two parts: the creation of
a compiler, translator or interpreter for the DSL on the one hand
and writing the program in this DSL on the other. Because of
this the complexity of the system is reduced as the source code is
split into two independent sections. To reduce complexity even
further, multiple DSLs can be stacked recursively.

• Conformity is more easily achieved as the DSL uses the very
concepts, such as the jargon, present in the institutions or systems
the code should conform to.

• As the source code is smaller in size, changes are more easily
made. Also due to the fact that the code is written in terms of the
domain, these changes can in some situations even by made by
the user.

• Invisibility is still a hard problem, but as some complexity is
hidden in the language constructs, it will still be easier than in
the traditional cases.

An example of a language specifically created with the LOP paradigm
in mind is Racket. Its very goal was to create a programming language
which enables language-oriented software design, such as the creation
of DSLs [5].
The guiding principles of Racket state that they want to empower
programmers to create new programming languages easily and
to add them with a friction-free process to a code base. These are
expressed by not only allowing the developers to create new languages
independently and efficiently, but also by encapsulating attributes like
a unique and interactive syntax, and a semantic system that maps
the new syntax to elements in the host language and even foreign
languages [5].

3 DOMAIN SPECIFIC LANGUAGES

A Domain Specific Language (DSL), as the name specifies, is a pro-
gramming language specifically designed for application in a particu-
lar field. As a clarification, this section will not deal with DSLs em-
bedded in a mainstream language. These differ from a DSL developed
with the LOP paradigm in mind as the former use the syntax of their
mainstream host language.
In order to help understand DSLs better, let us first look at their life
cycle:

• The first step, is that of domain analysis. Domain analysis orig-
inates from software reuse research, and can be used when con-
structing domain-specific reusable libraries, frameworks, lan-
guages, or product lines [11]. The goal of domain analysis is
to come up with a feature model, which can contain a number
of dependencies, similarities and variabilities between software
family members and other variables. It may also contain business
information like stakeholders or priorities.

Fig. 1. Illustration of the different approaches to development [13].

• Once the domain has been analyzed, the software is designed
according to the analysis. The design may or may not keep all
the binding regulations defined in the analysis in mind. In some
cases, the entire DSL designing may occur irrespective of the
rules and regulations as they might hinder the imagination and
capabilities of the developers. DSLs designed in this manner
then need to undergo a strict evaluation session where much of
their functionality might be eliminated.

• After the DSL design stands up to all the criteria in the domain
analysis, the coding part can commence. This mostly concerns
constructing a library that implements the semantic notions and
designing and implementing a compiler that translates DSL pro-
grams to a sequence of library calls [12].

• Once the DSL prototype concisely describes the applications in
the domain, it undergoes a rigorous testing session. The DSL can
be tested on a number of parameters; usability, ease of under-
standing and execution, resource management, etc. If the DSL
somehow fails in one or more tests, it needs to be re-evaluated
and sent back to the designing step.

• Only when the DSL passes all the tests, is it qualified to be de-
ployed. But, deployment is not a single faceted process. The
DSL needs to re-evaluated periodically, frequently updated and
thoroughly maintained.

3.1 DSL Implementation
A DSL can be implemented through an interpreter and/or compiler.
Apart from using standard compiler tools, tools targeted strictly
towards DSL implementation like Kephera, Draco, Kodiyak and
InfoWiz can be used. Using these DSL specific compilers has an
obvious advantage as they are better optimized to work on DSLs and
no compromises are needed when it comes to semantics and notations.
On the flip side designing these tools in the first place takes time
not spent on designing the software system itself. Many, if not most

An Analysis of Domain Specific Languages and Language-Oriented Programming – Lars Doorenbos, Abhisar Kaushal

32

DSLs are limited to a particular application field and thus, the scope
of the compiler/interpreter would be limited (although this is not the
case with many tools which are designed while keeping multiple DSL
implementation in mind).
Another cost effective and comparatively less tiresome approach is
using already existing mechanisms, such as function definitions and/or
operators with user-defined syntax. These can then be employed to
build a library for domain specific tasks. The syntactic mechanisms of
the base language are used to express the idiom of the domain [12].

4 DSL APPLICATIONS

In this section we analyze the application of DSLs in two domains,
namely audio synthesis and video processing.

4.1 Audio synthesis

For the audio synthesis domain we take a look at the Bithoven com-
poser [8]. Bithoven is a full-stack music synthesis system, automat-
ically generating 8-bit music. It makes use of two DSLs in series,
one used for the programming of digital instruments and one used for
denoting the measures of the song. The DSLs are both implemented
using Racket.

4.1.1 Digital instrument programming

The first DSL facilitates the programming of the digital instruments
used in the compositions automatically generated by Bithoven. These
instruments are simulated by generating and modifying particular pre-
defined waveforms, consisting of pulse waves, triangle waves and a
noise channel. The noise channel is used for the drum kit whereas the
other two are used for the melodies. We consider 2 explicit examples
below.
To program an instrument using the pulse channel, at least 3 param-
eters need to be given. These are the duty cycle, the period and the
volume. The duty cycle determines in which parts of one period the
signal will be active and in which it will remain silent. The period
is used to specify which tone to play and the volume influences the
strength of the output signal. A simple example of an instrument pro-
grammed with this pulse channel is shown in Listing 1.

(d e f i n e (i : p u l s e : b a s i c du ty)
(i : p u l s e

: du ty (spec : c o n s t a n t du ty)
: p e r i o d (s pec : c o n s t a n t 0)
: volume (s pec : c o n s t a n t 7)))

Listing 1. A note played by a simple pulse channel instrument [8].

More details can be added to the programming of the instruments,
which will be used to create differently sounding instruments, even
when they play the same notes. This distinct sound of each instrument
is called the timbre of the instrument.
A slightly more involved example of this is the programming of the
bass drum as done for Bithoven, for which the code is shown in List-
ing 2. This uses the noise channel, which again takes at least 3 ar-
guments, namely the volume, the period and the mode. The noise
channel is either active or silent based on a pseudo-random number
generator, and the period determines how often this generates a new
number. The mode determines if the normal method is used or one
which produces a more ‘metallic’ sound.
Added onto the basic parameters is the Attack-Decay-Sustain-Release
(ADSR) specification. This divides the synthesis of each note into 4
stages. Generally, during the attack stage the signal of the note in-
creases, then decreases in the decay stage, remains constant during
the sustain stage and decreases again in the release stage. The ADSR
specification is the main tool used for the creation of instruments with
different timbres. In the example (Listing 2) we see the ADSR speci-
fications for the noise channel given as the last parameter.
This first parameter of this ADSR specification states which stage will
incorporate any leftover frames if the specification involves less frames

than the duration of the note to be played. The following 4 parame-
ters each define one of the 4 stages. The first number states how long
that stage will last in frames, followed by what happens to the signal
during that stage. In the example we see that the decay stage lasts 2
frames where the signal is at a constant 7, and the sustain stage drops
from 4 to 2 over the course of 4 frames. Note that the signal strength
does not need to strictly follow the regimen set by the stage names, it
is free to for example remain constant during the decay stage.

(d e f i n e i : drum : b a s s
(i : n o i s e

: mode (spec : c o n s t a n t # f)
: p e r i o d (spec : c o n s t a n t 9)
: volume
(spec : a d s r ’ r e l e a s e

1 (spec : c o n s t a n t 10)
2 (spec : c o n s t a n t 7)
4 (spec : l i n e a r 4 2)
4 (spec : c o n s t a n t 0))))

Listing 2. The programmed bass drum instrument [8].

Even more differently sounding instruments can be created by us-
ing the triangle wave channel, and more effects such as tremolo and vi-
brato can be achieved by giving non-linear parameters as inputs. These
will not be discussed in this paper, and we refer to the original paper
for further information on the musical as well as programming theory
behind them [8].

4.1.2 Music tracking
The music tracker concerns itself with combining the audio tracks of
the different instruments into a single song. In the case of Bithoven
this results in combining 4 synthesized instruments together with a
drum beat consisting of 3 noise instruments. It compiles a DSL and
generates a corresponding sequence of synth frames that can be played
by the synthesizer.
The DSL itself, when used with 4 instruments which is the case in
Bithoven, closely resembles sheet music (and can be used to generate
sheet music using Lilypond [10]). An example is given in Figure 2.
Every row in said image consists of a fraction followed by 4 tones.
Tones are given a names based on their pitch. These names consist of
two parts. The first part is a letter indicating their position on the music
scale, which ranges from A to G. The second part denotes the octave
the tone is attached to, where a higher number represents a higher tone
which has the same pitch. Each of these 4 tones is associated with
one of the 4 instruments. These instruments will play their assigned
tones for the time interval specified by the fraction at the start of each
row. All rows are then converted in order into synth frames and the
resulting list can be read by the synthesizer as a short song.

Fig. 2. A track playing a scale in C [8].

SC@RUG 2019 proceedings

33

Similarly, the DSL can be used to represent drum beats. After spec-
ifying the 3 instruments which will simulate the hi-hat, the bass drum
and the snare drum, their patterns for the measures are given. An ex-
ample can be seen in Figure 3. The image shows that the first instru-
ment will be played 8 times each measure at regular intervals, while
the second and third instrument play 4 times at regular intervals.

Fig. 3. A simple drum beat [8].

4.2 Video processing
The conventional video editing process is a tedious task. Editors need
to deal with different sequences, add animations and effects, detect
and delete unwanted clips, and combine different tracks in order to
produce an interactive finished product. The process is the same for
each video, resulting in a monotonous and cumbersome routine.
As it turns out, the task of video editing naturally splits into a declara-
tive phase and an imperative rendering phase at the end [1]. The DSL
we analyze used for video editing, aptly named ’Video’, embraces this
concept. Each Video program is a module that is concerned with com-
bining video descriptions as well as definitions like audio, animations
etc. The Video language is implemented in and follows the doctrine
of Racket and each Video module is a Racket module that exports a
playlist description of the complete video.
To help understand this, let us consider the code in Figure 4. This code

Fig. 4. Descriptive phase using Video [1].

describes a total of five sequences, with multiple transitions within
these fragments. Being the descriptive/declarative part of the editing
process, the user can encapsulate this visual abstraction along with the
audio support, to create a library. This library would further facilitate
editing videos of the same kind. For example, an editor can define a
library, ’lecture-lib.vid’ which has predefined transitions and anima-
tions, along with the desired partitioning of the frame. This library
can be used over and over without defining the modules repetitively,

which makes the editing task less frustrating.
Let us now look into some of the features of Video in more detail:

4.2.1 Producers
Producers are the most basic entities in the Video programming
language. They are analogous to data types in conventional program-
ming. Producers are used to denote video clips, audio clips, images,
etc. One of the most common producers is named ’clip’, which
fragments a video file into a sequence of frames.

4.2.2 Playlists
Playlists are the means to put together producers. Within the Video
DSL, one may get confused by playlists and multitracks, as both are
employed to combine producers. The difference being, playlists orga-
nize producers sequentially whereas multitracks do so in parallel. A
small example is given in Figure 5.

Fig. 5. Example of playlist combining two clips [1].

4.2.3 Transitions
Transitions are used to portray a smooth and appealing jump from one
clip to another in a playlist. Transitions, thereby, also reduce the frame
sequence in a playlist as two frames are converted to one with transi-
tion as a medium, see Figure 6.

Fig. 6. Using fade transition [1].

4.2.4 Multitracks
As stated earlier in the section concerning playlists, multitracks com-
bine producers in a parallel manner. By parallel, it is implied that the
multiple producers are executed simultaneously rather than sequen-
tially. For example, an image and a clip can be both project simulta-
neously using multitracks. This is illustrated in Figure 7 where a clip
and an audio track are combined.

.

Fig. 7. Multitrack combining a clip and audio [1].

An Analysis of Domain Specific Languages and Language-Oriented Programming – Lars Doorenbos, Abhisar Kaushal

34

4.2.5 Filters
Filters are similar to transitions, but they modify the behavior of only
one producer. In other words, filters are functions from producers to
producers. Among other effects, filters can remove the color from a
clip or change a producers aspect ratio. Conference recordings fre-
quently capture audio and video on separate tracks. Before splicing
the tracks together, a developer may add an envelope filter to provide
a fade effect for audio [1].

5 DISCUSSION

We will discuss the benefits and drawbacks of using LOP and compare
its effectiveness with the more traditional approaches.

5.1 Benefits
• A major benefit of using a DSL is the expression of problems in

the language of the domain itself. This makes the code easier to
understand, and ideally it can even be read and used by domain
experts themselves without relying on the help of the developer
of the software system. This is especially well demonstrated
by the sheet-music like DSL discussed in subsubsection 4.1.2,
which with minimal instructions should be readable and maybe
usable for musicians.

• When properly created, this new language will also reduce the
size and complexity of the system implementation. A very high
level DSL will be able to express complex problems in a few
lines of code. The Video language illustrates this well, where a
few lines of code suffice for a problem such as creating a fade
transition.

• With a smaller code base, maintenance will also inherently be
easier [11].

• The designing process of a software system when using LOP is
split into 2 parts, the design of the language and the system im-
plementation using said language. A result of this is that the
code of a software system implemented in this language is easily
portable. Only the middle language in which the system is de-
veloped has to be ported, after which the implementation of the
system, which is written in the ported language, can be copied
without having to change it.

• When further problems in the same domain arise, well-designed
DSLs can easily be reused. If a new synthesizer with a different
amount of channels and properties would require programming,
re-using the language defined in subsubsection 4.1.1 provides a
better starting point than re-using a collection of previously de-
fined data types and functions.

5.2 Drawbacks
• The flip side of the biggest advantage is the greatest disadvantage

of LOP, the design of a good DSL can be very challenging. The
programmer will need a good grasp of the problem domain and
a solid understanding of the system requirements in order to be
able to create a language for it, more so than in the traditional
cases [11]. The examples discussed above were relatively simple
and as such provide elegant solutions for the problems, but for
more involved domains this is not as trivial. A solution for this is
the recursive application of DSLs, where a previously developed
DSL is involved in the creation of a new one. This can divide the
problem into more manageable chunks when properly applied.

• Time has to be spent learning the new language instead of us-
ing one the programmer/client is familiar with. This drawback
will be lessened the better the design of the DSL is, but there
will always be an upfront learning cost. Tied in with this is the
fact that the skills learned with respect to the DSL are generally
applicable only in the domain for which it was written.

Fig. 8. Workflow when programming using a mainstream programming
language [4]

Fig. 9. Workflow when programming using a DSL [4]

• While the idea of having the domain experts being able to pro-
gram the rules after minor training sounds appealing, for larger-
scale projects the lack of technical expertise seems to prevent
this. It was found to be more cost-effective still to train their own
business analysts with technical background than to teach the end
users how to use the new system. The end users were however
mostly able to read the verification rules, and even sometimes
modify them [6].

• Tool support such as debuggers for custom built languages have
to be built from the ground up with said custom language, which
might impede the speed of development and might frustrate pro-
grammers used to fully fledged IDEs [13][6]. There is however
a variety of packages available made that can help with the cre-
ation of compilers, interpreters and language parsers.

5.3 Comparison with other paradigms
There is a conceptual difference between the programming process
when using the LOP paradigm versus other paradigms [4]. The main-
stream language workflow is illustrated in Figure 8 and the LOP one
in Figure 9. These figures show that the mapping of the solution to a
general programming language not designed specifically for that do-
main is the most time consuming step in the process. This exact step is
reduced significantly with LOP due the the resemblance between the
DSL and the problem domain language.
When looking at Table 1, we can see that DSLs have a higher produc-
tivity level than that of mainstream languages such as Java or C. This
productivity level is taken from the SPR Programming Languages Ta-
ble [7]. A higher productivity indicates that less statements are needed
to achieve the same functionality. In general, if the productivity, mea-
sured in function points (FP), is doubled, the amount of statements
needed is halved. Table 2 shows the relation between the level of the
language and the average productivity of the staff working with said
language.
The ’middle-out’ approach taken by LOP solves the issues plaguing
the other approaches often employed by the different paradigms.
Examples include the need to have an overview of the whole structure
of the system to be designed when using the ’top-down’ approach,
often used for the imperative programming paradigm with languages
such as C, as well as figuring out how lower level functions fit into the
bigger picture, often seen when using Object-Oriented Programming
with languages such as Java. See section 2 for a more detailed

SC@RUG 2019 proceedings

35

Language Application domain Productivity level
Excel Spreadsheets 57
HTML Hypertext web pages 22
Make Software building 15
SQL Database queries 25
VHDL Hardware design 17
Java General purpose 6
C General purpose 2.5
Haskell General purpose 8.5

Table 1. Table contrasting productivity levels between popular DSLs and
mainstream languages [9] [7].

Productivity Level Average productivity
per Staff month (FP)

1-3 5-10
4-8 10-20
9-15 16-23
16-23 15-30
24-55 30-50
>55 40-100

Table 2. Table depicting relation between language level and average
productivity [9].

description of the approaches and their problems.
Most students and developers working these days will have very
limited experience with LOP. LOP is barely mentioned in papers
discussing which paradigms to teach to students, see for example [2],
and it is often mentioned how the advantages of LOP are unnoticed
by current developers, see e.g. [9]. This implies that the chance the
developers considering using LOP have an understanding of these
concepts is slim. As a result, developers either have to be taught these
new concepts, or outside forces have to be hired for the development
process. Either way, this can be a costly and time consuming process
not present when using a mainstream programming paradigm.
Equivalently, the developers do not require as much knowledge of the
domain when using mainstream programming paradigms compared
to LOP. This again would require an upfront cost of teaching the
programmers about the domain if the LOP approach is chosen.

With all of the above in mind we can give some concrete notes
on when we believe using the LOP paradigm over other paradigms is
beneficial when designing a software system.

• The required domain and programming knowledge are available,
or if the extra training in these fields required for the developer(s)
is small; if the upfront training needed pays off in the long run.

• The DSL to be developed can be used in multiple places in the
software system or in other places.

• The system is expected to be complex and frequently changing,
in which case the benefits of DSLs such as a lower code com-
plexity and easier maintenance shine [6].

• The domain experts have to interact with the code base, as the
expression of the problems in the domain jargon will reduce the
training cost necessary.

Of course all of the above points are trade-offs, there is some break-
even point where for example training domain experts or training the
developers becomes worth it in the long run. Determining this in ad-
vance, where the decision to use LOP or not should be made, is very
difficult.

6 CONCLUSION

The benefits of the LOP paradigm, such as improved development pro-
ductivity, flexibility, maintainability, and separation of business and

technical aspects can outshine the conventional approaches and the
use of general purpose programming languages. Nonetheless, there
are also drawbacks such as the task of designing compilers and other
tools necessary, and there is evidence that DSLs are not always suc-
cessful when it comes to developing large-scale information systems.
LOP is not the end-all solution to every problem. We do however be-
lieve that if the required expertise for the design of a complex software
system, regarding both the domain and the programming of new lan-
guages, is present or can be obtained within reasonable time, LOP will
outperform the more traditional programming paradigms.

REFERENCES

[1] L. Andersen, S. Chang, and M. Felleisen. Super 8 languages for mak-
ing movies (functional pearl). Proceedings of the ACM on Programming
Languages, 1(ICFP):30, 2017.

[2] E. Bolshakova. Programming paradigms in computer science education.
2005.

[3] F. P. Brooks. No silver bullet essence and accidents of software engineer-
ing. Computer, 20:10–19, 1986.

[4] S. Dmitriev. Language oriented programming: The next programming
paradigm. JetBrains onBoard, 1(2):1–13, 2004.

[5] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzilay,
J. McCarthy, and S. Tobin-Hochstadt. A programmable programming
language. Communications of the ACM, 61(3):62–71, 2018.

[6] M. Freudenthal. Domain-specific languages in a customs information
system. IEEE software, (2):65–71, 2010.

[7] C. Jones. Spr programming languages table release 8.2, 1996.
[8] J. McCarthy. Bithoven: Gödel encoding of chamber music and func-

tional 8-bit audio synthesis. In Proceedings of the 4th International Work-
shop on Functional Art, Music, Modelling, and Design, pages 1–7. ACM,
2016.

[9] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4):316–
344, 2005.

[10] H.-W. Nienhuys and J. Nieuwenhuizen. Lilypond, a system for automated
music engraving. In Proceedings of the XIV Colloquium on Musical In-
formatics (XIV CIM 2003), volume 1, pages 167–171, 2003.

[11] A. Van Deursen and P. Klint. Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technology,
10(1):1–17, 2002.

[12] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[13] M. P. Ward. Language-oriented programming. Software-Concepts and
Tools, 15(4):147–161, 1994.

An Analysis of Domain Specific Languages and Language-Oriented Programming – Lars Doorenbos, Abhisar Kaushal

36

A Brief History of Concurrency: Lessons from Three Turing
Lectures

Michael Yuja and Bogdan Bernovici

Abstract—This paper covers the lectures given by three Turing award winners, Edsger Dijkstra, Robin Milner, and Leslie Lamport.
They discuss personal experiences as well as their seminal work in the fields of concurrency and software correctness. Dijkstra
accounts his experience of the growth of programming as a profession, and highlights his insistence on approaching programming
with great humility and appreciation of its difficulty. Milner presents his work on the Calculus of Communicating Systems (CCS) used
to formally model concurrent algorithms. Lamport’s work is an extension of these ideas into more practical applications of concurrent
algorithms. He built PlusCal and TLA+, which are programming languages used to write algorithms. Although separated by many
years, they built on each other’s ideas to shape the modern field of concurrency. Their work has paved the way for the industry to
start adopting concurrent algorithm verification in practice, but there is not yet a widespread adoption.

Index Terms—concurrency, Dijkstra, Lamport, Milner, software correctness, fault-tolerance

1 INTRODUCTION

The field of concurrency in computer science has grown to play an
important part in modern applications. Its growth can be markedly
attributed to a select few computer scientists since its inception in
the 1960’s. In this paper, we will review the works of three excep-
tional computer scientists. They are recipients of the Association for
Computing Machinery’s (ACM) A.M. Turing award, which is often
regarded as the Nobel Prize in computer science. We examine the
lessons offered by Edsger Dijkstra, Robin Milner, and Leslie Lamport
upon reception of the award, each of whom won the award in 1972,
1991 and 2013, respectively. The vast range in years between these
publications allows us to give the reader a historical overview of how
each scientist influenced the other. We give an evolutionary view of
concurrency and its applications in practice today.

The definition of concurrency itself has changed over time. As
Lamport suggests, concurrency in literature has been called many
names: parallel computing, concurrent programming, multiprogram-
ming, and distributed computing. For the most part, these all refer
to the same thing, with some subtle differences. In the 1960’s, as
Lamport writes, research about concurrency was only about creating
language constructs for concurrent programs. For this reason, he at-
tributed Dijkstra to have created the field of concurrency as we know
it today through his seminal paper that introduced the concept of mu-
tual exclusion. If you think about how computer programs work, you
will quickly come to the conclusion that computers follow a series of
sequential instructions. Two different processes could indeed be ex-
ecuted at the same time, but this may become a problem when the
computer’s resources, such as memory, are being shared. One process
could attempt to read from the same memory location that another pro-
cess has just modified, although this behavior was not intended. The
concept of mutual exclusion posed the main problem of concurrency
by describing such a situation in which N processes must synchronize,
such that no critical parts of the processes are executed concurrently
and that all processes do get executed eventually. The purpose of mu-
tual exclusion, Lamport states, is actually to eliminate concurrency.
Programmers must eliminate, by design, the possibility for processes
to be unable to synchronize.

Concurrency is a complex concept to apply in programming. Di-
jkstra, Milner and Lamport all recognized this. Dijkstra, for example,
stressed that programming by itself was already hard enough, and even

• Michael Yuja is a Master’s student at the University of Groningen, E-mail:
m.j.yuja.matute@student.rug.nl.

• Bogdan Bernovici is a Master’s student at the University of Groningen,
E-mail: b.g.bernovici@student.rug.nl.

much more once programs were being written to run concurrently. He
understood that it was almost impossible for a programmer to try to
think like a computer because both are different from each other, and
doing so would usually result in buggy software. Instead, he argues, a
programmer should attempt to write programs correctly without intro-
ducing any bugs in the first place. Influenced by this line of thinking,
Milner saw the need for a formal specification language that allowed
algorithms to be written and checked for correctness. This resulted in
his creation of the Calculus for Communicating Systems, or CCS, a
language used to model the behavior of concurrent systems. We go
over the principles of CCS in detail in Section 4. CCS established a
formalism for concurrency. Lamport then carried on with the work of
giving the semantics of concurrency more practical applications. He
devised several improvements on concurrent algorithms with solutions
to Dijkstra’s problem of mutual exclusion, and conceived a new lan-
guage for writing algorithms called PlusCal.

In this paper, we first explain the methodology we used to choose
these papers and others that are worth mentioning in this study in Sec-
tion 2. After, we dive into the contributions from each scientist indi-
vidually. We review Dijkstra’s lecture in Section 3, Milner’s paper in
Section 4, and Lamport’s article in Section 5. Once we explain each
author’s individual contribution, we examine the underlying arc that
connects the three in Section 6. Finally, we conclude our review in
Section 7.

2 METHODOLOGY

These papers represent the culmination of decades of work by each
author. As such, it would not do the authors justice for us to merely
compare their ideas without an in-depth review of their own. Further-
more, we have chosen to review each paper individually, extracting the
most important lessons from each one. We then compare their ideas
with the present, exploring which are pervasive throughout the field,
and which have not yet been adopted by the scientific community. It
is indeed difficult to find where these practices are being applied, as
such practices are usually kept secret within companies so that their
trade secrets are not given away. It is only when a company decides to
publish some of their work as open source that we can get an insight
as to what they are doing, but usually these publications are a couple
of years behind on what the company is actually doing at the time.

3 DIJKSTRA: THE HUMBLE PROGRAMMER (1972)

Upon reception of his award, Edsger Dijkstra offers a lecture to the
audience in which he details a unique account of the evolution of the
programming profession from his perspective [1]. In the introduction
to Dijkstra’s talk, M.D. McIlroy acknowledges that Dijkstra is recog-
nized by the ACM for his approach to programming as a high, intellec-

37

tual challenge, insisting that programs should be composed correctly,
and not just debugged into correctness. Dijkstra reaffirms this idea
in his talk with multiple examples that, albeit silly, offer a refreshing
historical insight into how the performance improvement in computer
hardware created entirely new opportunities for programmers. Finally,
Dijkstra concludes his lecture with the idea that a programmer should
approach the job with humility, hinting that doing so will keep the
programmer from writing poor quality software.

3.1 A New Field
Edsger Dijkstra recounts the story of his career as a generalization of
how programming slowly grew in other parts of the world as well. In
the 1950s, he started carried out his studies as a theoretical physicist.
After a chat with his boss at the Mathematical Centre in Amsterdam,
where he had been programming for some years, he swiftly changed
careers. He became the first programmer in the Netherlands. The pro-
fession was so unknown at the time that when he married in 1957 the
Dutch authorities did not allow him write his profession on the mar-
riage certificate as ”programmer,” arguing that it did not exist. As such,
he was forced to list his profession as being ”theoretical physicist.”

Computer hardware had all the attention in the early years, while
programmers were barely noticed. Dijkstra argues that people were
much more impressed by these machines that would fill up entire
rooms than by sheets of code. He believes that this view would later
form two distinct opinions of programmers that would affect the field
for many years to come. One opinion is that a competent programmer
should be puzzle-minded and fond of clever tricks; the other is that
programming was only about optimizing the efficiency of computa-
tions. According to Dijkstra, such opinions made people believe that
programming would disappear once computers got faster. Years later,
Dijkstra was proven right. Once computers did get faster, the need for
programming grew even more. Dijkstra states that the increased power
of hardware allowed programmers to think about solutions that were
not feasible to even dream about only years before.

3.2 The Humble Programmer
Throughout the lecture, Dijkstra paints a picture of what a competent
programmer should behave as. He demands that programmers must
not waste time in debugging programs, but they should not introduce
the bugs to begin with. This idea is recurrent throughout the examples
and reasons that he gives for doing so. Dijkstra goes on to call for
a revolution of sorts in which all programmers in the field strive to
take on this intellectual challenge. As a funny, yet worrisome real
world example of how programmers do not do this, he cites the role of
”one-liners” in the workplace. Programmers write one line computer
programs and proudly ask their colleagues to guess what they do, or
to write an even shorter one that does the same task. This practice
will likely lead to write programs that are so concise that they are
too complex to comprehend at first glance. Programming is already a
difficult task, Dijkstra argues, so there is no need to make it harder.

4 MILNER: ELEMENTS OF INTERACTION (1991)
Winner of the Turing Award in 1991, Robin Milner [4], reflects on a
possible path of research in semantic basis of concurrent computation
from a personal point of view. He begins his lecture with a fresh ap-
proach on concurrency, and culminates by describing his endeavour
in finding basic constructions for concurrency. The latter being the
efforts from which Calculus for Communicating Systems (CCS) was
born.

In the beginning of his paper, he clearly rejects the idea of a unique
conceptual model because of the vast pool of applications that have
concurrent computation at their core. He calls for the necessity of
having many levels of explanation which consists of a variety of lan-
guages and formalism to cover a broad spectrum of specialisms. But
he also recognizes the nature of the computer scientist, being the one
that is always looking for a unified framework from which you can
expand all of those levels of explanation described above.

Although when it comes to the micro cosmos of sequential compu-
tation, we already have a common semantic framework that is gener-

ally based on the notion of a mathematical function and it is formally
expressed in a functional calculus, he recognizes that for the macro
cosmos of concurrent programming and interactive systems, the situa-
tion is different, there is nothing similar to the former.

Milner’s work is split in seven parts, each of which is a semantic
ingredient of concurrency. These will be discussed in summary below.

4.1 Entities

Milner begins by briefly describing the process of representing a se-
quential program, which is a function that maps memories to memo-
ries. He continues with a discussion of how λ -calculus’s domain gives
the meaning of an imperative program, which is based on the theory
of domains, developed by Dana Scott. In addition, he argues about
the compositionality enabled by the domain in sequential languages,
such that component programs can give meaning to a composite pro-
gram. Concurrency comes with non-determinism and composition-
ality is lost when combined subprograms are running in parallel. In
sequential programming non-determinism is solved by using power
domains, but when it comes to concurrency, the compositionality loss
is still a reality. As a solution, Milner thinks about developing a gen-
eral model of interactive systems, because the memory is no longer
at the hand of a single master. Before, in the sequential world, mem-
ory was seen as monolithic but in the concurrent one, various parts of
memory is accessed simultaneously. He regards each cell of memory
as a process, linked to one or many programs which are also, them-
selves, processes.

Finally, he recognizes that shared memory is helping software en-
gineers to accomplish their tasks by offering a level of correctness
in their programs but for some use cases, it does not accommodate.
Shared-memory model is an essential model for an engineer, but for a
computer scientist, a unified theory of the ingredients is more sound.
All interactions must be treated the same, hence the name of the paper,
”Elements of Interactions”.

4.2 Static Constructions

When it comes to primitive construction, Milner tells us that we need a
fresh approach. He advocates that we should not add extra material to
the languages and theories of sequential computing. By limiting our-
selves to a set of constructions that are essential for concurrency, only
then we can see sequential computing as a higher level of explanation.
For him, functional calculus was just a paradigm and not a platform
for building a calculus for communicating systems.

Milner came to that conclusion when he discovered that sequen-
tial composition of processes is a special case of parallel composition.
In CCS, there is only a single combinator for combining processes.
Even memory registers are modeled as processes in such a way that
the same combinator can be used to put them into a memory, to com-
pose the processes which use them, and to combine processes with
memory. With a single combinator, the algebraic nature of calculus
emerges, and we can envision components of a system being assem-
bled together.

4.3 Dynamic Constructions

The author begins this subsection by contrasting the sequential control
of the λ -calculus with the concurrent control of CCS. In λ -calculus,
we have reduction, while in CCS we have interactions. The former is
the action of passing an argument to a function, and the latter is the
passage of a single datum between processes.

Furthermore, in each calculus, systems are constructed using a bi-
nary combinator. For λ -calculus we call it application, the dynamics
of function application, which it is neither commutative nor associa-
tive. In the case of CCS, we have channels. The symbol λ , which
represented the single unit of control is now one of the many channels.
Parallel composition is commutative where either partner can act as a
receiver or a transmitter. Moreover, it is also associative.The core idea
of this ingredient is the synchronized interaction as a programming
primitive, expressed in an algebraic form.

An overview of Technical Dept and Different Methods Used for its Analysis – Anamitra Majumdar and Abhishek Patil

38

4.4 Meaning
Milner discusses about the dynamics of interaction between processes.
He supports the idea that observing a process is simply put, interact-
ing with it. If we cannot distinguish them by observation, only then
we can use the same denotation for these process terms. Moreover,
the remarks discussed earlier also apply to sequential computing. As
you may already expect, however, concurrency comes with its own
problems. The concept of causal independence where two processes
may look indistinguishable and yet differ in their causal independence,
can be problematic. Milner also brings into discussion Nielsen’s event
structures but does not dive into it because of the topic’s complex-
ity. He closes the section by suggesting that process calculi gives an
essential perspective for the study.

4.5 Values
Milner compares λ -calculus to CCS. He argues that λ -calculus
achieves homogeneity and completeness. Because λ -calculus does
not provide a self-contained model of computing, everything can be
done with scaffolding. Moving on to CCS, Milner suggested that even
if it has a form of scaffolding, the promiscuity is excessive, it contains
things like: processes, channels, variables, operators, value expres-
sions. He believes that a basic calculus should impose as little taxon-
omy as it can. On the opposite side, λ -calculus has two things: terms
and variables. He concludes by mentioning Carl Hewitt’s Actor model
which thought of a value, an operator on values and a process as being
of the same kind of thing, an actor. The actor implies homogeneity
and completeness.

4.6 Names
While talking about this ingredient of concurrency, Milner, puts em-
phasis on π-calculus, having naming or reference at its core, claim-
ing several reasons for its generality. Data structures can be defined
uniformly with π-calculus, supporting CCS as a higher level of ex-
planation. Moreover, it supports functional programming as a higher
level of explanation, demonstrated by a translation of λ -calculus into
π-calculus. In addition, it provides semantics for object-oriented pro-
gramming and other programming paradigms. π-calculus permits lit-
tle taxonomies, similar to λ -calculus.

4.7 Milner’s contribution
One particular characteristic of Milner is that he always strove for sim-
plicity. The way he thought of processes, communication and synchro-
nization ignited a wave of research into concurrency. CCS, born out
of Process Calculus, paved the way for π-calculus and CSP, which is
the more powerful equivalent of CCS. As a parentheses, the develop-
ment of CSP into a process algebra was influenced by Milner’s work
on CCS (1980), and vice versa. This influence is, in fact, interesting
because Tony Hoare, the creator of CSP (introduced in 1978), cites
only Dijkstra in his work. Although they were similar in their ob-
jectives, there were no mainstream programming languages that were
developed based on π-calculus or CCS, unlike the λ -calculus which
went on to inspire very popular languages like LISP. Some ideas from
CSP can still be found in today’s programming languages like Erlang,
Scala, Clojure, Go, etc.

5 LAMPORT: THE COMPUTER SCIENCE OF CONCURRENCY
(2015)

Leslie Lamport won the Turing award in 2013 for his contributions
in concurrent and distributed computing [2]. In his paper, he applies
a methodology similar to what we are doing in our review. He gives
a brief history of how the main ideas of concurrency evolved since
Dijkstra’s introduction of the mutual exclusion problem in 1965 up
until 2015 when his paper was published after receiving his award.
Lamport cites Dijkstra as being the only computer scientist in the late
1960’s who was actually working on what we know today as concur-
rency. This paper will revisit and briefly discuss each step that Lam-
port considered as a worth mentioning achievement in the history of
concurrency.

5.1 Mutual Exclusion

Mutual Exclusion is the goal of eliminating concurrency. It means
that two critical sections must not be executed concurrently. It was
formally defined in 1985 as a safety property. In the same manner, an-
other property called liveness emerged in the same year. Both mutual
exclusion (safety) and livelock freedom (liveness) were described by
Edgar Dijkstra, in his paper from 1965. In this context, he proposes a
problem with N processes that need to be synchronized. Every process
having a critical section, such that the properties we have presented
above are satisfied. Lamport highlights the computation model used
by Dijkstra consists of a sequence of states, each state having attached
to it an assignment of values to the algorithm’s variables, together with
other information specific to the state (like what should be executed
next). Lamport prefers to call it the standard model. After the second
algorithm has been proved to be incorrect, the need for careful proofs
became apparent. The Bakery algorithm is the most popular example
of a mutual exclusion algorithm. Imagine those support centers that
have machines with consecutive numbered tickets for their customers.
The ticket numbers are not subject to a finite limit, even if it doesn’t
seem like a practical problem, a ticket number can hold more than one
memory word and it was assumed that the process can do read and
write operations on at most one word.

The proof of correctness for Bakery algorithm demonstrated that it
doesn’t matter if a read overlaps a write. Reading a number when it
is incremented from 9 to 10 can give a result like 2496, which still
proves that the algorithm is correct. In 1973, it was considered impos-
sible to assume that mutual exclusion can be implemented without any
lower-level mutual exclusion. Lamport continues his discussion on the
topic of mutual exclusion with a more rigorous proof. Putting aside the
standard model, he introduces us to a model that assumes atomic tran-
sitions between states, one that does not provide a natural model of the
bakery algorithm. Furthermore, before diving to the newly proposed
model, he exposes us to a fundamental problem of inter-process syn-
chronization which is guaranteeing that an operation executed by one
process precedes an operation executed by another.

The two-arrow model is a set of operation executions with a con-
siderably finite duration with both, starting and stopping times. For a
proper explanation, Lamport described the operation executions A and
B as follows:

• A → B is true iff A ends before B begins.

• A ⇒ B is true iff A begins before B ends.

For any operation executions on A, B, C, D, the relations from
above should satisfy the following properties:

1. A → B → C implies A → C (→ transiently closed)

2. A → B implies A ⇒ B and B not ⇒ A

3. A → B ⇒ C or A ⇒ B → C implies A ⇒ C

4. A → B ⇒ C → D implies A → D

The following assumptions are taken into account to prove the cor-
rectness of the algorithm:

• operation executions are totally ordered by →

• for a variable that is being read R or written W, either R ⇒ W or
W → R holds

According to Leslie Lamport, together with the assumptions specified
above, the two-arrow formalism gives the most elegant proof of the
bakery algorithm.

SC@RUG 2019 proceedings

39

5.2 Producer-Consumer Synchronization (FIFO queue)
Producer-consumer synchronization is the second fundamental prob-
lem in concurrent programming. The algorithm is using three vari-
ables: in for the unbounded sequence of unread input values, buf as
a buffer that can store up to N values and out, the output sequence
of values. The Producer process takes values from in and puts them
into buf and the Consumer process, moves them from buf to out. Af-
ter showcasing the algorithm in PlusCal, he argues that it is just a
specification, a mere definition and there is no sense in finding out
if a definition is correct. To increase our confidence that the algo-
rithm actually implements a FIFO queue, we have to prove properties
of it. Invariant properties being the most important, thus should be
proven. The author makes parallels between mutual exclusion and
producer-consumer synchronization, the former being inherently non-
deterministic and the latter, deterministic. In the case of mutual ex-
clusion, there is an inherent race condition that needs to be addressed
by using an arbiter. Lamport makes it evident that producer-consumer
synchronization is a different class of problem than mutual exclusion.

5.3 Distributed Algorithms
Lamport starts by highlighting pictures of event histories. These have
been used in the past to describe DS. Mainly, the events come from
three processes, with time moving upwards. Lamport argues that even
if event histories may be useful in understanding distributed systems,
the best technique to reason about them is in terms of global invariants.
There is no more practical way to reason about invariance than the
standard model which he has previously described.

Lamport then explains that fault-tolerance was not a very popular
topic in the 1970’s. He cites Dijkstra’s paper on self-stabilization as
the first scientific examination of fault tolerance. Lamport praises Di-
jkstra once again by saying that Dijkstra and his ideas were ahead of
this time, and that this is the reason they were not adopted during that
period. For many years, fault tolerance was stagnated, and Lamport
references Milner’s CCS as the only influential work in the study of
models of concurrency that emerged in the 1980’s.

6 CONCURRENCY TODAY

The study of concurrency has certainly grown in importance over time.
The field has expanded to have a direct effect in both how hardware
is manufactured and how software is written. Early on, Dijkstra pre-
dicted the need for thinking about concurrency in both hardware and
software, contrary to popular belief at the time. The contributions by
all the scientists in this field have led to the development of concurrent
algorithms which are widely used in practice today. Concurrent algo-
rithms allow modern devices such as smartphones to give the illusion
to the end user that all its applications are being executed in parallel.

6.1 The Difficulty Persists
Throughout the years of growth in the field, however, one major hur-
dle persists: writing concurrent programs is still very hard. The re-
ality is that many inefficiencies in programming, as Dijkstra points
out, are usually made up by improvements in computer hardware. He
argues that the efficiency of programming as a job should improve
at the same pace as hardware does. In practice, however, the tools
and methods used to verify the correctness of programs, such as those
described in the previous sections, have not been widely adopted by
modern technologies and engineers. As Lamport wrote in a recent ar-
ticle, ”architects draw detailed plans before a brick is laid or a nail is
hammered. But few programmers write even a rough sketch of what
their programs will do before they start coding.” Furthermore, with
the exponential increase in demand of software developers, compa-
nies are willing to hire more self-taught developers that do not have the
formal training and mathematical background that computer scientists
do. This trend would suggest that we are actually moving further away
from the future that Dijkstra envisioned in the 70’s. [3]

6.2 Practical Applications of Formal Modelling
Although it may seem like the future is bleak for applying mathemati-
cal rigour to programming, we must acknowledge that scientists such

as Lamport continue to carry the practice forward. Technology firms
do recognize the business value of doing so in their software engineer-
ing practices for critical systems. Lamport’s TLA+, a language similar
to PlusCal, has been used in several industrial settings, such as by the
Amazon Web Services team in the S3 service to prevent serious but
subtle bugs from reaching production. [5] For now, the use of TLA+
as a verification language has found its way to niche industrial uses
by large companies. The vision, however, is to steward the practice to
acceptance by the entire development community.

TLA+ was primarily made to be used by ordinary engineers, not
formal method experts or logicians. In practice, the software engineers
have to make trade offs, and find a common ground between academia
and industry. As Leslie Lamport said, ”for quite a while, I’ve been
disturbed by the emphasis on language in computer science... I believe
that the best way to get better programs is to teach programmers how to
think better. Thinking is not the ability to manipulate language; it’s the
ability to manipulate concepts.” In addition, the tools that come with
TLA+ place it as a strong contender for our needs. First of all, you
get IDE support. Secondly, there is a model checker called TLC that
takes the description of your algorithms and verifies your assumptions
about it. Lastly, for formal proofs, there is a proof language with a
interactive proof assistant called TLAPS.

7 CONCLUSION

We have reviewed ideas from three influential computer scientists and
extracted the most important ideas and contributions to the field. Di-
jkstra was adamant in changing the way that programmers write soft-
ware. He urged his audience to accept that programming is difficult,
and that one part of the programmer’s job is to find ways to write better
software. Software engineers should strive to write programs correctly
in the first place, rather than debug them into correctness. We have
seen that this behavior is still not completely prevalent in industry, and
that trends may suggest we are even moving away from it. Methods of
formal verification such as Milner’s CCS and Lamport’s TLA+ carried
on with the right intentions, but have failed to achieve mass adoption
by software engineers.

It is the ideas that Dijkstra, Milner, and Lamport have contributed
that are paving the way for widely accepted practical applications of
concurrent program correctness. It is not clear whether PlusCal or
CCS or any of the other variations will become prevalent in practi-
cal use, but it is certain that there must be a fundamental change to
how developers write software. As Dijkstra wrote, ”the purpose of
abstracting is not to be vague, but to create a new semantic level in
which one can be absolutely precise.”[1] This idea was the underly-
ing principle by which CCS was created, and it will continue to play
an important role in whatever specification language the community
adopts. We can envision tools embedded in integrated development
environments or as part of languages that allow developers to apply
mathematical rigour to their software. As with any disruptive technol-
ogy, widespread adoption by users will become exponential once the
technology is able to serve the majority of users. We invite the reader
to tackle this problem with creativity and ingenuity, as doing so suc-
cessfully would likely result in a great milestone to the field and an
even greater business opportunity.

REFERENCES

[1] E. W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–
866, Oct. 1972.

[2] L. Lamport. Turing lecture: The computer science of concurrency: The
early years. Commun. ACM, 58(6):71–76, May 2015.

[3] L. Lamport. Who builds a house without drawing blueprints? Commun.
ACM, 58(4):38–41, Mar. 2015.

[4] R. Milner. Elements of interaction: Turing award lecture. Commun. ACM,
36(1):78–89, Jan. 1993.

[5] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff. How amazon web services uses formal methods. Commun.
ACM, 58(4):66–73, Mar. 2015.

An overview of Technical Dept and Different Methods Used for its Analysis – Anamitra Majumdar and Abhishek Patil

40

Selecting a Logic System for Compliance Regulations

Michaël P. van de Weerd and Zhang Yuanqing

Abstract— Changes in regulations present a challenge to businesses to maintain compliance within business processes. Compliance
regulation verification (CRV) systems provide the means to ensure that business processes are up-to-date according to current
regulations. These systems require regulations to be expressed using a compliance request language (CRL), of which several are
available. In this paper, we present an addition to the process of expressing regulations using a CRL by providing a work flow for
selecting the proper CRL for a set of regulations. To this end, we propose a framework that can be used to analyze regulations
and identify their properties. Combining these properties and the requirements for CRLs the appropriate CRL can be selected. We
demonstrate the use of the framework and work flow with a case study, using a set of fabricated Starfleet regulations.

Index Terms—business process, temporal logic, deontic logic, compliance verification

1 INTRODUCTION

In the modern day and age, businesses are expected to comply to a
plethora of regulations — e.g. governmental laws, internal policies, etc.
— referred to as norms. As a result, organizations are presented with
the challenge to keep up with the ever changing set of rules that must
be obeyed. To solve this problem, many have turned to the domain of
the automation of CRV to find conflicts between business processes
and norms during the design process, process execution or after the fact
using execution logs. While the currently available literature provides
us with a lot of theoretical knowledge on writing compliance constraints,
business processes and utilizing logic systems (see [3], [4], [6], [7] and
[8]), the field lacks a methodical approach to analyze the properties
of compliance constraints and selecting a logical system in order to
express them. In Figure 1 an illustration of the process of CRV has been
included to indicate the position of the problem we have identified.

In this paper, we explore the field of formulating norms to give an
overview of the options available to any modern business regarding
logical systems in which the regulations can be formulated. Using
a formal definition of a compliance regulation and its properties, we
will provide guidelines that will allow businesses to match their set of
regulations against the different logical systems. Ultimately, we hope
to contribute to the field of writing compliance regulations by providing
a framework that can be used to analyze a collection of compliance
constraints in order to match it to a suitable logical system. This goal
assumes that the user — e.g. a business developer — has access to a
complete set of compliance regulations and has the ability to analyze
their properties as described in section 5.

Before diving into the specifics of selecting a logic system for a
set of compliance regulations, we will give an overview of related
work that shape the current knowledge of the subject in section 2.
Next, more background knowledge on logic systems is provided in
section 3. A detailed description of our research method is included
in section 4. In order to allow for a methodical approach to selecting
a logical system that matches a given set of compliance regulations,
we will present a formal definition of a compliance regulations and
their properties in section 5. Next, in section 6, we will review the
definition and properties of the logical systems as presented in other
literature. Linking the properties of both concepts in section 8, we will
combine the gathered knowledge and propose a set of logical steps
to consider when selecting a logical system for specific use-cases. In
section 9 we will review the applicability of our own findings and
propose opportunities for further research.

Michaël P. van de Weerd and Zhang Yuanqing are with the University of
Groningen. E-mail: {m.p.van.de.weerd, y.zhang.109}@student.rug.nl.

Regulations

CRL Expressions

CRL

Business Processes

CRV

Fig. 1. A flow diagram illustrating the complete process of verifying
compliance to regulations. The aim of this paper is providing a framework
that can be used to analyze the textual regulations in order to select
a proper CRL. To this end, the process needs to be extended with the
process indicated with the dashed line.

2 RELATED WORK

A fair amount of theory on logical systems is available. In this paper,
we will consider three types of logical systems: Formal Contract Lan-
guage (FCL) [5], Linear Temporal Logic (LTL) [10] and Computational
Tree Logic (CTL) [3], all described as a basis for CRLs to be build
upon. This selection has been made to reflect the selection of CTLs
considered in [3]. In [3] we find a concise use-case analysis of these
systems, in which each is compared to the other and their strengths
and weaknesses are identified. Also, [3] describes the two families of
logical systems: deontic logic and temporal logic, the prior of which
encapsulates FCL and the latter LTL and CTL. [4] presents us with
a technical description of the manner in which these system can be
utilized. Both [8] and [3] provide us with a description of the properties
of compliance regulations, although they are not listed explicitly. Most
of these properties are directly or indirectly related to the requirements
for CRLs as mentioned in [3]. In our research, we are only interested in
the non-functional properties of compliance regulations. We define this
concept as being analogous to the concept of non-functional require-
ments used in computer architecture, i.e. properties that indicate what
the required capability of the system, without necessarily providing
any information about functionality [2].

In this paper, we frequently employ the term use case. In the context
of our research, a use case has been defined as a collection of com-
pliance constraints. We will make use of the following definition of
compliance constraint, presented in [3]:

“A norm is a statement by a body/entity (with the authority
or power to create, and eventually to enforce, such state-
ments) prescribing or regulating some behaviours such that

41

the non-adherence to the norms potentially leads to some
sanctions.”

N.b., the terms compliance constraint, compliance regulation, norm,
rule, law and any variation thereof are used interchangeably. As men-
tioned in section 1, we assume that the user — e.g. a business analyst —
has collected their compliance constraints by their own means when ap-
plying the findings we present in this paper. Given the definition above,
examples of compliance constraints are laws imposed by a government,
internal policies of an organization and contractual obligations with
between organizations. In section 5 we present a crystallization of the
properties of compliance regulations, based on a review of [3] and [8].

3 BACKGROUND

To provide a technical context of CRLs, this section provides an in-
troduction to their specifics. In this paper, we consider three CRLs,
which will be described in detail to give some idea of their differences,
applications and limitation. Two families of logic systems are repre-
sented in this paper, namely the deontic and temporal families. The
prior distinguishes itself due to its concern with the expression of obli-
gations, prohibitions and permissions [4]. Temporal logic on the other
hand specifies propositions in terms of time [4]. This section concludes
with a comparison the logical systems when expressing an identical
regulation. The CRLs to be considered for our research are:

LTL This logic system allows for the formal specification of temporal
properties for software and hardware [3]. LTL limits the range
of states that can follow another state to one, representing them
as linear state sequences [3]. Evidently, this allows only for the
expression of a single process at the time in a system’s behaviour.
LTL is part of the family of temporal logic [3].

CTL Similar to LTL, CTL is used for the formal definition of temporal
properties in the context of software and hardware design [3].
Additionally, CTL provides the means to have multiple futures —
i.e. multiple states following on another – modelled as an infinite
computation tree. This extends the expressiveness found in LTL
with support for non-deterministic systems. Just like LTL, CTL
is part of the temporal family of logic [3].

FCL While both LTL and CTL are part of the temporal logic family,
FCL belongs to the family of deontic logic. As such, FCL dis-
tinguishes itself from the other two logic systems by expressing
its propositions in terms of terms of obligations, prohibitions and
permissions. LTL is particularly suited for expressing proposi-
tions that allow for some kind of violation (see also the property
of monotonicity in section 5) [3].

Although this paper will not feature any instructions on the formula-
tion of regulations in the aforementioned CRLs, an simple example of
expressions is included in Table 1.

Representation Expression

Textual Only Post-processing Clerk and Supervisor roles
can access the “Credit Bureau service”.

LTL G(CheckCreditWorthiness.Role(Role1) →
G((Role1 = ‘PostProcessingClerk’ ∨ Role1 =
‘Supervisor’)))

CTL EG(CheckCreditWorthiness.Role(Role1) →
AG((Role1 = ‘PostProcessingClerk’ ∨ Role1 =
‘Supervisor’)))

FCL Role1 6= ‘PostProcessingClerk’ ∧ Role1 6= ‘Su-
pervisor’ ` ORole1 6= CheckCreditWorthiness

Table 1. A simple example of different expressions of the same regulation,
as found in [3].

4 METHODOLOGY

In order to present a framework that can capture the intrinsic features of
compliance regulations and match them to the proper logical system, we
will start our research by reviewing the properties implied in the works
of [3], [4] and [8]. As no explicit definition of regulation properties
have been found in existing literature, an extensive literature review
must filter out any remarks on certain properties that are considered
when applying a logical system. For example, in [3] the property of
fairness is mentioned as follows:

“Neither CTL nor FCL can express the weak fairness prop-
erty of R5 (a constantly enabled event must occur infinitely
often) [9], which is expressible in LTL. The same applies to
the specification of strong fairness properties .”

This property of fairness must be considered when analyzing a
constraint as it as an impact on the ability of the CRLs to express it
properly. In this case, explicating the definition of fairness requires us
to review the requirement in question and the mechanics of the CRLs
that fail to capture this specific feature. Similar approaches have been
utilized to extract the other properties in section 5, which have been
encoded to allow easy referencing at a later stage.

The next step is reviewing the properties of logic systems. These are
expresses as requirements in [3] and described in short. In section 6
we include this listing of requirements, extended with a more intu-
itive description to allow for an easier understanding of their meaning.
These description also incorporate mentions of the properties of com-
pliance constraints defined earlier to emphasize their importance and
connectivity. Again, these requirements are encoded for later reference.

Combining our findings on both compliance constraints and logic
systems, we will provide a logical matrix that indicates relations be-
tween compliance constraint properties and logic systems requirements.
This tool will be the basis of our framework, as it can be used to reduce
the amount of options (i.e. CRLs to pick from) by providing a subset
of requirements to be considered.

In order to demonstrate the functionality of the tool we present,
we conduct a case study. To this end, several constraints are adapted
from [1] and [4]. We show how these constraints can be analyzed
to identify their properties and how the critical requirements can be
selected. Using the works of [3] we can then select the CRL that suites
the use case best.

5 PROPOSING PROPERTIES FOR COMPLIANCE REGULATIONS

Compliance regulations are usually expressed as a simple body of text,
as exemplified in [3]. In this section, we will present the results of
analyzing several compliance regulations presented in the literature.
We compile our findings as a list of non-functional properties — as
defined in section 2 — that allow us to judge the performance of
the compliance constraint in a logic system. Several properties of
compliance constraints can be identified in order to get a firmer grasp
on its concept:

Source The document or entity from which the requirements origi-
nates, e.g. a governmental law, internal policy, etc. [3, 4]. This
might be a-priory knowledge, as one might be aware of where a
regulation has been obtained, or implied within the definition of
the regulation itself.

Fairness Fairness indicates whether and when a process will be al-
lowed to change state. Examples of values for this property are
strong and weak, specifying the required method of requesting
a change in state for a process [3]. This property appears in
constraints when it specifies that one activity triggers another, as
exemplified in constraint R5 in [3]:

“If loan conditions are satisfied, the customer can
check the status of her loan request infinitely often
until the customer is notified.”

Selecting a Logic System for Compliance Regulations – Michaël P. van de Weerd and Zhang Yuanqing

42

Permission Constraints can assign permissions to actors. These are
usually identifiable by words such as “allowed” and “rights”. An
example of a constraint containing the notion of permission is
found in constraint R3 in [3]:

“[T]he manager is notified by the system and Post-
processing Clerk is allowed to do the check.”

Redundancy The definition of a constraint might contain require-
ments or definitions that are irrelevant as they are either duplicates
of other constraints or not applicable to the processes at hand [3].

Validity Specifies to which processes the constraint applies, e.g.
global validity if a special process should be taken into account
for the design of all processes or conversely process specific if it
only applies to a single process [8].

Existence A regulation can require that something — e.g. activities,
resources and roles – exists, either as a condition of something
else existing or in general. For example, regulation R6 in [3] has
this property:

“[T]here exists an activity ‘evaluation of the loan risk’
that should be performed by the manager.”

Control-flow Constraints are not limited to specifying activities that
need to be performed, but can also require the order and timing of
the activities [3]. Key words that are usually present in regulations
are “prior”, “after”, “before”, “until”, etc.. In [6] we find an
example of such a regulation:

“All issues are covered prior to formulating a resolu-
tion.”

Data validity Constraints might specify that data needs to be validated
in general or when a condition has been met [3]. Words like
“check”, “verify” and “validate” might indicate such a property.
An example of this is found in rule 1 in [6], which requires for
data — in this case a resolution to a complaint — needs to be
checked for acceptance by the customer:

“Resolutions to complaints should always be checked
for acceptance with the customer[.]”

Data requirements When data is being handled during business pro-
cesses, it must adhere to certain requirements in order to be of
use. Constraints can indicate these requirements [3]. Resolution
Section 3 in [4] is an example of a constraint that determines a
requirement for data, as it forbids collection of certain data types:

“The collection of medical information is forbidden,
unless acting on a court order authorising [sic] it.”

Resource perspective A constraint might specify the rights of actors
or tasks to be executed based on the existence of a certain resource.
Looking at regulation R1 in [3] we can identify this property as it
defines the roles required to access a specific resource:

“Only Post-processing Clerk and Supervisor roles
can access the ‘Credit Bureau service’.”

Monotonicity While most constraint are fairly strict, some can specify
certain exception in which violation of the constraint is allowed
to some or full extend — defined as non-monotonic [3]. Many
examples of this exist in the related works, one of these being
norm Section 3 in [4] as it explicitly states that the main regulatory
constraint it defines can be overruled if a specific condition has
been met:

“The collection of medical information is forbidden,
unless the entity [...] is permitted to collect personal
information.”

Real-time The time period available for the activities to be performed,
which is an extra constraint on the activity [3]. In regulation R7
of [3] we find a very explicit constraint on the amount of time that
should have elapsed before a certain activity is allowed to start:

“The Credit Broker can start a loan [...] only if 5
workdays or more have elapsed since the loan ap-
proval form was sent.”

Level Constraints can be written by people in any domain, resulting
in different views, which also has an impact on the semantics
[8]. Examples of different levels are high level i.e. written in
natural language and implementation level i.e. written in language
understandable by automated process management systems [8].

In Table 2 we present the specifications for the aforementioned
properties of compliance constraints and their allowed value types and
values. Using this table as a checklist, one can easily identify the
properties of a regulation, assigning the proper value if appropriate. To
this end, each property has been encoded for easy referencing.

6 REVIEWING REQUIREMENTS FOR CRLS

As per [3], several requirements can be defined to allow proper use of
CRLs in a practical context. Some of these requirements can be linked
to the properties of compliance regulation as defined in section 4. The
requirements for CRLs as defined in [3] are:

Formality In order to allow automatic analysis, CRLs should be for-
mulated with formal language. This is related to the semantics
used to clarify the specifics of the constraint and the level of the
definition, which must be implementation level i.e. very low.

Usability As the counterpart of formality, usability requires users
(e.g. humans) to understand the constraint expressed in the CRLs.
Highly complex constraints defined in a natural language already
have a low usability, causing even lower usability when translated
to a CRL. Having semantics that are hard to understand by users
will lower the usability even more.

Expressiveness The expressiveness of a CRLs is related to the level
of detail that it can capture. Too much expressiveness results
in redundancy while too little will make the CRLs useless in
for certain tasks. All properties of constraints are in some way
related to expressiveness, as the language in which the constraint
is formulated will determine whether or not the property can be
expressed.

Declarativeness Constraint usually declare the activities that need
to be started. Therefore, it is preferred that the CRL is of the
declarative type. However, if a constraint has a high presence of
control-flow, a declarative language will not be suitable, as the
order in which the activities are executed is also relevant. This is
due to the fact that a declarative system can only indicate which
activities must be executed — which can be more than one — but
not in what order.

Consistency checks Different constraints can have an effect on the
same process and even cause conflicts. Therefore, it is desirable
for a CRL to provide mechanisms that check whether or not
the constraints are consistent with each other. Contradictions
between constraints can be related to their property of validity
— as a higher validity increases the chance of conflicts — and
monotonicity.

Non-monotonicity A CRL should support the property of monotonic-
ity of constraints – in particular its absence. This requires its
syntax to express exceptions for certain situations to some extent.

SC@RUG 2019 proceedings

43

Ref. Property Value

a Source Categorical value indicating the
source of the constraint, such as
an official document, internal pol-
icy, etc..

b Fairness Ordinal values ranging from
strong to weak, indicating the re-
quired method for requesting a
change of state.

c Permission Binary value indicating whether
the constraint contains the notion
of permission.

d Redundancy Binary value indicating whether
the constraint contains redundant
information.

e Validity Count value indicating the
amount of processes for which
the current constraint is valid or
a value of ∗ indicating global
validity.

f Existence Binary value indicating whether
the constraint contains the notion
of existence.

g Control-flow Binary value indicating whether
the constraint requires the order-
ing and timing of activities.

h Data validity Binary value indicating whether
the constraint specifies when an
how data needs to be validated.

i Data requirements Binary value indicating whether
the constraint specifies require-
ments for types of data.

j Resource perspective Binary value indicating whether
the constraint specifies tasks or
access rights for data.

k Monotonicity Binary value indicating whether
the constraint allows violation in
specific cases.

l Real-time Real value indicating the time pe-
riod in hours, available for the
activities to be performed or no
value to indicate the absence of a
time limit.

m Level Ordinal value indicating the level
of the language in which the con-
straint is specified.

Table 2. The properties of compliance constraints and a proposed speci-
fication of the their allowed values.

Generic Constraints having the properties of control-flow, data and
resource-perspective are very dissimilar, but can appear in the
same use-case. In order to be able to use the same CRL for all
constraints in such a use-case it should be general in the sense
that it can express all of them well. This is related to the range of
properties present in a use-case, as having a smaller range might
allow for a CRL that is less generic and better suited for another
property present in the constraints.

Symmetricity Having a symmetric CRL means that it allows for an-
notations for business process models that refer to compliance
constraints. Using these annotations, the relations between con-
straints and processes can be inspected more easily.

Normalization The redundancy of a constraint is undesirable, as it
lowers the usability and requires might require an unnecessary
high level of expressiveness. A CRL that can normalize con-
straints will reduce the amount of redundancies.

Intelligible feedback Knowing that a constraint has been violated use
usually not enough. Providing some kind of feedback on the
cause of a violation and how to resolve it should be supported.

Real-time The constraint property of real-time should be supported,
which specifies the time period within an activity must be per-
formed.

In [3], the compliance of the aforementioned language to the require-
ments have been compared. The results of this comparison have been
incorporated in Table 3 for convenience. A simplified visualization of
the relations between the requirements and CRLs has been included in
Figure 2.

Ref. Requirement FCL LTL CTL

1 Formality + + +
2 Usability − − −
3 Expressiveness ± ± ±
4 Declarativeness + + +
5 Consistency checks + − −
6 Non-monotonicity + ± −
7 Generic ± ± ±
8 Symmetricity ± − −
9 Normalization + − −

10 Intelligible feedback − + ±
11 Real-time + + +

Table 3. Comparison taken from [3] of the requirements met in the three
CRLs under consideration in this paper, where + indicates full support,
− indicates the lack of support and ± indicates partial support.

1 2 3 4 5 6 7 8 9 10 11

CRL Requirements

LTLFCL CTL

Fig. 2. A visualization of the relations between the CRL requirements
and the CRLs considered in this paper: FCL, LTL and CTL.

7 CASE STUDY: ANALYZING STARFLEET REGULATIONS

In this paper, we aim to streamline the process of selecting the right
CRL for per use-case. To this end, we present Table 4 in which we link
the properties of constraints as presented in Table 2 to the requirement
support of the CRLs included in Table 3. With this table, we provide
a tool that can be used the reduce the amount of requirements based
on properties present in a use-case. In Figure 3 we provide a visual-
ization of the relations between the requirement properties and CRL
requirements. In order to facilitate a demonstration of the usage of the
analyzing tool presented in Table 4, a small set of constraints have been
defined in Table 5.

Looking at constraint i Table 5, we can identify the presence of
the resource perspective property. Similarly, constraint ii restricts
employees to access specific data during an activity but has a higher
validity, as it segregates two processes. In constraint iii we find control-
flow, as several activities are ordered. Furthermore, we find fairness,
as the constraint specifies an activity as the result of another activity.
Constraint iv is similar to iii, as it also specifies to moment at which

Selecting a Logic System for Compliance Regulations – Michaël P. van de Weerd and Zhang Yuanqing

44

1 2 3 4 5 6 7 8 9 10 11

a 1 1 0 0 0 0 0 0 1 0 0

b 0 0 1 0 0 0 0 0 0 0 1

c 0 0 1 1 0 0 0 0 0 0 0

d 0 0 1 0 0 0 0 0 1 0 0

e 0 0 1 0 1 0 0 0 0 1 0

f 0 0 1 1 0 0 0 0 0 0 0

g 0 0 1 1 0 0 1 0 0 0 0

h 0 0 1 1 0 0 1 0 0 0 0

i 0 0 1 1 0 0 1 0 0 0 0

j 0 0 1 1 0 0 1 0 0 0 0

k 0 0 1 0 1 1 0 0 0 0 0

l 0 0 1 0 0 0 0 0 0 0 1

m 1 1 1 0 0 0 0 1 0 0 0

Table 4. A binary matrix visualizing the relations between the properties
of compliance constraints and the requirements of CRLs, where a black
cell indicates the presence of such a relation. The properties in the rows
and the requirements in the columns are referenced according to their
encoding in Table 5 and Table 3 respectively. A relation of any kind is
indicated by a value of 1 and a black cell background, while the lack of
such a relation is marked by a value of 0.

1 2 3 4 5 6

CRL Requirements

7 8 9 10 11

g

Properties

fedcba h i j k l m

Fig. 3. A visualization of the relations between the regulation properties
and CRL requirements, as represented as a binary matrix in Table 4.

activities must be executed. Similar to constraint i and ii, constraint v
specifies access rights to data, but does so for the customer instead of the
employee. Constraint vii has the property of real-time, as it explicitly
states an amount of time required to pass before an activity can be
started. Next, constraint viii is interesting as it allows for violation
in specific cases, and is therefore non-monotonic. Finally, constraint
ix specifies the validity of data is specific cases. A more detailed
analysis of the use-case is include in Table 6. Looking at the results in
Table 6 we can observe that the property of redundancy is irrelevant
for this particular use-case as it has a value of 0 for all the constraints.
Therefore we can conclude that the relevant properties in this case are
fairness (b), permission (c), validity (e), existence (f), control-flow (g),
data requirements (i), resource perspective (j), monotonicity (k) and
real-time (l). Cross-referencing these properties with the requirements
for CRLs using Table 4 we can determine that the relevant requirements
are expressiveness (3), declarativeness (4), consistency checks (5) and
real-time (11). Ignoring the requirements for which the performance
is equal for all CRLs, we are left with the requirement of consistency
checks to determine the most suitable language to define our use-case
in — which is FCL.

Ref. Source Constraint

i IP Only engineers and architects can access the
blueprint database.

ii UFP Customer space travel permit check is segre-
gated from credit worthiness check.

iii IP, UFP If the order of the customer exceeds 1 trillion
Federation credits his or her credit worthiness
must be checked by the sales supervisor imme-
diately. In case of absence of the supervisor
a suspense file is created. In case of failure
of the creation of a suspense file, the manager
is notified by the system and a lower ranking
sales person is allowed to do the check.

iv UFP As a final control, the branch office manager
has to check whether the ordered space craft is
not a potential risk to intergalactic peace.

v IP If an order is accepted, the customer can check
the construction status of the spaceship in-
finitely often until it has been delivered.

vi IP If a customer space travel permit check is per-
formed and the order includes a warp drive,
then there exists an activity “warp drive eligi-
bility check” that should be performed by the
manager.

vii UFP The lead engineer can start realization of the
space ship design (approved by the customer),
only if 5 workdays or more have elapsed since
the spacecraft approval form was sent.

viii UFP The collection of personal information of cus-
tomers is forbidden unless required to meet
other regulations by the UFP.

ix UFP The destruction of illegally collected personal
information before accessing it is a defence
against the illegal collection of personal infor-
mation of customers.

Table 5. A collection of constraints for a fictional spaceship construction
company Starfleet Shipyards, provided to demonstrate the usage of
several logical languages. The compliance constraints have been defined
in natural language and are adapted from examples found in [3] and [4].
The (also fictional) sources of the constraints are either the internal policy
(IP), regulations enforced by the United Federation of Planets (UFP) or a
combination thereof.

b c e f g i j k l

i 0 1 1 0 0 0 1 0 0

ii 0 0 2 0 0 0 0 0 0

iii 1 0 1 0 1 0 0 1 0

iv 0 0 1 0 1 0 0 0 0

v 1 0 1 0 1 0 0 0 0

vi 1 0 1 1 0 0 0 0 0

vii 0 0 1 0 1 0 0 0 120

viii 0 0 ∗ 0 0 1 0 1 0

ix 0 0 1 0 0 1 0 0 0

Table 6. An overview of the values of a subset of the properties of the
constraints as defined in Table 2 and Table 5 respectively, omitting those
not present in any of the constraints.

8 DISCUSSION ON ANALYSIS AND WORK FLOW

The demonstrated method of analyzing regulations allows for a formal
definition of a work flow, describing how to express textual regulations
using a CRL. The product of the analysis of the textual constraints
yields the constraints expressed as collections of properties and their
values. Using these properties, the requirements for the CRL can be

SC@RUG 2019 proceedings

45

identified, ultimately allowing for a selection of the most appropriate
CRL. Combining the selected CRL and the textual representations, the
regulations can be expressed such that they can be processed using an
automated compliance regulations verification system. This work flow
has been visualized using a simple flowchart in Figure 4.

To improve the process of analyzing the properties of regulations,
certain tools might be utilized, such as Microsoft Excel or similar
computer programs. This also allows for recording changes in prop-
erties when regulations changes in definition, which might lead to the
identification of erroneous definitions or changes.

RegulationsProperties

CRLCRL Requirements

CRL Expressions

Fig. 4. A simple flowchart representing the proposed work flow for
expressing textual regulations with a CRL, using the analysis of regulation
properties. Recall the flowchart in Figure 1, for which the the dotted
relation can be substituted with our proposed process, highlighted in this
graphic.

9 CONCLUSION AND OUTLOOK

In this paper, we have provided the means to analyze a set of regulations,
streamlining the process of expressing them in a CRL, as defined in
section 8 and illustrated in Figure 4. This fills a gap in the complete
process of implementing compliance regulation verification systems as
defined in section 1 and visualized in Figure 1. Using our methodical
approach, the effectiveness of a CRL can be validated, making sure
that there are no unexpected shortcomings to the logical system. As a
result, expressing compliance regulations using a CRL allows business
analysts to develop a robuster verification system for their business
processes. Further research is needed to verify the completeness of our
proposed definition of regulation properties, as the set of regulations
that have been analyzed during our research might be too limited to
include all variations. Furthermore, other logical systems than the three
mentioned in this document can be analyzed in order to identify their
compliance to the requirements to extend the proposed work flow to a
wider range of methods and techniques.

Finally, an interesting subject of research might be a review of tools
that can be utilized in order to analyze regulations. Ultimately, this
might lead to a compilation of requirements for such a tool, which
can become the foundation of the development of more specialized
utilities.

ACKNOWLEDGEMENTS

The authors wish to thank dr. Heerko Groefsema for his expertise.

REFERENCES

[1] Decker G. Weske M. Awad, A. Efficient compliance checking
using bpmn-q and temporal logic. BPM’08, 2008.

[2] Lianping Chen, Muhammad Ali Babar, and Bashar Nuseibeh.
Characterizing architecturally significant requirements. IEEE
Software, 30(2):3845, 2013. doi: 10.1109/ms.2012.174.

[3] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel,
and Mike Papazoglou. On the formal specification of regulatory

compliance: A comparative analysis. Service-Oriented Comput-
ing Lecture Notes in Computer Science, page 2738, 2011. doi:
10.1007/978-3-642-19394-1 4.

[4] Guido Governatori and Mustafa Hashmi. No time for compli-
ance. 2015 IEEE 19th International Enterprise Distributed Object
Computing Conference, 2015. doi: 10.1109/edoc.2015.12.

[5] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compli-
ance checking between business processes and business contracts.
In 2006 10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC06), page 221232. IEEE, October
2006. doi: 10.1109/edoc.2006.22.

[6] Heerko Groefsema, Nick van Beest, and Marco Aiello. A formal
model for compliance verification of service compositions. IEEE
Transactions on Services Computing, 11(3):466479, 2016. doi:
10.1109/tsc.2016.2579621.

[7] Mathias Kirchmer. High Performance Through Business Process
Management Strategy Execution in a Digital World. Springer
International Publishing, 2017.

[8] Linh Thao Ly, Kevin Göser, Stefanie Rinderle-Ma, and Peter
Dadam. Compliance of semantic constraints — a requirements
analysis for process management systems. In Shazia Sadiq, Marta
Indulska, Michael zur Muehlen, Xavier Franch, Ela Hunt, and
Remi Coletta, editors, Proceedings of the 1st International Work-
shop on Governance, Risk and Compliance: Applications in In-
formation Systems, volume 339 of CEUR Workshop Proceedings,
pages 31–45, Montpelier, June 2008. CEUR Workshop Proceed-
ings.

[9] Amir Pnueli. The temporal logic of programs. 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977),
page 4657, 1977. doi: 10.1109/sfcs.1977.32.

[10] Wil M. P. van der Aalst and Maja Pesic. A declarative approach
for flexible businessprocesses management. In Business Pro-
cess Management Workshops Lecture Notes in Computer Science,
pages 169–180. Springer, 2006. doi: 10.1007/11837862 18.

Selecting a Logic System for Compliance Regulations – Michaël P. van de Weerd and Zhang Yuanqing

46

Distributed Constraint Optimization:
A Comparison of Recently Proposed Complete Algorithms

Sofie Lövdal, Elisa Oostwal

Abstract— Constraint optimization problems (COPs) is a class of problems in which the variable assignments need to adhere to a
number of constraints. The goal of a COP is to find the set of assignments that optimizes an objective function. This is known to
be an NP-hard problem, which makes it difficult to solve problems having a large number of variables or constraints. One approach
to solving a COP is using a multi-agent system: the variables and constraints are distributed among the agents, effectively splitting
the global COP into smaller (local) COPs. The agents then communicate their state in order to find a solution. Since the agents
in such a system operate autonomously, defining a model for communication between the agents is a non-trivial task. Distributed
constraint optimization (DCOP) is an active research field in artificial intelligence which provides a model for the needed coordination
and distributed problem solving. Algorithms for solving distributed constraint optimization problems (DCOPs) can be divided roughly
into two categories: complete and incomplete algorithms. In this paper we restrict ourselves to the former set of algorithms, where
current research aims to improve the existing complete methods. We give an overview of the current state of the field and investigate
which algorithms perform best under which conditions. Seven algorithms with different solving strategies are reviewed and compared,
where special attention is given to some state-of-the-art methods that have been proposed over the recent years. The algorithms are
compared based on their efficiency, which is determined by their spatial complexity and communicative properties. Their applicability
is also considered, since the performance of a DCOP algorithm depends heavily on the characteristics of the problem at hand. In
the end we have created a guideline for selecting the best suitable algorithm based on the type of problem, which is visualized
by a decision-tree. We conclude that ConcFB outperforms many of the algorithms, making it the most promising complete DCOP
algorithm. We note, however, that it is not the most suitable choice for all types of problems. We therefore encourage scientists to use
our guideline for selecting the algorithm that is best suitable for their problem.

Index Terms—Constraint optimization problems, Constraint satisfaction problems, Distributed constraint optimization problems, Com-
plete DCOP algorithms, Multi-agent systems.

1 INTRODUCTION

Multi-agent systems is an important field in Artificial Intelligence. It
can model a large class of real-world problems by allowing multi-
ple agents to interact in an environment. In particular, agents can
be assigned a task for which a global objective function needs to be
optimized, or for which resources are limited. These types of envi-
ronments pose a number of constraints that need to be satisfied. The
agents then need to cooperate in order to reach the common goal, and
should thus communicate their decisions. Since the communication
between agents defines the quality of the outcome, the need for proper
coordination models is urgent. However, since each agent is its own
entity and takes actions independently, coordinating the agents’ ac-
tions is a non-trivial task.

Distributed constraint optimization problems (DCOPs) have risen
as a way of modeling this coordination, which allows for problem
solving. The problem is divided into smaller subproblems, which are
then distributed among the agents. The agents operate in their local
environment in an attempt to solve their subproblem, while ensuring
that the reward is maximized or the cost is minimized. At the same
time, the restrictions on the global environment still need to be re-
spected. DCOP algorithms provide methods for communication be-
tween agents in such a way that they can obtain the best possible out-
come given the full set of constraints. In particular, the set of complete
algorithms will guarantee an optimal solution to the problem.

While the best choice of DCOP algorithm depends on the proper-
ties of a given problem, recent literature mostly focuses on presenting
new methods or comparing the performance of DCOP algorithms on a

• Sofie Lövdal is with University of Groningen, E-mail:
s.s.lovdal@student.rug.nl.

• Elisa Oostwal is with University of Groningen, E-mail:
e.c.oostwal@student.rug.nl.

single benchmark problem. Therefore, there is a need for research pro-
viding guidelines on which type of algorithm is suitable for what kinds
of problems. In this paper we explore several types of complete DCOP
algorithms by defining a taxonomy. We review and discuss algorithms
from each category, assessing the algorithms based on their applica-
bility and efficiency. We have summarized these results in a guideline,
which gives recommendations on choice of algorithm with regards to
the problem structure and available computational resources.

First, in section 2, we describe the concepts related to DCOP which
are needed to understand the algorithms. We also present a taxonomy
of complete DCOP algorithms. For each node of the taxonomy tree,
corresponding to a category, we pick an algorithm. We explain the
selected algorithms and briefly describe their advantages and disad-
vantages in section 3. They are then compared to one another in the
section that follows, section 4. Based on their properties we created a
guideline which can be used to pick the most suitable algorithm for a
given problem. Finally, we summarize our findings in section 5.

2 BACKGROUND

In this section, definitions are presented of concepts that form the basis
of the DCOP research field. We categorize the algorithms and describe
the differences between the categories. We also explain how DCOPs
are represented, and what communication schemes can be used based
on these representations. All of this information is needed to under-
stand the DCOP algorithms presented in section 3.

2.1 Multi-agent systems
An intelligent agent is an entity which is capable of collecting data
about its environment using sensors. It can act upon the perceived in-
formation and any information it has already stored [1]. The agent de-
cides on its next action by considering the impact it has on its objective
function or cost function. Multiple intelligent agents can cooperate in
order to maximize their performance, which is based on a common
goal. Such a setting is referred to as a multi-agent system. An ex-
ample of a multi-agent system would be autonomous vehicles. In this
context a car is considered to be an agent that needs to take actions
based on the environment its sensors can observe. The car-agents all

47

want to optimize their own objective function of reaching their desti-
nation as fast as possible. At the same time, accidents, traffic jams, and
speed limit violations should be avoided. Such a traffic flow requires
a sophisticated coordination scheme between the individual agents of
the system.

2.2 Distributed constraint optimization problems
One method for coordinating a multi-agent system is modeling it as a
DCOP. Here, we solve problems in which constraints are put on vari-
ables, which each have a finite and discrete domain.

One class of problems that can be solved using this approach is con-
straint satisfaction problems (CSPs). Here, a combination of variable
assignments is sought such that all constraints are satisfied. A solution
can only be satisfactory or unsatisfactory: either it satisfies all con-
straints or it does not. In a Distributed CSP (DisCSP) the variables
and constraints are distributed among agents, creating local CSPs at
every agent. Each agent tries to solve their local CSP in order to find
a satisfactory solution to the global CSP [2].

A similar class of problems exist in which constraints are modelled
by cost functions or reward functions, rather than merely being sat-
isfied or not. The aim is to find a solution which optimizes the cost
function of the problem. As a result of this difference, the methods
that can be applied to CSPs can, in general, not be used to solve these
constraint optimization problems (COPs). These problems gave rise
to the field of distributed constraint optimization problems (DCOP),
where the variables, and constraints associated with them, are dis-
tributed among agents.

Formally, a COP consists of a set of variables V = {v1,v2, ...,vn},
where each variable vi has a finite and discrete domain Di, and a set
of constraints C between the variables. Each constraint ci j ∈ C de-
fines the cost for an assignment to two variables vi and v j with regards
to any value from their domains. Formally, ci j : Di×D j → R+ [3].
Even though one variable can be connected to many other variables by
means of constraints, all constraints can be modeled as binary.

A DCOP consists of a set of agents {A1,A2, ...,Ak}, a global COP,
and a set of local COPs {P1,P2, ...,Pk}, where Pj is a subset of vari-
ables and constraints of the global COP. Agent A j is the only agent that
can assign values to the variables of Pj; the other agents do not have
access to the variables belonging to Pj [2]. Even though the agents
only have a limited view of the global environment, they should be
able to perform actions that support optimizing the global objective
function that has been defined for the problem [4].

Let us consider the example DCOP in Figure 1, where each variable
is assigned to an agent. The aim is to maximize the reward function,
defined to be the sum over the rewards given to variable assignments.
On the left part of the figure, the variables and their constraints are
shown as a constraint graph. A node corresponds to a variable, a con-
nection between two variables represents a constraint between the two
variables. On the right a table is presented describing the cost accom-
panied with value assignments. The table can be interpreted as such:
if we assign the value 0 to both variable v1 and v2, this has a reward
of 1. However, if we assign the value 1 to both variables this has a
reward of 2. Hence, {v1,v2} = {1,1} is the assignment which results
in the optimal reward. Similarly, we can reason that v3 should also
have the value 1. In conclusion, the set of assignments to {v1,v2,v3}
that maximizes the reward is {1,1,1}, with a total reward of 6.

2.3 DCOP algorithms
Several algorithms have been developed which are capable of solv-
ing DCOPs. They can be split into two main categories: complete
algorithms and incomplete algorithms. The former group assures con-
vergence to an optimal solution, which is useful when solution quality
needs to be guaranteed. As a drawback, however, they require signifi-
cantly more computational resources. The effort for computation and
communication grows exponentially with the number of agents in the
system [4].

On the other hand, methods from the latter group restrict the search
space, which limits the memory usage as well as execution time. This
makes incomplete algorithms suitable for large-scale problems and

Fig. 1: Example of a DCOP. On the left: the problem is displayed as
a constraint graph. On the right: a table describing value assignments
and their associated cost. The set of assignments that maximizes the
reward is {v1,v2,v3}= {1,1,1}, with a total reward of 6 [5].

real-time applications. We note though that as a result of restricting
the search space, the algorithm can only guarantee a lower bound with
regards to the solution quality.

In this paper we restrict ourselves to the set of complete algorithms.

2.3.1 Taxonomy
The algorithms can be categorized even further, based on their solving
strategy and model of communication. Yeoh et al. proposed a tax-
onomy which provides a good overview of the main features of each
group of algorithms [6]. Leite et al. introduced a variation on this,
which we have used as a guide in our selection of algorithms covered
in this article [4]. The taxonomy applied in this paper is shown in
Figure 2. The taxonomy divides the algorithms into categories based
on their structural properties. In the following sections we describe
the differences between the categories.

Fig. 2: Categories of DCOP algorithms. The node ’Incomplete algo-
rithms’ has not been categorized since it is not treated in this article.
The figure has been adapted from the taxonomy suggested in [4].

2.3.2 Fully centralized vs partially centralized
A DCOP algorithm can have different levels of centralization, which
refers to the level of information sharing between the agents. This is
also connected to how agents solve internal conflicts. Fully decentral-
ized algorithms let agents take a local decision without communicating
with other agents. However, this leads to more communication and
computation steps later on in the process, since conflicts originating
from earlier steps need to be resolved. This communication structure
provides for a minimal loss of information privacy.

Partially centralized algorithms let the agents take a local decision
before informing its peers involved in the same sub-problem. This
decreases the risk of getting stuck at local maximums and reduces

Distributed Constraint Optimization: A Comparison of Algorithms – Sofie Lövdal and Elisa Oostwal

48

conflicts. However, it also causes partial loss of information privacy,
which we usually want to avoid when modeling a multi-agent system.

2.3.3 Synchronous vs asynchronous

Besides having a degree of centralization, algorithms can operate ei-
ther synchronously or asynchronously. The agents of asynchronous
algorithms operate independently, completely at their own pace, re-
lying only on their local view of the environment. Communication
still occurs between agents, but they do not wait for incoming mes-
sages before performing an assignment. Although this reduces the
idle-time of agents, it may also lead to inconsistent views of the envi-
ronment, which increases the risk of conflicts. On the contrary, fully
synchronously operating algorithms have a systematic ordering de-
fined. The agents need to wait for their peers to communicate specific
messages before they are allowed to take action. The view of the en-
vironment is consistent, but it also causes a significant amount of idle
time for the agents.

2.3.4 Inference vs search algorithms

The leaf nodes in our taxonomy are labelled as either inference algo-
rithms or search algorithms, according to their strategy for state space
exploration (refer to Figure 2). Search-based algorithms make use of
common methods such as best-first search or depth-first search (DFS)
before using backtracking and the branch-and-bound algorithm to go
through the state space. Inference based algorithms let agents consider
the accumulated constraint costs of peers in its local environment. This
information is then shared between neighbors in order to reduce the
problem size locally.

2.4 DCOP representation and communication structures
A DCOP can be represented as a graph, where the nodes represent
variables and the edges represent the constraints between pairs of vari-
ables (refer to Figure 3a). By ordering the constraint graph, a com-
munication structure can be derived from it, which can then be used
in DCOP algorithms. Three types of communication structures ex-
ist: original graph, chain structure, and pseudo-tree structure (refer to
Figure 3b). An original graph is commonly used in incomplete algo-
rithms, while chain- and pseudo-tree structures are frequently used in
complete algorithms [7].

A chain structure forces agents to execute in sequence, which leads
to poor efficiency. As an alternative, a pseudo-tree structure was pro-
posed which enables agents in different branches to operate concur-
rently. This is possible due to the relative independence of nodes lo-
cated in different branches [8]. To date this is the most commonly used
communication structure [7].

A pseudo-tree is used when agents need to be ordered by priority.
The tree is constructed from the constraint graph by using a search al-
gorithm. We note however that the quality of a pseudo-tree, and there-
fore the performance of an algorithm using the pseudo-tree, depends
on the search strategy used to construct it. While depth-first search
(DFS) is frequently used, recently Chen et al. showed the benefits of
using breadth-first search (BFS) [7]. The proposed algorithm will be
covered in section 3.5.

Formally, a pseudo-tree is a spanning tree whose nodes may be con-
nected with other higher priority nodes. One of the higher priority
node is defined as parents. The other higher priority nodes are then
referred to as pseudo-parents. The nodes down the tree which are con-
nected to a pseudo-parent are labeled pseudo-children [4].

3 COMPLETE DCOP ALGORITHMS

Complete DCOP algorithms are algorithms that guarantee obtaining
an optimal solution to the constraint optimization problem at hand. In
the following we present algorithms that are representatives of the leaf
nodes in our taxonomy of complete DCOP algorithms (see Figure 2).
We have chosen this setup in order to cover the full tree of the taxon-
omy. The algorithms presented have been chosen based on their rel-
evance, which has been acknowledged in the literature, and reported
performance in different scenarios.

(a) Constraint graph

(b) Pseudo-tree

Fig. 3: A DCOP represented as a graph. Variables are depicted as
nodes, and constraints between two variables are depicted as edges.
The constraint graph in (a) has been transformed into a pseudo-tree
in (b). In a constraint graph all constraints are expressed as direct
connections, while in a pseudo-tree the agents owning each variable
are ordered. A constraint can then be directly or indirectly represented
by the pseudo-tree hierarchy.

3.1 SynchBB

Introduced in 1997, the Synchronous Branch and Bound algorithm
(SynchBB) was the first complete DCOP algorithm [4]. It is a decen-
tralized, fully synchronous algorithm. It makes use of the Branch and
Bound algorithm for solving combinatorial optimization problems and
adapts it for a distributed environment. It requires agent and value or-
dering to be known and constant. The agents take turns of sequentially
passing a partial assignment for all variables, so called path, to the next
agent in line [9]. Initially, only one variable has an assignment. Every
agent evaluates the path received and the first value of its domain in
value ordering, and passes this on to the next agent if the agent eval-
uates it as less than the current upper bound. If it is more than the
upper bound, it takes the next value in the value ordering domain. If
none of the values in the domain suffice, the agent returns the path to
the previous agent to apply backtracking. These steps are then applied
recursively if necessary. Since the agents are operating sequentially
and the variable and value ordering is fixed, SynchBB enables agents
to do an exhaustive search in distributed search spaces. This means
that the algorithm indeed finds a solution if one exists. A drawback is,
however, that it cannot be extensively parallelized. This is due to that
the agents inherently need to operate sequentially.

3.2 OptAPO

While in most DCOP algorithms the agents only have knowledge
about their local COP, in partially centralized algorithms like Optimal
Asynchronous Partial Overlay (OptAPO) knowledge about the other
agents is partially shared [10]. The key idea in OptAPO is cooperative
mediation, where a dynamically chosen agent is chosen as mediator
for a subproblem.

In OptAPO, agents are able to share their knowledge to improve
their local decisions. When an agent acts as a mediator, a solution is
computed for a fraction of the global problem, and new assignments
are recommended to the agents involved in the mediation session. The
size of the subproblems increases over the course of the algorithm.
This strategy reduces the cost of communication which would nor-
mally be required in fully centralized algorithms.

Each agent holds two lists: the agent-view and the good-list. The
former contains information about connected agents and their names,
values, domains and constraints. The good-list contains names of
agents that share direct or indirect constraints with the agent in ques-
tion. The agent with the largest good-list involved in a mediation ses-
sion is chosen as the mediator, since this agent has the most knowledge
about the relevant variable.

SC@RUG 2019 proceedings

49

3.3 DPOP
Distributed Pseudo-tree Optimization Procedure (DPOP), introduced
by Petcu et al, uses a pseudo-tree as its communication structure [11].
Rather than using a search strategy such as DFS to traverse the tree
and solve the problem, the algorithm is based on inference. The idea
is to compute and propagate the total cost of the variables.

The algorithm consists of three phases. In the first phase the agents
transform the constraint graph into a pseudo-tree using DFS.

In the second (UTIL) phase, the agents compute the cost of all as-
signments considering its neighboring agents. The agents initiate this
process, referred to as utility propagation, by sending UTIL messages
to the parent of the pseudo-tree. A UTIL message contains the cost
for each set of assignments from the sub-problem started in the sender
agent [4]. These messages then propagate down the tree until they
reach the leaf nodes, where the cost can be instantly computed by in-
specting the constraints with their immediate neighbors [11]. These
costs are then propagated back up in the direction of the parent, who
ultimately collects the costs of all its children.

When the root node of the pseudo-tree has received all UTIL mes-
sages, the third (VALUE) phase is started. The root node chooses an
assignment that optimizes the global cost of the problem. It then sends
out its decision using VALUE messages, which then propagate to its
children. Upon receiving the message from its parent, the child node
becomes an active agent which chooses an assignment that optimizes
the global cost function. In turn, it propagates the VALUE message to
its children, including the assignment which it has chosen. This pro-
cess continues until the message reaches the leaf nodes, which make
the final assignment.

Although DPOP only requires a linear number of messages to solve
a DCOP, the message size grows exponentially because of the prop-
agation process [4, 7]. Many variants of DPOP have been proposed
which try to tackle this problem. One of the earlier attempts is the
Partially Centralized DPOP (PC-DPOP) algorithm, which was devel-
oped by Petcu et al., who originally proposed the DPOP algorithm
[12]. Recently Chen et al. proposed a new algorithm which makes use
of BFS to construct the pseudo-tree [7]. Their BFSDPOP algorithm
effectively deals with the problem of message size and, in addition,
enhances parallelism.

3.4 PC-DPOP
To overcome the space problems of DPOP, Petcu et al. introduce a
control parameter k that puts bounds on the message dimensionality
[12]. This allows for predictions about the computational require-
ments. Vice versa, the control parameter k can be adjusted to meet
the hardware specifications of the system that is solving the problem.

The algorithm proceeds as normal DPOP, except in the UTIL phase.
Like in DPOP, the leaf nodes start the utility propagation back up the
tree. However, as soon as the outgoing UTIL message of a node has
more than k dimensions, centralization begins. Instead of computing
its UTIL message and propagating it to its parent, the node sends a
Relation message to its parent. This message contains the set of re-
lations that the node would have used as an input for computing the
UTIL message. The parent node then becomes a cluster root which re-
constructs the subproblem from the incoming Relation messages and
solves it in a centralized fashion using an algorithm of its choice [13].
It adds its assignments to the UTIL message and then continues the
UTIL propagation as in DPOP. The partial centralization ensures a
maximal message size which is exponential in k, which performs bet-
ter than DPOP in cases where the tree is dense. The partial central-
ization has as a drawback however that there is partial loss of privacy.
The authors mention though that the privacy loss can be predicted and
therefore restricted beforehand.

3.5 BFSDPOP
As mentioned before, the pseudo-tree used in DPOP is constructed
using DFS. Chen et al. propose to use BFS instead, since a tree con-
structed with this strategy has more branches, which aids parallelism,
as well as a lower height, which shortens the communication path and
hence communication time [8]. They therefore argue that using BFS

as strategy for producing the pseudo-tree allows for better parallelism
and results in a higher communication efficiency [7]. Moreover, they
manage to slightly reduce the message size, although it still grows ex-
ponentially. The largest difference is that in DFS the message size is
exponential in the width of the tree, while in BFS the size is expo-
nential with the number of cross-edges in the tree. They do, however,
propose a method to limit the number of cross-edges, which restricts
the message size. A more extensive comparison is made in section 4.1.

3.6 ADOPT
Asynchronous Distributed Optimization (ADOPT) makes use of fully
asynchronously operating actors in order to solve the problem. It was
the first fully decentralized, asynchronous search algorithm that was
able to find an optimal solution [14].

ADOPT requires the agents to have an internal ordering based on a
pseudo-tree. Each agent continuously considers its local environment
and based on that takes the action it considers most optimal in a best-
first manner. Each agent also keeps values for the current lower bound
of the solution, as well as an upper bound. These values describe
the minimal (sum of the cost of the constraints that is consistent with
the current context) and maximal (best so far) values of the cost of
the solution at the current state of the search. The upper bound is
initialized as infinity, and the lower bound as the sum of the costs
of the constraints between the (connected) ancestors [15]. The lower
bound is iteratively updated as new cost information is communicated
by the children of an agent. The algorithm has found its solution when
these two bounds become equal for the agent in the root node of the
pseudo tree.

Fig. 4: Adopt communication model [14]. VALUE messages contain-
ing an assignment to a variable are sent from parents to children, and
the children report back the cost of this assignment in a COST mes-
sage. THRESHOLD messages are used to control backtracking and
give information on the bound on the optimal cost of a solution.

There are three types of messages between agents in ADOPT (see
Figure 4). If a parent node changes the value for a variable, it com-
municates this to its child nodes. The child verifies whether this value
is in agreement with its local view, and if not, assigns another value
to the variable to minimize the cost of the solution. The children send
cost messages to its parents, containing the cost of its local view and
the current lower and upper bound. Parents also send messages to
children to update their threshold variable. The threshold controls the
backtracking mechanism of the algorithm, informing the child nodes
not to try to search for a solution with a cost lower than some lower
bound that has been determined based on previous experience by a
parent node.

3.7 ConcFB
Concurrent Forward Bounding (ConcFB) is an algorithm proposed by
Netzer et al. which combines multiple processes of concurrent search
and synchronized forward bounding [3]. The former provides for rapid
exploration of the state space, and the latter provides possibilities for

Distributed Constraint Optimization: A Comparison of Algorithms – Sofie Lövdal and Elisa Oostwal

50

early pruning: aborting the exploration of a solution when it displays
weak potential. The search processes run on all agents concurrently
and at the same time explore non-intersecting parts of the search space.
This is done by dividing values of possible assignments to variables
across search processes. The exploration of the search space itself is
then done by synchronized forward bounding.

The agents are globally ordered within each search process. Ev-
ery search process also maintains a current partial assignment (CPA)
structure, containing the values that have been assigned to variables
within that specific search process. The search processes share their
best upper bound across all parts of the global search space. If a new,
lower value on the best upper bound is communicated that particular
search space can be pruned. New search processes are spawned dy-
namically by the algorithm if it detects new search spaces that seem
promising. Finally, ConcFB will have explored every possible combi-
nation of assignments to the set of variables excluding the pruned op-
tions. The agent initiating the algorithm will then hold the value of the
optimal solution, having collected results from the search processes it
spawned. This will eventually be equal to the best upper bound.

4 DISCUSSION

In this section, we compare and evaluate the algorithms explained in
section 3. Two aspects are treated: the efficiency of the algorithms and
their applicability. The former can be expressed analytically, while the
latter will be expressed qualitatively, namely by the type of the prob-
lem or properties of the problem for which the algorithm is appropri-
ate. Efficiency has been evaluated by analyzing the memory usage,
the number of messages required by the algorithms, and the size of
these messages. The runtime of the algorithms has not been taken into
account because it is exponential for every complete DCOP algorithm
[16]. The applicability of each algorithm depends on the structure of
the problem at hand. This allowed us to create a guideline that sum-
marizes our findings with regards to the applicability. In this guideline
we have also taken efficiency into account in order to give the best
recommendation.

4.1 Efficiency
In the following we describe the advantages and disadvantages of the
algorithms treated in our paper, considering their efficiency. As stated
above, the efficiency of a complete DCOP algorithm depends on the
number of messages and their individual size (communication com-
plexity), as well as on the memory required (space complexity). We
have summarized the space and communication complexity of the al-
gorithms treated in our work in Table 1, which is an adaptation of
the tables presented by Petcu et al. [13] and Fioretto et al. [17], re-
spectively. Here, it can be especially noted that no single algorithm
displays a significantly lower total complexity than another - at least
one of the categories is always exponential in complexity.

Table 1: Space and communication complexity of the covered algo-
rithms. The table has been adapted from [13] and [17].

Algorithm Number of messages Message size Memory

OptAPO Exponential Linear Polynomial
ADOP Exponential Linear Polynomial

SyncBB Exponential Linear Linear
ConcFB Exponential Linear Linear
DPOP Linear Exponential Exponential

BFSDPOP Linear Exponential Exponential
PC-DPOP Linear Exponential Polynomial

SynchBB is the oldest and simplest DCOP algorithm. However,
due to its fully synchronous processing with a pre-defined ordering
of agents, a considerable amount of the computational resources are
wasted since the agent need to wait for its turn a large amount of the
time [3]. Its advantage lies however in its simplicity, making it very

suitable for educational purposes. Especially if the problem size is
small, SynchBB might be one of the most straightforward options for
a complete DCOP.

It has been shown that the partially centralized communication
pattern of OptAPO requires significantly less communication than
ADOPT, even though they both are worst-case exponential in terms
of the complexity of number of messages (refer to Table 1). How-
ever, OptAPO has scaling problems as the problems grow dense, since
several mediators often solve overlapping problems [18].

Compared to OptAPO, PC-DPOP provides better control over what
parts of the problems are centralized and allows this centralization to
be optimal with respect to the chosen communication structure [13].
Based on experiments, Petcu et al. conclude that it also has strong ef-
ficiency gains over OptAPO. Although partially centralized inevitably
comes with loss of privacy, PC-DPOP has ways of predicting privacy
loss, which enables it to limit the loss. Additionally, its setup is such
that it restricts the message size and memory usage.

For inference-based algorithms, the temporal and space complex-
ities of the messages both depend on the maximal message size [7].
DPOP requires a linear number of messages to solve a DCOP [11].
Furthermore, A VALUE message contains at most a linear amount of
assignments, while a UTIL message can contain an exponential num-
ber of values. Therefore, for DPOP, the temporal and space complex-
ities of disposing a message both lie on the maximal UTIL message
size, which is exponential in the width of the DFS pseudo-tree.

The BFSDPOP algorithm requires the same number of messages as
DPOP, and hence has a linear complexity in the number of messages.
Similarly to DPOP, the temporal and space complexities of communi-
cation also depend on the maximal UTIL message size. Chen et al. [7]
prove in their article that the largest UTIL message in their BFSDPOP
algorithm is space-exponential in the number of cross-edges in the
BFS tree. They use a method which limits the number of these cross-
edges, making their algorithm more efficient than the original DPOP
algorithm. They show this experimentally by comparing the runtime
and maximal dimensions of UTIL messages of the two algorithms
when applied to three different DCOP problems. BFSDPOP has a sig-
nificantly smaller runtime than DPOP as well as slightly smaller UTIL
messages. They remark however that additional research is needed in
order to further reduce the message size.

ConcFB is one of the most promising options suggested in recent
literature. Especially as the problems grow larger and denser, ConcFB
reportedly performs 2-3 times better in performance measures such
as CPU time and number of messages sent [3]. This despite the fact
that it uses some form of synchronization in its search process. Peri
and Meisels show that an inconsistent view of the environment might
be worse than some extra idle-time in the processing due to the extra
computational effort required by backtracking the search [19]. All of
this makes ConcFB one of the most promising options when it comes
to complete algorithms in real time applications.

Adopt was the first complete DCOP algorithm presented in the lit-
erature. Even though it shares many features with ConcFB, such as be-
ing asynchronous and fully decentralized, it comes out short in terms
of performance compared to ConcFB [3]. This is mostly due to Con-
cFB being a more advanced version, utilizing parallel processing and
early pruning to a larger extent.

4.2 Applicability
In the previous sections we have reviewed seven algorithms and com-
pared them based on their space complexity and communication re-
quired between agents. Nevertheless, the performance of each algo-
rithm is heavily dependent on the properties of the problem at hand;
one strategy of problem solving may work better than others, depend-
ing on the properties. To help scientists pick an algorithm which is
most suitable for solving their problem, we have constructed a guide-
line, presented in Figure 5. Here we have created a decision tree-like
structure, based on the setting in which each treated algorithm per-
forms well. The recommendations are based on the structural prop-
erties described in section 3 and findings reported in section 4.1. We
note that the applicability also depends on the computational resources

SC@RUG 2019 proceedings

51

available. This is since some of the algorithms are highly paralleliz-
able, but also since the memory and communication complexity varies
between the algorithms.

SynchBB is suitable for small problems or educational purposes
due to its simplicity (see Figure 5). In problems where the agents can-
not be ordered, OptAPO is recommended since it is the only algorithm
that does not require a pseudo-tree structuring of the agents. Similarly,
PC-DPOP is a good choice if partial sharing of information is at the
nature of the problem. In general, ConcFB performs better on large
problems than other existing algorithms. The only scenario where it is
not a good choice is when the resources for communication between
agents is small, since the communication complexity of ConcFB is
exponential. In this case, either BFSDPOP or PC-DPOP is recom-
mended, depending on the amount of memory resources available.

Fig. 5: Guideline for choosing a complete DCOP algorithm, depend-
ing on the properties of the problem and the available computational
resources.

5 CONCLUSION

Seven algorithms have been reviewed and evaluated to clarify the cur-
rent state of the field of complete DCOP algorithms. So far, the main
efforts in improving the efficiency has been concentrated on increasing
the amount of parallelization and early pruning of the search space.

The best performing complete DCOP algorithm to date is ConcFB,
which can be ascribed to its heavily parallelized search structure and
partial synchronization of knowledge between agents. The latter espe-
cially allows for restricting the search space by abandoning low poten-
tial solutions at an early stage. This feature increases the incentive to
further investigate other options of partially synchronized algorithms.

However, it can be noted that most complete algorithms are cur-
rently not suitable for large scale problems due to their large computa-
tional needs. There is still a need to improve existing methods, possi-
bly by further exploiting parallel processing within subproblems of the
DCOP. Another idea might be to develop pre-processing methods that
filter out poor assignment options from the domain of the variables in
order to reduce the search space.

Even though ConcFB is the best performing algorithm in its own
category of DCOP problems, we have seen that a wide range of al-
gorithms can be considered the most suitable one depending on the
structure of the problem. In conclusion, the problem needs to be care-
fully analysed before making a choice for a DCOP algorithm.

REFERENCES

[1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009.

[2] Victor Lesser, Milind Tambe, and Charles L. Ortiz, editors. Distributed
Sensor Networks: A Multiagent Perspective. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2003.

[3] Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent for-
ward bounding for distributed constraint optimization problems. Artificial
Intelligence, 193:186–216, 2012.

[4] Allan R Leite, Fabricio Enembreck, and Jean-Paul A Barthes. Distributed
constraint optimization problems: Review and perspectives. Expert Sys-
tems with Applications, 41(11):5139–5157, 2014.

[5] Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe.
Asynchronous algorithms for approximate distributed constraint opti-
mization with quality bounds. volume 1, pages 133–140, 08 2010.

[6] William Yeoh, Ariel Felner, and Sven Koenig. An asynchronous branch-
and-bound dcop algorithm. J. Artif. Intell. Res. (JAIR), 38:85–133, 05
2010.

[7] Ziyu Chen, Zhen He, and Chen He. An improved dpop algorithm based
on breadth first search pseudo-tree for distributed constraint optimization.
Applied Intelligence, 47(3):607–623, 2017.

[8] Zhen He and Zi-yu Chen. BFSDPOP: DPOP Based on Breadth First
Search Pseudo-Tree for Distributed Constraint Optimization, pages 809–
816. 2017.

[9] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint
satisfaction problem. In International Conference on Principles and
Practice of Constraint Programming, pages 222–236. Springer, 1997.

[10] R. Mailler and V. Lesser. Solving distributed constraint optimization
problems using cooperative mediation. In Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents and Multiagent Sys-
tems, 2004. AAMAS 2004., pages 438–445, July 2004.

[11] Adrian Petcu and Boi Faltings. Dpop: A scalable method for multiagent
constraint optimization. pages 266–271, 01 2005.

[12] Adrian Petcu and Boi Faltings. Pc-dpop: A partial centralization exten-
sion of dpop. 2006.

[13] Adrian Petcu. A class of algorithms for distributed constraint optimiza-
tion. Frontiers in Artificial Intelligence and Applications, 194, 07 2009.

[14] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo.
Adopt: Asynchronous distributed constraint optimization with quality
guarantees. Artificial Intelligence, 161(1-2):149–180, 2005.

[15] William Yeoh, Ariel Felner, and Sven Koenig. Idb-adopt: A depth-first
search dcop algorithm. In International Workshop on Constraint Solving
and Constraint Logic Programming, pages 132–146. Springer, 2008.

[16] Toru Ishida, Les Gasser, and Hideyuki Nakashima. Massively Multi-
Agent Systems I: First International Workshop, MMAS 2004, Kyoto,
Japan, December 10-11, 2004, Revised Selected and Invited Papers, vol-
ume 3446. Springer, 2005.

[17] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed
constraint optimization problems and applications: A survey. CoRR,
abs/1602.06347, 2016.

[18] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jen-
nings. Decentralised coordination of low-power embedded devices using
the max-sum algorithm. In Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems-Volume 2, pages
639–646. International Foundation for Autonomous Agents and Multia-
gent Systems, 2008.

[19] O Peri and A Meisels. Synchronizing for performance: Dcop algo-
rithms. ICAART 2013 - Proceedings of the 5th International Conference
on Agents and Artificial Intelligence, 1:5–14, 01 2013.

Distributed Constraint Optimization: A Comparison of Algorithms – Sofie Lövdal and Elisa Oostwal

52

An overview of data science versioning practices and methods

Thom Carretero Seinhorst Kayleigh Boekhoudt

Abstract—Version control is important in software development, it makes it easy to manage collaboration between developers and
to keep track of changes. Methods like Git and Subversion (SVN) are very popular, but are not ideal for controlling versions of data.
This is mainly due to the size of the datasets used in data science and the amount of versions created. Data science therefore
need its own versioning system so that data scientists can better collaborate, test, share and reuse data. There are numerous less
familiar methods available for data science versioning, such as the Dataset Version Control System (DSVC), which is a system for
multi-version dataset management, and the platform DataHub. In addition, there is also the method OrpheusDB, which is a dataset
version management system that is built on top of relational databases. The storage representation is also an important aspect when
it comes to data version control. In this paper we aim to compare the different methods for data science versioning. From the methods
we compared, there is not one that is the ultimate best. Each method comes with its advantages and disadvantages, and can be
used depending on the requirements of the research.

Index Terms—data science, data versioning, data control, DSVC, DataHub, OrpheusDB

1 INTRODUCTION

Version control systems have been around for a while and play an im-
portant role in software development [6]. It makes it easy to manage
collaboration between developers and to keep track of changes. In
a general workflow, all source code created in a software project is
contained in a (de)centralized repository to which all project mem-
bers have access. This version control system (VCS) allows for veri-
fiability, quality and access control. Moreover, it allows for reverting
unintentional changes. Version control in data science, however, is rel-
atively new and has room for improvement [6]. Research in the field
of data science can be a bit tricky and disorganised, especially because
of the different stages involved such as collecting, exploring, cleaning
and transforming the data, using the data to create a model and vali-
dating the model. These stages are often repeated multiple times. As a
result of this cycle, you can end up with different versions of the data
you started with. Data science therefore needs its own versioning sys-
tem so data scientists can better collaborate, test, share and reuse data.
These methods already exist and a couple will be discussed in this pa-
per. Researchers want to collect, analyze and collaborate on datasets,
to retrieve insights or to distil scientific knowledge from it [1].

A survey filled in by computational biology groups at MIT de-
scribes why a dataset versioning system is important [1]:

• Storing cost: teams of students, faculty and researchers share ap-
proximately 100TB of data via a networked file system which
costs about $800/TB/year to store and maintain using a lo-
cal provider for unlimited read/write access. This amounts to
$100K/year

• Duplication: there are significant but unknown amounts of dupli-
cation of data. Simple file-level duplicate detection is insufficient
since there is often some modification or extension in duplicates

• Deleting data: space (or cost) constraints lead to frequent request
from the person in charge to reduce storage. This can cause stress
since researcher do not know who is using their data or whether
a particular dataset is essential for reproducibility of some ex-
periment. Researchers would feel more comfortable deleting
datasets if they knew that the dataset could be re-generated or
if it were possible to track when a dataset had last been used.

• Retrieve versions: researchers would prefer a transparent mech-
anism to access data and write versions in order to be backward
compatible with pre-existing scripts.

• Thom Carretero Seinhorst is a MSC student at the University of
Groningen.

• Kayleigh Boekhoudt is a MSC student at the University of Groningen.

• Metadata management: researchers do not make heavy use of
metadata management tools (like relational databases and wikis)
to organize and share knowledge due to perceived cost of adding
and maintenance of the data.

In this paper we aim to bring more awareness to data science ver-
sioning and compare different versioning methods. This paper is or-
ganized as follows. In section 2 we elaborate on related work in the
field of versioning in data science. Followed by section 3 in which we
discuss different data versioning methods. In section 4 we elaborate
on different ways to store the data. Thereafter, we compare the meth-
ods discussed in this paper and make a conclusion about our research
in section 5. Finally, future work will be discussed in section 6.

2 RELATED WORK

In software development, there are many well-known version control
systems (VCS) available, for instance, Git and one of its platforms
GitHub. Git and SVN (Subversion) have proved useful for collabo-
rative source code management, but they are inadequate for manag-
ing datasets for several reasons. First, using a version control system,
e.g. Git leads teams to resort to storing data in file systems, often us-
ing highly ad hoc and manual version management and sharing tech-
niques. It is not uncommon to see directories containing thousands
of files with names like data1-v1.csv, data1-v2.csv, data1-v1-after-
applying-program-XYZ.txt, etc., possibly distributed and duplicated
across multiple cloud storage platforms [1]. Second, the underlying
algorithms are not optimized for large files or repositories, and can be
painfully slow in such settings. Third, Git and SVN are based on a
model of either ”checking out” the entire repository (Git), or keeping
two copies of each file in the working directory (SVN). This may not
be practical when dealing with large datasets. Fourth, Git and SVN
employ Unix-diff-like differencing semantics when merging changes.
For text files, this means they identify overlapping ranges of edits, and
allow changes in non-overlapping regions. For relational datasets, this
merge policy can be both too restrictive and miss conflicts [2].

Most data analytic software like SAS, Excel, R and Matlab lack
dataset versioning management capabilities [1]. There are a few
methods available for data science versioning, such as the Datahub
MIT project and OrpheusDB, which we will discuss in this pa-
per. There are also several startups and projects on providing basic
dataset management infrastructure for data science applications, such
as CKAN (ckan.org), Domo (domo.org), Enterprise Data Hub (cloud-
era.com/enterprise), Domino (dominoup.com), Amazon Zocalo and
Dat Data (dat-data.com) [1]. To our knowledge, there has not been
research that gives an overview and comparison of different methods
that are available for versioning data.

53

3 DATA VERSIONING

A good practice to start with in data versioning is to treat data as im-
mutable [6]. Save only one version of the raw data and never overwrite
it. This is necessary for reproducibility. Researchers need to be able
to use this data to replicate each others work. This is also important to
restore processed data in the case of unintended actions or corruption.

After expensive and time consuming processing of data, one might
want to export and save the results. Data can be difficult to ver-
sion control due to its size and variety. The rise of the internet,
smart phones and other technologies has produced a vast diversity
of datasets from interactions on social media to medical records [1].
These datasets are diverse, varying from small to extremely large, from
structured (tabular) to unstructured, and from complete to noisy and
incomplete.

3.1 Ad hoc

Generated dataset versions are often stored in an ad hoc manner, typi-
cally in shared (networked) file systems, dumped to a disk or uploaded
to a cloud [3]. A disadvantage of this practice is that this can eas-
ily use up the storage space on the disk or in the cloud. It is bad to
waste storage space by saving different versions of slightly different
data. For instance using 5GB to store data when you only changed
1 byte in the original 5GB file [6]. This challenge might not be that
big of an issue when dealing with small amounts of data. However,
in data science, data scientists repeatedly transform their datasets in
many ways, by normalizing, cleaning, editing, deleting, and updat-
ing the data throughout the research. Another challenge of the ad hoc
method is that it makes collaboration between researchers difficult. It
takes a lot of effort to effectively manage and make sense of the data.
The naming convention usually only makes sense to the person who
created the files/chose the names, therefore it is difficult to determine
the correct version. It is easy to make unintended changes, overwrite
or delete data. This negatively affects the quality and reliability of the
data. Finally, it is impossible to query across different versions of data
using the ad hoc approach.

3.2 Database

In order to be able to query across datasets companies store their data
in databases. One simple way of storing dataset versions would be to
represent the dataset as a table in a database, and add an extra attribute
corresponding to the version number [3]. However, this approach is
extremely wasteful since each record is repeated as many times as the
number of versions it belongs to. Data science teams often collab-
oratively analyze datasets, generating dataset versions at each stage
of iterative exploration and analysis. There is a pressing need for a
system that can support dataset versioning, enabling such teams to ef-
ficiently store, track, and query across dataset versions. While Git
and SVN are highly effective at managing code, they are not capa-
ble of managing large unordered structured datasets efficiently, nor do
they support analytic (SQL) queries on such datasets. However, source
code version control systems are both inefficient at storing unordered
structured datasets, and do not support advanced querying capabili-
ties, e.g., querying for versions that satisfy some predicate, performing
joins across versions, or computing some aggregate statistics across
versions [1].

3.3 DSVC

Dataset Version Control System (DSVC) is a system for multi-version
dataset management. DSVC’s goal is to provide a common foundation
to enable data scientists to capture their modifications and minimize
storage costs. Further, DSVC makes it possible to use a declarative
language to reason about versions, identify differences between ver-
sions and share datasets with other scientists. DataHub is a hosted
platform, built on top of DSVC, that not only supports interaction ca-
pabilities, but also provides a number of tools for data cleaning, data
search and integration, and data visualization [1].

Fig. 1. Components and Architecture of DSVC and DataHub [1]

3.3.1 System Architecture

The high level architecture of DSVC is depicted in Figure 1. At
the center of the DSVC there is the dataset version control proces-
sor (DSVCP), which processes and manages versions. The modeling
of DSVC consist of two concepts:

• a table containing records
• a dataset consisting of a set of tables

For structured data, every record in for example a file is stored in a
table. Each record is given a key and has a set of attributes associated
with it, which is referred to as the schema. Each table has the same
schema for every single record. For completely unstructured data, a
single key is enough to refer to an entire file. The benefit of this model
is that it offers flexibility by making it possible to store a wide range
of data at different levels of structure.

A dataset consists of a set of tables, including relationships between
them (e.g. foreign key constraints). The versioning information of
datasets is stored in a version graph. A version graph is a directed
acyclic graph where the nodes represent the datasets and the edges il-
lustrate relationships between versions as well as provenance metadata
provided. Provenance metadata is information concerning the creation
of the version. It indicates the relationship between two versions and is
generated by the user or automatically derived whenever a new version
of a dataset is created. Examples of provenance metadata are [1]:

1. the name of the program that generated the new version
2. the commit id of the program in a code version control system

like Git
3. the identifiers of any other datasets or data objects that may have

been used in creating the new version

Fig. 2. Example of a versioning graph

A directed edge from node Vi to node V j indicates that either V j is a
new version of Vi (e.g. V2.1) or V j is a new branch that is created as
a copy of Vi and will evolve separately (e.g. V3). The edge can also
imply that V j is obtained by applying an operation to Vi (e.g. V4) or by
the merging of branches (e.g. V5).

An overview of data science versioning practices and methods – Thom Carretero Seinhorst and Kayleigh Boekhoudt

54

3.3.2 Versioning API

DSVC provides a versioning API (VAPI) that, at a high level, is similar
to Git API but comes with additional functionality. VAPI, similar to
Git, contains the commands:

Git
init create a new local repository
checkout -b create a new branch
merge merge a different branch into your active branch
commit commit changes to head (but not yet to the remote

repository)
checkout – undo local changes
clone create a working copy of a local repository

DSVC
create create a new a dataset
branch create a new version of a dataset
merge merge two or more branches of the dataset
commit make local (uncommitted) changes to the dataset

permanent
rollback undo local changes
checkout create a local copy of a branch that is either a full

copy, a lazily retrieved copy

Table 1. DSVC commands similar to Git

In addition to the commands above, the VAPI, like Git, allows users
to specify hooks that fire off custom scripts when certain important
actions occur. The VAPI hooks include checking commit messages
for spelling errors, enforcing project coding standards, notifying team
members of a new commit and pushing the code to production [4].

Furthermore, hooks notify applications to run off the newest ver-
sion of a dataset (e.g. a dashboards plotting aggregated results), or
tracking data products (results from statistical analysis) derived from
the dataset. Hooks will then be used to re-run applications or update
the data products. Instead of triggers, hooks can also be used to detect
and correct errors.

3.3.3 Versioning query language

In addition to the API, DSVC supports a versioning query language
named VQL, which is an enhanced version of SQL that allows users
and applications to query multiple versions at once. VQL queries re-
turn results that are either data items from tables or pointers to versions
(datasets).

Fig. 3. DataHub query quadrant

Figure 3, shows four ways in which VQL can be used. The lower-
left quadrant is the standard SQL query that (by default) will be exe-
cuted on the master version. These types of queries have data (records)
as input as well as output. It is also possible to execute queries for spe-
cific versions. This type of query falls in the upper-left quadrant. The
query specifies data, but also one or more versions. On the other hand,
it is also possible to retrieve version numbers. For instance, it is pos-
sible to return all the version numbers that meet a certain predicate
based on data (bottom-right quadrant). Furthermore, it is possible for
VQL to return version numbers that meet a predicate based on versions
(top-right quadrant). You can, for example, ask DataHub to return the
version numbers of a dataset that differ X amount of records with a
specific version of the dataset.

3.4 OrpheusDB

While Git and SVN (Subversion) are great at source code version
control, they are unfortunately unable to efficiently support large un-
ordered datasets. Moreover, they cannot support the full range of op-
erations supported natively by SQL.

OrpheusDB is a dataset version management system that is built
on top of standard relational databases. It inherits much of the same
benefits of relational databases, while also compactly storing, track-
ing, and recreating versions on demand [3]. OrpheusDB has been
developed as open-source software (orpheus-db.github.io) and is an
offshoot of the MIT DataHub project. OrpheusDB is a hosted system
that supports relational dataset version management, with three design
innovations. To start with, OrpheusDB is built on top of a traditional
database. It is thus inherits all of the standard benefits of relational
database systems. Secondly, OrpheusDB supports advanced querying
and versioning capabilities, via both SQL queries and git-style ver-
sion control commands. Lastly, OrpheusDB uses a sophisticated data
model, coupled with partition optimization algorithms, to provide ef-
ficient version control performance over large-scale datasets.

3.4.1 System Architecture

Fig. 4. Components and Architecture of OrpheusDB [3]

The high level architecture of OrpheusDB is depicted in Figure 4. At
the center of OrpheusDB there is a collaborative versioned dataset
(CVD) to which one or more users can contribute. Each CVD corre-
sponds to a table [3], which is a set of tuples (records with attributes).
The CVD essentially contains many versions of that table. A version
is an instance of the table, specified by the user and containing a set of
records. Versions within the CVD are related to each other in a similar
way as the DSVC via a version graph. The version graph represents
how the versions were derived from each other.

Records in a CVD are immutable, i.e., any modifications to any
record attributes result in a new record, and are stored and treated
separately within the CVD [3]. In general, there is a many-to-many
relationship between records and versions. Each record can belong to
many versions and each version can consist of many records. Each
version has a unique version id (vid) and each record has its unique
record id (rid), which is used to identify immutable records within
the CVD and are not visible to end-users of OrpheusDB [3]. Fur-
thermore, the table corresponding to the CVD may have primary key
attributes that uniquely specify tuples. This implies that for any ver-
sion no two records can have the same values for the primary key at-
tribute(s). However, across versions, it is possible for multiple records
to have the same the primary key attribute(s). OrpheusDB can support
multiple CVDs at a time.

OrpheusDB consists of six core components [3]:

• the query translator: responsible for parsing input and translating
it into SQL statement understandable by the underlying database
system

• the access controller: monitors user permissions to various tables
and files within OrpheusDB

SC@RUG 2019 proceedings

55

• the partition optimizer: responsible for periodically re-
organizing and optimizing the partitions via a partitioning algo-
rithm LyreSplit along with a migration engine to migrate data
from one partitioning scheme to another

• the record manager: records and retrieves information about
records in CVDs

• the version manager: records and retrieves versioning informa-
tion, including the rids each version contains as well as the meta-
data for each version

• the provenance manager: responsible for the metadata of uncom-
mitted tables or files, such as their parent version(s) and the cre-
ation time

The underlying Database Management System (DBMS) maintains
CVDs as well as metadata about versions. In addition, the underly-
ing DBMS contains a temporary staging area consisting of all of the
materialized tables that users can directly manipulate via SQL without
going through OrpheusDB [3].

3.4.2 OrpheusDB API
Users interact with OrpheusDB via the command line, using both git-
style version control commands, as well as SQL queries [3]. To make
modifications to versions, users can do two things. Users can either
use SQL operations issued on the relational database that OrpheusDB
is built on top of, or can alternatively operate on them using program-
ming or scripting languages [7]. There are version control commands
that users can use on CVDs much like they would with source code
version control. OrpheusDB supports an important subset of Git com-
mands enabling checkout, commit, init, create user, config, whoami,
ls, drop, and optimize. The checkout operation materializes a specific
version of a CVD as a newly created regular table within a relational
database that OrpheusDB is connected to. The commit operation adds
a new version to the CBVD by making the local changes made by the
user on their materialized table visible to others. In addition to check-
out and commit, OrpheusDB also supports other commands:

• diff : a standard differencing operation that compares two ver-
sions and outputs the records in one but not the other

• init: initialize either an external csv file or a database table as a
new CVD in OrpheusDB

• create user, config, whoami: allows users to register, login, and
view the current user name

• ls, drop: list all the CVDs or drop a particular CVD
• optimize: OrpheusDB can benefit from intelligent incremental

partitioning schemes (enabling operations to process much less
data)

In order to support data science workflows, OrpheusDB additionally
supports the use of checkout and commit into and from csv (comma
separated value) files via slightly different flags. The csv file can
be processed in external tools and programming languages such as
Python or R, not requiring that users perform the modifications and
analysis using SQL.

OrpheusDB supports the use of SQL commands on CVDs via the
command line using the run command, without having to materialize
the appropriate versions. Users can run SQL commands on CVDs
which either takes a SQL script as input or the SQL statement as a
string. These SQL commands use the special keywords: VERSION,
OF, and CVD. Moreover, users can use SQLs to explore versions that
satisfy some property by applying aggregation grouped by version ids.
When writing SQL queries, users can be entirely unaware of the exact
representation, and instead refer to attributes as if they are all present
in one large CVD table. Internally, OrpheusDB translates these queries
to those that are appropriate for the underlying representation.

4 STORAGE REPRESENTATION

Storage representation is also an important aspect when it comes to
data version control. Both methods DSVC and OrpheusDB use ver-
sioning graphs to store relationships between versions and provenance
metadata. However, the data can be stored using different represen-
tations. Bhardwaj, et al. [1] discuss two methods to store data using
DSVC. OrpheusDB uses a hybrid approach for representing CVDs [3].

4.1 DSVC - Version-First Representation

For each version, the collection of records that are part of that version
are stored in the storage graph. This is the most logical representation
because it makes it easy for users to view all of the records in a partic-
ular version. This is one of the possible ways to store data of different
versions using DSVC.

Fig. 5. Example of relational tables to encode 4 versions, with deleted
bits [1]

In short, a branching history of versions is encoded with one or
more materialized versions (retrieved from other versions) and a col-
lection a deltas (differences) representing non-materialized versions.
The retrieval queries can be answered by walking the storage graph
appropriately. This method is relatively simple to implement. When-
ever the user performs a branch command, a new table, which has
the same schema as the base table, is created to represent the changes
made to the new branch. In addition, each record is extended with a bit
that allows the user to track whether the record is active in a particular
version [1]. For instance, the extra bit equals 1 if a new record has
been inserted and 0 if a record has been deleted. Figure 5 shows an
example of this type of representation in a storage graph. This storage
graph has two branches. The “Master” branch and the branch “Version
1”. The original data (Version 0) is a table containing two records. At
the head of the “Master” branch, the table consists of the names Sam,
Amol and Mike (notice that Mike has been marked as added). At the
head of the “Version 1” branch (labeled “Version 1.1”), the table con-
tains the names Sam and Aditya (notice that Amol has been marked as
deleted).

This approach is still a work in progress and has a few chal-
lenges [1]. First of all, finding the best way to store the delta between
versions so that users can retrieve one version using the other and the
delta. In figure 5, the extra bit is enough to retrieve the data in the
tables because the tables were created using INSERT/DELETE com-
mands. But, it is also possible to create new tables using more compli-
cated scripts. The problem of efficiently encoding a graph of versions
is also challenging. Just because two versions are adjacent in the ver-
sioning graph does not mean that they should be stored as differences
against each other. If the difference between two non-adjacent ver-
sions (Vi and V j.1) is smaller than two adjacent versions (V j and V j.1)
than it might be more efficient to store V j.1 against Vi instead of V j.

4.2 DSVC - Record-First Representation

For this approach, data is encoded as a list of records, each annotated
with the version it belongs to [1]. This is another way to store data us-
ing DSVC. The table below shows the record-first representation of the
storage graph displayed in Figure 5. The advantage of this represen-
tation over the version-first representation is that it makes it easier to
retrieve the versions with records that satisfy a certain properties. For
example, it takes less effort to find the versions that contain records of
people with daily wages higher or equal to $100 using this approach
compared to the version-first method.

An overview of data science versioning practices and methods – Thom Carretero Seinhorst and Kayleigh Boekhoudt

56

Name Daily Wage Version
Sam 50 {Version 0, Master, Version 1, Version 1,1}
Amol 100 {Version 0, Master, Version 1}
Mike 150 {Master}
Aditya 80 {Version 1, Version 1,1}

Table 2. Record first representation of the storage graph in Figure 5

Another example of a record-first representation is a temporal
database, which is a database capable of storing data that is time-
based. Medical applications, for example, may be able to benefit from
temporal database support. A record of a patient’s medical history
can have little meaning unless the test results, e.g. the temperatures,
are associated with the times at which they are valid. This might be
necessary to help clarify why the patients’ temperature changed at a
certain period in time. On the other hand, this representation is not
ideal for retrieving records of a specific version.

4.3 OrpheusDB - Split-by-rlist

Fig. 6. Split-by-rlist for protein interaction data [5]

OrpheusDB uses a hybrid of split-by-rlist and a table-per-version to
represent CVDs [3]. The split-by-rlist approach separates the data
from the versioning information into two tables as shown in Figure
6. The first table, the data table, is a collection of all the records that
appear in the versions. The second table, the versioning table, stores
which version contains which record. The versioning table has the
primary key attribute vid and the attribute rlist, which contains an ar-
ray of the records present in that particular version. This approach
allows easy insertion of new versions without having to modify exist-
ing version information. However, the checkout time grows with the
size of the dataset [3] because it requires a join between the two tables
to retrieve any version records. On the other hand, a-table-per-version
approach, where each version is stored in a separate table, has very
low checkout times because it only requires retrieving all the records
in a specific table [3].

Fig. 7. Version-Record Bipartite Graph & Partitioning of Figure 6 [3]

Let V = {v1,v2, ...,vn} be the n versions and R = {r1,r2, ...,rm}
be the m records in a CVD. The relationship between records and
versions can be represented using a version-record bipartite graph
G = (V,R,E), where E is the set of edges. An edge between vi and
r j exists if the version vi contains the record r j. Figure 7(a) illustrates
the bipartite graph of the protein data used in Figure 6. The partition-
ing algorithm LyreSplit finds the best partitions P = {P1,P2, ...,Ps} by
minimizing checkout cost and storage cost [3]. The algorithm parti-
tions G into smaller subgraphs denoted as Pk = (Vk,Rk,Ek), where Vk,
Rk, Ek represent the set of versions, records and edges in partition Pk
respectively. Figure 7(b) shows a possible way to partition the bipar-
tite graph in Figure 7(a). Partition P1 contains version v3 and v4 while
partition P2 contains versions v3 and v4.

5 CONCLUSION

In this paper, we have explained four methods for the comparison of
version control in data science: ad hoc, database, DSVC&DataHub
and OrpheusDB. While Git and SVN are highly effective at manag-
ing code, they are not capable of managing large unordered structured
datasets efficiently, nor do they support analytic (SQL) queries on such
datasets. Table 3 gives an overview of the advantages and disadvan-
tages of the data versioning methods discussed in this paper. From
this we conclude that, when collaborating with others the best solution
is either DSVC or OrpheusDB. If the data is already stored in a rela-
tional database then we recommend researchers to opt for OrpheusDB
over DSVC because it is an add-on can be easily used with this type
of database. No substantial changes is necessary. We only encourage
using the ad hoc approach when the datasets are relatively small and
you know that you will not be making a lot of changes to the data.
In this case, we would also advise researchers to save the code that
generated the datasets. If the ad hoc method is not suitable because it
is also necessary to query over the datasets, we suggest researchers to
use a relational database to store the versions in tables.

Method Advantages Disadvantages
Ad hoc • quick solution

• easy to store, for example in a file system or cloud
• difficult to collaborate with others
• not ideal for large datasets (use up storage space)
• difficult to keep track of changes
• easy to make unintended changes (delete/overwrite)

Database • query across datasets • difficult to collaborate with others
• a table per version is not ideal for large datasets

DSVC + DataHub • minimize storage cost
• query across different versions
• able to keep track of changes
• two possible ways to store data (version-first, record-first)
• supports Git like commands and SQL like queries (VQL)

• designed to support data versioning ”from the ground up” and
not easily combined with existing relational database
• finding the best way to store the delta between versions so that users can
retrieve one version using the other and the delta
• finding the best way to efficiently encode a graph of versions

OrpheusDB • query across different versions
• able to keep track of changes
• supports collaborative data analytics using a traditional relational database
• the storage representation combines minimizing the checkout cost and the storage cost
• supports Git like commands, SQL and programming languages such as Python and R

• the foundation is an existing relational database

Table 3. Advantages and disadvantages of the different methods

SC@RUG 2019 proceedings

57

We realize this is just the beginning of a new era of version control
in data science and we expect many more of these methods to appear,
however we do not expect the core principles to differ much from what
we discussed.

6 FUTURE WORK

For future work on data versioning systems, we recommend the fol-
lowing options:

• Research the best way to represent/store the delta using version-
first approach (DSVC)

• Research the best storage representation for DSVC (record-first
versus version-first

• Compare the storage representation of data versioning methods
based on storage cost

• Compare the storage representation of data versioning methods
based on checkout cost

• Research other data versioning methods that are available, for
example for less structured data

REFERENCES

[1] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore,
S. Madden, and A. Parameswaran. Datahub: Collaborative data science &
dataset version management at scale, September 2014.

[2] A. Chavan, S. Huang, A. Deshpande, A. J. Elmore, S. Madden, and
A. Parameswaran. Towards a unified query language for provenance and
versioning, June 2015.

[3] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. Parameswaran. Orpheusdb:
Bolt-on versioning for relational databases, March 2017.

[4] M. Hudson. Git hooks, 2019.
[5] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth,

P. Mnguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, and C. von
Mering less. The string database in 2011: functional interaction networks
of proteins, globally integrated and scored., January 2011.

[6] S. Wang. Versioning data science, 2017.
[7] L. Xu, S. Huang, S. Hui, A. J. Elmore, and A. Parameswaran. Orpheusdb:

A lightweight approach to relational dataset versioning, May 2017.

An overview of data science versioning practices and methods – Thom Carretero Seinhorst and Kayleigh Boekhoudt

58

Selecting the optimal hyperparameter optimization method: a
comparison of methods

Wesley Seubring, Derrick Timmerman

Abstract— One of the key-problems in the field of machine learning is the optimisation of hyperparameters. There exist several
optimisation methods to automate this procedure. This paper compares the well-known hyperparameter optimisation methods Grid
Search and Random Search to newer and more advanced methods such as Spectral Analysis, Bayesian Optimisation and CMA-ES
Optimisation. The findings give insight in when the methods are best used in practice.
The insights are obtained by comparing efficiency, scalability and usability in practice for each optimisation method. Efficiency is
measured by the speed of a method and scalability by its possibility to scale across multiple machines. For usability, we estimated
how easily each method is put into use.
The results of this research show that all methods have their own uses within the field of machine learning. Although Grid Search and
Random Search are useful methods, the remaining methods show improvement if the required expertise is available. Spectral Anal-
ysis is the most efficient method for parallel hyperparameter optimisation, while Bayesian Optimisation is most efficient for sequential
hyperparameter optimisation. Grid Search is ideal for lower dimensional (D < 2) search spaces, and Random Search is an overall
solid method that scales well. CMA-ES, however, is especially attractive for larger data sets, given sufficient time is available.

Index Terms— Hyperparameter optimisation, machine learning, model selection, Grid Search, Random Search, Spectral analysis,
Bayesian Optimisation.

1 INTRODUCTION

During the last couple of years, machine learning models have
shown an increase in complexity in order to deal with the explosively
increased amount of available data. This complexity comes with an
increased number of hyperparameters that have to be optimised for a
given model. These so-called ”hyperparameters” are the inputs for a
machine learning algorithm that control for example the complexity
of a model, but they can also be parameters that specify the learning
algorithm itself. An example of a hyperparameter is the learning
rate in Stochastic Gradient Descent that controls how large of a
step to take in the direction of the negative gradient. However, as
opposed to regular parameters, which are optimised by the algorithm
itself, hyperparameters are fixed settings and initialised prior to the
learning process of a model. Therefore, hyperparameters have to be
determined in advance by a professional or more preferably by an
algorithm.

The quality of a machine learning model, i.e. the ability of a
model to correctly predict or classify unseen data, depends critically
on the configuration of hyperparameters [9]. Let us take the learning
rate in Stochastic Gradient Descent as an example again. Using
a learning rate that is too high may overshoot the solution as it
can cause the algorithm to miss a local optimum and diverge [3],
while using a too low learning rate drops the speed of convergence
drastically [5]. Therefore, it is important to obtain the optimal
hyperparameters. However, as the number of possible combinations
grows exponentially with the number of hyperparameters, selecting
the optimal combination is not a straight-forward process [7]. This
problem, the identification of good values for hyperparameters, is
called the problem of hyperparameter optimisation [2].

The naive approach to determine the optimal hyperparameter
values would be to manually try different values for each hyperparam-
eter and apply these combinations to a validation data set, to estimate
the best performing one. Fortunately, there are optimisation methods

• Wesley Seubring, E-mail: w.seubring@student.rug.nl.
• Derrick Timmerman, E-mail: derricktimmerman92@gmail.com

Manuscript received 9 April 2019.
For information on obtaining reprints of this article, please send
e-mailto:derricktimmerman92@gmail.com.

available that automate this procedure. With these methods, large
amounts of different (i.e. unique) combinations can be evaluated in
a relatively short amount of time compared to doing this manually.
However, which method to use is not always a trivial decision as each
method comes with its own pros and cons.

The aim of this paper is to serve as a guide in the field of ma-
chine learning, that could support professionals in their decision
regarding an optimisation method.

While other algorithms are available, we only focus on five dif-
ferent methods: the two most commonly used ones Random Search
and Grid Search [2, 10], Spectral Analysis [7], Bayesian Optimisation
[8] and Co-variance Matrix Adaptation Evolution Strategy [18].
The first two methods are well-known and already often applied
to machine learning models, whereas the last three methods are
relatively new and are less frequently applied to machine learning
models in practice [14].

These different methods are explored in depth and compared
against each other, based on efficiency, scalability and usability
in practice. By comparing these three characteristics we assume
sufficient information is presented to give the professional a first
impression of the best optimisation method to choose for a given
problem. In addition to these three characteristics, we could also have
included the comparison of the actual quality of the set of optimal
hyperparameters. However, a simulation study would be necessary.
Therefore, only efficiency, scalability and usability in practice are
taken into account, which are measured as follows:

1. Efficiency: the efficiency of a method is based on how rapidly it
determines the optimal hyperparameters. Scalability is not taken
into account while estimating the efficiency.

2. Scalability: the scalability of a method is measured by its ability
of parallel processing.

3. Usability in practice: the usability in practice of a method is
based on how easy a method can be included or applied to a
problem, e.g. the availability of methods in packages or frame-
works.

In addition to the methods evaluated in this paper, more hyperparam-
eter optimisation methods exist. However, these are not the focus of

59

the current work. Examples of these optimisation methods are:

1. Gradient Based: method for optimising multiple hyperparam-
eters, based on the computation of the gradient of a model-
selection criterion with respect to the hyperparameters. [15, 1]

2. Population Based: as stated in [11], Population Based Training
(PBT) is a joint learning process that combines both hyperparam-
eter search and model training into one single loop. Therefore,
the outcome of PBT is not only a hyperparameter schedule but
also a set of high performing models.

3. Bandits: Bandits is an optimisation method that focuses on
speeding up Random Search through adaptive resource alloca-
tion and early-stopping. An example algorithm for this frame-
work is HYPERBAND [9].

4. Radial Basis Function Optimisation: A deterministic and effi-
cient hyperparameter optimisation method that employs radial
basis functions as error surrogates. This optimisation method
is optimised for deep learning algorithms as there many fewer
function evaluations required compared to Bayesian Optimisa-
tion, which are incredibly computationaly expensive for a deep
learning algorithm [12].

The paper is organised as follows: in section 2 the hyperparameter
optimisation problem is explained with some additional information
to ensure the reader is able to grasp the different concepts. In section 4
the optimisation methods are explained with some of their most
important advantages and disadvantages. Then, in section 5 these
methods are compared to each other and this paper ends with a
conclusion in section 6.

2 BACKGROUND

The aim of hyperparameter optimisation in machine learning is to
find the hyperparameters of a given machine learning method that
return the best performance as measured on a validation set. The
hyperparameters need to be tuned by the engineer implementing the
the machine learning method.

The hyperparameter optimisation problem can be formulated
as:

γ∗ = argmin
γ ∈ Γ

f (γ) (1)

Where f (γ) is an objective score function, such as root mean-
square-error or the error rate on the validation set. γ∗ is the set of
hyperparameters that yield the lowest value of the objective function
f which indicates the optimal configuration of hyperparameters for a
given data set.

The problem with hyperparameter optimisation is that evaluat-
ing f can become extremely expensive, as each γ requires a certain
amount of time to estimate its score. To compute this score, for
each γ a machine learning model is first trained on a training set,
and subsequently validated on a validation dataset, to compute the
objective score (Figure 1). Eventually, γ is chosen that yields the
lowest objective score. The time this process takes depends for a large
extent to the size of a network that has to be trained. For example, a
Neural Network with 20 hidden units requires less time than a Neural
Network with 500 hidden units.

To account the difficulty of computing the objective function,
methods often mention that they assume oracle mode, which
describes that the objective function f is expensive to compute.

Hyperparameter
Selection

Model trainingModel
evaluation

Fig. 1. Cycle of the Hyperparameter optimisation process for the training
of a machine learning model.

3 CROSS-VALIDATION

In [16] the relation between hyperparameter optimisation and cross-
validation is described as follows:

The goal of hyperparameter optimisation is to come up with a
model based on a set of hyperparameters that yields the best
generalisation ability with respect to novel data. Given a set of hy-
perparameters, the model is determined by using training data set D.
To achieve our goal, we have to find the best set of hyperparameters,
and therefore a validation set V is necessary, that is independent of D.
As the size of data is severely limited; we employ the procedure of
cross-validation.

The procedure of cross-validation divides given data D at ran-
dom into S distinct segments {Gs,s = 1, ...,S}, and uses S - 1
segments for training, and uses the remaining one for the test. This
process is repeated S times by changing the remaining segment, and
the generalisation performance can be evaluated by using for example
the MSE (mean squared error) over all test results:

MSECV =
1
N

S

∑
s=1

∑
µ∈Gs

(yµ − y(xµ |θ̂s))
2 (2)

Here Gs denotes the s-th segment for the test, and θ̂s denotes the
optimal set of hyperparameters obtained by using D - G for training.

The extreme case of S = N (where N is the number of exam-
ples in the data set) is known as the leave-one-out (LOO) method,
often used for a small size of data [17, 16].

By using cross-validation, the hyperparameters are optimised so
that the cross-validation error MSECV is minimised.

4 OPTIMISATION METHODS

Different methods exists for finding the optimal configuration of hy-
perparameters. The methods vary from each other in the way how they
determine the optimal value for each hyperparameter.

4.1 Grid Search
From all hyperparameter optimisation methods, Grid Search is the
most naive one in the way that it searches through the entire grid
of possible hyperparameter combinations to eventually return the
optimal one. It is basically the same as trying different combinations
of hyperparameters manually and estimate their respective scores, but
then in an automated way.

As an example, assume the training of a model for a Neural
Network with ’number of layers’ and ’number of hidden units’ as the
hyperparameters that need to be optimised. In order to perform Grid
Search, it is necessary that fixed sequences of values are determined
for both hyperparameters, in order to create and train models for each
unique combination (see Table 1).

Each combination of hyperparameters correspond to a single model
(see Table 2), that can be said to lie on a point of a ’grid’ as illustrated

Selecting the optimal hyperparameter optimization method: a comparison of methods – Wesley Seubring and Derrick
Timmerman

60

Hyperparameter Values
Number of layers [1,2,4]
Number of hidden units [4,8,16]

Table 1. Examples of hyperparameters

Number of layers Number of hidden units
Model A 1 4
Model B 1 8
Model C 1 16
Model D 2 4
Model E 2 8
Model F 2 16
Model G 4 4
Model H 4 8
Model I 4 16

Table 2. Example of models which consist of unique combinations of
hyperparameters.

on the left illustration in Figure 2. The goal is to train each of these
models and evaluate their objective score. Based on the score of each
model, the set of hyperparameters associated with the model that has
the lowest objective score is returned and considered to be the optimal
one (see also Equation 1).

One benefit of Grid Search is that every possible combination
of hyperparameters is estimated. This ensures that the eventual set
of hyperparameters returned by Grid Search, performed best among
all possible combinations of hyperparameters, as no combination
is left uncovered. In addition, this method is very intuitively and
can be done with a relatively short implementation. The downside,
however, is that Grid Search suffers from the curse of dimensionality
as the number of joint values grow exponentially with the number
of hyperparameters [2]. This is especially the case if there are many
hyperparameters to tune.

A characteristic of Grid Search that could be both advantageous
and disadvantageous is the absence of feedback from previous com-
binations [4]. Especially with respect to values for hyperparameters
that perform worse, as this means that, although some hyperparameter
values have already shown to perform badly, Grid Search continues
to use these values in next combinations. However, this behaviour
could also be desirable. In [4] the following two motivations are
stated for this: first, it may not feel save to use methods which
avoid doing an exhaustive parameter search by approximations or
heuristics. The other reason is that the computational time required
to find good parameters by grid-search is not much more than that
by advanced methods if there are only a few hyperparameters to
optimise. Furthermore, the results from Grid Search are most reliable
for lower-dimensional search spaces (i.e. 1-D or 2-D) [2, 7].

4.2 Random Search
Random Search is similar to Grid Search in the way that the range
for possible values for each hyperparameter is specified by a grid.
The difference between the two methods lies in the fact that Random
Search does not perform an exhaustive search over all possible
combinations of values, but rather tries random values according
to a distribution within the given ranges. This method is more
efficient than Grid Search as there is a much better subspace coverage
compared to the inefficient subspace coverage provided by Grid
Search, which is explained in Figure 2 [2].

Although it is not guaranteed that all possible combinations are
tried, Random Search is surprisingly time-efficient for identifying
the optimal of the hyperparameter [2]. Besides, Random Search
has all the practical advantages of Grid Search (e.g. ease of im-
plementation) and only trades a small reduction in efficiency in

low-dimensional search spaces for a large improvement in efficiency
in high-dimensional search spaces. Whereas Grid Search tends to
give better results for low-dimensional search spaces, Random Search
performs better on higher-dimensional search spaces (D≥ 3) [2].

Fig. 2. This illustration shows how point grids and uniformly random
point sets differ in how they cover subspaces. Projections onto either
the x1 or x2 subspace, which is the case with Grid Search, produces an
inefficient coverage as only three different parameter values from each
of the parameters are tried, while with Random Search nine distinct
values of each of the parameters are tried [2].

4.3 Spectral Analysis
Spectral Analysis is a newer and more advanced method used for
hyperparameter optimisation. The method focuses on large sets of
discrete parameters, however, such parameters are significantly more
challenging that continuous hyperparameters [7]. To explain Spectral
analysis, let:

f : {−1,1}n 7→ [0,1] (3)

be a mapping from hyperparameter choices to test error. Where n
is equal to the number of hyperparameters and {-1,1} represent the
choice for each parameters as a binary number. Next is finding the
optimal hyperparameters, such that f gives the lowest validation
error. This is done, by making the assumption that each f can be
approximated by a sparse low degree polynomial in the Fourier
basis (i.e. an function with low dimensions and mostly zero values).
Figure 3 illustrates how such an estimation build using Fourier series.

Using the assumption that f can be represented by this Fourier
representation, Spectral analysis than applies sparse recovery for a set
of uniform distributed samples for the hyperparameters configuration.
With the sparse recovery an Fourier estimation of f is found. This new
estimation of f will reduce the search space of the hyperparameters
to an defined degree of complexity, using the largest coefficient’s
found for the samples. The estimation of f is used to find the optimal
hyperparameters[7]. In practice this method is used in combination
with Grid Search and Random Search which is done by narrowing the
number of parameters by performing Spectral analysis for an limited
number of stages. This reduces the search space to a workable size
where after Random Search and Grid Search are applied to find the
remaining hyperparameters.[7]

An advantage of Spectral Analysis is the significantly higher
performance over Grid Search and Random Search, with speeds up to
eight times faster than Random Search in higher-dimensional search
spaces [7]. Disadvantages of Spectral Analysis are its availability
(Table 3) and the need to optimise its own hyperparameters.

4.4 Bayesian Optimisation
Bayesian Optimisation is a powerful strategy for finding the optima of
the objective function f [8]. The incorporation of a prior belief about
the problem contributes for a large extent to the strength of this tech-
nique, as this shows higher probabilities of taking continuous steps

SC@RUG 2019 proceedings

61

Fig. 3. This illustration shows estimation of a function using a Fourier
series. Where the red line is the combination of all dashed blue lines.

in the right direction of the search space [8]. This method is called
Bayesian because it uses ”Bayes’ theorem” which states that the pos-
terior probability of a model θ given evidence E is proportional to the
likelihood of E given θ multiplied by the prior probability of θ :

P(θ |E) ∝ P(E|θ)P(θ).

To make elaborate on this: results of combinations are used to con-
struct a probabilistic model which maps hyperparameters to a proba-
bility of a score on the objective function:

P(score | hyperparameters)

which is also referred to as a ’surrogate’ for the objective function and
is represented as:

P(y | x).
As already mentioned, Bayesian Optimisation has a prior belief about
the objective function and iteratively updates this prior based on
the results of previous combinations to eventually get a posterior
that better approximates the objective function. As a surrogate is
formulated, this becomes easier as it is easier to optimise the surrogate
than it is for the objective function [8]. What Bayesian Optimisation
does is, within each iteration, each next combination of values to be
evaluated by the objective function, is based on the combination of
values that performs best on the surrogate function.

So, instead of trying as many combinations as possible in order to
find the optimal solution, the aim of this method is to become more
accurate as the number of tried combinations increases. This goal
is chased by updating the surrogate probability model within each
iteration (i.e. after evaluation of the objective function) which is
illustrated in Figure 5.

The advantage of this method is that each new combination is

Fig. 4. Illustration of the Bayesian Optimisation procedure over three
iterations. The plots show the mean and confidence intervals estimated
with a probabilistic model of the objective function. Although the objec-
tive function is shown, in practice it is unknown. The acquisition func-
tion is high where the model predicts a high objective (exploitation) and
where the prediction uncertainty is high (exploration). Note that the area
on the far left remains unsampled, as while it has high uncertainty, it is
correctly predicted to offer little improvement over the highest observa-
tion. [6]

based on results of previous combinations. Using better-informed
methods to choose the next hyperparameters, leads to less time spend
on evaluating poor hyperparameter choices. However, this also means
that this method has to be performed sequentially which rules out the
use of parallelism.

Fig. 5. (a) The heatmap shows the validation error over a two-
dimensional search space with red corresponding to areas with lower
validation error. The Bayesian method adaptively chooses new config-
urations to train, proceeding in a sequential manner as indicated by the
numbers. (b) The plot shows the validation error as a function of the
resources allocated to each configuration (i.e. each line in the plot).
Configuration evaluation methods allocate more resources to promising
configurations [9].

Selecting the optimal hyperparameter optimization method: a comparison of methods – Wesley Seubring and Derrick
Timmerman

62

4.5 Co-variance Matrix Adaptation Evolution Strategy
Co-variance Matrix Adaptation Evolution Strategy (CMA-ES) can be
used as an evolution based approach for the tuning of hyperparameter.
CMA-ES performs best for larger function evaluation budgets [11]. In
short, CMA-ES is an iterative algorithm that creates a set of candidates
during each iteration from a multivariate normal distribution, which is
subsequently validated. The validation results are then used to adjust
the sampling distribution to a search space with a higher probability of
providing better results.

Fig. 6. Construction of the mutation distribution for CMA-ES for 2 hyper-
parameters. The first image shows the initial distribution of the mutation
between the two hyperparameters. The second image shows how the
mutation distribution is changed based on the best chosen hyperparam-
eters zsel and q is the decay weight for the previous evolution steps

Going in greater dept, CMA-ES builds an mutation distribution over
time as a function of the most optimal results for now. Figure 6 shows
the first two iterations of the mutation distribution. In the first gener-
ation g = 0 an equal mutation distribution between two hyperparam-
eters is observed. Therefore, in the next generation both hyperparam-
eters are equally likely to change as a form of mutation. With this
mutation distribution and an initial set of hyperparameters, the first
generation is created and validated. The best result of this generation
Zsel is added to the mutation distribution where after the previous re-
sults are multiplied by a decay factor q. In the next generation, the
current best result is used and the new mutation distribution is applied.
This process repeats itself for each generation. Figure 7 illustrates how
the population changes over the generations.

Fig. 7. Representation of the population over six generations. The dot-
ted line shows the co-variance distribution used to create the population.
You can see how the population concentrates over the optimum [18].

Advantages of this method are its robustness, the fact that it is

computational cheap and that it supports parallel evaluation [11].
When running this algorithm on larger data sets for extensive period
of time (e.g. the experiment done by I. Loshchilov et al. ran for 30.000
GPU days [11]), it will give outstanding performance compared to
Bayesian Optimisation and Random Search. Since the computation
of a new population is based on the co-variance matrix that is derived
from the mutation distribution, a new population can be computed
fast [18].

One of the limitations for this method is its usability for com-
putation on a lower time budget, as CMA-ES performs worse with
a shorter period of time [11]. In addition, for a smaller number of
hyperparameters the results will not be great, due to the random
mutation nature of the method.

5 COMPARISON

The different methods all have their own strengths and weaknesses,
in this section we will compare them on efficiency and usability in
practice.

5.1 Efficiency
To compare the efficiency between the optimisation methods, the
speed of each method is taken into account. The speed of a method
is measured by the number of tries it has to perform until the set
of optimal hyperparameters is determined. For the comparison of
efficiency, the use of parallelism is not incorporated.

The most naive method, Grid Search, is less efficient compared
to other optimisation methods since it has to train and validate a
model for each unique combination of hyperparameters in order to
obtain the set of optimal hyperparameters. Therefore, it suffers greatly
from the curse of dimensionality and is best used in lower dimension
search spaces [2].

Random Search is more efficient in higher dimension search
spaces, since the functions of interest have low effective dimension-
ality (e.g. a small subset of features determine the majority of the
performance) [2]. Figure 2 shows how Random Search uses this to
explore more of the subspace. This method is already more efficient
compared to Grid Search, but it still requires long computational time
for higher dimensions of hyperparameters. [2].

Spectral analysis reduces the search space by processing batches and
using the properties of the Fourier basis, this allows to method to find
optimal hyperparameters effectively, by searching over a compressed
representation of the hyperparameters. Therefore, this method can
become up to eight times faster than Random Search. However, for a
smaller set of hyperparameters, Random Search and Grid Search can
still out perform Spectral Analysis [7].

Bayesian Optimisation uses an objective function to find steps
in the hyperparameter space that only improves the performance. For
this to be used efficiently, human expertise is needed but with an equal
amount of computation time Bayesian Optimisation is more likely to
find good hyperparameters [8].

The last method uses evolution to increasingly find better per-
forming hyperparameters. However, the random nature of this
evolution makes the method less suitable for a smaller number
of hyperparameter. As explained in subsection 4.5, outstanding
performances are reached on larger data sets with extensive periods
of time available for the method to perform. Therefore, this method is
not an attractive method if time is limited as this method is not most
efficient.

5.2 Scalability
In addition to the efficiency of a method, scalability also plays an
important role in determining which method is best suitable for a
given hyperparameter optimisation problem.

SC@RUG 2019 proceedings

63

As explained in the previous section, Grid Search, is less effi-
cient compared to the remaining optimisation methods. However,
it is extremely well-suited for parallelism as objective scores for
combinations of hyperparameter can be determined independently of
each other. If the computational resources are available, Grid Search
can make optimal use of these facilities.

Next to Grid Search, Random Search and Spectral Analysis are
also parallel executable, such that the optimisation tasks can be
preformed in different batches over parallel machines/cores. This
is especially useful for the higher dimension search spaces, where
computations could take a long period of time to perform on a single
machine. While Grid Search, Random Search, Spectral Analysis
and CMA-ES are all scaleable over multiple machines, there are
differences. An advantage of Random Search over the remaining
methods is that, when executed on multiple machine, it can cope
with failing runs and change the size of the search grid on the fly [2].
This is due to the random nature of Random Search which makes it
possible to start new nodes on the fly without many constraints. For
Spectral Analysis, Grid Search and CMA-ES this is not possible.

The Bayesian Optimisation, however, is a sequential method
that can not run parallel which makes it less suitable for extremely
high dimensions. In such situation the optimisation is preferably
executed in parallel to speed up the process [8].

5.3 Usability in practice

Usability plays an important role as it is necessary to support the ap-
plication of hyperparameter optimisation and because an optimisation
method that is considered to be efficient, does not necessarily have to
be easily applicable in practice.

Grid Search is straightforward in its way of searching for the
optimal combination of hyperparameters, as it naively checks all
possible configuration. This method is mostly used in scientific
research, due to its simplicity, reproducibility [2] and due to the fact
that Grid Search is well-represented in a scientific language as Python
(see Table 3). The method is an intuitive and understandable method,
which allows users to implement Grid Search relatively easy.

Random Search shows similarities to Grid Search in the way
that combinations of hyperparameters are selected from a grid.
Besides, as explained in Section 4.1, Random Search shows to be very
efficient through which it is considered by many professionals as the
go-to method for tuning hyperparameters [10]. This is supported by
the many different packages that include Random Search (see Table 3).

In contrast to the popularity of Grid Search and Random Search,
Spectral Analysis is a less prominent player in the field of optimi-
sation methods. This is not only observed by the limited amount of
available literature among this method, but it is also shown in the
lack of packages that include Spectral Analysis (see Table 3). One
reason for this method to be under represented is the fact that this
method is quite new. However, the biggest reason professionals are
less likely to select Spectral Analysis as their optimisation method,
has to do with the fact that Spectral Analysis itself also needs to
be optimised. The implementation of Spectral Analysis actually
requires the configuration of six hyperparameters that need to be
tuned for getting the best performance. This could constitute a barrier
to professionals as it initially takes more time to setup this method
compared to e.g. Grid or Random Search.

Bayesian Optimisation is a more popular method compared to
Spectral Analysis. Despite the fact that it includes some administra-
tive overhead, as well as it requires expertise to get reasonable results
[13], many professionals implement this method as it is efficient. Due
to the optimisation of the surrogate during each iteration, the total
number of iterations required is significantly smaller than one would

Method Package name Language
Grid Search Scikit-learn1 Python
Grid Search Talos 2 Python
Grid Search NMOF 3 R
Random Search Hyperas 4 Python
Random Search Hyperopt 5 Python
Random Search Hyperopt-sklearn 6 Python
Random Search Scikit-learn Python
Random Search Talos Python
Spectral Analysis Harmonica 7 Python
Bayesian Optimisation BOCS 8 Matlab
Bayesian Optimisation Auto-sklearn 9 Python
Bayesian Optimisation Scikit-optimize 10 Python
Bayesian Optimisation SMAC 11 Python/Java
Bayesian Optimisation MlrMBO 12 R
CMA-ES CMAES13 R
CMA-ES CMA-ES/pycma14 Python

Table 3. Availability of methods

need with e.g. Grid Search to reach the optimal solution. In addition,
many papers exist that have done research on Bayesian Optimisation
and combined with the presence of numerous available packages
that include the Bayesian Optimisation (see Table 3), it is a widely
appreciated approach by many professionals.

CMA-ES is an less prominent player in the field of hyperpa-
rameter optimisation methods. The method is available in a few
standalone packages and is quite an advanced method to implement,
due to the fact that its qualities are found in large scale problems.
Parallelism need is not provided out of the box.

6 CONCLUSION

Different optimisation methods exist which each have their own
strengths and weaknesses. This paper limited itself to the comparison
of four different methods and discussed their efficiency, possible
scalability and usability in practice.

Spectral analysis is the best method when we only look at ef-
ficiency, it has the best performance and scales well. Both are
helpful in the higher dimensions of hyperparameters. For sequential
computation Bayesian Optimisation is a good alternative.

When only considering the ease of use in practice, we see other
methods giving better results. Spectral analysis is the least available
method and has the most complex parameters of all the methods. We
see that Grid Search and Random Search are the most well-known
methods, widely available and simple in use. Bayesian Optimisation
is also widely available, however but requires domain expert for
implementation.

1https://scikit-learn.org/stable/whats new.html#version-0-20
2https://github.com/autonomio/talos
3https://cran.r-project.org/web/packages/NMOF/index.html
4https://github.com/maxpumperla/hyperas
5https://github.com/hyperopt/hyperopt
6https://github.com/hyperopt/hyperopt-sklearn
7https://github.com/callowbird/Harmonica
8https://github.com/baptistar/BOCS
9https://github.com/automl/auto-sklearn

10https://github.com/scikit-optimize/scikit-optimize
11https://github.com/automl/SMAC3
12https://github.com/mlr-org/mlrMBO
13https://www.rdocumentation.org/packages/cmaes/versions/1.0-11
14https://github.com/CMA-ES/pycma

Selecting the optimal hyperparameter optimization method: a comparison of methods – Wesley Seubring and Derrick
Timmerman

64

In conclusion we argue that there is no single best hyperparam-
eter optimisation method for all types of optimisation problems.
The methods we discussed all have their own advantages and
disadvantages. These methods should be used accordingly, and more
advanced methods should be used more in practice. Grid Search is
recommended for the lower dimensional hyperparameters or if there
are no limitations with respect to computational resources.

If the search for optimal hyperparameters should be done with
the least effort and highest flexibility, Random Search is a good
alternative due to its scalability and its general applicability. This
method provides an overall good estimation of hyperparameters, is
widely available and has descent performance.

As opposed to Grid Search, Spectral analysis is recommended
when dealing with higher dimensions of hyperparameters and the
amount of time available is sufficient to setup the method (e.g.
implementation and hyperparameter optimisation). During our
research, Spectral Analysis showed to be the most efficient method
which could give an performance improvement up to eight times over
Random Search, given the optimal circumstances.

CMA-ES would be a good solution, given the time available is
sufficient as this method performs best on large scale problems while
optimising for a longer period of time.

In addition to CMA-ES, if there is no or small time pressure,
Bayesian Optimisation would also be a robust solution, as this is the
best option for sequential computation, given the required profession
is available.

These findings should give professionals a decent overview for
the discussed hyperparameter optimisation methods. It should be
clear when it is useful to use the more advanced methods and when
withhold and go for the simpler methods.

While there is literature available for each optimisation method
individually, only few research papers are available that compare
several optimisation methods. With this paper we aim to fill this gap
in our knowledge and provide a concise explanation and comparison
of different well-known optimization methods. We compared the
hyperparameter optimisation methods based on efficiency, scalability
and availability, and therefore should give a general idea of the
methods. In the section Future work, we will suggest a couple of
extensions that could increase the quality of the comparison between
the hyperparameter optimisation methods. Additionally, we provide
an overview with existing packages for the different hyperparameter
optimisation methods.

7 FUTURE WORK

For future work we would suggest extending our research by adding
more hyperparameter optimisation methods to our comparison such as
Gradient Based Optimisation, Population Based Optimisation and Ra-
dial Basis Function Optimisation. Furthermore, an actual comparison
in the form of a simulation study between the different methods, would
be a valuable addition to our paper. With this addition, each method
can be executed in an identical environment over the same data set.
This would give us the opportunity to, besides estimating the speed
of each optimisation method, also compare the actual quality of each
set of optimal hyperparameter, provided by a method. For example,
a highly-efficient optimisation method might provide a set of optimal
hyperparameters which perform worse on a validation set compared to
a more time consuming optimisation method.

ACKNOWLEDGEMENTS

The authors wish to thank Frank Blaauw et al. for reviewing this paper.

REFERENCES

[1] Y. Bengio. Gradient-based optimization of hyperparameters. Neural
Computation, 12(8):1889–1900, 2000.

[2] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research 13, pages 281–305, feb
2012.

[3] L. B. M. Caio B. Nbrega. Predicting the learning rate of gradient de-
scentfor accelerating matrix factorization. Journal of Information and
Data Management, 5(1):94–103, Februay 2014.

[4] C.-C. C. Chih-Wei Hsu and C.-J. Lin. A practical guide to support vector
classification. May 2016.

[5] C. Darken and J. Moody. Note on learning rate schedules for stochastic
optimization.

[6] V. M. C. E. Brochu and N. de Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active usermodeling and
hierarchical reinforcement learning. 2009.

[7] A. K. Elad Hazan and Y. Yuan. Hyperparameter optimization: A spectral
approach. 2017.

[8] V. M. C. Eric Brochu and N. de Freitas. A tutorial on bayesian optimiza-
tion ofexpensive cost functions, with application toactive user modeling
and hierarchicalreinforcement learning. December 2010.

[9] L. L. et al. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Journal of Machine Learning Research 18, pages 1–52,
April 2018.

[10] B. R. Horia Mania, Aurelia Guy. Simple random search provides a com-
petitive approach to reinforcement learning. march 2018.

[11] I. L. . F. Hutter. Cma-es for hyperparameter optimization of deep neural
networks. 2016.

[12] T. A. I. Ilievski, J. Feng and C. A. Shoemaker. Efficient hyperparameter
optimization of deep learning algorithms using deterministic rbf surro-
gates. 2017.

[13] M. M. Ian Dewancker and S. Clark. Bayesian optimization primer.
[14] D. Y. J. Bergstra and D. D. Cox. Making a science of model search:

Hyperparameter optimizationin hundreds of dimensions for vision archi-
tectures. 28, 2013.

[15] A. Jameson. Gradient based optimization methods. MAE Technical Re-
port No. 2057, 2003.

[16] R. N. Kentaro Ito. Optimizing support vector regression hyperparameters
based on cross-validation. International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[17] R. Kohavi. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. International Joint Conference on Artificial
Intelligence (IJCAI), 1995.

[18] A. O. N. Hansen. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, pages 159–195, 2001.

SC@RUG 2019 proceedings

65

Reproducibility in Scientific Workflows: An Overview

Konstantina Gkikopouli and Ruben Kip

Abstract—Provenance, data of the chronology of steps in the workflow, is identified as an increasingly significant component in the
life cycle of a scientific workflow, as it obtains in details all the occurred events of the system. Based on this gathered data, different
actions can be performed (e.g. an execution history of a process or repair of the scientific workflow) that permit the reproducibility
of different scientific applications. However, the capacity in terms of storage and computing needed to record all this required data
in order to make the workflow reproducible still remains an unsolved issue. We summarize the current usage of Scientific workflow
and its problems by creating an overview of recent papers, however we refrain from giving any general solutions. We mainly focus
on scientific workflow integration in cloud computing. This integration assures the re-execution of the scientific workflows and their
reproducibility in the cloud.

Index Terms—Scientific workflows, reproducibility, provenance, cloud computing.

1 INTRODUCTION

A workflow is a set of tasks and dependencies that are processed in
a well-defined order to accomplish a specific goal[9]. In the context
of science, workflows are used to describe scientific experiments. A
scientific workflow is a flow of mostly computational tasks, that repre-
sent a significant part of a scientific experiment[9]. These workflows
are highly applied in many fields including simulation, data analy-
sis, image processing, and many other functions[9]. A basic scientific
workflow example of processing a batch can be seen in figure 1.

Scientific workflow contains some unique characteristics[9], which
make it special compared to the other types, e.g. business workflow.
The scientific workflows tend to change regularly. As the scientists
try to prove different hypothesis, they perform experiments, which
might accidentally contain errors. Once they detect these faults, the
scientists have to modify the corresponding steps, while the experi-
ment proceeds. In contrast, the business workflows continue to be ex-
ecuted based on the same techniques and predefined standard methods.
While being deployed and executed on distributed systems, the scien-
tific workflows have to be adaptable to the system’s dynamic nature,
where the available resources may join and leave at any time. They are
normally designed and constructed by scientists, who are experts in
their corresponding fields and not necessarily specialists in the area of
Information Technology. Furthermore, the scientific workflows may
obtain complex control flow and data flow, which require a high-level
language and an easy to use scientific workflow composition tool, in
order to mitigate this complexity.

Two highly crucial components of scientific workflows is prove-
nance and reproducibility(repeatability). Provenance contains valu-
able information regarding the origin, the history and all important
events in the life cycle of a process. Based on these gathered data, the
purpose of reproducibility is to reproduce(repeat) a process(or a part
of an experiment) exactly the same way it was executed in the past, so
as to obtain the same results. Reproducibility has a high significance
regarding the scientific workflows. By reproducing an experiment, the
scientists and the users are offered the opportunity to prove, reuse and
verify the correctness of the experiment’s results. In addition, the sci-
entists are able to share their experimental methods and tools among
each other, in order to have a better understanding and overview of
their experiment. Another scenario would be that the scientists share
their methods or results and re-use them as a building block for a new
potential experiment. However, the capability of recording all the re-

• Konstantina Gkikopouli, studying MSc Computing Science, E-mail:
k.gkikopouli@student.rug.nl.

• Ruben Kip, studying MSc Computing Science, E-mail:
g.r.kip@student.rug.nl.

For information on obtaining reprints of this article, please send e-mail to one
of the authors.

quired data in order to make the workflow completely reproducible
is an extremely hard problem. One of the most difficult challenges in
making the scientific workflows fully reproducible is the heterogeneity
of its components (components like soft/hardware etc.), which might
often require different and conflicting sets of dependencies. Achiev-
ing a completely successful reproducibility of these workflows does
not only depend on just sharing their specifications. It also relies on
the capability of isolating necessary and sufficient computational arti-
facts, preserving them together with adequate description, so they can
be again reused in the future [9].

Scientific workflows vary in size from a small number of tasks to
millions of tasks. For large workflows, it is highly preferred to dis-
tribute this huge amount of tasks to different computers. The main
reason for this is that the scientists and the users of the workflow want
to complete the execution and to obtain their results as quickly as pos-
sible. As the scientific workflows require a huge computation power,
cloud computing represents a new method for deploying and executing
these workflows, as the cloud offers theoretically unlimited resources.
On the one hand, clouds can be considered as another platform for car-
rying out workflow-based applications. They support the same meth-
ods for workflow management and execution that have been developed
for clusters and grids. On the other hand, clouds also present many fea-
tures, such as virtualization, that provide new capabilities for an easier
deployment, management and execution of the workflow applications.

In this paper we consider the impact of cloud computing on sci-
entific workflow applications, emphasizing on their reproducibility.
We consider cloud as it offers important advantages, like limitless re-
sources, to scientific workflows. Furthermore we emphasize on repro-
duciblity, because as scientific workflows and relevant technologies
are becoming more complex, the challenge of maintaining reproducib-
lity becomes also harder[3]. Firstly, a background is provided, where
attempts of previous researchers and briefly discussed. After that,the
main advantages and drawbacks of the clouds regarding the scientific
workflows are analyzed and explained in section 5. Following that we
discuss the requirements and importance of reproducibility in cloud
workflows section ??. Then some example deployment methods are
given and illustrated in section 6. Lastly, sections 7 and 8 summarizes
our work by mentioning the main results and we provide some po-
tential researches regarding the scientific workflows in the cloud that
might occur in the future.

2 METHODOLOGY

The aim of this paper is to mainly address the long-standing issue of
reproducibility in scientific workflows. Based on the available online
resources and literature presented in our references, our study focuses
on making the readers familiar with the topic by providing firstly some
basic concepts and by describing the current situation regarding the
workflows. As cloud computing represents a sophisticated method of
deploying and executing the scientific workflows, the paper links re-

66

Fig. 1. Basic scientific workflow model

producibility with the cloud platform. We are mainly focused on the
Infrastructure as a Service (IaaS) clouds, as they have been primar-
ily used by the scientific workflows. Even though Platform as a Ser-
vice(PaaS) clouds and Software as a Service (SaaS) clouds offer more
advanced and sophisticated benefits to workflow-based computations,
they lack of systems developed in this area and further research needs
to be performed. The approach of the research is to offer a detailed
overview of how the cloud can mitigate some of the issues of repro-
ducibility in scientific workflows. In order to achieve our goal, we
chose a number of resources, which served best our intention.

3 BACKGROUND AND RELATED WORK

There has been a high amount of conducted researches, which focused
on identifying the challenges in achieving workflow reproducibility.
Shortly, the issues can be summarized as: insufficient and non-portable
description of a workflow including missing details of the processing
tools and execution environment, unavailable execution environments,
missing third party resources and data, and reliance on external depen-
dencies, such as external web services, which add difficulty to repro-
ducibility at a later time[10].

Most of these conducted researches have emphasized on two dif-
ferent types of preservations. The first one is physical preservation,
where the workflow is maintained by packaging its corresponding ele-
ments. As a result, this indicates the creation of a replica, which can be
re-used later. The other one is logical preservation, where the work-
flow and its components have a detailed description, that can be re-
used by people, who want to reproduce a quite similar workflow[10].

There have been numerous attempts by different researchers and
scientists, who tried to provide a potential solution to repeatability and
reproducibility. One of them was Chirigati et al., who suggested Re-
proZip for the implementation packaging of workflows. The aim of
this implementation is to package together the system calls during the
workflow execution together with the dependencies, data and config-
urations involved during runtime. After that, the package can be used
for the re-execution the registered workflow invocation.

Another method used for packaging the workflows was Virtual ma-
chine as an image (VMI). The main advantages of this approach is that
the entire environment can be easily captured, shared with other scien-
tists and re-executed. However, the eventual images are large in size,
quite costly to be publicly distributed and do not capture a detailed and
structured description of the entire computation [10].

When it comes to logical preservation, different researches were
conducted. As it is before-mentioned, the logical preservation empha-
sizes on capturing all the details of the workflow and its components,
which can later be used to reproduce a similar workflow. One example
of this type of preservation is myExperiment[10]. It presents a web
interface, which enables the sharing of computational description and
visualization of the workflow and its corresponding elements. This ap-
proach has a positive impact on developing the reproducibility in the
scientific workflows.

Also, an additional technique was provided by Santana-Perez et al.,

who proposed a semantic-based method to maintain scientific work-
flows, while they are being executed. In this case, the use of semantic
libraries is really essential, as they identify all the resources that partic-
ipate in the execution phase of a workflow. However, other researches
have proved that this approach can not achieve a completely successful
reproducibility of the workflows.

Another technique of logical preservation is storing provenance
data and information of results of the workflow. Retrospective prove-
nance is runtime provenance, so data which is store on execution of
the workflow. This retrospective provenance helps in re-execution of
workflow. This data however also needs to be specified in a more ab-
stracted way, as it might be too detailed and overwhelming.[10].

Furthermore, Hashan et al. proposed and designed a framework that
was based on logical preservation. The main purpose of this frame-
work is to capture detailed information about the execution phase of
the workflow in the cloud platform and combine it with provenance
data of the workflow. It is recommended that the workflow repro-
ducibility can be ensured by reproviding similar execution using the
cloud provenance and then re-execution of the workflow. Even though
this method guarantees the re-execution of the scientific workflow, it
is not capable of capturing and identifying potential changes to the
original workflow[10].

In addition, Belhajjame et al. supported logical preservation by cre-
ating a technique named Research Objects. This approach focuses on
combining and merging different data, so as to increase and support
the workflow reproducibility. This data ranges in types from descrip-
tion of the workflow components to provenace data. Howver, this is
not enough for ensuring a fully reproducable system, as there is a lack
of technical details regarding dependencies and the execution environ-
ment.

It can be clearly noticed that these two types of preserva-
tions(physical and logical) play a key role in achieving partly work-
flow reproducibility. Even though, these two approaches individually
offer the aforementioned benefits, still they are not sufficient enough
to solve the issue of repeatibility. On the one hand, physical preserva-
tion focuses on recreating the packaged components of the workflow,
while their description is absent. As a result, it is an easy task to
reproduce the workflow, but it can not reproduce the workflow with
different data. On the other hand, logical preservation emphasizes on
describing the components of the workflow in detail. However, it is
still not enough, as it does not provide information about different de-
pendencies. Therefore, the integration of workflow specification and
description of its components alongside a portable packaging mecha-
nism becomes fundamental [10].

4 A FRAMEWORK FOR SCIENTIFIC WORKFLOW REPRO-
DUCIBILITY IN THE CLOUD

This section gives a notable example of a framework in development
by J.C. Rawaa Qasha and P.Watson that tries to increase reproducibil-
ity in the cloud. [10] Firstly, the architecture of the proposed frame-
work is described and its main functionalities are mentioned. After

SC@RUG 2019 proceedings

67

Fig. 2. Model of Reproducibility Framework [10]

that, the operation of the framework is evaluated based on criteria.

4.1 Framework Architecture
The proposed framework is constructed based on four fundamental
components: the Core repository, the Workflow and Task reposito-
ries, the Image repository supported by the Automatic Image Creation
(AIC) facility, and the workflow enactment engine as can be seen in
figure 2. The Core repository makes use of a set of common TOSCA
(Topology and Orchestration Specification for Cloud Applications) el-
ements such as Node and Relationship Types, and life cycle manage-
ment scripts. They are crucial components, because they serve as a
base for creating not only tasks, but also workflows. The aim of Work-
flow and Task repositories is to store workflows including their com-
ponents, which can be shared among different users and act as a foun-
dation for new workflows. The Image repository consists of images,
which demonstrate the workflow and its corresponding tasks. The
AIC is responsible for capturing automatically these images, which
have a positive affect on increasing reproducibility and improving per-
formance of workflow enactment. Finally, the implementation of the
workflow enactment engine is enabled by a TOSCA-compliant run-
time environment.

The approach of logical preservation is ensured based on the
TOSCA specification. TOSCA enables the description of the work-
flow at the abstract level in combination with the overall software
tools, which deploy and execute these workflows. Furthermore, it of-
fers the opportunity to users to deploy and enact the scientific work-
flows automatically on a different cloud infrastructure.

Another component that is present in the architecture of the frame-
work is a version control platform. This platform is responsible for
tracking and managing the changes, which are found in the workflows.
In addition, it supports the AIC facility. The AIC ensures the imple-
mentation of physical preservations by using Docker. Furthermore,
the proposed framework makes use of available source codes such as
GitHub. One of the primary benefits of GitHub is that it massively
supports the developers, by allowing them to share and improve their
individual work, which can help in achieving a better reproducibility.
For the readers, who are more interested in having further knowledge
on how this framework is constructed and how it functions, you can
have a look here [10].

4.2 Framework evaluation
The evaluation of the proposed framework is performed based on three
different aspects. The first one is concentrated on the portability of the
workflow, which means that it can be executed on different platforms
and environments. The second angle is related to AIC, which highly
lowers the runtime of a workflow. Finally, the evaluation is mainly fo-
cused on the maintaining a workflow reproducibility, even when some
of its components change.

• Reproducibility on different Clouds

The aim of the researchers was firstly to test the portability qual-
ity of the workflows. Specifically, they tried to re-execute a workflow,
which was initially created in a local environment, on three different
Clouds and a VM. For this test, they chose four workflows, which dif-
fered in structures, number of tasks and the dependency libraries. The
chosen workflows were: Neighbor Joining (NJ), Sequence Cleaning
(SC), Column Invert (CI) and File Zip (FZ). Further, the scientists had
to clone the workflow repositories on four different platforms : a local
VM, and Amazon AWS, Google Engine and Microsoft Azure Clouds.

The test proved that the workflows were adaptable to new Clouds,
as they were easily re-enacted and provided the same outcome within a
similar runtime. Additionally, a mutual development behaviour, where
the developers could design and test a workflow locally and then share
it among others via Workflow, Task and Image Repositories. This pat-
tern was significantly supported by TOSCA and Docker packaging.
For further information of the results, see [10].

• Automatic Image Capture for Improved Performance

The constructed framework allows tasks and workflows to make
use of OS images offered by DockerHub, users or the AIC. If a pre-
defined image is used, the need for installing dependency libraries and
task artifacts during workflow execution are eliminated. This leads to
a considerable decrease of the deployment tasks, which benefits the
runtime of a workflow.

The researchers succeeded in proving this theory by running the
workflows with different images: the base image available on Docker-
Hub, the base image with pre-installed dependency libraries and task
images captured by the AIC. Based on the results[10], there was a sig-
nificant overhead in using the base image from DockerHub, as the in-
stallation of the dependency libraries required less time. The other two
options had similar executions, but the workflow that used the image
of AIC was slightly better. The main reason is that the AIC captures
everything the task needs to run, whereas the second option provides
only dependency libraries while the task artifacts were downloaded
on-demand.

• Reproducibility in the Face of Development Changes

One crucial approach that can improve the performance of the
workflows is to make them embrace potential changes. These changes
may influence two layers: the input/output interface of a workflow or
task, and their implementation.

The researchers present a hypothetical case. For instance, the users
need to save storage space by compressing the workflow output files.
In response to that, the developers have to create a new Zip task and
add it to the workflow. It has to be pointed out that the changing out-
come produced by the workflow changes its interface, as well. The
zipped branch of the workflow refers to the Zip/master branch of the
task. This reference applies that the workflow will take into account
only the latest version of the task in the branch. This is convenient
because as the task implementation is improved over time, the zipped
workflow will use a tasks latest tagged version. Consequently, the
workflows are updated automatically. However, if repeatability has to
be strict, the reference to the Zip task would be a specific tag, which
will not enable the automatic update of the workflow.

Another considered case was a new available release of a library
such as Java, which provides a better performance as its faults are
fixed. This available version will notify the workflow to update. The
change is compatible with the last version of the workflow and the
creation of a new branch is not required. In this case, the changes have
to be merged to the required zipped branch.

The researchers consider and other possible scenarios in [10]. By
mentioning these cases, they prove that workflows can be adapted to
new changes, which assures a better reproducibility(repeatability) of
the system.

5 ADVANTAGES AND DISADVANTAGES OF CLOUD FOR WORK-
FLOWS

Based on the execution of the last framework in the cloud, this section
highlights and describes in details the main benefits provided by this

Reproducibility in Scientific Workflows: An Overview – Konstantina Gkikopouli and Ruben Kip

68

infrastructure regarding the workflows. There are five significant ad-
vantages overall that have been identified[5]. In addition, some of its
drawbacks are briefly described.

5.1 Provenance and Reproducibility
In computational science, provenance refers to the storage of meta-
data about a computation that can be used to answer questions about
the origins and derivation of data produced by that computation[5].
It can be considered as computationally equivalent to a lab scientists
notebook and it is a fundamental component of reproducibility, the
cornerstone of experimental science[5].

Virtualization is an important feature for provenance, as it captures
the exact environment that performs a computation, including all of
the software and configuration used in that environment [5]. In previ-
ous researches, a provenance model was proposed, where the Virtual
Machines(VM) played the most important role. The point of this ap-
proach is that, if a workflow is executed in a VM, then the virtual
machine image can be stored along with the provenance of the work-
flow. This is a highly significant process, as it gives to the scientists
the opportunity to answer a number of concerning questions related to
the workflow. Some of these questions would be: ”What version of the
simulation code was used to produce the data?” or ”Which library was
used?”. In addition, the environment can be re-launched in order to re-
peat the same experiment or to make modifications and improvements
to it.

Another usage of provenance in scientific workflow is automated
decision making[8]. By using a provenance model recording values of
steps, a quality provenance model, we can make conclusions about the
execution process. So can we conclude why a process failed based on
the data and can we decide to possibly accept or reject the workflow at
an earlier step in the workflow based on the quality of recorded results.
Using query languages like ”Zoom”[1] custom provenance data can be
defined and used for personalized decision making.

5.2 Legacy Applications
As workflow applications usually consist of heterogeneous software
components, components that run on different cores, the workflow
management system is responsible for coordinating these components
in order to create a coherent application. Often this is required to be
done without performing changes to the components, as they might
affect negatively not only the application, but also the validity of the
results.

Clouds and their virtualization technology may make these legacy
codes much easier to run. The scientists have the right to install any
software tool(e.g. operating systems or libraries) they prefer or the
ones that are more suitable for their application and procedures. The
resulting environment can be bundled up as a virtual machine image
and redeployed on a cloud to run the workflow.

5.3 On Demand
The cloud is able to allocate any available resources on demand. The
users can request and be provided with any suitable resources, when-
ever they need to. If a step in the workflow requires more resources
these can be on demand requested. In contrast to local applications,
which are limited to their resources up-front, a cloud running workow
application can start with only a small amount of the overall needed
resources.

However, the drawback of this feature is that, if the needed re-
sources are not made available to answer a user’s request immediately,
then the request fails.

5.4 Provisioning
Provisioning, the receiving and scheduling of resources, in a cloud
are better then grid computing. In contradiction to the grids, where the
requested resources are placed in a (probably long) queue and serviced
in order, the users in the cloud can request and obtain immediately
any desired capability. In this case, they can schedule their resources
computations using a user-controlled scheduler. Once the workflow
is provided with its needed resources, it directly starts performing its

corresponding tasks. This provisioning model offers major benefits to
the scientific workflows, as it rapidly increases their performance and
drastically reduces the total scheduling overhead.

5.5 Elasticity
Apart from provisioning resources on-demand, clouds give the chance
to the users to return the available resources, when they no longer need
them. This extra feature of elasticity is a beneficial characteristic for
workflow applications, as the workflow systems can simply grow and
shrink the corresponding resource pool, based on the needs of the sci-
entific workflow.

5.6 Disadvantages of Cloud for Workflows
Even though cloud offers a number of beneficial features and charac-
teristics towards the scientific workflows, some of its issues need to be
addressed[4].

As the scientific workflows are considered as complex systems,
building an appropriate environment for the execution of their work-
flow applications is considerably difficult as these may require many
different environment on different sites.

In workflow scheduling, in a cloud environment this most likely will
be done over multiple sites. Workflow could be executed from differ-
ent sites for reasons like, separated data locations or not enough com-
puting resources. The difference between a multi-site and single-site
distributed cloud is that a multi-site does not have the same network,
bandwidth and resources across the different distributions. For work-
flows this also brings the added complexity of scheduling and tim-
ing execution of steps between different cloud sites. Multisite WMS’s
could work with (peer to peer) communicating master/slave, schedule
activity data being sent to the different master and provenance stored
in a provenance database [6], an example of this multi-site setup can
be seen in fig.3. However these systems are not optimal as of course
this architecture opens up to fault tolerance problems, as failure of one
of the master results in failing workflows.

Fig. 3. Multisite workflow system [6]

Another issue is that the IaaS places more system management re-
sponsibility on consumers, as they have to manage the virtualized in-
frastructure and they need to perform system administration.

In addition, another concern is related to security. As the users are
allowed to install any legacy software system that fits best their ap-
plications, the cloud exposes them to security vulnerabilities of those
software systems. Another weakness is that most scheduling algo-
rithms and WMS’s are not properly secured.[7] Finally QoS is an im-
portant, set requirements should be followed, however most workflow
management systems are more focused on execution time and maxi-
mum bandwidth.[3] For cloud computing however QoS are very im-
portant, as scientist might require different QoS. This makes workflow
management systems less fit for cloud environments. As commercial

SC@RUG 2019 proceedings

69

computing QoS decides pricing, pricing might be a issue for the re-
searcher, while the workflow management system neglects this aspect.

6 DEPLOYING WORKFLOWS IN THE CLOUD

This section presents some methods[5] used for the deployment of the
scientific workflows in the cloud. Their main functionalities are inter-
preted and they are associated with corresponding images.

6.1 Pegasus Worfklow Management System

Workflow Management Systems are mainly responsible for the exe-
cution and the monitoring aspect of a scientific workflow. A highly
popular example of such a system is Pegasus WMS[2], which can be
easily deployed in the cloud. However, this is not the case for all the
workflows, as a part of them can not be deployed in the cloud. More
importantly Pegasus is even compatible with cloud computing, and
handles differently distributed resources. It can manage large work-
flows(with millions of tasks) and it records data for both workflow’s
execution and its corresponding results. This type of information is
involved in provenance, which can be used to achieve a higher rate of
reprodcibility.
Pegasus WMS consists of some core blocks: the Pegasus mapper,
the DAGMan execution engine and the Condor schedd responsible
for task execution. It adapts workflows to the target execution en-
vironment and it manages task execution on distributed resources.
In addition, Pegasus WMS provides numerous advantages regarding
the workflows. Firstly, it dynamically improves the workflow per-
formance and it is capable of providing the required scientific results
much faster. Pegasus WMS additionally ensures highh reliability es-
pecially during execution. Consequently, this benefits the scientists
and users, as they do not have to deal and fix potential errors and fail-
ures constantly. Moreover, they track and record (provenance) data,
which can be easily located and accessed during and after workflow
execution.

Fig. 4. Pegasus Workflow Management System [2]

6.2 Virtual Clusters

Scientific workflows require huge amounts of compute cycles to pro-
cess tasks. In the cloud, the virtual machines ensure these cycles are.
In order to achieve the best performance possible for large workflows,
many quantities of virtual machine instances must be used simultane-
ously. These collections of VMs are called virtual clusters[5]. The
process of deploying and configuring a virtual cluster is known as
contextualization[5]. Contextualization consists of complicated con-
figuration stages that might be error-prone to perform manually. For
the automation of this process, diffenent software equipment can be
used such as the Nimbus Context Broker. This tool collects data re-
garding the virtual cluster and uses it to make configuration files and
start services on cluster VMs. This implies that workflow environ-
ments are build up in a similar manner and provenance data is easier
to create over what would otherwise be different actual environments,
making reproducibility easier.

7 CONCLUSION

Reproducibility and repeatability is a crucial requirement for the sci-
entific workflows and experiments. It offers to the scientists the chance
to verify the validity of their results, to share the proceedings of their
experiments and to further develop them. In this paper, we firstly in-
troduce some basic concepts related to our topic. Following that, we
mention and describe briefly previous attempt of scientists, who tried
to achieve reproducibility. Specifically, a implementation of a frame-
work that supports reproducibility of scientific workflows in the cloud
is taken into consideration. The architecture of this framework and
its evaluation are provided in details. After that, advantages and dis-
advantages of the the clpud are examined, with an emphasis on why
cloud is a good solution to reproducibility. Then, some deployment
methods of the scientific workflow applications are displayed and ex-
plained.

Scientific workflow and workflow management in cloud environ-
ments, is a fast growing and changing field, offering more features and
functionality through tools and algorithms like for example in paper
earlier mentioned Pegasus, Zoom, DIM. However in this field there
still is a lot to be improved and developed. So there is still security
and fault tolerance problems, aswell as high cost in managing and con-
figuring workflows and is reproducibility hard to achieve in complex
systems.

8 FUTURE WORK

As science and technology are rapidly evolving, new efficient solu-
tions and approaches will be probably discovered for the execution of
the scientific workflows. This means that for scientific workflows, be-
cause of increasing complexity, new development should also be kept
up in the area of reproducibility.

For scientific workflows in respect to cloud computing, future re-
searches will possibly focus on the PaaS and SaaS clouds, which will
be likely developed exclusively for the workflow applications. For in-
stance, a PaaS cloud may provide a user-centered Replica Location
Service (RLS) for locating files in the cloud and outside, a dynamic
Network Attached Storage (NAS) service for storing files used and
created by workflows, data such as provenance data.[5, 6] A SaaS
cloud for workflows may provide an application-specific portal where
a user could enter the details of a desired computation and have the
underlying workflow services generate a new workflow instance. In
addition, future research might cover as a topic the integration of the
grid and the cloud for the deployment of the scientific workflows[5].
In respect to provenance, we expect development in the area of more
customizeable provenance data as offered by tools like Zoom[1], to
increase ease in reproducibility and decision making[8] .

ACKNOWLEDGEMENTS

The authors wish to thank our expert reviewer Dimka Karastoyanova
and our colleagues for their valuable feedback.

Reproducibility in Scientific Workflows: An Overview – Konstantina Gkikopouli and Ruben Kip

70

Author Subject Tools Includes Cloud Provenance relation

Cohen-Boulakia et al., 2008 Provenance Zoom No Storing custom defined
provenance data using
zoom.

Deelman et al., 2015 WMS Pegasus Yes -
Gil et al., 2007 Reproducibility & Prove-

nance
- No Difficulties of provenance

and reproducibility in scien-
tific workflows

Juve, 2012 WMS Pegasus Yes -
Liu et al., 2016 Provenance & Scheduling &

WMS
Chiron Yes Supporting provenance in

multi-site workflow schedul-
ing

Masdari et al., 2016 Scheduling & WMS - Yes -
Missier et al., 2008 Provenance VisTrail & Zoom No Automated workflow deci-

sions based on provenance
Rawaa Qasha & Watson, 2016 Reproducibility & Prove-

nance
Git Yes A framework for improving

reproducibility in workflows
with multiple repositories

Table 1. Summary of used sources

REFERENCES

[1] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson. Addressing
the provenance challenge using zoom. Concurrency and Computation:
Practice and Experience, 20(5):497–506.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger. Pe-
gasus: a workflow management system for science automation. Future
Generation Computer Systems, 46:17–35, 2015. Funding Acknowledge-
ments: NSF ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF
OCI-1053575.

[3] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the challenges
of scientific workflows. Computer, 40(12):24–32, Dec 2007.

[4] G. Juve. Scientific workflows in the cloud. University of Southern Cali-
fornia.

[5] G. Juve and E. Deelman. Grids, Clouds and Virtualization. Springer,
2011.

[6] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. Scientific Workflow
Scheduling with Provenance Support in Multisite Cloud. In VECPAR,
page 8, Porto, Portugal, June 2016. Faculty of Engineering of the Univer-
sity of Porto, Portugal.

[7] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar. Towards workflow
scheduling in cloud computing: A comprehensive analysis. Journal of
Network and Computer Applications, 66:64 – 82, 2016.

[8] P. Missier, S. Embury, R. Stapenhurst, J. Freire, D. Koop, L. Moreau,
S. Imaging Inst, and U. Utah. Exploiting provenance to make sense
of automated decisions in scientific workflows. In J. Freire, D. Koop,
L. Moreau, S. Imaging Inst, and Utah, editors, 2nd International Prove-
nance and Annotation Workshop, volume 5272, pages 174–185, Ger-
many, 2008. Springer. Microsoft Corporat, Univ Utah Sci Comp Missier,
Paolo Embury, Suzanne Stapenhurst, Richard 11 BERLIN BIU90.

[9] J. Qin and T. Fahringer. Scientific Workflows- Programming, Optimiza-
tion and Synthesis with ASKALON and AWDL. Springer, 2012.

[10] J. C. Rawaa Qasha and P. Watson. A framework for scientific workflow
reproducibility in the cloud. IEEE 12th International Conference on e-
Science, 2016.

SC@RUG 2019 proceedings

71

Predictive monitoring for Decision Making in Business Processes

Ana Roman, Hayo Ottens

Abstract— The achievement of business goals for any service or establishment is always desired, whether it concerns for example
the health of patients in hospitals, the maintaining of a company image or the making of profit in profit making organizations. These
business goals are achieved by (series of) business processes. In order to achieve these goals, the processes should be monitored
at runtime, but their outcomes can also be predicted to prevent unwanted scenario’s. Instead of monitoring business processes upon
completion, it is desired to intervene before a sub-optimal action is taken. Possible options and their risks should be taken into account
in order to make a well-informed decision.
Information systems currently used to support business processes keep their historical data in the form of logs. These logs can be
used as a means to hint towards a more optimal action in a certain situation where a decision is to be made.
In this paper we present multiple methodologies to 1) predict the outcome of a (sub)process and 2) give a risk-analysis for possible
decisions to take. For the purpose of process execution, the business goals and constraints can be defined in the form of a model.
Next a framework is used to monitor and identify the input data values which can cause the business goal to be unreachable. We will
elaborate on using existing outcome-oriented predictive business process monitoring techniques as well as a way to predict the risks
from log-data. Lastly, we will point out weaknesses of these methods and present research questions for future research.

Index Terms—Business processes, Decision making, Predictive monitoring

1 INTRODUCTION

The goal of this this paper is to point out requirements for a system
that is capable of predictive monitoring for decision making in busi-
ness processes, as well as to list some of the used techniques, methods
and frameworks. Moreover, we try to find the weaknesses and topics
for further research in this area. A business process (BP) is a summa-
tion of events, activities, and decisions which lead to a certain outcome
that is of value to the involved actors [11]. Business process monitor-
ing (BPM) is a technique that provides the means to manage the ongo-
ing execution of a process, in order to understand its behavior and its
compliance to a set of business goals[8]. BPM is not meant to improve
the ways in which activities are performed, but rather to manage entire
chains of events, activities and decisions and to ultimately add value
to the organization and to its customers [4]. Predictive (business) pro-
cess monitoring techniques build on top of the conventional ones by
allowing the prediction of future states or outcomes of a business pro-
cess. Examples are: the approximate remaining execution time or the
probability of a certain business goal to be achieved [8].

In recent years, a lot of research has been aimed towards predictive
monitoring methods - also named outcome-oriented predictive process
monitoring methods. In our study, we will take a look at how those are
being carried out, we will analyze them and at the same time, take a
look at the risks involved when using those methods.
We will try to answer the following research question: how can predic-
tive monitoring methods be combined with risk monitoring methods in
the context of business processes?

The paper is organized as follows: First, components of predictive
business process monitoring methods are listed and briefly explained.
Next, we go into detail on the requirements of any predictive monitor-
ing system as well as point out several techniques and frameworks. In
section 5 we will shortly explain the method used for our research. The
actual comparison of techniques is then evaluated in section 6. Lastly,
we give a summary in section 7 and in section 8 we are discussing our
view on the results as well as give perspective to future research.

• Ana Roman, E-mail: ana.ro628@gmail.com.

• Hayo Ottens, E-mail: h.m.ottens@student.rug.nl.

Fig. 1. The components of a business process, taken from [4]

2 THE COMPONENTS OF (PREDICTIVE) BUSINESS PROCESS
MONITORING METHODS

Every business process includes a number of events: actions that hap-
pen atomically, without duration and activities: actions that can be
triggered by an event. For example, the placement of a business or-
der is an event. This event may trigger the execution of a series of
activities, such as, the inspection of the order by the manager and the
execution of tasks required to fulfill it. These tasks are activities, due
to the fact that they require time to be fulfilled [4].
In addition to events and activities, processes typically include deci-
sion points - temporal points where a decision is made which influ-
ences the way in which the process is being executed. A process also
involves actors: they can be either human actors, organizations or sys-
tems that are acting on behalf of human actors; physical objects such as
equipment, materials, documents, products; informational documents
such as electronic documents or records [4].
The execution of a process leads to one or several outcomes. In an
ideal scenario, the outcomes of a process should deliver value to the
actors involved. In some situations, this value is not achieved or is
only partially achieved, or might not even be gained - this situation
corresponds to a negative outcome, which is opposed to the positive
outcome that delivers the most value to the actors.
Figure 2 is meant to illustrate the relationship between the components
of a business process.

72

3 REQUIREMENTS OF A PREDICTIVE MONITORING SYSTEM

In order to build a system which is capable of predictive monitoring of
business processes, we need to fulfill a set of requirements as listed in
the research of [2]:

R.1 Define monitoring points and expected behaviour.

R.2 Capture and process the information required for monitoring.

R.3 Normalize the information captured.

R.4 Process event and data information.

R.5 Identify and notify problems.

R.6 Develop automatic support.

3.1 Making the model
Making a model is the first step necessary for making predictions about
the outcome of future events [2] and addresses requirement R.1. Mul-
tiple ways exist to obtain such a model. This process model should
include all data attributes of sources which need to be monitored.

A complete understanding of the process is hard to define. Different
process participants may need different aspects of the process for an-
alyzing process events from their respective perspectives. Moreover,
the amount of data and data heterogeneity is abundant, e.g. messages,
event logs and many other artifacts in many different formats [1].

Currently, there are multiple existing formats available for mod-
elling these events. One of them is YAWL (Yet another Workflow
Language) [6]. In the paper of [3], this management system is used
to build a model which is used to make predictions about the future.
Another approach is Linear Temporal Logic (LTL) as used in [8]. LTL
is a modal logic with modalities devoted to describe time aspects [10].
Classically, LTL is used in the literature for expressing business con-
straints on procedural knowledge [9]. In the paper of [8], LTL is also
used in this way.

The above two approaches work well with existing BPM frame-
works, further elaborated in 3.2. When a custom framework is de-
sired, the research of [1] gives a useful approach to build a model
from scratch. Beheshti et al. introduce in this paper a ”graph-based
data model for modeling the process entities (events, artifacts and peo-
ple) in process logs and their relationships, in which the relationship
among entities could be expressed using regular expressions” [1].

3.2 Data acquisition
The next requirement is to capture and process the information re-
quired for monitoring, as stated in R.2. This act can be referred to
as ’process mining’ [12]. Since nowadays, many different informa-
tion systems, e.g. Workflow Management Systems (WMS), Customer
Relationship Management (CRM) systems and Enterprise Resource
Planning (ERP), are in use within organizations which support the ex-
ecution of business processes [5], we need a way to capture them in
ideally one place to be able to monitor these processes. Typically, all
these systems are able to provide ’event logs’, i.e. a form of registra-
tion of what has been executed in the organization. These logs contain
a variety of data, for example the process instance (case), dates and
times and people involved.

One extensible process mining framework is ProM. This framework
is used in the paper of [8], where a prediction and recommendation
module is built.

Whereas existing frameworks like ProM may do most of the tedious
work already, it should not go unnoticed that capturing and processing
the information are required for monitoring, as stated in R.2.

In figure 2 we see an overview of the steps in analyzing process
event logs (i.e. preprocessing, partitioning, and analysis) as used for
the custom model of [1]. In order to achieve this, Beheshti et al. cre-
ated an extension of a widely used graph-based querying language
SPARQL, FPSPARQL, where subgraphs can be constructed and re-
trieved and transitive relationships are first class objects, as desired.

This way, they handle both requirements R.2 and R.3. In their dis-
cussion they conclude a great performance of their querying language,
even compared to the one used in well-known HyperGraphDB. They
conclude though, that the quality of discovered transitive relationships
is highly related to the regular expressions generated to find patterns
in the log.

Fig. 2. Event log analysis scenario, taken from [1]

3.3 Detecting anomalies

The following subsections are meant to describe the topic of anomalies
in different types of business processes, as well as how they can be
handled or prevented.

3.3.1 Regular task monitoring

Being able to detect anomalies when they happen is valuable, because
the process can be stopped when the anomalies are detected, and nec-
essary measures can be taken in order to handle them. Performing
task monitoring on the execution of a process enables us to supervise
the evolution of the process and to check whether this is performed
correctly or not. At the same time, this allows the detection of these
possible anomalies in the behavior of the process. The status of the
execution is obtained by analyzing the events that take place alongside
the task. Anomalies are detected by values exceeding their thresholds,
for example time, space or some budget running out.

However, we can take into consideration one other approach, that
could improve even more the outcome of the process. That is, the
ability to prevent the thresholds from being reached. Thus, we can use
prediction to avoid the thresholds from being reached, and implicitly
the anomalies from appearing.

3.3.2 Predictive task monitoring

As stated in R.5, the system needs to be able to identify problems
and notify actors about them before an undesired outcome will oc-
cur. Given a set of incomplete business processes, predictive process
monitoring aims at predicting its class label (expressing its outcome
according to some business goal), by studying from a set of completed
cases with their known class labels [11]. In the research of [11], Teine-
maa et al. aims to answer the following question: Given an event log
of completed business process execution cases and the final outcome
(class) of each case, how to train a model that can accurately and effi-
ciently predict the outcome of an incomplete (partial) trace, based on
the given prefix only? This overarching question is then decomposed
into the following sub-questions:

Q.1 What methods exist for predictive outcome-oriented monitoring
of business processes?

Q.2 How to categorize these methods in a taxonomy?

Q.3 What is the relative performance of these methods?

Subsequently in the paper, Teinemaa et al. try to answer these ques-
tions by using the methods of their found literature on a set of datasets.
In the next paragraphs, we try to give an overview of this research. For
the full details, please refer to [11].

SC@RUG 2019 proceedings

73

3.3.3 Taxonomy
In their research, Teinemaa et al. found that there are two main phases,
namely the offline phase and the online phase. The offline phase is
determined to train a model in order to next make predictions about
running cases, that is in the online phase. The offline phase consists
of four steps. The first step is to use the event logs to extract the case
prefixes (event identifiers) and to filter them appropriately. Secondly,
the prefixes are divided into so called buckets by similarities among
the prefixes. This is also referred to as ’hashing’. Next, features are
encoded from the buckets to prepare for classification. The final step
is to actually train the classifier with the encoded prefixes. Then, the
next phase commences.
In the online phase, the goal is to predict the outcome of a running
case by reusing the previously determined elements. For this phase,
the correct bucket is determined given the running process sequence
(trace) and the set of buckets of historical prefixes. This information
is then used to encode the features of the running trace for classifica-
tion. Finally, a prediction is extracted from the encoded trace using
the correct classifier for the determined bucket. The steps of these two
phases are visualized in Figure 3 (offline) and 4 (online) and explained
in further detail in 3.3.4. The steps of these phases form the answer to
Q.2.

Fig. 3. Offline predictive process monitoring workflow, taken from [11]

Fig. 4. Online predictive process monitoring workflow, taken from [11]

3.3.4 Existing methods
The phases with their corresponding steps are a global approach to
tackle the predicting problem. According to the research of Teilemann
et al. different studies use a different implementation of these steps.

- Prefix extraction and filtering
To assure the training data is comparable to the testing data, the
prefix log is used for training. It appears though, that using all
possible prefixes leads to slowing down the training process and
generating a bias. Two different approaches to tackle these prob-
lems are found in the study [11]: the length-based and the gap-
based approach. The length-based approach considers prefixes
up to a certain number only, whereas the gap-based approach
considers every prefix who’s length is that of a base number plus
every nth number, where n equals the gap.

- Trace bucketing
Teilemann et al. found that typically, the prefix traces in the event

log are divided over several buckets, as said in 3.3.3, and differ-
ent classifiers are then trained for each such buckets. In the on-
line phase, the most suitable bucket is selected and its respective
classifier is applied to be able to make a prediction. The follow-
ing bucketing approaches are used in the studies: Single bucket,
KNN, State, Clustering, Prefix length and Domain knowledge.
For an explanation of these approaches, please refer to [11].

- Sequence encoding
A fixed length of feature vectors is needed for any classifier to
train. It appears to be a real challenge to maintain the same num-
ber of feature vectors while each executed event reveals addi-
tional information. The trace-abstraction technique solves this
problem by considering for example the last n event of a trace.
This raises the problem though, that a balance needs to be made
between generality and loss of information, which appears to be
a difficult task. The next step after choosing a trace-abstraction
is to apply a feature extraction function on each event data at-
tribute. The following feature extracting approaches are used in
the studies: Static, Last state, Aggregation and Index and are en-
listed in figure 5. For an explanation of these approaches, please
refer to [11].

Fig. 5. Encoding methods, taken from [11]

- Classification algorithm
The last step in the taxonomy is predicting the outcome from
the encoded trace using the correct classifier for the determined
bucket. Multiple classification algorithms are being used or ex-
perimented with, as found in the research of Teinemaa et al. Two
popular ones are decision trees (DT) and random forests (RF).
Also support vector machines (SVM), generalized boosted re-
gression models (GBT), gradient boosted trees (XGBoost) and
logistic regression (logit) are used.

Please refer to [11] for a more detailed explanation of these methods.

3.3.5 Methods’ performance
As seen in section 3.3.4, the taxonomy consists of different steps
where in each step multiple techniques and methods are applicable.
The research of Teinemaa et al. tries to compare different combina-
tions of methods in the offline phase as well as different combinations
in the online phase. The performance of these method-combinations
is measured by using running time and accuracy among other things.
Method combinations are indicated by using abbreviations coupled
with an underscore (’ ’). In this section we aim to give a short
overview of the performance of these methods. For the complete list
of results, please refer to [11].

- Accuracy
Accuracy is measured by the Area Under Curve measure (AUC)
and F-score.
Online, the XGBoost classifier has the best performance with the
highest AUC in 15 of 24 datasets and the highest F-score in 11
datasets. Next, RF has the highest AUC in 11 datasets and the
best F-score on 14 datasets. Then, Logit has the highest AUC in
7 datasets and the highest F-score in 6. SVM performs signifi-
cantly worse than the other algorithms, with just two datasets as
an exception.

Predictive monitoring for Decision Making in Business Processes – Ana Roman and Hayo Ottens

74

The best performing bucketing and encoding methods are
singe agg with the best AUC in 10 of 24 datasets and 9 best
F-scores. Next, prefix agg performs best with the highest F-
scores on 8 datasets, followed by cluster agg, state agg, and pre-
fix index. Prefix laststate, knn laststate, and knn agg are found
to perform significantly worse than prefix agg.

- Running time
The running time of the algorithms are obviously influenced by
the size of the datasets. Overall the logit classifier seems to be
the fastest and RF slowest. In smaller datasets, SVM is second,
followed by RF and XGBoost. In larger datasets though, XG-
Boost scales better, whereas SVM is slowest.
Concerning the bucketing and encoding methods, the fastest
seems to be prefix laststate, which is faster in 17 of 24 datasets.
Next, knn laststate, state laststate, and single laststate follow up.
In the offline phase, in general, the most time is taken by index-
based encoding to construct the sequences of events. The fastest
bucketing approaches are state-based, then prefix-length based
or clustering based, followed by single bucket as the slowest.
This could mean that training multiple small classifiers (trained
on a subset of the data) performs faster than training a few larger
classifiers.

4 RISK MANAGEMENT IN BPM

Risk management is a research area with implications in various fields.
The analysis of risks is to be taken into consideration whenever there
is talk of business processes, since failing to address those risks or not
having ways to mitigate them may lead to substantial financial losses,
reputational consequences and faults that might threaten the organiza-
tion’s existence.
Decision making theory defines risk as the reflecting variation in the
distribution of possible outcomes, their likelihoods and their subjec-
tive values[7]. A process-related risk measures the probability of a
negative outcome (also called a fault), and the way this will impact the
process objectives [3].
Risk-aware Business Process Management tries to model risks before
the start of the processes, it tries to detect them as early as possible
during execution and helps with the mitigation of the risks by taking
decisions about the process instances. But there is a certain limitation
with this approach, such that in this way, risks are not prevented but
rather taken into consideration when the probability exceeds a certain
threshold value. This is not always ideal, since the costs of risk mit-
igation may not always be acceptable, and moreover, risk mitigation
is not always possible for all the process risks. Therefore, the previ-
ous research [3] by Conforti et al. proposes a method that is meant
to reduce the presence of risks; for every process, the method should
return the likehood and severity of the occuring of a fault, obtained via
a function estimator. The function estimator is a trained model based
on historical data, as extracted from process logs.

The suggested method from literature

In the previous work of Conforti et al, a method is described that can
aid the decision making before the execution of a business process,
with regards to the process-related risks.
In order to implement this new method, the four phases of the BPM
lifecycle (Process Design, Implementation, Enactment and Analysis)
are extended with elements that make up risk management processes.

1. Risk Identification is a new initial phase that takes place before
the Process Design. It is during this phase that possible risks,
faults or negative outcomes are identified as potentially appear-
ing during the execution of the business process.

2. The faults and their risks that are detected in the initial phase
are then modelled together with the business process during the
Process Design phase, such that the model that is obtained is a
risk-annotated process model.

Fig. 6. Risk-aware BPM lifecycle, taken from [3]

3. Later in the process, the risks and their faults are linked to spe-
cific aspects of the process model, such that a detailed mapping
is created.

4. In the Process Enactment phase, the risk-annotated model is ex-
ecuted.

5. The information obtained during the Process Enactment phase is
analyzed together with historical data during the Process Diag-
nosis phase. The occurrence of risks is monitored, which may
result in mitigation in order to recover the process from a fault.
Figure 4 is meant to depict how these phases take place.

5 METHODS

Our research is based on the findings of work previously done on the
subject by different research groups. The literature studied in this pa-
per is partly provided by our supervisor, Miss Karastoyanova, and
partly by literature research of ourselves. The found literature pro-
vides insight on different aspects of the subject. Our research method
is the following: in order to write this paper, we carefully put together
different ideas from the literature in the most chronological order. The
aim of this approach is to provide the basis of information that can be
used to build a system for predictive monitoring, designed according
to the previous findings from the literature.

6 RESULTS

As our aim of this paper is to give an overview and comparison of
currently used techniques and frameworks, this section will be used to
briefly go over these previously addressed techniques and frameworks.
Firstly, let us remember that there are different stages of predictive
monitoring: making a model, data acquisition, classifying anomalies
and predicting process outcomes.

6.1 Making a model
In section 3.1 we found three different methods on defining a model
for predictive monitoring. The most tedious but custom approach is to
build the model yourself. The research of [8] does so by using their
custom graph-based modelling language ’FPSSPARQL’. One alterna-
tive is YAWL (Yet another Workflow Language). It is a workflow man-
agement system and has a powerful process modelling language that
supports all control-flow patterns. Linear Temporal Logic (LTL) on
the other hand is a constraint specifying tool. Both of these approaches
can go hand in hand and work well with existing BPM frameworks.

6.2 Data acquisition
Section 3.2 covers the techniques used to acquire data from multiple
sources. ProM is in the literature denoted as a widely used platform-
independent framework to do this. It supports a wide variety of process
mining techniques in the form of plug-ins. The research of [8] defines
a way to build a custom data acquisition system. The quality of the
data is highly related to the regular expressions used to acquire the
data, as they argue.

SC@RUG 2019 proceedings

75

6.3 Detecting Anomalies Through Predictive Monitoring

In section 3.3 we go into detail of the existing methods for predictive
monitoring of business processes. By looking at the previous
research [11] of Teinemaa et al., four steps are studied that aid the
methods: prefix extraction and filtering, trace bucketing, sequence
encoding and lastly finding the correct classification algorithm.
These steps are then tested in an experimental set-up, and all the algo-
rithms are investigated with regards to time performance and accuracy.

6.3.1 Accuracy results

In terms of accuracy, the study has concluded that the best performing
classifier is XGBoost, followed by RF. The difference between the
three performances are not statistically significant, according to the
paper. The worst accuracy performance is achieved by SVM.
The choice of choosing the sequence encoding had a greater effect on
the results than the bucketing method, such that, the best results are
mainly achieved using the aggregation encoding with either the single
bucket, clustering, prefix length based or state-based bucketing. These
methods generally achieve comparable results.

6.3.2 Temporal results

In the offline phase of the process, the classifier that had the best
time performance is logit. When dealing with smaller datasets, the
second best performance is achieved by SVM, RF and then XGBoost,
although XGBoost seems to scale better than the others in the large
datasets. In the offline phase, RF is the slowest classifier, while
the other three have yielded comparable results. When it comes to
bucketing, state-based bucketing is found to be the fastest approach
in the offline phase, followed by either prefix length or the clustering
base method, and the slowest being single bucket.
Teinemaa et. al then proceed by using the XGBoost classifier, and
find that in general, the time for applying the aggregation functions is
small compared to the time that is needed for training the classifiers.

The conclusion of the research is that the use of an aggregated
encoding of the sequence of activities give the most reliable and
accurate results, due to the fact that this type of encoding allows the
representation of all prefix traces in the same number of features.

7 CONCLUSION

The goal of this this paper is to point out requirements for a system
that is capable of predictive monitoring for decision making in busi-
ness processes, as well as to list some of the used techniques, methods
and frameworks. Moreover, we try to find the weaknesses and topics
for further research in this area. In the preceding sections we gave an
overview of the required steps and components of building a predic-
tive monitoring system. The research of [2] pointed out the follow-
ing requirements: Define monitoring points and expected behaviour,
Capture and process the information required for monitoring, Normal-
ize the information captured, Process event and and data information,
Identify and notify problems, Develop automatic support. In section 4
we specify about risk management and we extend the four phases of
the BPM lifecycle with risk management processes. Lastly, in section
6 we list all used methods in every step of building a predictive mon-
itoring system and try to compare them. We have seen that multiple
tools and frameworks can work together to form the basis of such a
system: YAWL, LTL and ProM. Then XGBoost is found to be the best
classifier in terms of accuracy, whereas the logit classifier performs
best timewise.

8 DISCUSSION

The present paper aims at putting together methods for predictive mon-
itoring based on past results of different research groups. By taking
into consideration different aspects of such results, we describe the
important characteristics of the methods.The novel idea that this paper
proposes is the complete predictive method, together with risk anal-
ysis and anomalies detection. While these three aspects have been
researched before, there is no previous study that researched this topic
with all three aspects in mind. Thus, our paper aims to work with the
already existing methods and to put them together, in order study them
as a whole and not as independent methods.
To note is also that our team did not conduct any independent research
and neither have we obtained results of our own, since that is not the
purpose of the paper.
The methods that are described in the present paper have not been in-
vestigated in real life or experimented with, thus we shall leave this
topic open for future research and study. In order to analyze the ef-
ficiency of our study and to measure whether the application of our
method on real life cases does indeed have a positive outcome, the
method should be applied to a real business case that is monitored
from start to finish.
Another topic that our research does not dive very deep in is the classi-
fication of anomalies and different methods of how they can be treated
based on this classification. For example, temporal anomalies should
be treated differently from monetary anomalies, and so on. We also
leave this open for future research.

ACKNOWLEDGEMENTS

The authors wish to thank especially Miss Karastoyanova for carrying
the task of supervisor. Also, we would like to thank Ruben Scheedler
and Derrick Timmerman for their reviews. And lastly, we acknowl-
edge the hard work of the previous researchers whose papers have
made possible the completion of our study.

REFERENCES

[1] A. Beheshti, B. Benatallah, H. R. Motahari Nezhad, and S. Sakr. A query
language for analyzing business processes execution. volume 6896, pages
281–297, 01 2011.

[2] C. Cabanillas, C. Di Ciccio, J. Mendling, and A. Baumgra. Predictive
task monitoring for business processes. 09 2014.

[3] R. Conforti, M. de Leoni, M. La Rosa, and W. M. P. van der Aalst. Sup-
porting risk-informed decisions during business process execution. In
C. Salinesi, M. C. Norrie, and Ó. Pastor, editors, Advanced Information
Systems Engineering, pages 116–132, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[4] M. Dumas, M. Rosa, J. Mendling, and H. Reijers. Fundamentals of Busi-
ness Process Management. Springer Berlin Heidelberg, 2018.

[5] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede. Process-aware
Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

[6] A. Hofstede, ter, W. Aalst, van der, M. Adams, and N. Russell. Mod-
ern business process automation : YAWL and its support environment.
Springer, Germany, 2010.

[7] B. Levitt and J. G. March. Organizational learning. Annual review of
sociology, 14(1):319–338, 1988.

[8] F. Maggi, C. Di Francescomarino, M. Dumas, and C. Ghidini. Predictive
monitoring of business processes. 12 2013.

[9] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. Declare: Full
support for loosely-structured processes. In 11th IEEE International En-
terprise Distributed Object Computing Conference (EDOC 2007), pages
287–287, Oct 2007.

[10] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977)(FOCS), volume 00, pages
46–57, 09 1977.

[11] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi. Outcome-
oriented predictive process monitoring: Review and benchmark. CoRR,
abs/1707.06766, 2017.

[12] C. Turner, A. Tiwari, R. Olaiya, and Y. Xu. Process mining: From theory
to practice. Business Process Management Journal, 18, 06 2012.

Predictive monitoring for Decision Making in Business Processes – Ana Roman and Hayo Ottens

76

A Comparison of Peer-to-Peer Energy Trading Architectures

Anton Laukemper and Carolien Braams

Abstract—Peer-to-peer energy trading (P2P DET) enables people to trade their own generated energy from renewable energy
sources (RES) among end users in a distribution network. These end users who both produce and consume energy are called
prosumers. The rise of RES like photo voltaic panels and wind turbines presents numerous opportunities; for example, the risk of
power outages is reduced through multiple redundant power sources. However, it also poses technological challenges in the design
of electric grids considering issues such as privacy, security and reliability of power supply. Recent research has shown various
methods to address these challenges by finding new techniques to balance supply and demand of electricity, and to transmit it from
prosumer to prosumer using a smart grid. This paper gives an overview of the various aspects that come with a distributed grid of
power producers and compare approaches of recent works. We point out that a possible architecture of a distributed peer-to-peer
smart grid consists of two parts, a system that dynamically responds to variations in demand, and a system that securely and reliably
sends power packages through the grid. The main contribution of the paper is a qualitative comparison of a selection of possible
P2P DET platforms. Although many of these platforms have similarities, The comparison shows that the platforms differ in the grid
structure that underlies the platform, mainly because they focus on different subproblems of P2P energy trading.

Index Terms—Smart grid, Peer-to-Peer energy trading, Power Routing, Demand Response Optimisation Models, Microgrid, Renew-
able Energy Sources

1 INTRODUCTION

The production and distribution of electrical energy is commonly
organized in a centralized manner; The current power supply system
is a rather one-directional, hierarchical system in which few big pro-
ducers deliver energy over a network of connected transmission lines,
the power grid, to multiple consumers. [8]. An electrical energy grid
has two characteristics. The first characteristic is that the frequency
and phase of the electrical current need to be synchronized on each
of the grid’s distribution levels [2]. Secondly, the power supply must
match the demand at all times in a ’just-in-time paradigm’ [8].
The increasing number of renewable energy sources (RES) such as
wind turbines and photo-voltaic units poses a significant problem to
such a grid. In contrast to conventional power plants, whose output
can be carefully controlled, RES’s energy production is unpredictable
and uncontrollable. This makes the power flow management that
guarantees synchronization of the grid and a balance of supply and
demand exceedingly difficult.
Due to the expansion of distributed RES, a newer and smarter
structure of the energy grid, called a smart grid, is likely to hold the
future. This promising design comes in the form of smart micro-grids;
a partitioning of the main grid into smaller asynchronous cells that are
able to exchange energy through “digital grid routers” [2]. Together
with increasing energy storage capacities, smart grids can facilitate
a large scale penetration of RES in the power grid. Since individual
households are able to install RES, a completely new market arises
in which traditional consumers can also produce and sell surplus
electricity. All actors in the smart grid can therefore exchange energy
to one another. The end users that both produce and consume energy
are called “prosumers”.
This peer-to-peer (P2P) distributed energy trading (DET) offers a
multitude of advantages. It raises a whole new energy market between
end users of the grid and by this, eliminates the importance of the
utility companies. The Peer-to-peer distributed energy trading (P2P
DET) will be an important element for the exchange of energy in the
new power grid.
Nevertheless, P2P DET in a smart grid poses also completely new
challenges. Firstly, within a smart grid cell, the balance between

• Carolien Braams is a first year Computing Science master student at the
University of Groningen.

• Anton Laukempers a first year Computing Science master student at the
University of Groningen.

supply and demand must still be maintained, though there would
be many more energy producers, supplying power at unreliable and
unpredictable times. The dynamical response to variations in demand
is called “load matching”. A second challenge entails that energy
would not only be transported in one direction from power companies
to consumers, but also from prosumers to other prosumers, and
therefore the grid must support a bidirectional flow of energy from
each prosumer to everyone else. This makes the grid vulnerable to
security and privacy threats, that have to be addressed in possible
implementations. The process of sending power packages securely
and reliably sending through the grid is called “power routing” [1].

There have been many different surveys on the topic of P2P energy
trading in the past. The study performed by Abdella and Shuaib [1]
presents the current state of research on power routing and gives an ex-
tensive discussion of load matching approaches. Saputro, Akkaya and
Uludag [8] classify and review a number of power routing algorithms,
while Vardakas et al. [12] do the same for different load matching ap-
proaches. Chenghua Zhang et al. [14] compare different existing peer
to peer Energy trading projects.
Neither of these studies, however, give a detailed comparison of con-
crete DET platforms that manage to solve, at least partly, the main
challenges of P2P DET, namely load matching and power routing.
Therefore, we try to illuminate the connection between both parts of
P2P DET. This paper aims, among other goals, to facilitate a better
understanding of the different components of an energy trading smart
grid.
Section 2 will lay out the details of the two main challenges of P2P
DET. Section 3 discusses the focus points we want to review by exam-
ining different P2P DET architectures. In section 4, we present four
different possible implementations of DET platforms. We illustrate in
what way they address the aforementioned challenges. Furthermore,
we examine each platform regarding different criteria, such as whether
privacy and security issues are considered, and what energy storage
concepts they take into account, and compare them in section 5. Sec-
tion 6 discusses the findings of the survey and possible future work.
Finally, section 7 concludes the research presented in this paper.

2 LOAD MATCHING AND POWER ROUTING

This paper addresses two challenges that are key elements for succeed-
ing P2P DET, namely load matching and power routing. The following
subsections clarify the meaning of these concepts in detail.

77

2.1 Load Matching

If consumer demand during peak hours extends the energy production
levels in the power grid, system failures and black outs can follow.
Intuitively, one might suggest to turn up more power generating units
during peak hours to cover the extra demand. In practice however, this
comes with high operational costs because the reserve power units are
most of the time underutilized and are expensive to boot up [1].
Power companies therefore rather use strategies that influence the con-
sumers energy usage behaviour in such a way that their total power
consumption is reduced, benefiting the consumer, but also trying to
make the demand match the supply. Strategies like this fall under the
term “demand side management” [12].
Demand side management is a long-term strategy that aims to decrease
power consumption at every hour, e.g. through automatizing heating
and ventilation. A specific subset of programs that especially aims at
making consumers change their behaviour on the short-term when the
grid’s stability is in danger, is called “demand response” (DR) [12].
Methods to perform demand response include “direct load control”,
which gives the utility company the control to shut off certain appli-
ances when needed in exchange for a financial benefit and “demand
side bidding”, where consumers can make offers to reduce their load
at certain times, also in return for a specified financial benefit. A third
method is to increase the energy price during peak hours which indi-
rectly gives the incentive to reduce the load.
The introduction of smart grids, RES and peer-to-peer energy trad-
ing offers completely new opportunities but also complications to this
task. On the one hand, smart appliances, smart metering systems and
energy storage systems facilitate DSM and enable consumers to switch
to local energy production or stored capacities during peak hours, on
the other hand, it is much more difficult to synchronize demand and
supply with increasingly fluctuating energy production.

2.2 Power routing

To accomplish a smart grid that enables P2P trading, three conditions
must be met. First, to be able to actually transport energy from one
prosumer to the other, the grid must support some kind of address sys-
tem. Secondly, it must be able to transport power in both directions,
because prosumers can both sell and demand energy at different times.
And thirdly, it must be able to convert energy from RES that is pro-
duced in DC to AC and synchronize the frequency and phase of the
current with the local grid cell.
The process of sending power through a grid under these conditions is
called power routing. Since energy is lost if it is transported over long
distances, the main challenge is to find the optimal route from A to B.
Many researchers [8, 9, 10] have suggested to view power routing sim-
ilar to data packet routing as it is done on the internet. Electricity
would then be packaged and send to the receiving Power Router [8],
which is identified by IP address. Therefore, power routing can be seen
as a classical routing problem where the order of sending the packages
has to be determined. Seeing that the capacity of the grid is limited, it
still needs to be guaranteed that the packages arrive securely and in an
efficient manner.
The use of P2P DET brings some issues concerning security and pri-
vacy. End users in the grid need to communicate with each other to
ensure the success of the trading process. In recent research they en-
abled peers in a smart grid to anonymously negotiate energy prices and
securely perform trading transactions [3]. However, this issue is not
always addressed.

3 METHODOLOGY OF THE COMPARATIVE REVIEW

In this study we want to give a better understanding of P2P DET chal-
lenges and for this reason give a comparison of recent studies on this
topic. Our main focus will be on energy storing used for the trading,
the grid structure, how supply and demand are balanced/matched,
power routing and an examination how the paper determines the
success of the proposed findings of their research.

3.1 Energy Storage
The hardware requirement for each grid can differ for the model or
architecture someone chooses. The details could make a difference in
the usability of the grid and the difficulty of implementing it. Energy
storage capacities in a grid architecture have the big advantage of
stabilizing the energy flow in the grid. While battery systems are not
yet scalable for grid-scale application, they are on a promising path to
become widely available soon [2]. For the purpose of the comparison,
each proposed trading structure is reviewed if energy storage (ES) is
included.

3.2 Grid structure
A grid used for P2P DET system can have a wide range of compo-
nents such as conventional power plants, distributed energy resources,
transformers, power routers, smart meters, etc. Furthermore, it can
have many different stakeholders like the traditional consumers, pro-
ducers like retailers, and prosumers equipped with solar panels and
wind turbines in their household. The grid size can reach from one
single household, to neighborhoods to whole states and nations, and
it can be integrated into the conventional utility grid, or completely
isolated and self-sustained. This paper will investigate which kind of
grid structure each of the four approaches suggests or presupposes for
their trading system.

3.3 Load Balancing
As mentioned earlier, smart grids offer new opportunities but also
challenges to the task of keeping supply and demand at balance. This
paper examines how each proposed trading system tackles this task
and compare them to each other.

3.4 Power Routing
Power routing is considered to be a necessity for each P2P trading sys-
tem. We check for each study what infrastructure they use to enable
bidirectional energy flow and how energy is efficiently transported
from generation side to the demand side.

4 SELECTION OF P2P DET SOLUTIONS

This section gives a summary of the four P2P energy trading architec-
tures that we selected for a detailed comparison.

4.1 P2P Energy Trading in a Microgrid
The goal of Long et al. [15] was to develop a platform for the “business
layer”, as they call it, of P2P DET. This layer is concerned with orga-
nizing how power is traded between prosumers and is considered inde-
pendent from the “power grid layer”, the “ICT layer” and the “control
layer” which deal with the physical implementation of energy trans-
mission, routing, and grid synchronization respectively. The software
they propose [15] is called “Elecbay” and performs P2P energy trading
in three phases. In the beginning, the “bidding” phase; each prosumer
who wants to sell energy submits their offers, which consists of 30
minute packages of power, and with it the desired price. In this phase,
prosumers with energy demand can choose from these offers and place
orders. Finally, the system decides which transaction will be accepted.
How users in the grid interact with the platform can be seen in Figure
1.
In the following phase the energy exchange takes place, in which both
promised production and consumption levels are measured precisely
by smart metering devices. This is done to ensure that in the last phase,
the settlement, energy consumers can be billed for the correct amount
and any deviance from the stated energy levels can be financially pun-
ished.
The main goals of the platform proposed in paper [15] is to offer pro-
sumers the opportunity to trade energy in such a way that the con-
sumed energy comes as much as possible from local sources and not
from the external utility grid, and secondly, that the flexible demand
is scheduled in a way that maximizes their payoff. Flexible demand
includes all those appliances that can be used relatively time indepen-
dent such as washing machines, dishwashers and water heaters.

A Comparison of Peer-to-Peer Energy Trading Architectures – Anton Laukemper and Carolien Braams

78

Prosumers thus have an advantage when they schedule their flexible
demand during a time when they themselves produce a lot of energy,
or when energy on Elecbay is cheap.
Simulation results showed, that if the RES are sufficiently diverse, en-
ergy exchange between the utility grid and the microgrid is reduced by
42.49% and the peak load of the microgrid was reduced by 17.6%.

Fig. 1. Interactions of grid participants during P2P energy trading in
paper[15]

4.2 Retail Electricity Market and Home Microgrids
The platform that is presented by Marzband et al. [7] presupposes a set
of prosumers with RES, energy storage capacities, and a smart energy
management system that connects the house to the utility grid, shown
in Figure 2. Through the grid, each prosumer is also connected to a
“market operator” and multiple energy retailers.
The market operator is the core of the platform as it receives from each
participant in the market - both prosumers and retailers - supply and
demand bids for the following day. From this, it computes the opti-
mal price and the optimal schedules of the prosumers’ home systems
and the retailers’ energy production systems. The bids are essentially
predictions about the amount of energy that will be produced or con-
sumed, together with the desired price, while the schedules prescribe
at what time flexible demand should be allocated.
The market system is set up in such a way that firstly, prosumer pro-
duced energy is sold as much as possible to other prosumers and any
excess power is sold to the retailers, who resell it when demand ex-
ceeds supply. The authors claim that this market structure maximizes
the use of RES through the optimized storage and demand response
schedules, that are found by the market operator and reduces the en-
ergy price because of more competition.

Fig. 2. Grid structure of paper [7]

4.3 Power Dispatching for Local Packetized Power Net-
works

J. Ma et al. [6] propose a protocol that achieves both handling Re-
sponse Demand and Power Routing by separating the energy transac-
tion process into three parts.
The first part they call “subscriber matching” in which for each “sub-
scriber”, i.e. a prosumer, who has a certain amount of surplus energy
to sell a corresponding other subscriber is found, who has the demand
for that amount of energy.

In the “transmission scheduling” step it is determined when each pack-
age is sent over each of the limited power channels of the power router.
The third step is then sending the energy packages in the “power
packet transmission” after confirmation from each prosumer was ob-
tained. This protocol was developed for a local network consisting of
a small number of neighbors, each with their own IP address, AC/DC
converters and battery systems, connected to one power router that
also has a connection to the conventional utility grid (Figure 3). The
power router possesses multiple power channels through which only
one package at a time is sent, so that it can achieve peer-to-peer trad-
ing for multiple pairs at once. It is connected to the utility grid to that
it can still supply energy to those prosumers that did not find a partner
in step 1.

Fig. 3. Grid structure of paper [6]

4.4 Energy Routing in a Smart Grid Network
The algorithm proposed by J. Hong et al. [5] aims at finding the op-
timal energy price for each prosumer, so that their profits are maxi-
mized, while at the same time finding the optimal power transmission
path. To do so, they present their idea of a “control center” that re-
ceives information from prosumers about how much electricity they
intend to buy or sell together with their desired prices. The control cen-
ter then determines the optimal price through a stock exchange pricing
scheme and finds the optimal transmission path by using the Hungar-
ian algorithm, a popular solution to the transportation problem, which
is of the same structure as the power routing problem according to pa-
per [5].
The underlying grid structure that the authors presuppose for their al-
gorithm is a smart microgrid that connects houses in one neighborhood
(Figure 4). Each house must be equipped with RES, energy storage
capacities and a power router. It is neither specified how the control
center is connected to the grid, nor is power conversion mentioned.

Fig. 4. Microgrid structure in paper [5]

SC@RUG 2019 proceedings

79

P
ap

er
re

fe
re

nc
e

#

[1
5]

[7

]
[6

]
[5

]

W
ha

t d
id

 th
ey

 m
ea

su
re

 to
 d

et
er

m
in

e
th

at

th
ei

r
ap

pr
oa

ch
 w

as
 s

uc
ce

ss
fu

l?

U
si

ng
 th

e
p2

p
pl

at
fo

rm

w
ith

 v
ar

io
us

 D
E

R
’s

 le
ad

s
to

 a
 p

ea
k

lo
ad

 r
ed

uc
tio

n
of

 1
7.

6%
 a

nd
 a

 r
ed

uc
tio

n
of

 e
ne

rg
y

ex
ch

an
ge

 w
ith

th

e
ut

ili
ty

 g
rid

 o
f 4

2.
49

%
;

ab
le

 to
 im

pr
ov

e
th

e
lo

ca
l

ba
la

nc
e

of
 e

ne
rg

y
ge

ne
ra

tio
n

an
d

co
ns

um
pt

io
n.

In
 th

e
ca

se
 w

ith
 m

os
t

co
m

pe
tit

io
n,

 to
ta

l
ge

ne
ra

te
d

en
er

gy

in
cr

ea
se

d
by

 o
ve

r
30

0%

an
d

to
ta

l c
on

su
m

ed

en
er

gy
 in

cr
ea

se
d

by
 o

ve
r

20
0%

, w
hi

le
 th

e
en

er
gy

pr

ic
e

w
as

 lo
w

er
. M

or
e

fle
xi

bl
e

de
m

an
d

co
ul

d
be

sa

tis
fie

d.

T
he

 tr
an

sa
ct

io
n

m
at

ch
in

g
pr

oc
es

s
w

as
 c

om
pa

re
d

w
ith

 a
 r

an
do

m
 b

as
e

ca
se

an

d
it

w
as

 s
ig

ni
fic

an
tly

be

tte
r.

 It
 w

as
 a

ls
o

ex
am

in
ed

 w
he

th
er

pr

os
um

er
s

w
ith

 a
 p

ric
e

ad
va

nt
ag

e
w

er
e

sc
he

du
le

d
ea

rli
er

, w
hi

ch

w
as

 th
e

ca
se

, s
o

th
e

al
go

rit
hm

 w
as

 d
ee

m
ed

fa

ir.

T
he

 a
ut

ho
rs

 te
st

ed
 th

e
al

go
rit

hm
’s

 a
bi

lit
y

to
 k

ee
p

th
e

ba
la

nc
e

be
tw

ee
n

su
pp

ly
 a

nd
 d

em
an

d
in

 3

di
ffe

re
nt

 u
se

 c
as

es
. T

he

al
go

rit
hm

 w
as

 s
uc

ce
ss

fu
l i

n
ea

ch
 c

as
e.

H
ow

 d
oe

s
th

e
gr

id
 s

tr
uc

tu
re

 lo
ok

 li
ke

?
U

nd
ef

in
ed

, g
en

er
al

st

ru
ct

ur
e

th
at

 c
an

 b
e

ap
pl

ie
d

on
 a

ny
 s

ca
le

 to

th
e

gr
id

In
di

vi
du

al
 p

ro
su

m
er

s
ar

e
co

nn
ec

te
d

to
 th

e
gr

id

Lo
ca

l N
et

w
or

ks
 th

at
 a

re

co
nn

ec
te

d
to

 a

co
nv

en
tio

na
l g

rid

Is
ol

at
ed

 s
m

ar
t g

rid

W
ho

 a
re

 th
e

pa
rt

ic
ip

an
ts

 in
 th

e
gr

id
?

P
ro

su
m

er
s,

 u
til

ity

co
m

pa
ni

es
, E

le
cb

ay

P
ro

su
m

er
s,

 u
til

ity

co
m

pa
ni

es
, m

ar
ke

t
op

er
at

or

P
ro

su
m

er
s,

 u
til

ity

co
m

pa
ni

es

P
ro

su
m

er
s

Is
 E

S
 in

te
gr

at
ed

 in
 th

e
gr

id

no

ye
s

ye
s

ye
s

P
ow

er
 r

ou
te

rs
?

ye
s

no

ye
s

ye
s

Is
 e

ne
rg

y
co

nv
er

si
on

 a
dd

re
ss

ed
?

no

no

E
ac

h
ho

us
eh

ol
d

ha
s

co
nv

er
te

rs

no

Lo
ad

 M
at

ch
in

g
te

ch
ni

qu
e

D
em

an
d

R
es

po
ns

e
D

em
an

d
R

es
po

ns
e

O
th

er

O
th

er

P
riv

ac
y/

se
cu

rit
y

no

t m
en

tio
ne

d
ad

dr
es

s
on

e
m

or
e

se
cu

re
 o

pt
im

al

sc
he

du
lin

g
op

tio
n

no
t m

en
tio

ne
d

no
t m

en
tio

ne
d

Ta
bl

e
1.

C
om

pa
ri

so
n

of
P2

P
D

E
T

so
lu

tio
ns

A Comparison of Peer-to-Peer Energy Trading Architectures – Anton Laukemper and Carolien Braams

80

5 RESEARCH RESULTS

The authors of each paper tested their approaches in simulation exper-
iments. The results of these experiments are summarized in Table 1.
Nevertheless, the experimental results are not trivially comparable be-
cause of the different research focuses of the papers. While C. Zhang
et al. [15] and M. Marzband [7] propose actual trading platforms, pa-
pers J. Ma et al. [6] and J. Hong et al. [5] propose protocols that
are less concerned with the business side of DET, and more concerned
with certain technical details of it. Therefore, in each study the algo-
rithm’s performance was tested in regards to different aspects, which
makes it not possible to compare the effectiveness of the algorithm’s
with each other, without running further simulations on each of them.
Nonetheless, comparing the approaches in regards to more qualitative
aspects that are also shown in Table 1 and the results of this compari-
son are presented in this section.
The P2P DET approaches in papers [7], [6] and [5] require energy stor-
age capacities to function successfully. They are needed to decouple
the time of energy creation from the time of consumption, so that en-
ergy can be sold on a market like any other commodity [2]. However,
C. Zhang et al. [15] did not include energy storage in their case study
and only proposes a system that is able to keep the balance of supply
and demand solely through demand response. This makes it possible
to implement it with current technology.
While papers [15], [7], and [6] present architectures in which the pro-
sumers are still connected to traditional power companies through the
utility grid, Wang et al. [5] present a microgrid that is completely in-
dependent from the conventional utility grid. Here the demand has to
be fully covered by other prosumers from inside the grid.
What they all share, is a centralized institution that receives informa-
tion from all participants about how much energy they want to sell/buy,
usually also when they need it, and what price they desire. Even in
paper [15] where prosumers can browse other prosumers’ offer and
choose what to buy themselves, this institution is ultimately in control
of who gets to send energy to whom, and for what price.
In papers [6] and [5] it is especially important that this is decided cen-
trally, because in this process, it is secured that supply always matches
demand. They have to rely on these algorithms, since neither of the
two approaches provides any mechanism for demand response.
Regarding the infrastructure of power routing, only J. Hong et al.
[7] do not explicitly mention energy routers which are responsible
for handling the transportation of electricity. However, the authors
do presuppose a home energy management system which is “able to
send/receive signals to/from a market operator” [7] and has additional
functionality, as it must predict load demand and energy generation for
the next day.
Papers [6] and [5] are the only studies that are concerned with the op-
timality of the route that the electricity takes through the grid. While
paper [6] is more concerned with the fair and optimal scheduling of
data packages through certain choke points of the grid, paper [5] finds
the optimal path on which the power can be sent.
Only M. Marzband et al. [7] address the issue of privacy in security
of their platform, as they discuss that there are two ways of computing
the optimal schedules of the prosumers; either it happens centrally in
the market operator, or each home energy management system does
it locally, which is more secure, but poses higher upfront costs to the
prosumers, which discourages participation in the system.

6 DISCUSSION

This contribution’s aim was to give an introduction to the opportuni-
ties and challenges of P2P DET in smart grids and to give an overview
of how possible implementations of it could look like.
It is interesting to note that most of the papers included ES in their
grid architecture. These findings suggest that ES will be an important
part of the development of smart grids and P2P DET systems. As a
possible future instantiation of ES in the grid we propose distributed
energy storage systems such as the usage of electric vehicles that are
charged during times of excess energy production or home batteries
such as the Tesla Powerwall [11].
With a growing amount of data and machine learning solutions in con-

text of smart grids [4, 13], it is fitting to see that two of the four se-
lected approaches rely heavily on smart systems that are able to give
day-ahead predictions of energy demand and production levels. These
systems could be a key component of effective demand response sys-
tems in the future.
Further, we will discuss the limitations of this review. First of all, it is
clear that this was not an exhaustive survey of the literature on peer-to-
peer energy trading in microgrids. Our selection of studies was based
on our impression of how notable each of them are in this field of re-
search. Further surveys with larger scopes could be conducted to get a
more representative image of the state of research on this topic.
Another limitation was the fact that we could not make any compari-
son between the efficacies of the approaches, because they all focused
on different aspects of their simulation results, even though they all
implemented very similar systems. In order to compare their effec-
tiveness at e.g. reducing the maximum power load of the grid, or at
reducing the power loss of energy transportation through more opti-
mal routing, all platforms would have to be simulated under the same
conditions. Such a simulation could be the focus of further research.
This paper focuses more on the technical side of P2P DET. In future
work, we could extend the review by offering a multi sided perspective
of P2P DET by also looking at the policy, laws, ethics and economics
that are affected implementing the P2P energy trading. Aforemen-
tioned paper [7] is the only research that gave an more secure option
to calculate the optimal optimal schedules of the prosumers. Besides,
the other papers do not even address privacy and security challenges of
P2P DET nor included it into their given architecture. Further research
should be undertaken to investigate this issue in P2P DET.

7 CONCLUSION

Proposed is a review on existing research related to P2P DET. This
paper reviews the possibilities of integrating P2P energy trading solu-
tions from a technical perspective. For different papers we looked at
their focus including energy storage, grid structure, load balancing and
power routing. Some of the papers share similarities. However, they
do have different focus for their research. Provided is a comparison ta-
ble of these findings. Energy storage was used a lot in the grid to be a
very promising technique. All approaches take care of the load match-
ing challenge, while the power routing challenge is only addressed in
papers [6] and [5].
Instead of only investigating the technical sides, further research could
explore the political, economical and ethical implications of P2P DET
and its security issues.

ACKNOWLEDGEMENTS

The authors wish to thank Ang Sha for providing the research topic

REFERENCES

[1] J. Abdella and K. Shuaib. Peer to peer distributed energy trading in smart
grids: A survey. Energies, 11:1560, 06 2018.

[2] R. Abe, H. Taoka, and D. McQuilkin. Digital grid: Communicative elec-
trical grids of the future. 2010 IEEE PES Innovative Smart Grid Tech-
nologies Conference Europe (ISGT Europe), pages 1–8, 2010.

[3] N. Aitzhan and D. Svetinovic. Security and privacy in decentralized en-
ergy trading through multi-signatures, blockchain and anonymous mes-
saging streams. IEEE Transactions on Dependable and Secure Comput-
ing, PP:1–1, 10 2016.

[4] D. Alahakoon and X. Yu. Smart electricity meter data intelligence for
future energy systems: A survey. IEEE Transactions on Industrial Infor-
matics, 12(1):425–436, Feb 2016.

[5] J. Hong and M. Kim. Game-theory-based approach for energy routing in
a smart grid network. Journal of Computer Networks and Communica-
tions, 2016:1–8, 01 2016.

[6] J. Ma, L. Song, and Y. Li. Optimal power dispatching for local area
packetized power network. IEEE Transactions on Smart Grid, 9(5):4765–
4776, Sep. 2018.

[7] M. Marzband, M. Javadi, S. A. Pourmousavi, and G. Lightbody. An ad-
vanced retail electricity market for active distribution systems and home
microgrid interoperability based on game theory. Electric Power Systems
Research, 157:187 – 199, 2018.

SC@RUG 2019 proceedings

81

[8] N. Saputro, K. Akkaya, and S. Uludag. A survey of routing protocols for
smart grid communications. Computer Networks, 56:27422771, 07 2012.

[9] T. Takuno, M. Koyama, and T. Hikihara. In-home power distribution sys-
tems by circuit switching and power packet dispatching. In Proceedings
of the 2010 First IEEE International Conference on Smart Grid Commu-
nications (SmartGridComm), pages 427–430, October 2010.

[10] K. Tashiro, R. Takahashi, and T. Hikihara. Feasibility of power packet
dispatching at in-home dc distribution network. In Proceedings of the
2012 IEEE Third International Conference on Smart Grid Communica-
tions (SmartGridComm), page 401405, November 2012.

[11] C. N. Truong, M. Naumann, R. C. Karl, M. Mller, A. Jossen, and H. C.
Hesse. Economics of residential photovoltaic battery systems in germany:
The case of teslas powerwall. Batteries, 2(2), 2016.

[12] J. S. Vardakas, N. Zorba, and C. V. Verikoukis. A survey on demand
response programs in smart grids: Pricing methods and optimization
algorithms. IEEE Communications Surveys Tutorials, 17(1):152–178,
Firstquarter 2015.

[13] H. Xu, H. Huang, R. S. Khalid, and H. Yu. Distributed machine learning
based smart-grid energy management with occupant cognition. In 2016
IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pages 491–496, Nov 2016.

[14] C. Zhang, J. Wu, C. Long, and M. Cheng. Review of existing peer-to-peer
energy trading projects. Energy Procedia, 105:2563 – 2568, 2017. 8th
International Conference on Applied Energy, ICAE2016, 8-11 October
2016, Beijing, China.

[15] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long. Peer-to-peer energy
trading in a microgrid. Applied Energy, 220:1 – 12, 2018.

A Comparison of Peer-to-Peer Energy Trading Architectures – Anton Laukemper and Carolien Braams

82

Ensuring correctness of communication-centric software systems

Rick de Jonge, Mathijs de Jager

Abstract—In the past, various approaches for assurance of correctness of software systems have been proposed. Examples include
Session Types and Conversation Calculus. In this paper we first lay the basis with a global overview of the π-calculus both calculi are
based upon, followed by summarizing these two approaches. This summary describes the core philosophy the calculi were based
on and how the language can be used in practice. This includes an example of a word storing service with which the differences
between the low-level decisions of the Session Types and the higher-level design principles of Conversation Calculus are made
clearer.

After this overview, we compare the differences of approach the calculi took to represent communication-centric services.
We also compare their practical use, with the example we use throughout the paper as a base. We conclude that Session Types are
more programmatic, using lower-level structures like data-typing to represent smaller systems, while the Conversation Calculus is a
good representation of a higher level design with its notion of conversations and the flexibility these conversations have.

Index Terms—Service Oriented Computing, Type Systems, Process Calculi, Program Correctness, Distributed Software

1 INTRODUCTION

Software systems can be proven to be working as they were intended,
but this is a difficult task for communication-centric software systems
such as a client-server setup. Such software systems often involve
concurrency to increase the speed that a single session can be
processed with, or to accept multiple communications at the same
time. Compilers verify whether the code is correct to the extent that
it can be built. Additionally, unit testing can evaluate correctness
via input and output of sub-parts of the software system. However,
it generally cannot tell if the steps to achieve the output within the
system went according to the intended specifications.

Essentially, to ensure the correctness of communication-centric
systems, the communication that occurs in the system must adhere to
a protocol definition. A multitude of ways of doing so can be found
in the current literature. Conversation Calculus [13] and Session
Types [7], both extensions of the π-calculus, have been used to
represent the flow of such a system. Conversation Calculus mostly
focuses on letting whole processes communicate more freely with
eachother, while research using Session Types has implemented a
way of ensuring correctness closer to widely used programming
languages. These approaches have to be able to express different ways
of communication.

We want to explore the differences between these two approaches,
with the main focus to find out how practical these approaches are.
We will work towards our research question: What is the difference
between two approaches to ensure the correctness of communication-
centric software systems, Session Types and Conversation Calculus,
and how can they be integrated into building software?

In this paper, we will first describe the π-calculus followed by
two extensions to it, Conversation Calculus and Session Types. For
each of the latter two, we will explore why they were created, how
they express communication systems, and how the approach has been
used in applications. We will compare these two approaches in the
section afterwards, exploring which systems the approaches are best

• Mathijs de Jager, Msc. Computing Science student at the University of
Groningen, Email: m.de.jager.8@student.rug.nl

• Rick de Jonge, Msc. Computing Science student at the University of
Groningen, Email: g.d.de.jonge@student.rug.nl

used to inspect.

2 π -CALCULUS

In order to grasp the concepts behind the approaches which we will
consider later on, we need to briefly point out the basics of π-calculus.

π-calculus is a type of process calculus. Process calculi are
formal languages typically used to model concurrent systems. Over
the years, various variants of process calculi have been developed.
The aim remains the same across the approaches. However, they do
vary in expressive power. If a process calculus is more expressive,
then it can model the concurrent system more accurately.

π-calculus is more specific than many other process calculi in
the sense that it allows the topology of the model to change. It does
so by passing channel links through channels, such that endpoints
of channels can change. By allowing the calculus to define such
properties, its expressive power increases.

Construct Notation

Concurrency P | Q
Input-prefixed process c(x).P

Output-prefixed process c̄〈v〉.P
Replication !P

Create constant (vx)P

Nil process 0

Table 1. Summary of constructs in π-calculus

An overview of the basic constructs in π-calculus and their corre-
sponding notations can be found in Table 1. Note that the approaches
discussed in this paper build upon these constructs. Probably the easi-
est way to grasp the basic concept is to think of the model as channels
connected to each other, each expressing their expected input and out-
put. The channels function as communication links.

3 SESSION TYPES

In this section we will discuss the first of the two methods, the Session
Types. Session Types were originally introduced by Gay [8] as an
extension to π-calculus. The extensions effectively consist of either
adding a labelled choice or choosing a labelled choice. Despite being
expressive, π-calculus in itself has no notion of data types. Without
typing, it is harder to explicitly model a communication protocol.

83

As an example, there is no notation to specify the input type for a
channel. The input of a channel could be anything. This means that
without the possibility of restricting a channel to a certain type of
interaction, we are missing some expressiveness.

A system represented using the Session Types [7] syntax can
be divided into multiple sessions. Each session represents a single
user performing a series of actions. If one of these actions is a choice,
we have multiple paths to follow. These paths can be represented in
the same session as well. This representation is indented, making
it easy to follow the different choices that can be made. These
session representations, consisting of input and output, need to have a
counterpart in another part of the system for it to be a correct system.
The counterpart can be constructed by so-called dual functions. They
allow us to check the correctness of this communication-centric
software system.

Session Types try to extend correctness techniques to accom-
modate for new programming methods. In doing this, it tries to
remain close to programming styles like object-oriented programming
and functional programming for easier implementation in those
languages. Session Types have been extended in various ways,
including adding multiple parties to sessions [2], and including a
way to place constraints when initiating a session [6]. These new
extensions allow the language to represent a larger set of systems with
different and more specific communication design models.

Expressing Session Types in different languages is possible, but
some extra care is needed in order to do so. π-calculus inherently
communicates through channels, which might not be the case for
other languages. Various constructs are added for functional and
object-oriented languages to be able to express the same Session
Types. Vasconcelos [12] has augmented Session Types with constructs
that were found needed for both a functional and an object-oriented
language.

Session Types have been implemented into a couple of real-
world programming languages, including Haskell [10] and Scala
[11]. Implementing Session Types into a language proves they can be
used for more than strictly a theoretical tool for ensuring correctness.
Haskell is a functional language, while Scala is object-oriented with
many functional features. The difference in programming paradigms
in the two examples shows that Session Types can be used for both
types of languages.

3.1 Features and notation
As mentioned in the previous section, Session Types build upon the
notation introduced by π-calculus. There is some additional syntax
that describe the features introduced by Session Types, which we will
shortly describe here.

In order to denote whether something is input, a question mark
(?) is used. For output, an exclamation mark (!) is written down.

Branching is indicated with an ampersand (&) and denotes multiple
paths that can be taken. Which path is followed depends on the input
to the system. Often, this choice is made by input from the other side
of the session. This choice is denoted by⊕, followed by n≥ 1 amount
of sub-paths.

Termination of a session is indicated by end. After such a state-
ment, one can expect the session to be closed.

There are a couple of predefined basic types. Some examples in-
clude Id, String and Int. The meaning is easily inferred from the name.
The exact definition of a certain type does not matter, as long as the
participating components have the same understanding of the type.

3.2 Proving correctness
The example in Listing 1 shows a simple definition of a possible inter-
action described using Session Types. Effectively, it denotes a word
saving service: it can save or retrieve a word to or from a cell. The

upper definition resembles a client sending a string to the server. The
lower part defines the server part of the definition. The expected types
are denoted by a type name (such as String). While this example is
very simple compared to real communications within a software sys-
tem, it suffices as an illustration of differences in syntax between the
approaches.

! S t r i n g . &{ s u c c e s s : (+){ s ave : ! S t r i n g
| r e t r i e v e : &S t r i n g
| s t o p : end
}

| f a i l u r e : end
}
Listing 1. An example with Session Types describing a simple String
storing service, with options to store a string, retrieve it or stop the ser-
vice.

? S t r i n g . (+){ s u c c e s s : &{ s ave : &S t r i n g
| r e t r i e v e : ! S t r i n g
| s t o p : end
}

| f a i l u r e : end
}
Listing 2. An example with Session Types describing a user that can
interact with the simple string storing mechanism from Listing 1

A concrete example of a session represented by the Session Type
definition in Listing 1 can be found in the diagram of Figure 1. Both
possible paths that can be enacted (the trivial stop command excluded)
are shown there.

4 CONVERSATION-CALCULUS

We will now discuss another method of proving correctness, the Con-
versation Calculus. Conversation Calculus, another adaptation of the
π-calculus, as presented in [13] [5] [4], bases itself around the con-
cepts of instances in a conversation context. These conversations rep-
resent a communication channel between processes in which interac-
tions between parties can be proven to be complements. Ensuring the
correctness of the system as a whole by proving correctness of its parts.
The authors say they intended the Conversation Calculus to be clear,
simple and minimalistic, while still being very expressive.

4.1 Fundamental features of Conversation Calculus

Conversation Calculus defines every process as a part of a conver-
sation. Conversation contexts can be created and joined by these
processes. In such a context, an instance can define functions
consisting of input and output messages, enhanced with context
awareness, parallelism, variable restriction. Conversation Calculus
also has a definition for exceptions at its core.

Conversation calculus focuses on a few fundamental features of
a communication-centric system, namely distribution, process
delegation, communication and context sensitiveness, and loose
coupling.

4.1.1 Distribution

Distribution is a core aspect of a communication-centric system. Such
a system needs to make sure that activities are divisible. Dividing
processes in small functions that each have their own purpose is a core
design principle in many programming tasks. Since distribution of
services is close to the core of how programmers design programs, this
allows the Conversation Calculus to be implemented more easily into
new designs. Furthermore, each process needs to be responsible for
allocated activities and resources need to be properly divided among
these processes.

Ensuring correctness of communication-centric software systems – Rick de Jonge and Mathijs de Jager

84

Fig. 1. Retrieving and saving a word from the service. The client can save a String on the service (left) or retrieve the stored word from it (right).

4.1.2 Process delegation

Process delegation is used in a system to divide activities. This will
be done by sending complete methods over a communication channel
and additionally a way to invoke these methods. This principle further
enforces the system to use a master-slave design. There is a master that
distributes the processes among the slaves and invokes these processes
with data. In the language, these processes can be defined with the def
keyword and instantiated with the keyword instance or new. After
creation, they can be joined by other processes with the keyword join.

4.1.3 Communication and context sensitiveness

Communication and context sensitiveness allows processes in a sys-
tem to join certain groups in which information can be shared. In-
formation will not be relevant outside these contexts and information
outside these contexts should not be relevant to this context. Only the
processes inside these contexts are able to interact with each other us-
ing this information. These contexts are at the core of Conversation
Calculus. Each process is part of such a context, called a conversa-
tion. In the language an initiator is denoted by a left-pointing black
triangle (J) and a responder by a right-pointing black triangle (I),
meaning that processes are located at an initiator endpoint and respon-
der endpoint respectively. The communication itself is denoted by the
keyword in or a question mark (?) and the keyword out or an excla-
mation mark (!) for input and output respectively.

4.1.4 Loose coupling

Loose coupling ensures that little information is shared between pro-
cesses. Similar to contexts, which ensure closed communication, loose
coupling ensures that a process is responsible for itself and its task.
This process should need as little outside interaction as possible. The
difference between loose coupling and sensitiveness discussed in the
previous paragraph is that here, the information should not be needed
outside the conversation while before the information should be pro-
tected from outside sources.

4.1.5 Exception handling

A minor feature not listed as main feature but still prominently fea-
tured is exception handling. This is a more practical view towards use
of Conversation Calculus to use during design of a system. Excep-
tion interactions are denoted in the language with the keywords try...
catch to express the handling of an exception and the throw keyword
to create one. This allows systems to break from the defined structure
and still be able to function when unexpected problems occur.

4.2 Representing systems in Conversation Calculus
Using Conversation Calculus, we can represent a variety of
communication-centric software systems. With the basic definitions,
some of them listed in the previous section, we can define processes
and conversation for them to join. We can send and receive data
from and to endpoints and ensure the correctness of such a basic
communication. A system in Conversation Calculus is divided in
processes. Each of these processes will then consist of branched
paths of input and output functions, sending or receiving data in any
channels they have created or joined. This has native support for
multi-process channels and parallel processes, allowing for multiple
processes to use a single service.

Given all these concepts in the previous paragraphs, here is an-
other example of the word saving cell, but now in the Conversation
Calculus:

new WordSav ingServ ice . C e l l [
! (

s ave ? (x)
+
r e t r i e v e ? () . r e p l y ! (x)

)
| s t o p ? ()

]
Listing 3. Conversation Calculus describing a simple String storing ser-
vice, with options to store a string, retrieve it or stop the service.

In this example, the new keyword lets us define a conversation that
can be joined by our newly created Cell function. The + key indicates
a choice. Here, another service in the conversation is expected to send
a request to save or retrieve a word. In the case the save function is
called with a new word, this word is saved. In the case of a retrieve,
the stored word is send to the conversation. Since this is a running
service that can accept multiple save and retrieve commands, we want
to be able to stop the service when needed. When this is the case,
a stop signal can be send to stop the service, an action that uses the
concurrency used from π-calculus.

4.3 Proving correctness
When a conversation and the services within are defined, they will still
need to be proven.

If we want to join our existing conversation with a service that
chooses to either save or retrieve a word from the Cell, we can do
that using the definition in Listing 4.

SC@RUG 2019 proceedings

85

WordSav ingServ ice J [
! (

s ave ! (x)
+
r e t r i e v e ! () . r e p l y ? (x)

)
| s t o p ! ()

]
Listing 4. Conversation Calculus describing a user that can interact with
the simple string storing mechanism from Listing 3

In this simple case, the service is joined, not created and the input
and output symbols have been switched.

4.4 Integration of the Conversation Calculus
The Conversation Calculus was introduced with and created for the
Sensoria Project [1], a project to fully integrate theory in a pragmatic
software engineering approach, this in a more understandable way. Af-
ter a few failed ideas, it was started around the idea of conversations,
with a comprehensive and therefore basic communication foundation.
The biggest improvement over other types of process calculi is the ad-
dition of exceptions, a field left mostly unexplored but very practical.
The perspective Conversation Calculus takes with its notion of con-
versations also resembles an existing implementation slightly, Boxed
Ambients [3], which is better known in the literature.

5 DISCUSSION

In this section we will compare the approaches to identify their spe-
cific solutions to certain aspects. Moreover, we try to determine which
approach is a good fit for ensuring correctness in a communication-
centric system.

5.1 Approach to the problem
Both Session Types and Conversation Calculus approach designing
communication-centric systems by extending the working π-calculus
with types already present in programming languages. Given the nar-
row field these calculi are developed for, more specific constructs can
be added to the calculi. Session Types focus on adding datatypes to
ensure correctness in the details, allowing designers to represent spe-
cific static communications between processes. This gives rise to easy
translations and thus implementations into the modern functional and
object oriented paradigms of programming. On the contrary, the Con-
versation Calculus approaches the problem from a perspective that is
much more broad. It allows for a more flexible way of defining com-
munication by allowing processes to join and leave conversation con-
texts. However it appears the approach may be grounded too much in
the project it was built for.

5.2 Practical application
We can look at the usage of the previously introduced calculi in the
literature to gain an understanding of the practical use of these tech-
niques. Without a practical implementation, it would be up to the user
to manually check correctness. While there are few implementations
besides the Sensoria Project [1] for the Conversation Calculus, var-
ious papers describing Session Types implemented in programming
languages with real-world adoption such as Haskell [10] and Scala
[11] have been published. This fact suggests Session Types has seen
more real-world usage than Conversation Calculus. In spite of that,
this does not necessarily tell us much about whether Session Types is
a better fit for ensuring correctness in communication-centric systems.

5.3 Comparing the Word Saving Cell
Earlier, we gave the same example in both the Session Types and the
Conversation Calculus syntax. We will now illustrate the points made
earlier in this discussion using this example.

The absence of any context is notable in the Session Types.
While a session channel can be specified, the ability to leave it out
enhances the idea that the Session Types are more focused on the

actual communication between multiple services.

Furthermore, a fundamental change is the typing of variables.
The String type is prominent throughout the Session Types example,
while the Conversation Calculus only allows the naming of such a
variable, like the variable x in the example. Both these approaches
are a useful extension of the π-calculus. While variable naming can
be used widely, typing variables is very useful only for programming
and thus low-level design.

The final notable difference is the specific acceptance of the
communication in the Session Types example. While this could be a
part of the conversation keywords in the Conversation Calculus, this
is not translated as easily into actual programming software.

6 CONCLUSION

In the introduction, we posed a question:

What is the difference between two approaches to ensure the
correctness of communication-centric software systems, Session Types
and Conversation Calculus, and how can they be integrated into
building software?

We saw that the two approaches differed in their core goals,
Session Types aimed to implement additional features to an existing
formula which got successful practical implementations. Conversa-
tion Calculus changed the core of the existing formula to create a
niche complete implementation that resulted in a completed project,
but not much attention from developers to apply the approach to
software systems.

The main difference between the Session Types and the Con-
versation Calculus approach seems to be that Session Types turns out
to be more useful for low-level programming design choices, while
Conversation Calculus can easier be used to create a higher level de-
sign. The inclusion of data types and a bigger focus on static sessions
in the Session Types approach oppose the dynamic interaction with
conversations of the Conversation Calculus. The quick translation
from calculus to code is likely why Session Types are currently being
used in programming languages, while the Conversation Calculus is
too general and perhaps too big to be of practical use.

These conclusions are not completely in favour of using Ses-
sion Types over Conversation Calculus, however. One argument
against this conclusion is the extension of exception handing that is
present in the Conversation Calculus and not with Session Types. Ex-
ception handing would be more useful to combat incorrect low-level
implementations, for instance when passing an illegal argument. In
the end, there is no definite best approach to use in general, each of
the two researched approaches can help designing a project.

7 FUTURE RESEARCH

This paper only considers Session Types and Conversation Calculus.
Extending this comparison to the other approaches to this problem
would be a logical next step. Possibly, behavioral types [9] and its
notions can be included in the comparison. For example, behavioural
contracts might show some parallels to the approaches discussed in
this paper.

Acknowledgements. We thank Jorge A. Prez for reviewing and
providing feedback on this paper. We also want to thank our
colleagues Lars Doorenbos and Hayo Ottens for their feedback
and insights. Finally, we thank our professors at the University of
Groningen for organizing the reviews and publications.

Ensuring correctness of communication-centric software systems – Rick de Jonge and Mathijs de Jager

86

REFERENCES

[1] P. Baldan, M. Bartoletti, and B. Baudry. Ip sensoria project, 2005-2010.
[2] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini,

and N. Yoshida. Global progress in dynamically interleaved multiparty
sessions. In F. van Breugel and M. Chechik, editors, CONCUR 2008 -
Concurrency Theory, pages 418–433, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[3] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents:
The calculus of boxed ambients. ACM Transactions on Programming
Languages and Systems, 26:57–124, 01 2004.

[4] L. Caires and H. T. Vieira. Conversation types. In G. Castagna, editor,
Programming Languages and Systems, pages 285–300, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[5] L. Caires and H. T. Vieira. Analysis of service oriented software systems
with the conversation calculus. In Proceedings of the 7th International
Conference on Formal Aspects of Component Software, FACS’10, pages
6–33, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] M. Coppo and M. Dezani-Ciancaglini. Structured communications with
concurrent constraints. In C. Kaklamanis and F. Nielson, editors, Trust-
worthy Global Computing, pages 104–125, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[7] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types:
An overview. In C. Laneve and J. Su, editors, Web Services and Formal
Methods, pages 1–28, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[8] S. Gay. Types and subtypes for client-server interactions. 06 2000.
[9] H. Hyttel, E. Tuosto, H. Vieira, G. Zavattaro, I. Lanese, V. Vasconcelos,

L. Caires, M. Carbone, P.-M. Denilou, D. Mostrous, L. Padovani, and
A. Ravara. Foundations of session types and behavioural contracts. ACM
Computing Surveys, 49:1–36, 04 2016.

[10] M. Neubauer and P. Thiemann. An implementation of session types. 05
2004.

[11] A. Scalas and N. Yoshida. Lightweight session programming in scala
(artifact). 01 2016.

[12] V. Vasconcelos. Sessions, from types to programming languages. Bulletin
of the European Association for Theoretical Computer Science EATCS,
103, 01 2011.

[13] H. T. Vieira, L. Caires, and J. C. Seco. The conversation calculus: A
model of service-oriented computation. In S. Drossopoulou, editor, Pro-
gramming Languages and Systems, pages 269–283, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

SC@RUG 2019 proceedings

87

A Comparative Study of Random Forest and Its Probabilistic Variant

Zahra Putri Fitrianti and Codrut-Andrei Diaconu

Abstract— Machine Learning algorithms have become an important tool in data analysis. They can be used in various tasks,
classification being one of the most common where we aim to predict the labels/classes of the data points using their attributes. An
example of such algorithm is Random Forest (RF) which is an ensemble method consisting of multiple trees, such that each tree uses
a random subset of features and a random subset of the training data points. However, some algorithms do not necessarily perform
well when the data has noise, e.g. errors introduced by measurement tools, missing values etc. In order to take these uncertainties
into account, the Probabilistic Random Forest (PRF) was implemented in such a way that it treats the features and labels as probability
density functions. This makes the model more robust compared to the standard RF where the deterministic values are used. We
compared the standard RF and PRF by performing some tests on benchmark data sets and analyze the results in terms of both
performance (e.g. accuracy, F1-score, ROC AUC) and computation time. We observed that PRF has a better performance especially
when the fraction of missing data is high but it comes with a significant increase in computation time.

Index Terms—Classification, Ensemble, Random Forest, Probabilistic Random Forest

1 INTRODUCTION

Machine Learning algorithms have become an important tool in data
analysis. They can be used in various tasks, for example in unsuper-
vised learning, supervised learning, and many more. For the scope of
this paper, we will only consider supervised learning as it is related
to the random forest algorithm. Supervised learning is a method that
takes a set of labelled examples as input and tries to predict the output
as a function of the input. In other words, supervised learning maps
the labelled input into an output [2]. There are many examples of
supervised learning but a very popular one is classification where we
assign classes/labels to data points using their features.

Typically, in classification, a training-testing workflow is used
which means that first, a model (i.e. the classifier) is trained on a por-
tion (e.g. 80%) of the available labelled data and the remaining part is
used to test the model. This testing phase plays a very important role
since it provides a means to assess the generalization performance of
the model when tested with an unseen example. Some performance
measures can be used for evaluating the quality of the predictions, such
as accuracy score, F1-score, precision, recall, Mathew Correlation Co-
efficient (MCC), Area under ROC curve, and many more. The choice
depends on the type of the data and on what aspects are more relevant
to the problem at hand. For instance, in medical applications, usually
the focus is on minimizing the risk of false negatives (i.e. not detect-
ing a disease when it is present) and not on the overall accuracy which
is usually high in this situation since most of the people are not sick.
In other situations, the aim is just to maximize the accuracy (e.g. in
optical character recognition tasks). Pertaining to this paper, we will
use only three performance metrics namely accuracy, F1-score and the
Area under ROC curve.

There have been several approaches that we can take in order to
improve the performance of an algorithm, one of which is combining
multiple learners or often referred to as ensemble method. This can
be done in many different ways: apply cross validation to the data set
such that each base-learner uses different training sets, use different
algorithms to train each base-learner, or train all with the same algo-
rithm but use different parameter settings [3]. One main advantage
of creating an ensemble is improving prediction performance. This is
due to the fact that usually, an ensemble classifier performs classifi-
cation by means of majority voting so the final prediction outcome is
given by the majority of the prediction yielded by the base learners.
Subsequently, this will improve the prediction ability of the ensemble

• Zahra Putri Fitrianti is with University of Groningen, E-mail:
z.fitrianti@student.rug.nl.

• Codrut-Andrei Diaconu is with University of Groningen, E-mail:
c.a.diaconu@student.rug.nl.

classifier because, it could be the case that different base-learners have
poor performance on a novel input but good performance when they
are combined.

One particular example of ensemble methods is Random Forest
(RF) where several decision trees are combined such that each tree de-
pends on the random features and/or subsamples that are independent
and identically distributed. Then, to yield a prediction of an exam-
ple, it is propagated through the tree by evaluating the features until
it reaches the leaf node. The resulting label would then be the class
which has the highest probability in the leaf node [5]. It is important
to note that RF treats the features and labels as deterministic values.
Hence, it might not necessarily perform well when the data has noise,
e.g. errors introduced by measurement tools, missing values etc. In or-
der to take these uncertainties into account, the Probabilistic Random
Forest (PRF) was implemented in such a way that it treats the features
and labels as probability density functions [14]. This makes the model
more robust compared to the standard RF where the deterministic val-
ues are used.

In [14], the authors introduced the PRF algorithm and compared
their implementation with RF using synthetic data. As for this paper,
we carried out the same experiments but using real data sets and adding
a few more methods such as cross validation to get an accurate perfor-
mance estimation [12] and applied different imputation methods. The
results of the experiments are gathered in terms of comparing the pre-
diction performance, the influence of different threshold values, being
a new hyperparameter introduced by PRF, on the different imputation
methods, and lastly the computational time for different number of
trees.

This paper is structured as follows: in section 2, we will explain the
RF algorithm, its probabilistic version and some performance mea-
sures in greater detail. Then, in section 3, we will describe how we
carried out the experiments with the standard RF and PRF and present
the results in the following section. After that, we will evaluate the
results in the discussion section and finally provide a conclusion and
recommendation for future work.

2 METHODOLOGY

An ensemble is, arguably, an effective method to improve accuracy of
a classifier. Random Forest (RF) is one example of such a method,
where it forms an ensemble of decision trees to yield a prediction out-
come by means of a majority vote. However, as mentioned previously,
RF treats the features and labels as deterministic values. Thus, it might
not necessarily have a good performance when applied to a noisy data
set. To account for this noise, or uncertainties of the data, we can treat
the features and labels as probability distribution function, which is
done by the Probabilistic Random Forest (PRF).

88

2.1 Random Forest

Random Forest (RF) is a combination of trees (predictors), such that
each tree uses a random subset of features and a random subset of the
training data points [5]. Then, these trained trees are formed into an
ensemble with a large number of trees. They will then yield a single
prediction output which is based on combining the outputs of each tree
by means of majority vote.

When applied to a binary classification task, i.e. there are only two
classes C ∈ {0,1}, the algorithm searches for the ”best split” by taking
into account both the features and a constant threshold that will result
in the best separation between the two classes [14]. Hence, to assign
a class to a new example, it needs to be propagated through the tree
and in each node we need to determine the split. To do so, we can
consider the Gini impurity which is measured as the probability of
misclassifying a new example, if it is randomly classified based on
the distribution of the class labels in the data. Subsequently, this is a
good measure to use because it minimizes misclassification error. In
mathematical notation, this can be expressed as:

Gini(t) = 1−
c−1

∑
i=0

p(i|t)2 (1)

where p(i|t) represents the probability of class i in node t and c is the
number of class.

The Gini impurity is used as a condition for the new example, to
either propagate to the right node or the left node recursively until it
reaches the leaf node. When it does, the algorithm will stop and the
new example will be assigned to one of the two classes. The predic-
tion of the label is done by taking a majority vote among the trees, or,
take the class which has the highest probability in the leaf. By doing
so, it can be ensured that the accuracy will be improved because typi-
cally, a single tree tends to overfit during training and hence not have a
good generalization performance. This problem is overcome by com-
bining multiple trees in Random Forest as it generalizes well to novel
examples and has a higher accuracy compared to a single tree [5].

2.2 Probabilistic Random Forest

Probabilistic Random Forest (PRF) is a modified version of the RF
method but it treats the features and labels as probability density func-
tions thereby taking into account the uncertainties [14]. In a classifi-
cation task, usually there are two kinds of uncertainties, i.e. feature
uncertainty and label uncertainty, and PRF is able to handle both.

Since the PRF is based on the standard RF method, it follows a
similar idea. Given a new unlabelled example, we can try to classify
this in the PRF by propagating through the probabilistic tree. Thus, the
algorithm also searches for the ”best split” for which the new example
should propagate to. In order to determine the best split, the PRF takes
into account the combined probability for an example to take all the
turns that led to a certain node, perhaps deep in the tree, from the
root. The example then keeps being propagated to until it reaches a
certain threshold, which is a new hyperparameter that is introduced
by the PRF algorithm which controls when to stop propagating in the
probabilistic tree.

As done in the standard RF, the best split is determined by calcu-
lating the Gini impurity. However, since we have class probability, a
fraction of examples in the data in some given class is now a random
variable [14], which consequently affects the calculation of the Gini
impurity. In this case, Eq.(1) is rewritten to

¯Gini(t) = 1−
c−1

∑
i=0

p̂(i|t)2 (2)

where p̂(i|t) is the expectancy value of class i in node t and c is the
number of class. p̂(i|t) is given by the following equation

p̂(i|t) = ∑i∈t πi(t) · p(i|t)
∑i∈t πi(t)

(3)

In Equation (3), πi(t) refers to the probability of propagating through
the tree at node t. Let n∈ R and n∈ L denote all the nodes that belongs
to the right and left branch, respectively, the formula to calculate πi(t)
for any arbitrary node t is given by

πi(t) = ∏
n∈R

Fi,kn(χn)×∏
m∈L

(1−Fi,km(χm)) (4)

where Fi,k(X) denotes the cumulative distribution function given by

Fi,k(χ)≡ Pr(Xi,k ≤ χ) = 1−Pr(Xi,k > χ) (5)

for Xi,k ∼N(xi,k,∆x2
i,k), provided that xi,k is the measured feature value

and ∆x2
i,k is its corresponding uncertainty. Referring back to Equation

(3), this basically means that the probability for any object i to reach
node n in the tree, is calculated by multiplying the combined proba-
bility of propagating to both left and right nodes until it reaches node
n. To put it simply, it can be said that PRF does take into account the
probabilities of going to the right and left nodes while propagating the
tree from a certain node. If it turns out that the data contains missing
values, then PRF assigns equal probability for propagating to both di-
rections and use this value for the next node until it reaches a certain
threshold.

Since the algorithm searches for the split in which the two resulting
nodes are more homogeneous than its parent’s, we need to define a
cost function which should be minimized during the training process.
This is defined as the weighted average of the modified Gini impurities
of the right and left nodes, i.e.

e = Gini(r)× ∑i∈(t,r) πi(t,r)

∑i∈t
+Gini(l)× ∑i∈(t,l) πi(t, l)

∑i∈t
(6)

where πi(t,r) and πi(t, l) are the probabilities of propagating to the
right or left node respectively.

Fig. 1. taken from [14], it shows the difference between RF and PRF in
terms of finding the ”best” split. It also depicts the fact that RF treates
features and labels as deterministic values whereas PRF estimates their
probability density function (pdf).

To sum up, the main differences between PRF and the standard RF
are: PRF treats features and labels as probability density functions, it
uses combined probability to determine to which node it should prop-
agate to, and the cost function that is minimized by the algorithm. As
for determining the best split, the procedure remains the same as in the
standard RF, but the calculation for Gini impurity is slightly changed
since it now uses expectation value [14]. As an illustration, this is
shown by Figure 1.

2.3 Performance Measures
It is a common practice in machine learning, more so in classifica-
tion tasks, that the quality of the prediction outcome is evaluated. In a
broader context, this is done because us, as users, would like to know
how reliable the resulting prediction output is. This can be done by

SC@RUG 2019 proceedings

89

means of calculating some performance measures or evaluation met-
rics which are simply a set of statistical measures that can be used to
quantitatively describe the predictive performances in different aspects
under different conditions [8].

Generally, the evaluation metrics are applied during both training,
to optimize the classifier, and testing, to measure how reliable the pre-
diction output is when tested with novel examples. Pertaining to bi-
nary classification problems, the evaluation metrics are defined based
on a confusion matrix [7]. In a confusion matrix, the quantities TP
and TN refer to the number of examples that are correctly classified
as positive and negative respectively. By contrast, FP and FN denote
the number of examples that are incorrectly classified as positive and
negative respectively. These four metrics serve as the basis to compute
the following performance measures.

Accuracy is formally defined as the ratio of correctly classifying
all examples. Its formula is given by:

Accuracy =
(T P+T N)

(T P+T N +FP+FN)
(7)

F1-score is another performance measure which is typically used
for unbalanced data sets. It represents the harmonic mean between
precision and recall [7]. This is calculated as:

F1− score = 2 · Precision ·Recall
Precision+Recall

(8)

where
Precision =

T P
(T P+FP)

(9)

Recall =
T P

(T P+FN)
(10)

Receiver Operating Characteristic (ROC) describes the relation be-
tween sensitivity and specificity. Sensitivity is simply the true positive
rate (TPR) which is also defined by Eq.(10) and it is represented by the
y-axis in the ROC curve. In simple terms, TPR = sensitivity = recall.
Specificity is the true negative rate (TNR) which is mathematically
defined as:

Speci f icity =
T N

T N +FP
(11)

In the ROC curve, the x-axis represents the false positive rate (FPR)
which is simply

FPR = 1−Speci f icity (12)

The ROC curve represents a combination of pairs of (FPR, Sensitivity)
which are calculated by using different values for decision threshold.
Generally, we expect the curve to be close to the top-left corner as it
indicates that the classifier or predictor has a good classification per-
formance. If the curve is close to the diagonal, this implies that the
predictions are based on or close to random guesses [8].

Area Under ROC Curve (AUC) measures the performance of the pre-
dictor by one value which is computed based on the area under the
ROC curve previously discussed. The AUC of an ROC curve indi-
cates the deviation from random guessing. In other words, it computes
the probability that a randomly selected positive example gets higher
scores than a randomly selected negative example [8].

3 EXPERIMENTS

We carried out several experiments to compare the standard RF
and PRF, more specifically in terms of its performance and com-
putational time. We used the RF implementation from python’s
scikit-learn [11] library and the implementation of PRF which
can be found in [13]. The experiment was designed as follows:

1. Apply 10-fold cross validation to get different training and test-
ing subsets.

2. Apply three imputation methods (mean imputation, median im-
putation, KNN imputation) to both training and testing subsets.

3. Train both RF and PRF with the imputed training sets and test
using testing sets. Even though PRF deals with missing values
by design, we applied imputation to both RF and PRF such that
they are tested or compared under the same condition.

4. Calculate the performance using the several metrics (accuracy,
F1-score, ROC AUC) and calculate the computation time.

Each step of this experiment is described in detail in the following
subsections.

3.1 Hyperparameter settings
In our experiments we considered combinations of the following hy-
perparameters:

• Number of trees = 10, 25, 100
• Threshold for PRF = [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.0]
• The value of k in k-nearest neighbour imputation = 7, using Eu-

clidean distance.
• The value of n in n-fold cross validation = 10

3.2 Data sets
We deliberately chose data sets which have missing values since it can
be considered as a type of noise. For the experiment, we used the
following data sets:

Pima Indians Diabetes Database [9] This data set is used to predict
whether a person has diabetes or not by taking into account several
features such as Glucose, Blood pressure, Skin thickness, Insulin, BMI
and Age. From Figure 2 below, we can see that Insulin level has the
highest missing value fraction, being 48.7%. On average, this dataset
has 14.4% of missing values. Furthermore, referring to the class label
distribution, it can be said that the data set is a bit imbalanced.

Fig. 2. Plots of missing data fractions (left) and class label distribution
(right) of the Pima Indians Diabetes Data Set. In the class label distri-
bution plot, class 0 refers to not having diabetes whereas class 1 refers
to having diabetes.

Mammographic Mass Data Set [15] This data set is used to predict
whether a mammographic mass lesion is benign or malignant based
on six features: BI-RADS, patient’s age, shape, margin and density.
Figure 3 shows the missing data fractions and the class label distribu-
tion, respectively. In the left plot, it can be seen that the feature Density
has the highest missing value percentage, being 7.91%, and the data
has on average 3.372% of missing values. Moreover, in the class label
distribution, we can see that each class has roughly the same number
of examples in the data set.

Thyroid Disease Data Set [16] Looking closely at Figure 4, it can
be seen that this data set has on average 11.75 % of missing values.
Furthermore, referring to the class label distribution plot, it can be de-
duced that the data is very imbalanced where class 0 fills the majority
of the data set while class 1 only accounts for 4.75% of the data. The
original dataset is composed of 21 binary attributes, and 7 continu-
ous features (patient age and six laboratory test results) but during our
experiments we used only a subset of five laboratory test results as
described in Section 9.3 of [6].

A Study of Random Forest and Its Probabilistic Variant – Zahra Putri Fitrianti and Codrut-Andrei Diaconu

90

Fig. 3. Plots of missing data fractions (left) and class label distribution
(right) of the Mammographic Mass Data Set. In the class label dis-
tribution plot, class 0 refers to benign class whereas class 1 refers to
malignant class.

Fig. 4. Plots of missing data fractions (left) and class label distribution
(right) of the Thyroid Disease Data Set. In this data set, class 0 refers
to the healthy patients whereas class 1 refers to the patients who are
diagnosed as sick.

3.3 N-fold Cross Validation
Cross Validation is a technique where we randomly split the data into
disjoint subsets, i.e. training set and testing set. Typically, cross val-
idation is used for model selection and it aims to avoid overfitting
where the data is too well-trained that it has a poor generalization abil-
ity when tested with unseen data. Furthermore, to make sure that the
model is trained with different subsets, we can apply one of its variant
which is called N-fold cross validation. Here, the data is split into N
disjoint subsets of the same size. We perform this for N number of
iterations such that in each iteration, we obtain different training and
testing sets, and eventually we use N−1 subsets for training and one
subset for testing or validation. We used the StratifiedKFold
cross validation from the scikit-learn’s library. To add a little
bit more context, stratification ensures that each fold is a good repre-
sentative of the entire data set [12].

3.4 Imputation
Missing values is a very common situation that occurs in most scien-
tific research fields such as Medicine, Astronomy, and Computer Sci-
ence. There are a number of reasons which caused missingness, some
of which are incomplete surveys, wrong information, incorrect mea-
surements, and many more [10]. In classification task, it is important
to have a complete data set because the algorithms usually assumes
that the training data is complete, yet in reality, it could consist of
missing values.

For this experiment, as described in subsection 3.2, we chose data
sets which have missing values. However, since the RF implementa-
tion from python’s scikit-learn library does not deal with miss-
ing values by design, therefore, we have to first apply imputation
method. As stated previously, we used three imputation methods
namely Mean Imputation, Median Imputation, and KNN Imputation.

3.4.1 Mean Imputation
This imputation method is based on a statistical approach, where each
missing value of a feature is imputed by the mean (or average) of
the observed values for that feature [4]. Even though this method is

very commonly used and, surprisingly enough, has given good results
for classification problem, unfortunately, it could potentially lead to
changing the distribution of the data entirely since it underestimates
the variance and can decrease a correlation coefficient due to disre-
garding interaction effects of the variables [1].

3.4.2 Median Imputation
This method is also based on a statistical approach, except that instead
of substituting the missing values with the mean, they are replaced by
the median (the middle point in the data). It was originally introduced
to assure robustness since the mean is usually affected by outliers in
the data [1]. Formally speaking, this method has a similar impact as
the mean imputation method, in the sense that it could distort the dis-
tribution of the data. If the data has a skewed distribution, then this
method is good to use. Similar to mean imputation, this method could
potentially lead to wrong results as it completely disregards the corre-
lation between the variables in the data.

3.4.3 KNN Imputation
The idea behind this method is to find the k-nearest neighbours and
replace the missing values by its mode or average for qualitative fea-
tures or quantitative features, respectively [1]. This method is different
than the previous two because it is based on a non-parametric classifier
which takes into account the explicit model of the data. The advan-
tages of using this method are: it is able to predict both qualitative and
quantitative features. It can also easily treat instances with multiple
missing values. More importantly, it takes into account the correla-
tion structure of the data, which subsequently overcomes the problem
that mean imputation method has. Although it seems like KNN im-
putation method is the better option among the three aforementioned
methods, much like the nature of the algorithm, this method is highly
dependent on the distance metric that is used to determine the near-
est neighbour. There are several distance measures that can be used
such as Euclidean, Mahalanobis, Manhattan, and so on. Each of this
metric has a different effect to the algorithm. In addition, it is also
computationally expensive as it searches through the entire dataset.

4 RESULTS

The following results are obtained from conducting the experiment
and are used to compare the standard RF and PRF in terms of perfor-
mance and computation time. Note that in the following two subsec-
tions, we only present the results obtained from running the experi-
ment with 25 trees (giving the space limits) whereas for the computa-
tion time comparison we also included 10 and 100 because we could
combine them in one figure. It is important to notice that the results
based on 25 trees are similar to those using 100 in all our experiments.

4.1 Performance Comparison
Figure 5 shows three plots for the three data sets during training (top
plot) and testing (bottom plot). Each plot shows the average accuracy,
F1-score, and ROC AUC over the 10-fold cross validation, obtained
during training and testing for both RF and PRF, using the KNN im-
putation method, 25 trees and PRF threshold = 0.05.

Looking closely at the top plots in Figure 5, it can be seen that dur-
ing training the standard RF generally has a high accuracy and better
F1 scores with small standard deviations. On the other hand, PRF also
has high accuracy, but lower than RF on average over the three data
sets, and slightly lower F1 scores. In addition, the average ROC AUC
are also quite high which implies that RF and PRF both have a good
classification performance, but in some cases RF is better, e.g. in the
mammographic data set.

Conversely, we can see in the bottom plot in Figure 5 that during
the testing phase which is more relevant w.r.t. generalization, the stan-
dard RF has lower values in all performance metrics, i.e. accuracy, F1
scores, ROC AUC, than PRF. By contrast, PRF still has high values
during testing, despite of them being lower than what was previously
obtained during training. On the same note, the average standard de-
viation also increases for all metrics and for both RF and PRF. As a
general intake, these results show that PRF does perform better than

SC@RUG 2019 proceedings

91

the standard RF and it does improve the accuracy and classification
performance during testing.

Fig. 5. The three plots above show the average accuracy scores, av-
erage F1-score, as well as average of ROC AUC of training (top) and
testing (bottom) RF and PRF using KNN imputation method. The error
bars represent the standard deviation over the 10 folds.

4.2 The influence of PRF Threshold and RF Imputation
Method

Atop of comparing the classification performance, we also compared
the results for different imputation methods with respect to multiple
threshold values. In this experiment, we compared all three imputa-
tion methods that are applied to RF with the KNN imputation method
applied to PRF. We only present the result for KNN imputation on
PRF since the other two methods give similar results. More than that,
PRF yields similar performance even without imputation. It is impor-
tant to note that we included only the F1 scores since it is the most
appropriate measure when we have imbalanced data sets. In addition,
the results are displayed as lines for helping the comparison.

Fig. 6. The three plots above show the average accuracy scores, av-
erage F1-score, as well as average of ROC AUC of training (top) and
testing (bottom) RF and PRF using KNN imputation method. Note that
the error bars correspond to the standard deviation over the 10 folds.

From the top plot in Figure 6, we can see that during training, gen-
erally RF has stable and high F1-scores for the different imputation
methods. By contrast, PRF has more of an increasing trend of the F1-
score for different threshold values. Except for the Mammographic
data set where it is more or less stable with minor fluctuations for
small threshold values.

On the other hand, by referring to the bottom plot in Figure 6, we
can see that RF, in turn, has constant and lower F1 scores but higher

standard deviations, compared to the training plots. Looking closely
at the plot for thyroid-disease data set, it can be seen that the standard
deviation becomes very large during testing, and increases in general.
Although it is true that the standard deviation is still quite large, espe-
cially for diabetes and thyroid disease data sets, it still yields a better
performance than RF during testing.

4.3 Time Complexity
Figure 7 shows the plots of the execution time of RF and PRF, with
respect to different number of trees (10, 25, 100) and different thresh-
old values. In this part of the experiment, we computed the average
time during training over the 10 folds. As we can see in the figure be-
low, the PRF algorithm always takes more time to run. Moreover, as
the threshold values decrease, the average computation time increases.
In other words, the threshold is inversely proportional to the average
computation time. Furthermore, it is also important to note that in the
case of RF, the ratio is almost constant for different values of thresh-
old, simply because RF is independent of this.

Fig. 7. The three plots above show the computation time ratio with re-
spect to different threshold values for different number of trees. In these
plots, the error bars are the standard deviation over the 10 folds.

5 DISCUSSION

We compare the standard RF and PRF in terms of its performance
and computation time based on the results presented in the previous
section. Additionally, we compare the influence of the different im-
putation methods on RF with one imputation method (KNN) on PRF
with respect to different threshold values.

5.1 Classification Performance
Analyzing the testing results from Figure 5, it can be seen that for all
three data sets, PRF outperforms RF especially in terms of F1 scores.
It is also important to note that the smallest difference in the perfor-
mance of the two algorithms occurs in the case of the Mammographic
Mass data set which has the smallest fraction of missing data whereas,
for the other two data data sets, PRF outperforms RF by a large mar-
gin. Furthermore, given that PRF yields better F1 score, this implies
that it deals with imbalanced data sets better than the standard RF,
specifically when considering the class distribution of thyroid-disease
dataset which can be seen from Figure 4.

Moreover, as was previously mentioned, the same imputation
method was used for both algorithms, in spite of the fact that PRF
already has the capability to deal with missing values. In our experi-
ments, PRF gives similar performances even if we do not impute the
data beforehand. This gives another advantage which is avoiding the
problem of dealing with missing values.

Comparing the testing results with the training ones, we can observe
that RF usually gives better results compared to PRF, which implies
that there is an indication of overfitting. This observation is based on
the fact that PRF estimates the probability density function (pdf) of the
features which is usually a more robust way to model the data than by
just using the deterministic values.

5.2 The Influence of PRF Threshold
As explained in [14], a PRF threshold close to one means that we stop
the propagation through inferior nodes. This means that PRF should
have similar performance to the standard RF algorithm. To evaluate

A Study of Random Forest and Its Probabilistic Variant – Zahra Putri Fitrianti and Codrut-Andrei Diaconu

92

the influence of this new hyperparameter, it can be clearly seen in Fig-
ure 6 that in most of the cases, RF gives better F1 scores on training
but worse for testing, which also confirms the observations made pre-
viously about overfitting. One interesting remark is that the average
F1 scores of PRF are quite similar during training and testing and they
roughly follow the same trend. Regarding the influence of the thresh-
old itself, the results confirm our expectation that the lower threshold
increases the odds of a good prediction. Finally, the two plots also
show that for a threshold below 0.1, the results are approximately con-
stant, thus a value of 0.05 seems to be a good choice.

On the same note, these two figures also include the results of RF
for all three imputation methods. Except for the thyroid dataset, the
results are quite similar so RF is not too sensitive to how the data
was imputed, yet we can not generalize that this will happen for other
(more complex) imputation methods. Regarding PRF, it gave almost
the same performance for all the imputation methods and also on the
non-imputed data, which is why we only included one case (i.e. k-nn)
in the results.

5.3 Time Complexity
Propagating a sample further on both branches also needs more com-
putation time. The time complexity for traversing a balanced tree is
O(log(n)), where n is the number of nodes. If we use a very low
threshold in PRF, this implies that we visit all the nodes, in which the
time complexity becomes O(n). Of course, these measures are purely
theoretical and we ignore the fact that PRF also needs extra time for
estimating the pdf and computing the probabilities for going left or
right. More importantly, the number of splits, which gives the num-
ber of nodes in the final tree, is always unknown before training and
dependent on the data.

Giving these difficulties, we decided to analyze the computation
time averaged over many runs, as shown by Figure 7. Since we are
interested only in comparing the two algorithms, we considered the
RF execution time as a reference, therefore it has the value one on
the y-axis, and for PRF we compute the ratio between its average ex-
ecution time and the RF’s. Notably, it is also impractical to use the
actual execution time since this depends on the machine but the ra-
tion obtained by averaging over the 10 folds should at least give an
estimation of actual complexity of PRF compared to RF. First, as we
expected, a low threshold brings a high computation time. Further-
more, for a large number of trees, the complexity of PRF becomes
an impediment, for example when using 100 trees, PRF is almost 30
times slower in case of the diabetes dataset and this amount of trees is
frequently used in practice (for instance, this number will become the
default in the following versions of scikit-learn RF implemen-
tations). Of course, as was previously mentioned, this depends on how
predictable the data is, for instance, in the case of the Mammographic
Mass data set, PRF is only 6 times slower for 100 trees.

6 CONCLUSION

Random Forest (RF) is an ensemble method which consists of multiple
decision trees and performs classification by means of majority voting.
Probabilistic Random Forest (PRF) is its variant, which estimates the
probability density function (pdf) of the features and labels and use
these values instead of the deterministic values as done in the standard
RF. The main difference between RF and PRF is, since PRF considers
the pdf of the features, therefore, during the split, it takes into account
the probabilities of propagating to both left and right branches, and it
keeps going until it reaches a certain threshold. This way of splitting
a sample brings a new hyperparameter – a threshold which controls
when to stop the propagation through the tree. It was shown that this
threshold plays a very important role and it is strongly correlated to
the final prediction performance.

A few experiments were carried out to compare RF and PRF in
terms of its performance, influence of imputation method with respect
to different threshold values and the computation time. The obtained
results indicate that PRF generally has a better performance than RF.
This was shown by calculating several performance metrics namely
accuracy, F1-score, and ROC AUC where PRF usually has higher

scores during testing. Furthermore, we observed that during train-
ing, RF has very high values of the aforementioned metrics, whereas
during testing it gives lower values. From this observation, it can be
concluded that there is an indication of overfitting which is done by
RF during training. On the other hand, PRF has high values for all
performance metrics during both training and testing, with an excep-
tion of the results obtained from the mammographic data set. It can
be deduced from here that PRF is a better classifier which has a good
classification performance and high accuracy when the data contains a
significant amount of missing values. However, one major disadvan-
tage of PRF is in terms of computation time which is correlated to the
propagation threshold; a very low value makes PRF too slow in some
cases.

For further work, we will also consider a complete dataset with a
more complex structure and evaluate the algorithms on it. Following
the example from [14], we can add missingness in a structured way
and then evaluate the impact of the quantity of missing values in terms
of both performance and execution time. Another more complex im-
putation mechanisms can also be considered for RF. Moreover, we can
consider other types of noise although this forces us to only inject it
since usually in practice it is difficult to estimate the noise from the
existing data without external information about it.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Biehl for his reviews and inputs
on the experiments that we carried out, and also fellow colleagues for
their reviews.

REFERENCES

[1] E. Acuna and C. Rodriguez. The treatment of missing values and its effect
on classifier accuracy. Journal of Classification, pages 639–647, 01 2004.

[2] J. E. T. Akinsola. Supervised machine learning algorithms: Classification
and comparison. International Journal of Computer Trends and Technol-
ogy (IJCTT), 48:128 – 138, 06 2017.

[3] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2014.
[4] C. M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.
[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.
[6] P. J. Garcı́a-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal.

Pattern classification with missing data: a review. Neural Computing and
Applications, 19(2):263–282, 2010.

[7] M. Hossin and S. M.N. A review on evaluation metrics for data classifi-
cation evaluations. International Journal of Data Mining & Knowledge
Management Process, 5:01–11, 03 2015.

[8] Y. Jiao and P. Du. Performance measures in evaluating machine learning
based bioinformatics predictors for classifications. Quantitative Biology,
4(4):320–330, Dec 2016.

[9] Kaggle. Pima Indians Diabetes Database. https://www.kaggle.
com/uciml/pima-indians-diabetes-database. [Online;
accessed 08-March-2019].

[10] R. Pan, T. Yang, J. Cao, K. Lu, and Z. Zhang. Missing data imputation
by k nearest neighbours based on grey relational structure and mutual
information. Applied Intelligence, 43, 05 2015.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[12] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. Encyclopedia of
Database Systems, 532538:532–538, 01 2009.

[13] I. Reis and D. Baron. Probabilistic Random Forest (PRF). https:
//github.com/ireis/PRF. [Online; accessed 12-April-2019].

[14] I. Reis, D. Baron, and S. Shahaf. Probabilistic Random Forest: A Ma-
chine Learning Algorithm for Noisy Data Sets. AJ, 157:16, Jan 2019.

[15] U. M. L. Repository. Mammographic Mass Data Set. http:
//archive.ics.uci.edu/ml/datasets/mammographic+
mass. [Online; accessed 08-March-2019].

[16] U. M. L. Repository. Thyroid Disease Data Set. http://archive.
ics.uci.edu/ml/datasets/thyroid+disease. [Online; ac-
cessed 08-March-2019].

SC@RUG 2019 proceedings

93

Comparison of data-independent Locality-Sensitive Hashing (LSH)
vs. data-dependent Locality-Preserving hashing (LPH) for

hashing-based approximate nearest neighbor search

Jarvin Mutatiina, and Chriss Santi

Abstract— Optimizing nearest neighbor search for high dimensional data is a popular research area with many studies centered
around how approximation with hashing can be alternative in accelerating the search. The interest stems from the fact that nearest
neighbor search can be complex for such data requiring traversal of all data point to find similar points ; which requires intensive
computational resources and is generally slow. This is especially important for applications like document search and image retrieval
from large repositories. Hashing techniques accelerate search by limiting the search space to a definite bound based on certain cri-
teria. In this paper, we discuss how two hashing techniques - Locality Sensitive Hashing(LSH) and Locality Preserving Hashing(LPH)
as approximates for nearest neighbors search. We compare the use of LSH and LPH and discuss usage scenarios for when the
respective techniques are relevant. The comparison is based on the accuracy of the search and query time. This will further explore
the trade off between the two aspects- accuracy and query time. We also make suggestions for future work.

Index Terms—Nearest Neighbor search, Locality Sensitive Hashing, Locality Preserving Hashing, Hashing -based approximation for
nearest neighbor search.

1 INTRODUCTION

Determining the most similar data in relation to a query is an important
aspect for many applications like image retrieval, document search,
pattern recognition, data compression etc. With high dimensional
histogram data like text and images, performing a nearest neighbor
search using traditional methods like k-d trees becomes complex[3]
and is likened to a brute-force linear search; as each data element
might have to be traversed. This can be computationally intensive
and time consuming e.g. for queries over the internet and this brings
a need for novel techniques to mitigate this. Approximation of
neighbors with hashing functions is identified as a viable alternative
to determining the most similar neighbor while eliminating the poor
performance demonstrated by a linear search on high dimensional
data[3]. The hashing approximations limit the search space by
reducing the dimensionality of the data into a finite length hash
value and then grouping the similar values together. This drastically
accelerates search especially on histogram data(e.g images and text)
that has semantic similarity. This makes the techniques much suited
for high dimensional data as comparison is not across the dimensions
of each data sample. The result to the query may not be accurate or
exact but it is intuitively guaranteed that the approximate result is
within a reasonable error bound. In addition, approximates greatly
contribute to improved computational speed and storage reduction for
nearest neighbor search[3].

Several hashing algorithms have been proposed to aid the approx-
imation for nearest neighbor search in high dimensional data and in
this research we focus on comparing two top contenders - Locality
Sensitive Hashing(LSH) and Locality Preserving Hashing(LPH).
Hashing translates each data point into a compact, finite length
hash key that points to the data values. This compactness is low
dimensional and enforces the similarity search with a linear time
complexity[13]. With LSH, similar hash keys are stored in the same
bucket and approximation with similarity search happens by hashing
the query point and retrieving the other points stored in the same
bucket. Also, the probability of collision is higher for similar points
than for points that are far apart[3]. Collision might be avoided in

• Jarvin Mutatiina, E-mail: j.mutatiina@student.rug.nl
• Chriss Santi, E-mail: c.o.santi@student.rug.nl

generic hashing but LSH relies on this phenomenon to group similar
data points. The downside to LSH is that the hashing is random and
independent of the data hence similar data might end up in different
buckets[1]. This affects the results of the similarity search. On the
other hand, LPH is a data dependent hashing function that maintains
the neighborhood structure of the input data during hashing i.e. hash
keys are generated based on the structure of the data. The collection
of hash keys will have a representative similarity structure as the
original data. This is an improvement towards similarity search
with higher accuracy as the probability of grouping similar data
points is even higher than LSH. Despite, the improvement, LPH is
significantly slower in terms of query time and disk access[3]. This
leaves a trade-off between query time and accuracy of results of the
hashing-based approximation, which also explains the usage scenarios
for which the two functions are most relevant.

Besides the hashing techniques of interest, there exists numerous
algorithms that work to optimize the nearest neighbor search. Other
data dependent techniques include; Semantic hashing[12] which
works well for document retrieval with a higher precision and recall
than LSH. Isotropic hashing[7] that learns different projection dimen-
sions with equal variance to cater for larger variance dimensions that
carry more information, and Spectral Hashing that relies on principal
component analysis and constructs the hash codes with a subset
of eigenvectors of the Laplacian of the similarity graph [15]. LPH
however, still performs considerably better than these techniques.
On the other hand, alternative data independent techniques include;
Kernelised Locality-sensitive Hashing(KLSH)[9] which is widens
the LSH for accessibility to arbitrary kernel functions without
knowledge of the underlying feature space and Binary Reconstructive
Embeddings(BRE)[8] which also improves on the random projections
used in LSH.

Our investigation focuses on how and when to use Locality Sen-
sitive Hashing and Locality Preserving Hashing as approximations
for hashing-based nearest neighbor search plus the influence that data
(in)dependence has on the approximations. In this paper, we explore
both hashing functions and examine their relevance, usage scenarios
and assumptions related to the mentioned functions. We analyze re-
sults of experiments from published research by Yi-Hsuan Tsai and
Ming-Hsuan Yang[13] on image datasets - CIFAR-10 and CIFAR-100.
The results are evaluated based on accuracy metrics of precision and
recall. The paper also discusses the relevance of the hashing tech-
niques in relation to high performance approximate nearest neighbor

94

search. Finally, we present a conclusion and suggestions for future
work.

2 METHODOLOGY

In this section, we discuss some recurring concepts that will be men-
tioned in this paper.

2.1 Nearest Neighbor Search
Nearest neighbor search is the concept of finding the closest/most
similar point to a query in a given dataset. It can also be looked at in
terms of the K nearest neighbors, which returns the K nearest elements
in regards to a given query. This similarity can be measured with
several distance metrics like Jaccard similarity, hamming distance,
euclidean distance etc.

Hamming distance is a popular metric used that relies on the
concept of; a d-dimensional hamming space with strings of length d
with each point x ∈ Hd . The hamming distance between two points
is the number of positions at which the two points’ corresponding
strings differ in the hamming space. This distance metric also has a
corresponding time complexity of O(d).

Jaccard similarity is the ratio of the size of intersection of two given
sets of data(can be the query Q and data points X) to the size of their
union i.e |Q∪X |/ |Q∩X |. Figure 1 illustrates this concept [11].

Fig. 1. Jaccard similarity of 3/10

For example in document search over the internet, Jaccard similar-
ity drives the similarity search by facilitating discovery of textually
similar documents based on character similarity not similar meaning.
In events of duplicates or plagiarism, the similarity search performs
exceptionally well. And the same concept is employed in nearest
neighbor search.

Nearest neighbor search is useful in many applications like
image retrieval, document search. In this case, we are searching
not necessarily for a duplicate but also the most similar in terms of
content and context.

However, with high dimensional data, a nearest neighbor search is
likened to a linear search. This is because for sufficient search to hap-
pen, all data examples have to be traversed and compared individually
with the query. This makes the time complexity equivalent to O(N)
with N being the size of the dataset. This rises a need for higher per-
forming searching criterion with better query time and uses less com-
putational resources. Approximation with hashing functions reduces
the complexity to sub-linear by reducing the size of the comparison
space. An approximate can be defined in euclidean and or hamming
space [14] as; (1+ ∈) where for a query q, we find a point x with
dist(q,x) ≤ (1 + ∈) dist(q,x∗).x∗ is the actual nearest neighbor. Ap-
proximation may not guarantee a completely accurate result but is a

much faster alternative as it returns the most relevant points in relation
to a query.

2.1.1 Hashing based Approximate search
The main idea in hashing based approximate search is to eliminate
the need to compare with every data sample in a high dimensional
dataset in order to find the nearest similar neighbor for a given query.
Hashing can be precisely defined as a mapping of data points to a
compact definite code - hash keys/codes/values. These hash codes take
an arbitrary long input and translate into a code of a definite length that
exist in a low dimensional definite space.

Fig. 2. How generic hashing works

Given a dataset X = x1,x2, ...,xn[symbol] R(nxd), the basic idea of
hashing is to map each point xi to a suitable K- dimensional binary
code yi -1,+1 with K denoting the code size[16].

This can be also accurately represented as y = H(x) with H as the
hash function.
Hashing occurs in two stages where data points are first projected in a
smaller dimension - projection stage and then the projected values are
quantized into hash codes - quantization stage. Hashing aids approxi-
mation by limiting the search space and hence accelerating the search.
This introduces the concept of hashing based approximate search.

2.2 Locality Sensitive Hashing
Locality sensitive hashing is a hashing technique that relies on the
principle of maximizing of probability of collision for objects that are
similar as compared to those that are far apart. This can be referred
to as ”sensitivity”. In this context, collision refers to mapping mul-
tiple hash codes to the same bucket. As opposed to generic hashing
that avoids collision, LSH relies on this phenomenon to aid the nearest
neighbor search. As elaborated by Andoni et al[1],sensitivity can be
formally described as;

ρ =
log(1/p1)
log(1/p2)

(1)

where;
p1 is the collision probability for nearby points
p2 is the collision probability for points that are far apart and
ρ is the measure of how sensitive the hash function is to distance.

The space complexity for the above definition 1is O(dn+ n1+ρ),
query time complexity- O(nρ) [2].

With the ability to quantify sensitivity, this technique can imposed
over several hashing functions which store hash codes in buckets/

SC@RUG 2019 proceedings

95

Fig. 3. Shows illustration of sensitivity ρ [11]

repositories and in essence on query, similar objects will be placed
to the same bucket. This is illustrated in figure 4. Therefore, given a
query, LSH has the ability to approximate similar data points based on
the bucket of the query.There can be constraints to this technique as the
hashing is conducted randomly. This also explains the phenomenon of
data independence and how the hashing function does not maintain
the similarity structure of the input data based on any distance metric.
This structure is not represented in the output hash code.

Fig. 4. Hashing of similar data samples into the same buckets

Random hashing or projections of data leaves the possibility that
similar objects might end up in different buckets and this adversely
affects the nearest neighbor search. Despite this being a shortfall,
the randomness of LSH gives it a fast query time, a small memory
footprint[1] and a fair approximate in relation to the traditional nearest
neighbor search. This further introduces the query time and accuracy
trade-off which is highly dependant on the scenario or application.
Would a user rather wait for an accurate results or get an approximate
in timely manner?

2.2.1 Implementing LSH
To elaborate LSH further especially for document/text search, we can
look at it in 3 broad steps;

• Shingling This involves splitting a given document into a set of
phrases or words. With the fragments that exist in these sets, we
are able to lexicographically compare with other sets.
The shingle length k should be large enough so that the proba-
bility of any given k-shingle appearing in any given document is
relatively low. For a given document D ={dgfhskrbf} and K =3,
the shingles for D are dgf,hsk,rbf.

• Minhashing Shingling generates large sets of groupings of the
data and in this step, we abstract these large sets with compact
representation. To do this, we first construct a characteristic
matrix that corresponds to the occurrence of certain elements in

all the sets. This is shown in table 1.

Element S1 S2 S3 S4
a 0 1 0 1
b 1 0 1 1
c 0 0 1 0
d 1 0 1 1

Table 1. Characteristic matrix from the shingling

From the above table, min-hash values can be generated by pick-
ing from a permutation of the rows and for each column(shingle
set) the minhash is the value of the with the first occurrence of 1.
This is repeatedly done to yield a minhash signature.

• Locality Sensitive hashing. In this step, we set a threshold t
for the Jaccard similarity as explained in section 2.1. We pro-
ceed to compare the minhash signatures of two documents and
expect that their similarity exceeds the threshold t.At this point,
we are using the compact minhash values as representatives of
the original data.

Besides, document/text similarity, LSH is also popularly used for
image similarity. With image similarity, the images are processed with
global descriptors such as color histograms and then compared with
distance metrics as shown in figure 5. LSH is employed by Google
together with other variations to implement the VisualRank algorithm
for image search [6].

Fig. 5. Features hashed into the same bin are considered similar when
using LSH for image similarity [6].

2.3 Locality Preserving Hashing

As previously discussed, LSH might have occurrences of two dissim-
ilar data points ending up in the same hash bucket which reduces the
efficiency of the hashing and also two similar data points ending up
in different hash buckets which reduces the correctness (i.e. query
accuracy) of a hashing method. To contrast LSH, locality preserving
hashing ensures that similar data points have high probabilities to be
put to the same bucket [10].

Locality Preserving Hashing is a hashing technique that preserves
the neighborhood structure during quantization stage in hashing as
explained in section 2.1.1. This captures the meaningful neighbors
with hashing and this structure is maintained in the output as opposed
to LSH that hashes randomly[16]. This emphasizes the aspect of data
dependency as the similarity structure is determined by a distance met-
ric - usually euclidean distance between the examples in given data.
With the combination of these two main aspects, LPH is able to be
a reliant approximation hashing technique for nearest neighbor search.

Comparison of data-independent LSH vs. data-dependent LPH – Jarvin Mutatiina and Chriss Santi

96

From the hashing steps explained in section 2.1.1, the neighbor-
hood structure is preserved by combining the two step learning pro-
cedure into a joint optimization problem as proposed by Kang et al
[16]. The joint optimization framework simultaneously maintains the
locality preserving property in the two steps. The function is defined
as[16];

H(Y,W) = tr{W T XT LXW}+ρ ‖Y −XW‖2
F (2)

where;

• X is the data X = [x1,x2, · · · ,xn] ∈ Rn×d

• Y is the hamming representation of X calculated by yik =
sgn(wk

T xi +bk) which gives the kth hash code.

• W is the projection matrix W = [w1, · · · ,wk] ∈ Rd×K

• ρ is the positive parameter controlling tradeoff between projec-
tion and quantization

• XT LX are the eigen vectors and eigen values and L is the Lapla-
cian matrix given by L = D-W; D = ∑(W)

• tr{.} is the trace of the matrix

By minimizing the above equation 2, the neighborhood structure is
well preserved in one step and ensures that the projection matrix
learned in the projection stage is not destroyed in quantization
stage[16].

To inspect the locality preservation, we can observe the projection
matrix W ∈ Rd×K as K hyperplanes and the projection vector p. Ac-
cording to Kang et al [16], sgn(p) is the vertex of the hypercube−1,1K

which maps to p in terms of euclidean metric. The closer sgn(p) and
p are, the more the neighborhood structure is preserved as shown in
figure 6. The joint optimization framework will further make W deter-
mined by both the projection and quantization stages.

Fig. 6. Illustration of quantization stage with the circles representing the
vertices. (a) shows traditional quantization without locality preservation.
(b) shows neighbor preservation with vertices sgn(p) and projection vec-
tors p [16]

The locality preserving projections implemented by LPH can be
witnessed in figure 7 which shows the comparison between a random
projection and the locality preserving projection. It shows optimal
preservation of the neighborhood structure [4].

The main advantage of Locality Preserving Hashing is it simulta-
neously minimizes the quantization loss, average projection distance
between data points while also maintaining the neighborhood structure
of the data.

3 EXPERIMENTS

This section explains the experiments used to validate our investiga-
tion and reports on the results.

For this investigation, we are basing our discussion on results
conducted by Yi-Hsuan Tsai and Ming-Hsuan Yang [13] which
explores a comparative analysis on several hashing techniques that

Fig. 7. Random 2D projection of a high dimensional data Vs. Locality
preserving projection

also include the ones explored in our investigation - Locality Sensitive
Hashing and Locality Preserving Hashing.

The datasets explored are the CIFAR-10 and CIFAR-100 image
datasets.The CIFAR-10 dataset consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images. The dataset is divided into
5 training batches and one test batch, each with 10000 images. The
test batch contains exactly 1000 randomly-selected images from
each class. From the experiments carried out by Yi-Hsuan Tsai and
Ming-Hsuan Yang [13], 200 images are randomly selected from each
class to form a training set of 2000 images together with associated
labels.

CIFAR-100 is also similar to CIFAR-10, with 100 classe with 600
images per class. Each image is 32x32 with 500 training samples and
100 test. For their experiments[13], 20 images are randomly sampled
from each class creating a training set of 2000 images.
A hyper-parameter of k = 100 nearest neighbors is used for these ex-
periments and similarity is based based on the hamming distance met-
ric.

3.1 Results & Discussion
From the results, which explore multiple hashing technique im-
plementations based on their original conceptions i.e. Spectral
hashing(SH)[15], Kernelised Locality-sensitive Hashing(KLSH)[9],
Binary Reconstructive Embeddings(BRE)[8], we can observe our
main investigation techniques- Locality Sensitive Hashing(LSH) and
Locality Preserving Hashing(LPH).

SC@RUG 2019 proceedings

97

Fig. 8. (left) CIFAR-10 precision for top 500 returned samples.(right)
CIFAR-10 precision-recall curve for 64 bit hash codes[13]

Fig. 9. (left) CIFAR-100 precision for top 50 returned samples.(right)
CIFAR-100 precision-recall curve for 64 bit hash codes[13]

From both figures 8 and 9, we can observe that LSH performs
worse than almost all techniques including LPH with labels and LPH
without labels. Increase in the number of bits of the hash key also
increases the precision of LSH but this is a general trend across all
of the techniques examined. LPH with/without labels also noticeably
outperforms LSH which facilitates the argument that semantic
similarity from the labels of the images is much more instrumen-
tal in determining the similarity of data than the data/feature similarity.

Additionally, with the smaller and less complex dataset CIFAR-10,
LPH without labels performs much better than the LPH with labels.
In these experiments, the labels are used to adjust the data distribution
and approximating the eigenfunctions[13]. This leaves the discussion
that the labels do not contribute to LPH for simpler datasets. However,
with a more complex dataset like CIFAR-100, LPH benefits from
the label information as evident in figure 9. LPH thus returns
more consistent results to queries than other hashing techniques for
hashing-based approximate nearest neighbor search.

These experiments are evaluated based on accuracy metrics i.e.
precision and recall but leave the attribute of query time unexplored
which is the advantage that Locality Sensitive Hashing(LSH) has over
LPH. As demonstrated above, LSH performs worse on grounds of
accuracy but if the search is reliant on approximates then depending
on the application, the performance can be overlooked. Theoretically,
as hashing is done randomly for LSH, with a restrictive number of
hashing bits, matching between a query and data samples has a faster
and linear query time - O(nρ) and a smaller memory requirement.
This is further explored by Huang et al. [5].

There is a tradeoff between query time and accuracy of approxi-
mate nearest neighbor search and this influences the use of LSH and
LPH. Intuitively, accuracy might seem as an obvious choice but this is
dependent on the application for which the techniques are to be used.

4 CONCLUSION AND FUTURE WORK

In this paper we explore two hashing techniques- Locality sensi-
tive hashing and Locality preserving hashing for approximate nearest
neighbor search. We explore usage scenarios, alternative algorithm

from various research publications and provide a comparative study
on the two techniques with results from experiments on CIFAR-10
and CIFAR-100 image datasets. Locality Preserving Hashing has a
better accuracy than Locality Sensitive Hashing. However, LSH has a
faster query time than LPH. This leaves a discussion on the trade-off
between accuracy and query time plus storage requirement and their
influence on the application in which the techniques are to be used.

For future work, more research can be done to expand the hash-
ing techniques to incorporate the pros from both the locality sensitive
hashing and locality preserving hashing into one collective technique
that is accurate, has a reasonably faster query time and less storage
requirements.

ACKNOWLEDGEMENTS

The authors wish to thank the expert reviewer Kerstin Bunte for the
indispensable guidance and insights into this research topic.

REFERENCES

[1] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt.
Practical and optimal LSH for angular distance. CoRR, abs/1509.02897,
2015.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry, SCG ’04,
pages 253–262. ACM, 2004.

[3] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen-
sions via hashing. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 518–529. Morgan Kaufmann
Publishers Inc., 1999.

[4] X. He and P. Niyogi. Locality preserving projections. In Proceedings
of the 16th International Conference on Neural Information Processing
Systems, NIPS’03, pages 153–160, 2003.

[5] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-
sensitive hashing for approximate nearest neighbor search. Proc. VLDB
Endow., 9(1):1–12, Sept. 2015.

[6] Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale im-
age search. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 30:1877–1890, 2008.

[7] W. Kong and W.-J. Li. Isotropic hashing. In Proceedings of the 25th Inter-
national Conference on Neural Information Processing Systems - Volume
1, pages 1646–1654. Curran Associates Inc., 2012.

[8] B. Kulis and T. Darrell. Learning to hash with binary reconstructive em-
beddings. In Proceedings of the 22Nd International Conference on Neu-
ral Information Processing Systems, NIPS’09, pages 1042–1050, 2009.

[9] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scal-
able image search. 2009 IEEE 12th International Conference on Com-
puter Vision, pages 2130–2137, 2009.

[10] M. Niu, L. Wu, and J. Zeng. Locality preserving hashing for fast image
search: theory and applications. Journal of Experimental & Theoretical
Artificial Intelligence, 29:349–359, Mar. 2017.

[11] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge
University Press, New York, NY, USA, 2011.

[12] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J. Approx. Rea-
soning, 50(7):969–978, July 2009.

[13] Y. Tsai and M. Yang. Locality preserving hashing. In 2014 IEEE In-
ternational Conference on Image Processing, ICIP 2014, Paris, France,
October 27-30, 2014, pages 2988–2992. IEEE, 2014.

[14] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A
survey. CoRR, abs/1408.2927, 2014.

[15] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances
in Neural Information Processing Systems 21, pages 1753–1760. Curran
Associates, Inc., 2009.

[16] K. Zhao, H. Lu, and J. Mei. Locality preserving hashing. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, pages 2874–2880. AAAI Press, 2014.

Comparison of data-independent LSH vs. data-dependent LPH – Jarvin Mutatiina and Chriss Santi

98

The application of machine learning techniques towards the
detection of fractures in CT-scans of the cervical spine

Kareem Al-Saudi and Frank te Nijenhuis

Abstract— Deep learning methods are increasingly being applied within the context of medical imaging with great success. One
area of medical imaging that’s yet to be explored is the use of such methods and techniques to automate the detection of fractures of
the cervical spine on a CT scan. We survey relevant existing literature, examining effective methods of fracture recognition as well as
many of the important issues that are frequently encountered when considering the approach of deep learning in the case of medical
images. Finally, we conclude by proposing an approach to solving this problem using a variation of the Inception v3 architecture.

Index Terms—Deep learning, radiology, image classification, image segmentation, medical imaging

1 INTRODUCTION

Approximately 7% of trauma patients entering a hospital’s emergency
department (ED) after a motor accident have sustained some type of
injury of the cervical spine (neck) [8]. After such an accident, the neck
of a patient being transported to the hospital has to be fixated to pre-
vent any movement, which could significantly worsen the outcome in
case of a spinal fracture, as the bone fragments might slide around to
compress the spinal cord (myelum). This has to be done even if there
is no evidence of neurological deficits at the time of the accident. Of-
ten, to rule out neck fractures, a radiograph or, in certain cases where
the radiograph does not provide satisfactory results, a CT-scan of the
cervical spine is made.

An on-call radiologist evaluates the scan to determine whether or
not there is a fracture. To the radiologist, reading the scan is a time-
consuming process, and there might be additional delay because he or
she is not always available to look at the scan right away. Automat-
ing the process of fracture detection in the cervical spine is therefore
desirable. An algorithm for automatically triaging the scans based on
severity would speed up the process of radiological evaluation. In this
setup, if a scan is triaged as high priority, it has to be seen by the ra-
diologist immediately. If, however, no fracture is detected by such an
algorithm, the radiological evaluation can wait. Similar schemes have
already been succesfully applied in the detection of chest pathology on
radiographs [2]. Evaluating such a scan requires an efficient and robust
object recognition algorithm. Currently, the most effective solutions to
these kinds of object recognition problems are Convolutional Neural
Networks.

In this paper, different techniques and methodologies within the
field of medical imaging will be discussed. We will summarize the dif-
ferent approaches used by researchers in the past and in doing so will
be able to confidently select the appropriate approach with regards to
detecting fractures in CT-scans of the cervical spine.

The remainder of the paper will be organized as follows: the re-
mainder of section 1 serves to briefly discuss the concept of neural
networks and machine learning as well as to introduce the anatomy
of the cervical spine and some of the basic ideas behind CT-scanning.
Section 2 explains Computed Tomography (CT) in detail. Section 3
concisely describes the methodology that we have utilized to arrive at
our conclusion. Section 4, the discussion, is where the bulk of our
work lies. This section discusses the different approaches and results
from a variety of papers within the field of machine learning in medical
imaging and their relevance to our overall approach. Finally, section 5

• Kareem Al-Saudi is a CS Master Student, E-mail:
k.al-saudi@student.rug.nl.

• Frank te Nijenhuis is a CS Master Student, E-mail:
f.g.te.nijenhuis@student.rug.nl

Fig. 1. Image showing a slice of a CT-scan of the cervical spine. Sagittal
slice in bone window setting. Image courtesy of Dr Bruno Di Muzio,
Radiopaedia.org, rID: 39801

gives a brief summary of the content of this paper and eventually con-
cludes with our own theoretical solution to the problem of detecting
fractures in CT-scans of the cervical spine.

1.1 Neural networks and machine learning
Machine learning can be seen as a subfield of the more general sci-
entific field of Artificial Intelligence (AI). In a similar manner, deep
learning is a subfield of machine learning. In this classification, the
’deep’ term comes from the fact that neural networks with multiple
hidden layers are being used, as opposed to the shallow neural net-
works used in the early days of machine learning. In general, the most
effective image classification methods currently being applied in the
field of medical image recognition are Convolutional Neural Networks
(CNN), an example of a deep learning technique. As such, we mainly
focus our analysis on these techniques as well, our analysis is restricted
to deep learning techniques in medical imaging. To introduce CNN we
should first consider the more general versions, Feedforward Neural
Networks (FNN) and Artifical Neural Networks (ANN) [12, 14]. An
ANN is a computational processing system that is loosely inspired by
the way biological nervous systems, such as the human brain, operate.
It is comprised of interconnected computational nodes, referred to as
neurons. The amount of layers and nodes per layer is determined by
the so-called hyperparameters of the model. The hyperparameters are
set at the beginning of the training phase of the model. This in contrast
to the parameters of the model, which change during training. There
are many different types of ANN. One of these types is the FNN, upon
which an additional constraint has been imposed, namely that the in-
formation being processed by the system can only flow from the input

99

Fig. 2. A simple three-layered ’feedforward’ neural network (FNN). It
comprises of three layers: an input layer, a hidden layer and an output
layer. This structure is the basis of which most common ANN architec-
tures are built.

towards the output. A network upon which this constraint is not im-
posed is called a Recurrent Neural Network (RNN), since information
can ’recur’ from a deeper layer back to an earlier layer. Recurrent Con-
volutional Neural Networks have been described in literature [11], but
they will not be discussed in this paper as they have not been applied
to medical imaging. Mathematically speaking, a FNN can be seen as
a directed acyclic graph, whereas a RNN is a directed graph, since cy-
cles are possible in this case. Through a series of self-optimizations
the FNN is capable of training itself to produce a certain desired output
based on an input vector, a process called ’learning’. As such, FNN
are used in supervised learning models, where labeled data is available
so that the correct output is known given each input in the training set.

The process can be described as follows. Input values are loaded,
usually in the form of a vector, to the first network layer, aptly named
the input layer. Each layer contains multiple neurons, and each neu-
ron computes a weighted sum of its inputs. The result passes through
a nonlinearity after which it is propagated to the neurons in the next
layer. In this context, ’learning’ refers to adjusting the weights be-
tween the neurons to nudge the system towards a correct output for
a particular input. This learning is directed by the minimization of a
cost function. Having multiple hidden layers of neurons stacked upon
each other is what is commonly referred to as deep learning. Figure 3
illustrates the basic structure of a feedforward neural network.

CNNs are analogous to traditional FNNs with the main difference
being that they have multiple specialized network layers, which are
particularly suitable for use in image recognition. The first part of the
CNN is an optional preprocessing layer, with fixed filters which are
not changed during the learning process. This can be interesting if we
want to artificially force the network to focus on particular features.
After the image processing layer there are multiple convolutional lay-
ers, from which the network derives its name. A convolutional layer
works by convolving the input image with a certain kernel. The con-
volution can be seen as a filter sliding over the input image, looking
for certain low level structures such as edges. The kernel types are
fixed, they are not adjusted through training. The input image is usu-
ally convolved with multiple different types of kernels. Each neuron
in the layer receives information from a small input area of the input
image called the receptive field. The result of this operation flows to
the next layer of the network.

Intermixed with the convolutional layers, there are pooling layers
which combine the information from the previous layer. Commonly
used types are either max-pooling layers or averaging layers. Both
types of layers again have a receptive field which is larger than their
output size, therefore they subsample their input. A max-pooling layer
propagates the maximum value in its input field, whereas the averag-
ing layer propagates the average value. Many more different ways of
handling this subsampling have been proposed.

After multiple convolutional and pooling layers, there are fully con-
nected (FC) layers, which are similar in structure to the layers of a
regular ANN as described earlier. These classification layers combine

the outputs of the convolutional and pooling layers to draw conclu-
sions about higher level concepts. By the time information arrives at
the FC layers, it is no longer influenced by the spatial relations in the
input, instead relying on the actiations of the pooling layers to deter-
mine whether or not a feature is present in the image as a whole. In
this way, information is abstracted from the image in a space-invariant
manner. This is inspired by the functional organization of the primary
visual cortex in the primate brain. Through this simple and elegant
idea, abstract visual concepts can be extracted from images [6].

The Inception architecture created by Google is frequently used in
medical imgae recognition because it performs well on many imag-
ing tasks while at the same time being computationally inexpensive
when compared to other leading architectures [20]. Another architec-
ture which is frequently used in modern image recognition is U-Net,
so-called because of the characteristic U shape when drawing out its
layers as a graph. U-net is particularly capable of handling small im-
age sets by effectively exploiting the infromation gained from data
augmentation [16].

Machine learning techniques such as neural networks can be used
for the classification of an image, where the output of the network is
a list of probabilities for each of the different possible output classes,
but we might also want to perform segmentation. In segmentation,
the machine learning system also tells us where the lesion is located.
In medical imaging, segmentation is particularly useful as a medical
professional is usually not merely interested in whether there is an
abnormality in an image, he also wants to know where it is located.

In addition, machine learning techniques can also be applied to
other parts of medical imaging, such as in the denoising of low dose
CT scans [4]. A low-dose CT scan is often noisy as a result of the
low radiation dose not penetrating all tissues adequately. Denoising
CNN can be used to reconstruct higher resolution CT’s. We will not
consider denoising techniques in this text.

1.2 The cervical spine
The cervical spine consists of 7 vertebrae, as depicted in Figure 4. It
runs from the base of the skull to the opening of the thorax (ribcage),
at the first rib. It is more mobile compared to the lower, sturdier, levels
of the spine. The cervical spine acts as a fulcrum on which the head,
which is relatively heavy in humans, pivots. The 7th vertebra (vertebra
prominens) of the cervical spine can be easily identified as it protrudes
prominently from the back of the neck. The first 2 vertebrae have
specific names, the atlas and axis, respectively. They are special in
structure and function, with the atlas acting as a platform to stabilize
the skull and the axis facilitating rotation of the skull through a tooth
like protrusion called the dens, which interlocks with an opening in
the atlas. The cervical spine is held together by a complex system of
ligaments.

There are multiple different typical fractures in the neck. This is be-
cause certain parts of the cervical spine are predisposed to break more
easily than other parts. Most fractures occur at two levels, approxi-
mately half of the fractures occur at the level of C6 or C7, and approx-
imately one third occur at the level of C2. Usually, the mechanism of
injury is hyperflexion, where the neck bends forwards further than it is
supposed to, and the ligaments at the back are torn. The main danger is
always the same, compression of the spinal cord, which might lead to
neurological deficits or even tetraplegia, the loss of sensory and motor
function in all limbs.

1.3 CT
Computed Tomography (CT) is an imaging technique where multi-
ple X-ray measurements are combined to obtain a single stack of im-
age slices (cf. Greek τoµoσ tomos, ”slice” and γραφω graph, ”to
write”). The CT-scan is made using a scanner apparatus, a large torus
shaped device into which the patient can be inserted. Inside the scan-
ner, a construction containing an X-ray emitter and an opposing detec-
tor is rotated around the patient. From the measurements obtained at
multiple different rotational angles, stacks of image slices through the
human body can be algorithmically reconstructed. In the hospital set-
ting, CT-scans have become an invaluable tool, not just in the diagno-

Machine learning techniques towards the detection of fractures in CT-scans – Kareem Al-Saudi and Frank te Nijenhuis

100

Fig. 3. The Inception v3 model is made up of symmetric and assymetric building blocks. As seen above, this includes convolutions, average
pooling, max pooling, concats, dropouts and fully connected layers.

Fig. 4. Schematic representation of the cervical spine, showing the 7
vertebrae commonly abbreviated as C1-7. In particular, note the special
shape of C1 (atlas) and C2 (axis). Image courtesy of OpenStax College,
Radiopaedia.org, rID: 42770

sis of disease, but also in preoperative planning and in the follow-up of
certain diseases. Many different types of CT-examinations have been
developed for specific purposes, such as CT Angiography (CTA) to
visualize blood vessels, and dual energy CT to investigate for instance
liver lesions (a lesion is any abnormality in tissue structure, such as a
tumor). For more information about CT-scans, see for instance [18].
After processing, the acquired CT data is stored in DICOM format,
which is a standardized imaging format for medical images. The den-
sity of a voxel on a CT-scan can be expressed in Hounsfield units,
which is a way of measuring the signal attenuation. Air has a value
of -1000 HU, and water has a value of 0 HU. Metals and other for-
eign objects give the highest density on a CT-scan, which is around
30000 HU. A CT-scan which has been stored like this has a high dy-
namic range, it contains more information than can be shown using a
default 256 value grayscale colormap. To avoid high contrast issues,
radiologists use windowing settings when looking at the scans. The

windowing is defined by its level, and its width, where the level indi-
cates the midpoint of the window in Hounsfield Units, and the width
determines the upper and lower threshold of the values displayed on
the CT. In this way, the extra information from the high dynamic range
can be mapped to grayscale images. A narrow window can be used to
examine tissues exhibiting minor signal changes, such as the soft tis-
sues in the abdomen. Usually, the radiologist examines the same scan
in multiple different windowing settings to look for different abnor-
malities. Because of the way the detector moves around the patient,
the CT-scan consists of a stack of axial slices. The axial direction is
one of the cardinal anatomic planes of the body, it intersects the body
horizontally. When examining the scan, a radiologist may want to
view different planes, which can be reconstructed from the axial stack
using software. The two other planes are known as the sagittal plane
(cf. latin sagittarius, archer), which intersects the body from the side
(think of the pose of an archer) and the frontal plane, which represents
a vertical section through the human body.

2 METHODOLOGY

We review the available literature on the topic of image recognition
in radiology, so that we may distill an effective method to detect frac-
tures of the cervical spine on CT images. The eventual goal is for this
proposed method to be applied in clinical practice, where it could be
used to determine whether a CT-scan of the cervical spine shows signs
of serious injury. If this is the case, the radiologist will have to look
at it as soon as possible. If the system determines that no spinal injury
is present, the scan is put on a low priority list to be reviewed later
by the radiologist. By creating such a method we hope to streamline
the workflow of the radiologist. Based on this task description, we are
interested in a method which not only accurately diagnoses fractures,
but which also has an extremely low rate of false negatives, as a false
negative result potentially means a delay in diagnosis. Note that in this
setup, every scan is still reviewed by the radiologist at some point.

We would also like to preface the discussion by stating that the tech-
niques and methods that are about to be discussed, while not entirely
relevant to our own problem, should serve as a solid base of knowledge
and understanding that will be the basis of our theoretical approach’s
composition. This is because, while the datasets and approaches might
not be the same, the techniques and methodologies applied in training
neural networks usually still apply regardless of where they lie on the
medical imaging spectrum.

SC@RUG 2019 proceedings

101

3 DISCUSSION

We consider the problem of automatically recognizing fractures on a
CT-scan using machine learning techniques. To formulate an opti-
mal approach to solve this complex problem, we break it down into
different subproblems, and we summarize what is known about solv-
ing each subproblem. We conclude by proposing a method which we
think would perform best by combining the best solutions to each of
the subproblems.

The majority of AI papers in radiology are focused on radiograph
imaging. This is a different imaging paradigm from the CT scans we
are interested in. A radiograph is a 2D greyscale image of a part of the
body, whereas a CT-scan is a 3 dimensional examination consisting
of a stack of 2D images. We have still included many results from
papers focusing on radiographs because there a sparsity of literature
on the subject of machine learning on CT. Typically, a radiograph has
a higher resolution (usually, a radiograph contains 2048×2048 pixels)
than a single slice of the CT scan (usually, 512×512 pixels), this is an
important detail to keep in mind during our analysis.

3.1 Dataset

A common problem with the application of machine learning tech-
niques in medical imaging is the low availability of data. Medical data
is confidential, and it is relatively hard to obtain permission to create
datasets of the size necessary for the effective application of machine
learning algorithms. First, lists of patients who have had a scan of the
cervical spine have to be obtained from the hospital database. Next,
these patient lists have to be annotated and combined into a proper
dataset. For instance, since not everyone who has had a CT-scan of
the cervical spine actually broke their neck, we need to annotate those
scans where a fracture is present. Since we also require some kind of
ground truth, we need a radiologist to indicate where the fracture is
present within the scan, using some kind of annotation pen tool. In
general, luckily, only a small percentage of patients scanned will ac-
tually have a spinal fracture. This does, however, exacerbate the issue
of small datasets, because in the dataset which is already small, we
have a relatively low percentage of informative scans. Multiple solu-
tions have been formulated to solve this problem. The easiest method
would be to manually rebalance the dataset by changing the ratio of
scans containing a fracture to scans which do not contain a fracture.

In Lindsey et al. [13], an initial bootstrapping period was used.
The goal here was to accurately detect fractures on wrist radiographs
using a CNN. During bootstrapping, multiple types of x-ray images
were fed to the network, such as x-ray images of the chest and knee.
This was done to teach the network how to read an x-ray image in
general, after which it can be trained specifically for the detection of
wrist radiographs. This somewhat alleviates the problem of having
a small dataset, as initial training can be performed on a different,
larger but less specific set of images. Data was further augmented
utilizing various techniques such as rotating, cropping and contrast
variation. This is done to make the model more robust to rotational,
translational and contrast changes and to allow for a larger dataset with
which to train the neural network. Instead of training our network with
CT-scans of the cervical spine immediately, we could first initialize
it with scans from different parts of the body, the idea being that it
first learns what to look for in a scan in general before progressing to
the more specific case of cervical scans. In CT-scans, this technique
only makes sense for the detection of bone abnormalities, however, as
for instance a CT-scan of the abdomen contains tissues of an entirely
different structure. Still, obtaining such a dataset might prove useful
in the initial training sessions of the network.

Another way to deal with the relative lack of data in medical imag-
ing as opposed to other fields is to simply train shallower networks
[3]. The idea behind this approach is that a shallower network con-
tains less parameters, and therefore requires less training data to be
successful. A shallow network runs a higher risk of misclassifying
some of the harder scans, so care should be taken when using this
technique. Techniques for finding the optimal architecture exist, these
might prove helpful when designing the initial architecture. This is

called hyperparameter optimization, see for instance [7, 19] for more
details.

3.2 Preprocessing
Here, we consider the problem of a dataset containing extra informa-
tion or noise, as is often the case when working with real medical
images. For instance, textual annotations such as patient data and the
date of the examination might be present on the scans. In Annarumma
et al. [2], preprocessing had to be performed on the radiographs to
remove such annotations. This removal was done using yet another
neural network, Tensorbox, which was trained to detect artifacts. If
an artifact, such as a string of text on the image, is found, it is cov-
ered with a black box. To prevent the introduction of a learning bias
as a result of this black box treatment, black boxes were positioned
randomly around the corners of all training images.

As mentioned earlier, another issue is the high dynamic range of
a CT-scan. Since most learning architectures are not capable of deal-
ing with the high dynamic range information from the CT-scan di-
rectly, some preprocessing step is required. Chilamkurthy et al. [5]
approach the high dynamic range problem by splitting each slice into
three channels based on different windowing setting. They can then
feed their CNN algorithm information about the same pixel in bone
setting, brain window and subdural windowing. When looking for
cervical fractures, a similar approach might be necessary, where the
algorithm looks at both a bone window setting and some sort of soft
tissue window.

In many real worlds applications, preprocessing like this may be
necessary to ensure correct results from the machine learning method
being applied. In general, ensuring that the input is as standardized
as possible might be desirable. In CT-scans, the same windowing set-
ting should be used as much as possible. No standard preprocessing
pipeline can be defined, as the required amount of preprocessing com-
pletely depends on the dataset being used.

3.3 Machine learning in a CT-scan
Applying machine learning techniques specifically to CT-scans brings
its own suite of problems, as opposed to for instance the detection of
lesions on regular radiographs or MRI’s.

Deep learning in 3 dimensions, in the CT-scan, is significantly
harder than learning in 2D, which is the case with radiographs, be-
cause of added computational complexity when generalizing from the
usual 2D to 3D convolutions. Even though it is more difficult, Roth et
al. [17] show that it is feasible to apply 3D convolutions for the seg-
mentation of organs on abdominal CT-scans using modern hardware.
Another recent study proposes a different solution, by implementing
three planar CNNs in a triplanar fashion, such that axial, frontal and
sagittal slices of the image are simultaneously being analyzed [15].
This is effective in the segmentation of cartilage on MRI.

The approach used in this study tackles the problem of producing
false-positives over the multitude of slices in each image. This is done
by allowing each CNN to dissect a different plane of said image and
allowing them each to only interact between the output of their respec-
tive final layers. The outcome is fascinating; exhibiting marginally
higher degrees of accuracy, sensitivity and specificity while demon-
strating the ability to procure results 10-15 times faster than the 3D
CNN. Furthermore, their method allows for the automatic segmenta-
tion of a 3D image allowing it to be fed slice-by-slice to the 2D CNNs.

One approach utilized by Chilamkurthy et al. [5] is to identify in-
tracranial bleeds by running a version of the ResNet18 architecture
with 5 fully connected layers on each individual slice, and then com-
bining the confidence levels on each slice using a random forest to say
something about the entire scan.

Kwan et al. [10] demonstrate the use of histograms for identifying
structures of interest in CT scans of the spine. This method can be
used to first extract the vertebrae contours from the scan. Automatic
histogram thresholding is performed to obtain the region of interest.
Noise and artifact removal are also performed using a detection algo-
rithm and the morphological erosion operator, respectively. Finally,
a 2 stage boundary rectification algorithm is applied to end up with

Machine learning techniques towards the detection of fractures in CT-scans – Kareem Al-Saudi and Frank te Nijenhuis

102

a reliable vertebral contour. Afterwards, CNNs could be used for the
classification, even though this is not done in the original paper or
elsewhere to the best of the authors’ knowledge. It might be interest-
ing to look into the combination of deep learning with morphological
processing.

3.4 Learning architecture
Lindsey et al. [13] provide a neural network to assist Emergency De-
partment (ED) physicians with a tool to detect fractures in wrist radio-
graphs. Specifically, they use an extension of U-Net. Subspecialized
radiologists are asked to draw a bounding box around the fractures
they find using a special tool. The neural network is then trained to
emulate this bounding box classification approach, leveraging the ex-
pertise of the radiologists. The output of the CNN is a single fracture
probability combined with a heat map, which can be overlaid on the
image to show the probable location of the fracture.

One of the limitations of this study is that the diagnostic value is
limited because of the retrospective nature of the research. The experts
do not actually see the patient, they just interpret the scans. This means
that valuable clinical information gained through talking to the patient
and from further physical examination is missing.

In Annarumma et al. [2], a study investigating automated triaging
of chest radiographs, researchers trained an ensemble of 2 CNNs to
classify chest radiographs as either critical, urgent, nonurgent, or nor-
mal. This classification is then used to prioritize the images to reduce
the average waiting time for critical images.

These CNNs both used the Inception v3 architecture but were
trained on completely different datasets. The first network is applied
to a downsampled version of the images at a resolution of 299x299
pixels. The reasoning behind this is that while detailed information is
lost the network becomes proficient at detecting global abnormalities.
The second network, on the other hand, operates on higher resolution
images rendering it better suited for detecting visual patterns that may
otherwise be missed at a lower resolution.

Interestingly, using two CNNs leads to some riveting conclusions.
It was found that averaging the results of these two subsampled net-
works worked better than using a single higher resolution architec-
ture. ADADELTA was used for optimization, which is a novel per-
dimension learning rate method for gradient descent boasting trivial
computational overhead compared to other similar methods rendering
it suitable to be applied in a variety of different situations. The reason
for its success lies in its ability to automate the tuning process of de-
termining the learning rate which is, in other cases, chosen by hand.
The importance in this lies within a rate that is both high enough to
ensure fast learning but not too high so as to cause the system to di-
verge in terms of the objective function [21]. Training was done by
starting 68.000 iterations from random weights. The model with the
best average F1 score was selected for testing.

The difference between our proposed setup and this paper is that
this network also gives the probability of the specific type of abnor-
mality using ordinal regression. This is not something we plan to do
in the current setup. Rarer conditions are included in the dataset to
ensure that the system can also draw conclusions about this. This is
something which has to be accounted for in the training dataset com-
position.

In Kamnitas et al. [9], a similar parallel scheme is used. 2 CNNs
receive input from the same image location. One CNN has a receptive
field which looks at the neighborhood of the voxel, the other receives
a subsampled version which looks at a broader ’context’ of the same
voxel. In doing so, the prediction accuracy increases because of the
addition of this contextual information to the next layers.

3.5 Statistical analysis
To see whether the chosen learning architecture is adequate we need
to analyze its performance. Many different performance measures
have been proposed for usage with neural networks. In our case, the
network classifies a scan based on whether it contains a fracture or
not. We will therefore consider classification based performance mea-
sures. With our particular setup, we need a method that minimizes the

amount of false negatives, as this will result in fractures being missed
which is the main priority. We will minimize the number of false neg-
atives at the expense of an increase in the number of false positives as
missing a fracture poses an extreme risk to the patient.

This approach works in our favor as, within the context of machine
learning in medical imaging, neural networks were never meant to re-
place the radiologist but rather serve as a means to simplify and oth-
erwise assist with their work. Radiologists will not be replaced by
machines; rather, ”radiologists of the future will be essentially medi-
cal data scientists .” [1].

To quantify accuracy, we may calculate the F1 or Dice coefficient,
which is expressed as

F1 = 2
P ·R
P+R

where P indicates the positive predictive value, which is the propor-
tion of actually positive results within the set of positively predicted
results, in our case the number of actual fractures detected by the sys-
tem divided by the total amount of predicted fractures. R indicates the
recall or sensitivity, which is the amount of actually positive results de-
tected by the system divided by the total number of positive results, so
including the fractures missed by the system. The F1 score obtained in
this way ranges between a value of 1, perfect detection of all fractures
but no excess detection, and 0.

4 CONCLUSION

To summarize, in this paper, we have presented a brief introduction as
to why automating the detection of fractures in CT-scans of the cervi-
cal spine would be extremely beneficial to radiologists. We have done
this by first providing a brief overview of neural networks and ma-
chine learning, a succint summary of the anatomy of cervical spine, a
concise explanation on computed tomography and its relevance to our
paper. After this introduction we discussed the importance of many
factors influencing the final performance of the algorithm, such as the
dataset, preprocessing steps, and learning architecture along with ma-
chine learning techniques in a CT-scan as well as a brief statistical
analysis.

Given our study of all of this pre-existing information over numer-
ous prior architectures and their application in the field of medicine
we can start theorizing as to which methodology best suits our prob-
lem. To overcome issues posed by a small dataset, which is a real-
istic scenario as collecting enough data to properly train a CNN can
prove quite difficult in medicine, we might try to begin training on a
larger, less specific dataset and then later focus on images of the cer-
vical spine. We may also choose to augment our dataset to produce a
larger dataset out of our existing data. Preprocessing the scans might
be necessary as artifacts may be present in our CT-scans. This can
be done by using tools such as Tensorbox which have proven to be
efficient for this purpose. To determine an optimal learning rate, the
ADADELTA algorithm can be used. Because the datapoints in our
dataset are 3-dimensional scans, we know that a 3D CNN would be
the most natural choice. However given the memory requirements of
fully 3D networks as well as previous discussions proving that a series
of three orthogonal 2D patches can be just as, if not more effective in
producing results with high degrees of accuracy we can conclude that
a triplanar 2D CNN is most suitable in our case. Naturally, as a result
of this, we will train a CNN receiving information from 3 2D convo-
lutional patches to recognize fractures of the cervical spine. It seems
that a modified version of the Inception v3 architecture to facilitate
triplanar learning would be an adequate starting point for the training
process. Hyperparameter-optimization techniques can be employed to
further refine the most suitable architecture, and experimentation with
different architectures such as U-Net might provide an effective al-
ternative to Inception. Finally, to produce even better results we will
combine the output of two networks, one of which receives a sub-
sampled version of the input, to improve the overall accuracy of the
system. To evaluate the final performance of the algorithm, a simple
Dice coefficient can be used.

SC@RUG 2019 proceedings

103

ACKNOWLEDGEMENTS

The authors wish to thank Michael Biehl who has reviewed this paper
as an expert within the Machine Learning and Computational Intelli-
gence field. In addition, the authors also want to thank our colleagues
Codrut,-Andrei Diaconu and Sofie Lovdal who have reviewed this pa-
per as well. The authors would also like to give specials thanks to Rein
Smedinga, and Femke Kramer who provided useful guidance along
the way.

REFERENCES

[1] Artificial intelligence in radiology: The game-changer on everyone’s
mind, Jan 2019.

[2] M. Annarumma, S. J. Withey, R. J. Bakewell, E. Pesce, V. Goh, and
G. Montana. Automated triaging of adult chest radiographs with deep
artificial neural networks. Radiology, 0(0):180921, 0. PMID: 30667333.

[3] J. R. Burt, N. Torosdagli, N. Khosravan, H. RaviPrakash, A. Mortazi,
F. Tissavirasingham, S. Hussein, and U. Bagci. Deep learning beyond
cats and dogs: recent advances in diagnosing breast cancer with deep
neural networks. The British Journal of Radiology, 91(1089):20170545,
2018. PMID: 29565644.

[4] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang.
Low-dose CT via convolutional neural network. Biomed Opt Express,
8(2):679–694, Feb 2017.

[5] S. Chilamkurthy, R. Ghosh, S. Tanamala, M. Biviji, N. G. Campeau, V. K.
Venugopal, V. Mahajan, P. Rao, and P. Warier. Deep learning algorithms
for detection of critical findings in head ct scans: a retrospective study.
The Lancet, 392(10162):2388–2396, Dec 2018.

[6] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber. Flexible, high performance convolutional neural networks for image
classification. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Two, IJCAI’11,
pages 1237–1242. AAAI Press, 2011.

[7] M. Claesen and B. D. Moor. Hyperparameter search in machine learning.
CoRR, abs/1502.02127, 2015.

[8] A. Kaji and P. S. Hockberger. Spinal column injuries in adults: Defini-
tions, mechanisms, and radiographs (uptodate), 2019.

[9] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane,
D. K. Menon, D. Rueckert, and B. Glocker. Efficient multi-scale 3d cnn
with fully connected crf for accurate brain lesion segmentation. Medical
Image Analysis, 36:61 – 78, 2017.

[10] F. Kwan, I. Gibson, and K. Cheung. Automatic boundary extraction and
rectification of bony tissue in ct images using artificial intelligence tech-
niques. 2000.

[11] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural net-
works for text classification, 2015.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, pages
2278–2324, 1998.

[13] R. Lindsey, A. Daluiski, S. Chopra, A. Lachapelle, M. Mozer, S. Sicular,
D. Hanel, M. Gardner, A. Gupta, R. Hotchkiss, and H. Potter. Deep
neural network improves fracture detection by clinicians. Proceedings of
the National Academy of Sciences, 115(45):11591–11596, 2018.

[14] K. O’Shea and R. Nash. An introduction to convolutional neural net-
works. ArXiv e-prints, 11 2015.

[15] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen.
Deep feature learning for knee cartilage segmentation using a triplanar
convolutional neural network. In K. Mori, I. Sakuma, Y. Sato, C. Barillot,
and N. Navab, editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2013, pages 246–253, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[16] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[17] H. R. Roth, H. Oda, X. Zhou, N. Shimizu, Y. Yang, Y. Hayashi, M. Oda,
M. Fujiwara, K. Misawa, and K. Mori. An application of cascaded 3d
fully convolutional networks for medical image segmentation. CoRR,
abs/1803.05431, 2018.

[18] E. Seeram. Computed Tomography, Physical Principles, Clinical Appli-
cations, and Quality Control. Saunders, 2015.

[19] H. Shouno and M. Okada. A hyper-parameter inference for radon trans-
formed image reconstruction using bayesian inference. In F. Wang,
P. Yan, K. Suzuki, and D. Shen, editors, Machine Learning in Medical

Imaging, pages 26–33, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. CoRR, abs/1512.00567,
2015.

[21] M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

Machine learning techniques towards the detection of fractures in CT-scans – Kareem Al-Saudi and Frank te Nijenhuis

104

An Overview of Runtime Verification in Various Applications

Neha Rajendra Bari Tamboli(S3701417), Vigneshwari Sankar(S3874222)

Abstract— This paper investigates about what runtime verification is, how it is used in financial and medical application and how
it aids the system by dynamic and real time analysis of data for critical decision making. Software correctness is an activity which
determine whether the program satisfy or violate the given properties . A property is a set of rules to be followed. The more accurate
the required results are the more correct the software is. There are verification techniques used to check the correctness. One of
them is static verification analysis in which the code is built to ensure that standard coding practices have been adhered. However,
there are a few major concerns with static verification techniques like, the tester may not have access to the code to check if the
coding standards are followed. This is when runtime verification comes into picture. We evaluate runtime verification in medical and
financial aspects and how it is a better verification approach compared to static or semi static approaches. Finally the paper discusses
the observed commonalities between these two application domains, the benefits and the challenges faced.

Index Terms—Decision making, software correctness,realtime,runtime verification.

1 INTRODUCTION

Due to the large amount of data we have in today’s world, it has be-
come increasingly important to handle this data not only efficiently
but also on a real time basis especially in applications where decision
making is critical. One of the solutions to this was introduction of
runtime verification: how data is analysed and checked on a real time
basis to look for any discrepancies. To implement such a functionality,
changes to existing software is made and runtime verification is added
as a module to the software. A Software is a set of programs instruct-
ing a computer to do specific tasks. Software and Software systems
have become pervasive in the digital world. From traditional software
applications like media player, word processor etc., software plays a
significant part in our everyday life. For example, to help the air traffic
control system improve the safety and efficiency of the aircraft, a soft-
ware called Future Air Traffic Management Concepts Evaluation Tool
(FACET) was developed by NASA.[6]
In recent years, software has added a new paradigm to the architecture
of software systems. They are seen more and more as autonomous
agents acting according to certain properties. For such systems, ver-
ification is challenging as the overall behaviour of systems depends
heavily on the agents involved. One important aspect of verification is
to check whether each party acts according to the property they have
agreed on.
“Instead of debugging a program, one should prove that it meets its
specifications, and this proof should be checked by a computer”(John
McCarthy, 1961)[12] Traditionally, theorem proving[5] or Model
Checking[13] are the main traditional verification techniques used.
Theorem proving is fully automated which checks the correctness of
the program mathematically with respect to mathematical formal spec-
ification.It is used in the hardware industry because the important as-
pects of hardware design are manageable to automated proof methods,
making theorem proving verification easier to introduce and more pro-
ductive.
In Model Checking it is checked whether the given model(hardware or
software) meets the given specification such as absence of deadlock(A
process in which two different systems try to access the same data at
the same time)[7] that can cause the model to crash. To solve this
the model of the system and the specification are formulated in some
mathematical languages.
Though the formal verification techniques are effective and less com-
plex, it is also time consuming and expensive. A non technical person

• Vigneshwari Sankar is a MSc Computing Science student at the University
of Groningen , E-mail: v.sankar@student.rug.nl.

• Neha Rajendra Bari Tamboli is a MSc Computing Science student at the
University of Groningen, E-mail: n.r.bari.tamboli@student.rug.nl

will find it difficult to use this model and extensive training is required.

2 RUNTIME VERIFICATION

Runtime verification also referred to as runtime monitoring, trace anal-
ysis, dynamic analysis etc., is a lightweight, yet rigorous, formal
method that complements the classical verification techniques with a
more practical approach. The correctness is analyzed by means of
properties. A property is a set of instructions which define the condi-
tions that needs to be satisfied in order to ensure smooth running of
the system under consideration. When a property is not satisfied it is
referred to as a violation, and when these properties are analyzed real
time that is when runtime verification comes into picture. It deals with
inaccurate information on the behaviour of the software which is typi-
cally referred to as a violation and when such behaviour is detected an
alert is sent. There are methods to identify the correctness of the exe-
cution trace currently taken into consideration. These are discussed as
below.

2.1 Monitors
A monitor is merely a device that checks the correctness of the cur-
rent execution trace[11]. It decides whether the current execution
trace satisfies the property by showing an output of either true/yes or
false/no[11]. The monitor can be used in 2 ways, one is when the
current execution trace is taken into consideration and the other when
a finite set of sequences is fed to the monitor, in the later case it is
referred to as offline monitoring.

2.2 Monitoring Setup
A typical runtime verification monitoring setup consists of three main
components, namely the system under scrutiny, the monitor and the
instrumentation mechanism.
Monitors are computational entities that execute along side a system
so as to observe its runtime behaviour and possibly determine whether
a property is satisfied or violated from the exhibited execution. When
sufficient system behaviour is observed, a monitor may reach a verdict
i.e., either acceptance or rejection. This verdict is normally assumed
to be definite i.e., it cannot be revised and is typically communicated
to some higher-level entity responsible for handling monitor detection.
Instrumentation is the computational plumbing that connects the ex-
ecution of a system under scrutiny with the analysis performed by the
monitor. It typically concerns itself with two aspects of the moni-
toring process. First, instrumentation determines what aspects of the
system execution are made visible to the monitor for analysis. Instru-
mentation records the relevant information from the computation of
a running system and records them as system events. An event is a
process currently taken into consideration. The recorded events are
then reported to the monitor in the form of an ordered stream called an
execution trace (of events), which would normally correspond to the
same notion introduced in the previous section.

105

Second, instrumentation also dictates how the system and the monitor
execute in relation to one another in a monitoring setup. For instance,
instrumentation may require the system to terminate executing before
the monitor starts running, or interleave the respective executions of
the system and the monitor that share a common execution thread. In
concurrent settings, the system and monitor typically have their own
execution threads, and instrumentation dictates how tightly coupled
these executions need to be. The instrumentation either requires the
respective threads to execute synchronously which are regulated by a
global clock, or else allow threads to execute asynchronously to one
another and then specify synchronization points between the respec-
tive executions.

Fig. 1. The basic set up of a monitor and how it works[3]

2.3 Monitor-based Runtime Reflection
Monitor-based runtime reflection or runtime reflection (RR) is an ar-
chitecture pattern for the development of reliable systems in various
applications The basic architecture of the system is represented as be-
low in figure 2.[4]

Fig. 2. An application and the layers of the runtime reflection
framework.[11]

It consists of 4 layers, the role of the logging layer is to observe sys-
tem events and to provide them in a suitable format for the monitoring
layer. Typically, the logging layer is realized by adding custom code
annotations (e.g., java annotations like @override used for instruct-
ing compiler that the annotated method is overriding the method.)[15]
within the system to build. The logging layer allows to register so-
called loggers, i.e., software components for observing the stream of
system. While the goal of a logger is to provide information on the
current run to a monitor, it may not assume on the properties to be
monitored.
The monitoring layer consists of a number of monitors which observe
the stream of system events provided by the logging layer. Its task is
to detect the presence of faults in the system without actually affecting
its behavior. Runtime reflection is assumed to be implemented using
runtime verification technique. If a violation of a correctness property

is detected in some part of the system, the generated monitors will re-
spond with an alarm signal for subsequent diagnosis.
The diagnosis layer collects the verdicts of the distributed monitors
and deduces an explanation for the current system state. For this pur-
pose, the diagnosis layer may infer a minimal set of system compo-
nents, which must be assumed faulty in order to explain the currently
observed system state. The procedure is solely based upon the results
of the monitors and general information on the system. Thus, the di-
agnostic layer is not directly communicating with the application.
In mitigation layer the results of the systems diagnosis are then used
in order to reconfigure the system to mitigate the failure, if possible.
However, depending on the diagnosis and the occurred failure, it may
not always be possible to re-establish a determined system behavior.
Hence, in some situations, e. g., occurrence of fatal errors, a recovery
system may merely be able to store detailed diagnosis information for
off-line treatment.

3 BACKGROUND

In this overview we will take a look at current state-of-the-art meth-
ods of runtime verification their applicability to financial and medi-
cal application domains together with commonalities , advantages and
challenges.

3.1 Financial Transaction System
The huge financial service providers such as Paypal, Revolut etc., fa-
cilitates easy transaction of money online across the globe. These
companies are mandated to follow a set of regulations e.g., a user can-
not transfer more than 2000 a week. Following these regulations be-
comes hard when track of billions of users has to be kept. By using
software engineering processes the solution to this issue which hap-
pens at the payment gateway can be found. Today with the increase
in software systems it is unthinkable to advocate and accept any soft-
ware developed in an ad-hoc manner(for a particular situation), since
it stands little chance of being adopted in the short term.

Runtime monitoring and verification have been advocated as very
industry-friendly techniques,especially due to their scalability to large
systems. Runtime verification technologies is adopted to improve the
dependability of real-life systems. The formal verification techniques
like testing, offline verification and static analysis tools have the luxury
of being used prior to deployment, thus mitigating part of this prob-
lem. However, with online runtime verification, in which verification
is performed during execution, this becomes an inevitable issue.

3.1.1 Basic Method

Ixaris Ltd., which planned to handle high volumes of financial trans-
actions across different user applications and financial institutions has
developed an industrial system to integrate runtime verification tech-
nology into the Open Payments Ecosystems(OPE). [2] Compliance to
legislation and correctness are critical in this domain, and the risk of
failure due to the runtime verification module had to be mitigated. For
this purpose, Valour, a runtime verification tool was developed, it acts
act as a back-end verification tool for financial transaction software.

3.1.2 Valour: Architecture and Design

Valour has been designed to work as a tool which processes streams
of data received from (potentially) different sources. This is achieved
in three stages.

• Trigger manager process triggers arriving from the systems be-
ing monitored, categorizing them and tagging them appropriately
with relevant data to package them as events.

• Event manager which consumes the events produced by the trig-
ger manager farming them to the appropriate monitoring unit and
triggering new ones if required.

• Monitoring unit instances which include the logic as to how to
react upon receiving a relevant event.

An Overview of Runtime Verification in Various Applications – Neha Rajendra Bari Tamboli and Vigneshwari Sankar

106

Since Valour allows for properties to be monitored for each instance
of a particular type, it includes a template instantiator which creates a
new monitoring unit whenever events pertaining to a new instance are
received.

Fig. 3. Architecture of Valour[1].

The architecture of Valour in figure 3 is explained as below.
EVENTS: In Valour, events are named and can be parameterised by a
data tuple(Key, value pair) e.g. closeAccount(destinationAccount) cor-
responds to an event named closeAccount(key) carrying data parame-
ter destinationAccount(value) corresponding to the account to which
any remaining funds are being requested to be transferred. At the event
level of abstraction it is not important whether this event comes from
a method call in the main system or any other source.
In addition to parameters, events may be annotated by the categories
they correspond to. For instance, closeAccount may be categorized by
the class of bank accounts, or the category of users. This information,
together with information of how to extract the category instance from
the event, is used by Valour so that the event is passed on to the rele-
vant monitor.
Triggers: Event Generators: Valour provides two constructs for
defining system triggers coming from different sources:

• controlflow trigger :triggers corresponding to control points in
the code of the system, and would be instrumented via aspect-
oriented techniques[10].

• external trigger :allow valour users to define custom exter-
nal triggers through an application programming interface(API)
which in turn can be consumed by Valour and translated into
events.

The separation of triggers from events helps keep the monitoring
and verification specifications independent of the more technology-
specific aspect of identifying points of interest during a systems
execution.
Monitors: Event Consumers Monitors in Valour are written in a
specific format using a guarded command language with rules which
trigger when event e is produced, with boolean condition c holding,
upon which action a is executed. We refer to a group of such rules as
a monitor. There are two key features which enable the use of such
rules for complex specifications:

Monitor templates:Many specifications are not global ones, but
are to be instantiated for all instances of a particular category which
might arise at runtime. In Valour this is supported by having monitor
templates which quantify over a particular category of events, and are
instantiated whenever a relevant event belonging to a new instance of
that category is received. Internally, Valour ensures that events are
only passed to the relevant monitors, thus reducing overheads in event
consumption.

Monitoring state:Monitors may carry local state to keep track

of information relevant to a particular rule block. This state can be
accessed through the rules conditions and actions. For instance, a
rule might be used to keep track of the running total of e-money
transactions within an application, or to keep track of all users who
transferred money to a particular geographical region over the past 24
hours.
Event Consumption Each event effectively instructs the Event Man-
ager how to present monitoring results when the triggers generating
the event are observed at runtime. With synchronous events, the
manager holds off supplying the result of the event consumption
until all computation is completed, while in the case of asynchronous
events, an intermediate acknowledgement is immediately sent back,
which can be used to check for completion status and monitor
results. It is worth noting that the same trigger (e.g. a method call)
can generate multiple events, thus allowing for it to be consumed
synchronously in one property, and asynchronously in another. [8]

3.2 Medical Care Domain
In medical health care, decision making is not only a very critical
task, the criticality also highly depends on whether the decisions are
made on timely basis or not. For example, assume that a patient
is showing signs of a disease, if these signs are detected early the
patient could be treated early without any more damage. Currently
Runtime verification is yet to be completely immersed in the medical
domain, although it has been already tired in the medical doamain at a
rudimentary stage already. In the following sections we discuss about,
how runtime verification aids for making such critical decisions.
In Medical healthcare, a decision is to made using Decision Support
System(DSS). A decision support system can be a monitor or a
program that reflects the patient data on a screen that is then observed
by the practitioner or the doctor. For example, a heart rate monitor is
used to monitor the patients heart pulse. The heart pulse is then timely
monitored by a doctor who will check if there are any signs of critical
condition. In this case the heart rate monitor is the decision support
system. It helps the health care providers to make better decisions
based on multiple factors related to patients data. As medicine science
develops, the real time data that needs to be sampled especially for
some complex diseases quantifies to a large extend which challenges
the decision support system. To reduce this complexity runtime
verification is implemented on top of the decision support system.
For introduction of the runtime verification consists of following
components, one of them being A domain-specific language (DSL), it
is a computer language specialized to a particular application domain
and in this case it is the medical health care domain. In this paper,
a domain-specific language named as (DRVT)[9] is used, DRTV
specifies the vital real-time data that is sampled by medial devices,
based on which event sequences are automatically created. Event
sequences are a stream of events which are continuously monitored.
If some property is violated in this sequence then the run-time verifier
will produce real-time warnings which are passed to the decision
support system, which are later observed by the practitioner.

3.2.1 Methodology
The basic workflow of how runtime verification works is represented
in the below flowchart in figure 4. The electronic data of the patient is
recorded and passed in the DRTV model which records the data format
of these data and passes them to the run-time monitor, along with this
the clinical guidelines(i.e. a set of rules that define if the patients data
is outside the range of normal) is also passed to the DRTV model in
the form of properties, the data formats and the data from the medical
device sensor is passed to the Runtime Monitor. The Runtime monitor
checks if there is any violation of the properties, if any violation is
found an alert is sent to the decision support system. This decision
support system is checked by the doctor.

This workflow can be illustrated with an example in figure 5 The pa-
tients blood pressure is observed, if it falls out of the expected range.
The patients electronic data is collected from the medical device and
passed to the DRTV model. The DRTV model generates an event

SC@RUG 2019 proceedings

107

Fig. 4. Basic runtime verification flow

Fig. 5. A blood pressure example to illustrate the working of runtime
verification[9]

which will compare the data and its corresponding format with the
clinical guidelines, this comparison is sent to the property verifier, as
per this example, the blood pressure observed is 185 which is above
the threshold of 120 and possibly indicating high blood pressure, since
the maximum threshold is 120 an alert is sent to the decisions support
system that the result is violated. The practitioner observes these vio-
lations and takes the necessary actions.

Design The tool implementation describes a flow of how the sys-
tem works with the DRTV model which is the basis for introducing
run-time verification in the static or semi-automated decision making
system for medical health care. The brief working of the same is in-
troduced below and the representation can be referred in figure 6.

1. The main job of the DRTV model is to describe the data,
events(i.e the change in the data) and time dependent proper-
ties in different scenarios, for example, create an event of 1 if
the blood pressure of a person increases above a certain limit
else return 0 describes a Boolean type data format and the blood
pressure analysis is the scenario.

2. The scenarios are explained with the help of semantics and newly
created syntax, the new syntax are created using ptLTL[14] and
Arden. The ptLTL semantics is used for formulas specifications,
it maps current state and the past states and compares if any prop-
erty or condition is violated. While for Data specification part,
some features and syntax from Arden(a domain specific pro-
gramming language) were used, which is nothing but a clinical
guideline modelling language.

3. Next, an interface for the DRTV model is constructed along with
an engine which translates the model output in an XML format,
the .XML format contains the data, the events and a property
verifier. The data can be in any format, it can be Boolean, Integer
etc depending on the scenarios. The scenarios here are nothing
but the set of event that describe a scene. A scene is where a
person might be observed for certain diseases and their activities

Fig. 6. The DRTV tool Implementation adapted from runtime verification
to improve quality of medical care practise

[9]

are monitored. Events demonstrates the actions which can or
cannot show any significant changes, if significant changes are
observed it means that violations are occurring. The properties
are a set of rules that define the guidelines.

4. The translator which is a par of the engine (i.e Translator Engine)
will translate the .XML files into executable java files which can
be compiled on a computer.

5. This java file is passed to the verification model (i.e the Gen-
erated Runtime monitor). This consists of three parts, the data
parser which abstracts the vital signs from the data received from
the medical device or from the patients data. The Event path gen-
erator will use the values of the vital signs in the previous steps
to evaluate a boolean formula to get corresponding events which
can be useful to early detect any hazard. The property verifier
will check if the automata transits into any violation state[9]. The
Violations state is a state in which, a change in the expected value
or range of value is detected and can further impact the decisions
being made.

6. The last component of the model design is the communication
interface sink which is used for data transfer from the medical
device sensor to the decision support systems. Decision support
system can then be observed by the practitioner.

4 DISCUSSION

We discuss about a few benefits and challenges of using runtime ver-
ification in the application domains discussed above. We also try to
trace out a few commonalities that were observed.

4.1 Commonalities
The paper discusses about how runtime verification was used in two
different application domains. However, there were commonalities
that were observed between these applications with respect to runtime
verification. A few discussed below,

• Both the applications uses the common grounds of property ver-
ification technique in which an alert of some kind was sent when
there was a violation observed on this real time data.

An Overview of Runtime Verification in Various Applications – Neha Rajendra Bari Tamboli and Vigneshwari Sankar

108

• In both the applications, decision making plays a very critical
role, in financial aspect if any unwanted transaction is made and
the end user is not informed, it can have some major conse-
quences like, someone losing huge amount of money from their
accounts, similarly in case of the medical scenario, if any vital
signs of a major disease is missed out, it could lead to major
consequences like, a disease not being diagnosed early. To sum
it up, in both the scenarios it was observed that runtime verifica-
tion made the system more reliable and better decisions could be
made.

• Usage of monitors as a mode of observing fluctuation from the
normal was common in both the applications.

• Even though there are semi automated techniques present, the
workload of timely observations by humans was significantly re-
duced by runtime verification. This promoted a stress free envi-
ronment in both the domains.

• Often, some information is available only at runtime or is conve-
niently checked at runtime. For example, when the library code
with no source code is a part of the system, only a vague descrip-
tion of the behavior of the code might be available. In such cases,
runtime verification is employed in the techniques.

4.2 Benefits

• Due to runtime verification the real time data are analyzed, and
hence whenever there are an anomaly an alert was directly sent
to the decision support system instead of the doctor constantly
having to check for any abnormalities. Due to this the overhead
on the practitioner was significantly reduced.

• As more complex a disease gets, more complex the guidelines
for following it and checking for observing anomalies in a pa-
tients data gets, it was observed that for complex medical guide-
lines like infants respiratory distress syndrome, it was not easy
for the semi-automated manual inspections visions [9] to mon-
itor the infant and its conditions for the continuous 30 seconds
steep time frame, but with the help of the runtime verification
technique was constructed using certain syntaxes and semantics
in which if there are 30 number of consecutive steep blood-gas
incensement, it would indicate a violation of the desired property
and a timely warning is responded immediately[9]. The hazards
that the disease could cause was controlled and early signs of
anomalies were noted way early.

• Now a days there are a lot of automated devices that can guide
the physicians or for that matter any specialist to make a decision.
These devices provide the physicians with information, but there
is an extra set of dimensionality that is added to this information
that can be misinterpreted by the physicians, due to a stressful
environment, this can a lot of times be a cause for the informa-
tion being neglected, and this can lead to ignorance of several
warnings, but with the runtime verification, the physicians were
much more relaxed as this was not a semi-automated technique.

• The tool has been integrated as part of a real-life financial trans-
action system in order to verify and monitor various elements, in-
cluding legal compliance verification, risk-analysis for banks and
service providers. Its use in the heavily tested environment of the
OPE(Open Payments Ecosystems) has ensured that many poten-
tial issues with the system have been identified and addressed.

• In the case of systems where security is important or in the case
of safety-critical systems, it is useful to monitor behavior or
properties that have been statically proved or tested, mainly to
have a double check that everything goes well: Here, runtime
verification acts as a partner of theorem proving, model check-
ing, and testing.

4.3 Challenges
There are quite a few challenges that are faced with using runtime
verification in the current medical systems. A few are stated below.

• The ptLTL[14] formula specification in DRTV model may be
easy for someone from computer science background to under-
stand but it may be complicated for the medical staff as it in-
cludes syntax and sematics that are better understood by a pro-
grammer. It is better to provide some easier templates and im-
prove the user-friendly of the language.

• The syntax and the semantics add a new learning dimension to
the practitioners, and since most of the time they already have
tight schedule it can be quite challenging to learn new things.

• Runtime verification is still in rudimentary stages of develop-
ment in the discussed domains of financial and medical. There is
yet a lot of development in these domains to come.

• Since this is an additional feature to support the current deci-
sion systems, there is a need to develop more existing decision
support systems which aim at more specific applications and do-
mains which is still a challenge, since people are still reluctant to
adopt runtime verification.

• The major drawback of runtime verification is that the code will
be running within the system of the programmer. if the code is
provided publicly it will rise trust issues.

• The important challenge of run time verification is the involve-
ment of humans. Starting from the initial meeting to testing there
is a constant involvement of humans needed.

• Certain methods are used to extract the events from the system
and communicate these events to the algorithm which verifies the
events. Though this process seems to be easy it is quite challeng-
ing and each subsection influences each other..

5 CONCLUSION

We have discussed in detail about what runtime verification is. We
evaluated current software verification technique of static verification
technique, unfortunately due to increasing complexity of guidelines or
the properties it becomes difficult to maintain a track of the consis-
tency with these static verification technique, hence there is a coherent
need to introduce runtime verification technique as a better alternative.
We discussed how runtime verification manages the execution thread
by using monitors and instruments. We discussed the framework of
runtime verification in financial and medical health care in detail and
how data is dealt on a realtime basis in both of these applications.
How signals or alerts are sent when a violation is observed to indicate
anomaly. We discussed about the commonalities that were observed
in these application domains, one of the major ones being that since
most of the data was handled by a software on realtime basis there
was a stress free work environment. We introduced the benefits of us-
ing runtime verification for better decision making. Unfortunately due
to various challenges involving runtime verification a complete real-
ization of runtime verification in all the aspects of these domains still
faces a lot of challenges which are discussed in the challenges section.

REFERENCES

[1] Shaun Azzopardi, Christian Colombo, Jean-Paul Ebejer, Edward Mallia,
and Gordon J Pace. Runtime verification using valour. In RV-CuBES,
pages 10–18, 2017.

[2] Shaun Azzopardi, Christian Colombo, Gordon J Pace, and Brian Vella.
Compliance checking in the open payments ecosystem. In International
Conference on Software Engineering and Formal Methods, pages 337–
343. Springer, 2016.

[3] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. In-
troduction to runtime verification. In Lectures on Runtime Verification,
pages 1–33. Springer, 2018.

SC@RUG 2019 proceedings

109

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime re-
flection: Dynamic model-based analyis of component-based distributed
embedded systems. Modellierung von Automotive Systems, 2006.

[5] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Avner Landver. Rule-
base: An industry-oriented formal verification tool. In 33rd Design Au-
tomation Conference Proceedings, 1996, pages 655–660. IEEE, 1996.

[6] Karl D Bilimoria, Banavar Sridhar, Shon R Grabbe, Gano B Chatterji,
and Kapil S Sheth. Facet: Future atm concepts evaluation tool. Air Traffic
Control Quarterly, 9(1):1–20, 2001.

[7] Edward G Coffman, Melanie Elphick, and Arie Shoshani. System dead-
locks. ACM Computing Surveys (CSUR), 3(2):67–78, 1971.

[8] Christian Colombo and Gordon J. Pace. Industrial experiences with run-
time verification of financial transaction systems: Lessons learnt and
standing challenges. In Lectures on Runtime Verification, volume 10457
of Lecture Notes in Computer Science, pages 211–232. Springer, 2018.

[9] Yu Jiang, Han Liu, Hui Kong, Rui Wang, Mohammad Hosseini, Jiaguang
Sun, and Lui Sha. Use runtime verification to improve the quality of med-
ical care practice. In Proceedings of the 38th International Conference
on Software Engineering Companion, pages 112–121. ACM, 2016.

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In European conference on object-oriented programming,
pages 220–242. Springer, 1997.

[11] Martin Leucker and Christian Schallhart. A brief account of runtime ver-
ification. The Journal of Logic and Algebraic Programming, 78(5):293–
303, 2009.

[12] John McCarthy. A basis for a mathematical theory of computation. In
Studies in Logic and the Foundations of Mathematics, volume 26, pages
33–70. Elsevier, 1959.

[13] Charles Pecheur, Alessandro Cimatti, and Ro Cimatti. Formal verifi-
cation of diagnosability via symbolic model checking. In Workshop
on Model Checking and Artificial Intelligence (MoChArt-2002), Lyon,
France, 2002.

[14] Scarlet Schwiderski and Gunter Saake. Monitoring temporal permissions
using partially evaluated transition graphs. In Modelling Database Dy-
namics, pages 196–217. Springer, 1993.

[15] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety critical
java annotations. In Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded Systems, pages 148–154.
ACM, 2010.

An Overview of Runtime Verification in Various Applications – Neha Rajendra Bari Tamboli and Vigneshwari Sankar

110

An overview of prospect tactics and technologies in the
microservice management landscape

Edser Apperloo1 and Mark Timmerman1

1University of Groningen - Computing Science - Distributed Computing

Abstract—In the past years, there has been a trend towards using microservice oriented architectures rather than monolithic archi-
tectures in different industries. Microservices offer flexibility, reusability and are easier to scale than traditional software. The use of
microservices introduces new issues regarding their management. Monitoring, health management and service discovery are still
open subjects of research. Even though the field is progressing rapidly, constant changes in requirements together with large market
shareholders prevent companies from taking advantage of the benefits of the microservice architectural style. In addition, it becomes
increasingly difficult to assert that the microservices and their APIs implement the proposed contracts.

In this paper we provide an overview of the microservices architectural style and its existing technologies and heuristics regarding the
two aforementioned challenges: (i) he management of large sets of microservices and (ii) asserting the implementation of proposed
contracts by those services. We provide an overview of the current microservices landscape and identify the benefits and pitfalls,
together with the key challenges, their implications and the set of technologies currently available to face these challenges.

We identified the following trends regarding the microservices landscape by doing a literature study: Current solutions make use of a
form of external global management applications like Kubernetes, Amazon CloudWatch or Rightscale. As the set of services grows
and the need for management and orchestration increases, the management application itself increasingly needs scalability. As
microservices keep gaining influence the need for less vendor lock-in and distributed management will increase. In order to facilitate
this we expect a future trend towards distributed management applications in which microservices manage themselves or few others
in order to guarantee scalability and reliability. Problems that might be faced in this scenario include communication between these
management services and a clear separation between the microservice logic and its management layer.

Index Terms—Distributed Management, Microservices, Microservice architecture, Overview

1 INTRODUCTION

Traditional monolithic architectures have most of the components of
an application bundled in one place, or a few layers. In a microservice
oriented architecture the different components are split up into
different so-called microservices. These microservices are smaller in-
dependent components that are small applications in themselves. The
microservices are responsible for a singular task, and are able to com-
municate with other microservices through application programming
interfaces (APIs). The microservices have their own architecture,
technology and platform, and they can be managed, deployed and
scaled independently from the rest of the software architecture with
their own release life cycle and development methodology [14].
Ideally, the microservices are completely distributed and independent,
having no knowledge of the exact implementation or location of
other microservices. Figure 1 shows two example architectures. One
showing the microservice architecture (left) and the other showing the
more traditional three-layered monolith architecture.

1.1 The adoption of cloud computing

Cloud computing has grown exponentially over the past years and
continues to grow [7]. It has become the de facto standard for high
demand distributed computing aimed at millions of users. In fact,
96% of the respondents to the State of the Cloud 2018 survey [7] were
either using cloud or planning on doing so in the near future. The
world has embraced the use of cloud computing and many researchers
focus on the development of new architectures, patterns, consensus
algorithms and security in order to ease the development on remote

clouds. This can be deduced from the huge amount of developed
software and tools in the past few years, of which many will be
covered in upcoming sections.
The use of cloud computing has two main motivations: either to
increase productivity or to decrease cost [10]. This paper claims
the cloud offers fast self-service provisioning and task automation
which can be continuously removed and deployed. Waiting time
for developing dependent system elements, testing and production
is decreased and the flexibility of the application as a whole is
significantly increased. They claim the economical costs as a whole
are reduced because of the upfront savings from the pay-per-use
model and the fact that there is no need for the company to tend to the
actual physical architecture, as this is part of the tasks of the cloud
provider [12].

Bringing existing applications to the cloud remains a challenge [10]
and much research is put into developing proper development cycles
on the cloud platforms. This research has grown fast over the last
years and it has been found that the microservice architectural pattern
fits very well to cloud computing. Due to the distributed and highly
decoupled nature of the microservices, it has become native to
development on clouds. Even when microservices were a novel style,
it was already found that the microservice pattern is often linked to
cloud-based containers for deployment and dynamic management [6].

111

Database

Microservice

UI

Microservice

Microservice

Microservice

Database Database

UI

Business
Logic

Data
Access
Layer

Microservice Architecture Monolith Architecture

Fig. 1. Illustration of the microservice architecture versus the monolith
architecture

1.2 Research contribution

This paper gives an overview of the microservice architectural style
and the technology that is available to manage microservice applica-
tions. We review the development of the microservice architectural
style over the years. This paper highlights innovations that were
made which complement this architecture. Subsequently, it evaluates
skepticism with which these innovations were met by seeing how
those statements have aged. This paper tries to look past the hype [13],
and critically reviews the capabilities and limitations of microservices.
The microservice architectural style has matured significantly over
the years, however, a definite bound of what microservices can and
cannot do remains to be found.
As microservices have gained root, the academic world has invested
considerable research into its capabilities. But where progress was
made in, for example, security and consensus algorithms, many new
challenges regarding management of microservices were uncovered
in the process. We provide an overview of the benefits as well as
limitations of microservices. It identifies key problems and proposed
solutions. We will particularly focus on the challenge of managing
a set of growing microservices and making sure that those services
implement their proposed contracts. The general trend together
with these key challenges are empirically reviewed and followed by
predictions for its future.

The remainder of this paper consists of three sections. Section
2 describes the research methodology, section 3 describes our
literary findings and their implications, and finally section 4 gives
a conclusion to the results described in the sections before. This is
followed by a short paragraph describing our expectations for the
microservice trend in the near future.

2 METHODOLOGY

An overview of the current microservices landscape was created by
performing a literature study on past-to-current research and examin-
ing the strategies used by software which is used to support microser-
vice oriented architectures. An empirical overview of the benefits and
challenges of using microservices was created. As the amount of mi-
croservices in an architectures grows, it becomes increasingly difficult
to manage the microservice system. The amount of communication
increases, and the system as a whole becomes more complex. With
a larger system, it becomes increasingly important to ensure that the
communication between the microservices is correct. Out of these ob-
servations, two key challenges in the microservices field were selected
and more thoroughly examined. The first one being: What are the
strategies and technologies available for managing an ever growing

set of microservices? The second challenge involves the correctness
of the communication between the different microservices: How can
you ensure that the microservices implement their proposed contacts?
The different tactics and heuristics related to these challenges were
investigated, and mapped in this paper.

3 RESULTS & DISCUSSION

In the subsequent subsections, different aspects of microservices are
thoroughly analyzed. Benefits and pitfalls are discussed, and possibil-
ities in approaching those pitfalls are identified.

3.1 The benefits of microservices
The microservice architecture gives rise to many benefits for a system.
Since microservices are independent from the rest of the application
they are also independently deployable. If the services are designed
correctly, then, different developer teams can work on different ser-
vices without interfering. It creates a true divide and conquer envi-
ronment that enforces loosely coupled, or even completely decoupled,
components in a system as independently developed components can-
not rely on other components of which the internals are unknown.
Internal changes can be made to microservices without influencing
other microservices as long as the service itself keeps delivering the
contracts proposed by its API. Contracts are the agreed upon design
decisions dictating the functionalities that an API should implement.
Making changes to one microservice should not influence any of its
consumers as generally resources are not shared between microser-
vices [13].
Microservices are small standalone applications that fulfill a particular
task in a larger application. Often when demand of a system increases
there is a specific part of the system that becomes the bottleneck, not
the system as a whole. Whereas monolithic application design needs
to scale the entire system because of a bottleneck in one of its com-
ponents, the microservice architecture allows for upscaling only those
microservices of which the demand has become the bottleneck. This
saves money and is much easier to do as microservices are small ap-
plications by their nature.
Some of the microservices will be quite general in their task, which al-
lows for reuse of parts of a system when new functionality is added or
even for a service to be transferred to entirely new applications. Figure
2 shows a small e-commerce application written in terms of microser-
vices. Here one can see the decoupled nature of microservices. The
device specific frontend services depend and reuse the same services
further towards the backend. Each of those has their own database
again, such that in case of extreme failure not all data is lost.
Yet another benefit to microservices is that they eliminate any long-

API
Gateway

Store
WebApp

Account
Service

Inventory
Service

Shipping
Service

REST

REST

REST

REST

WEB Account
DB

Shipp.
DB

Invent.
DB

Fig. 2. An e-commerce application in terms of microservices

term commitment to a technology stack. Every time a new service
is developed, one can choose a new stack for that particular service.
Software engineering is a field in which new frameworks, program-
ming languages and other ideas are developed every day. A system
that is aimed at lasting throughout the years needs this flexibility in or-
der to keep up with the pace and developments of its field. This means

Prospect tactics and technologies in the microservice management landscape – Edser Apperloo and Mark Timmerman

112

that developers are never bound to use a particular stack throughout
the life cycle of the system. Since microservices are smaller, mainte-
nance becomes straightforward and legacy code is more easily ported
to a new stack.
The aforementioned benefits all allow for easy development, deploy-
ment and scaling of each individual microservice. Microservices also
show another property that makes them scalable and lasting: recursion.
Building a system comprising of smaller systems reeks of recursion.It
allows for applying the same mechanism again when the requirements
of systems become even more complex and are asked to perform even
more different tasks at once. In other words, when the requirements
change, instead of modifying the system, one can build a new system
that adds the newly requested features. The two systems now make up
an even larger system.

This notion of recursion in microservices even has some roots in
for example biology. Combined with self management and with place-
ment across failure domains, some proposed architectures (using mi-
croservices) enable distributed hierarchical self management, akin to
an organism (i.e. the composed system) that is able to recreate its cells
to maintain its morphology while each cell (i.e. a microservice) is a
self-managing element [10].

3.2 Vendor lock-in
Microservices have limitations, however not all of these are inherent
to the design of this architectural style. One of these is vendor lock-
in, it is prevalent in the microservices landscape since there are only a
few large providers. Vendor lock-in is the notion that companies are
not able to transition easily to other providers. As companies transi-
tion their applications from monolithic architectures to microservice
architectures it is almost imperative to use the large providers their
services in making the transition. Choosing one of these providers
usually means sticking to them, as the cost of migrating from one
provider to another has become difficult and expensive. Before long,
it becomes too expensive to switch for many companies, resulting in
vendor lock-in at their current providers. Businesses are wary of being
tied to particular cloud computing vendors due to lack of competing,
compatible product [5]. This is a significant step in the wrong direction
as the microservice architecture relies on its flexibility and technology
independence. That is, really picking the right tool for the job. Due
to vendor lock-in this often prevented. Even the European Network
and Information Security Agency (ENISA) and European Commis-
sion (EC) have recognized the vendor lock-in problem as one of the
greatest obstacles to enterprise cloud adoption [3]. Since there are only
a few technologies available for managing microservices, and only a
few companies providing cloud services, these players have gained an
enormous amount of power and control in the cloud industry.

3.3 Challenges and disadvantages of microservices
On the one hand the use of microservices reduces complexity and in-
creases agility and scalability of those microservices. However, the
usage of microservices also introduces challenges.

3.3.1 Complexity
However, the added complexity of coordinating and creating a sys-
tem of communicating microservices introduces a lot of complexity as
well. More configuration to coordinate microservices is necessary and
this can overwhelm the relatively small gain received through the use
of microservices in the first place [13]. Many of the problems from
distributed computing are inherited such as data synchronization and
reaching consensus. These problems are aggravated by the very dis-
tributed and dynamic nature of microservice applications. The utopia
that microservice enthusiasts picture is in many practical cases just
that, a utopia.

3.3.2 Coupling
While it is possible to design a microservice system very well, it is al-
ways necessary to make compromises. The slightest unforeseen cou-
pling between different microservices can give rise to a waterfall of
elements that need to be taken into account when a single, supposedly

uncoupled, service is updated or somehow changed. Developers then
have to run or connect to other microservices when they are working
on a service dependent on other services.
A recent study has suggested however, that once the application has
made the complete switch to a well designed system using microser-
vices, that complexity grows significantly slower than for systems that
have not made this switch [8].

3.3.3 Transitioning
The rapid demands of the digital world make it hard for companies to
make the switch towards microservices from legacy code, as rewriting
codebases from monolithic applications to microservice applications
can be difficult [1, 13]. Redesigning and recreating entire parts of
a system takes time which could be spend on implementing new
requirements instead of porting old ones. In the current digital world,
where demand grows quickly and new requirements are constantly
added, this makes sure that a business looking to make an architectural
pivot like this is not just standing still, it is falling behind. While
the company focuses on pivoting, competitors can rush to market
fulfilling those new requirements and the pivoting company is left
behind. For such cases either intermediary or other solutions are
needed.
Many cloud providers or third party services help to overcome this
issue by offering as much support as possible. One could think of
monitoring tools, health care management and automated scaling.
Large market technologies include Amazon CloudWatch1, Auto
Scaling2, Kubernetes3 and Rightscale4. Most of the possible solutions
are steps that lead towards vendor lock-in [10]. Where microservices
excel in the the fact that you are not bound to any technology stack,
the vendor lock-in introduced by so many providers prevents this style
from achieving its maximum potential.

3.3.4 Management and Orchestration
As mentioned before, decoupling of legacy code and creation of mi-
croservices to reduce complexity of the entire application introduces
complexity itself: management of the distributed services as well as
their communication and orchestration. Even more problems than
those may arise as components communicate via message passing and
through APIs, which in turn may change over time. The fast paced dig-
ital world does not allow for companies to spend proper time on this
communication and management issue as they will be outperformed
by competitors since no real advancements are made from the user
perspective. The management and communication of microservices
is an on going research topic and one of the key challenges for this
architectural style. Many strategies and tools have been developed to
deal with the management and orchestration issues as well, however
it is not always clear what the best tools are for the job. Local versus
remote testing is hard and annoying and a lack of proper tool sup-
port creates a situation in which it becomes hard to navigate towards a
proper set of tools. [6].

3.4 Tactics to manage large sets of microservices
Managing large sets of microservices is a difficult task because of the
amount of microservices that need to coordinate their communication.
To help manage these microservices, different technologies and tactics
have been developed. An overview of the different technologies can
be found in table 1. The upcoming sections elaborate on the different
tactics developed for managing microservices.

Research has shown that the larger challenges of microservices con-
cern one of these tasks and a lot of effort has been put into developing
new architectures and patterns to help with these challenges. A study
by Toffetti et al. [10] describes the following issue with the plain mi-
croservice architectural style:

1https://aws.amazon.com/cloudwatch
2https://aws.amazon.com/autoscaling/
3https://kubernetes.io/
4https://www.rightscale.com/

SC@RUG 2019 proceedings

113

”In the current practice, management functionalities are
provided as infrastructural or third party services. In both
cases they are external to the application deployment. We
claim that this approach has intrinsic limits, namely that
separating management functionalities from the applica-
tion prevents them from naturally scaling with the appli-
cation and requires additional management code and hu-
man intervention. Moreover, using infrastructure provider
services for management functionalities results in vendor
lock-in effectively preventing cloud applications to adapt
and run on the most effective cloud for the job.”

The work of Toffetti et al. is now a few years old and many develop-
ments have been made in order to prevent the mentioned issues with
microservices. Results show however that vendor lock-in is still a rel-
evant issue in the world of cloud computing and microservices [9].

3.4.1 Service discovery
In monolithic architectures, most of the components are in a few layers
and each consumer knows where to find its producers. Microservices
need to communicate with other services, so it is necessary for mi-
croservices to know where to find the other microservices. Before ser-
vice discovery technologies were available, the microservices them-
selves were responsible for keeping track of the addresses and loca-
tions of other services. This means that the source code for discovering
other services plus the handling of possible failures was embedded in
the source code and logic of the microservices themselves. In order to
be fully independent and decoupled it is necessary for microservices
to abstract this away. Interfaces should be discoverable: consumers
must be able to look up interfaces of the producer without having ex-
plicit knowledge of the underlying technology, implementation or lo-
cation [13]. For this, the concept of service discovery is introduced [2].
Microservices are able to register at a discovery service, and other ser-
vices are then able to access the microservice through this discovery
service without an explicit reference to the microservice itself. Service
discovery technologies are often implemented as distributed key-value
stores. Examples of technologies which provide service discovery are:
etcd5, Zookeeper6. Netflix Eureka7, Synapse [11] and Consul8. Typ-
ical usage of services like etcd is to automatically update configura-
tions whenever there is a relevant change in the system (e.g. when a
new back-end server is spun up the load balancer needs to distribute its
load also to this newly registered server) [10]. Figure 3 (a) depicts how
communication is done if there is no discovery service available. All
of the communication logic is embedded in the business logic. When
a discovery service is added (3 (b)) the services are able to discover
other microservices dynamically.

3.4.2 Sidecars
Sidecars are introduced as service intermediaries. In sidecars, all ser-
vice discovery and communication are encapsulated so that the busi-
ness logic is isolated. Most of the fault-tolerance is delegated to a
dedicated unit attached to the microservice. This allows for further
separation of business logic and communication logic between ser-
vices. Another advantage of using sidecars is that existing tried and
tested fault-tolerant communication packages can be combined with
any microservice as sidecars. Some examples of sidecar technologies
which are used in the industry are Envoy9 or Netflix Prana10. Figure 3
(c) shows the communication paths between microservices when side-
cars are added.

A standalone sidecar does not fulfill much purpose as a microser-
vice without business logic is not useful, nor is a microservice that
does not communicate with others to complete a common goal. How-
ever, if multiple sidecars from microservices are combined, a mesh

5https://coreos.com/etcd/
6https://zookeeper.apache.org/
7https://github.com/Netflix/eureka
8https://www.consul.io/
9https://www.envoyproxy.io/

10https://github.com/netflix/Prana

of sidecars with attached microservices is created. Those so-called
service meshes are able to keep track of traffic flow and route traffic
between microservices. Service meshes also fulfill the purpose of cir-
cuit breaking. Circuit breaking is limiting the impact on the whole
network if one of the microservices is malfunctioning. Besides circuit
breaking, service meshes are able to handle failure of microservices
gracefully when a microservice is unreachable, and thus ensuring that
errors do not propagate through the communication paths. Some tech-
nologies which implement service meshes are Linkerd11, Istio12 and
Conduit13.

Business logic

Business logic
Service discovery

Fault tolerance

Service discovery

Service discovery

Microservice A

Business logic

Microservice B

Microservice A

Business logic
Service discovery

Fault tolerance

Microservice B

Sidecar

Service discovery
Fault tolerance

Microservice A

Business logic

Sidecar

Service discovery
Fault tolerance

Microservice B

Business logic

(a)

(b)

(c)

Fig. 3. Different types of service discovery. Figure a denotes simple
communication between microservices A and B. In figure b, a discovery
service is introduced which services can use to discover other services.
In figure c, sidecars are added to the microservices which are responsi-
ble for the communication between the microservices.

3.4.3 Orchestration

As the amount of microservices in a system grows, it becomes in-
creasingly difficult to manage the available resources manually. Or-
chestration technologies have been developed to automate resource al-
location and management tasks [4]. The orchestrator makes sure that
the resources and configurations for each service are available when
necessary. A single centralized unit is added which is called the or-
chestrator. Every time an instance of a service is created it registers
itself at the orchestrator. Now when a consumer needs to find a pro-
ducer it uses the orchestrator to find a suitable consumer to complete
the transaction. Examples where global service orchestration like this

11https://linkerd.io/
12https://istio.io/
13https://conduit.io/

Prospect tactics and technologies in the microservice management landscape – Edser Apperloo and Mark Timmerman

114

is used are platforms such as Kubernetes14 or Docker Swarm15. Table
1 shows different technologies which are used for orchestration.
This global form of orchestration is also being researched as studies
show that having such an abstraction from the services themselves in-
troduces complexity in scaling and managing of the orchestration soft-
ware itself [10]. The proposed solution there is to make the orchestra-
tion software part of the microservice itself, such that they become self
managing and scaling of the system becomes natural with the scaling
of microservices as they scale their own management as well.

3.4.4 Monitoring
It is important to keep track of key metrics in a system, especially in
microservice oriented architectures where a lot of communication is
happening. Distributed request tracing allow you to profile the sys-
tem and discover bottlenecks. Proper monitoring tools allow devel-
opers to improve and debug the system effectively. Collected metrics
can be used to create dashboards, which reflect the health of different
microservices. This allows system administrators to make informed
decisions about how to improve the system. Live health management
is important for distributed systems as proper monitoring can increase
availability. In this age, any availability below 99% is considered poor,
so there is high demand for services providing such health care man-
agement. Some technologies which enable this type of monitoring are
Prometheus16, InfluxDB17, Graphite18, Sensu19 or cAdvisor20. The
monitoring technologies are often combined with service meshes in
order to track the traffic between the different microservices.

3.5 Contracts between microservices
The contract of an API of a microservice provides information about
the functionalities it employs. It is the gateway to a service such that
consumers can use the API to fire encapsulated code. Microservices
can change the code under the hood freely without influencing its con-
sumers as long as the promises an API makes are delivered upon.
When changes need to be made to the APIs themselves it becomes
critical to assert that contracts are not broken by the adjustments. Dif-
ferent heuristics exist to improve API design. API Blueprint21, Swag-
ger22 and Apiary23 are examples of tools that help reducing design
errors and enforce API contracts to be held up. This helps in reduc-
ing development time and facilitating future changes without breaking
any of the older technologies. However there are more ways to keep
APIs from breaking promises they describe. Tools such as Pact24 and
Spring Cloud Contract25 are contract testing tools such that APIs can
be properly tested without the need for integration tests.

14https://kubernetes.io/
15https://docs.docker.com/engine/swarm/
16https://prometheus.io
17https://www.influxdata.com/
18https://graphiteapp.org/
19https://sensu.io/
20https://github.com/google/cadvisor
21https://apiblueprint.org/
22https://swagger.io/
23https://apiary.io/
24https://docs.pact.io/
25https://spring.io/projects/spring-cloud-contract

Table 1. Microservice tooling landscape

Technology category Technology name
Service discovery etcd, Zookeeper, Netflix Eureka,

Synapse, Consul
Sidecar Netflix Prana, Envoy
Service mesh Istio, Linkerd, Conduit
Orchestration Kubernetes, Docker Swarm,

Amazon ECS(Elastic Container
Service), Mesos, Rightscale

Monitoring Prometheus, InfluxDB, Graphite,
Sensu, Amazon Cloudwatch, cAdvisor,
Rightscale

API development API Blueprint, Swagger, Apiary
Contract testing Pact, Spring Cloud Contract
Cloud providers AWS, Google Cloud, Microsoft Azure,

IBM Cloud Services, Salesforce

4 CONCLUSION

Microservices are small applications that, when composed, form larger
systems that complete business requirements. Microservices are in-
dependent from other microservices and allow different technology
stacks, platforms and deployments cycles to be used. They commu-
nicate through interfaces called APIs that implement the contracts de-
fined by the microservice itself [14]. Unfortunately, the true potential
of microservices often cannot be reached because of a number of is-
sues. Firstly, it is not always feasible for companies looking to make
the switch from monolith code bases. Secondly, pivoting to a new
architecture is very time consuming and costs a lot of money. Most
companies cannot afford this as they will be outperformed by com-
petitors too soon. A plethora of available tools are available to help,
but in turn worsen the vendor lock-in which is one of the other major
issues for microservices. They can run on separate deployment cy-
cles and technology stacks, however due to the large share of a few
companies in the business, many options tailor towards using their
services. This limits the flexible nature of the microservices and does
not always allow for picking the best tool for the job. Microservices
only work when executed properly, because minor design flaws can
give rise to major complications when making changes to the system.
However, when done properly, microservices offer a flexible, fast, and
easily scalable solution that, partially due to its recursive nature, could
potentially grow to systems of arbitrary size as the digital world keeps
demanding more and more of its systems. The current research com-
munity is investing a lot in a few key challenges. The current lim-
its faced by systems using microservices involve orchestration, health
management and communication [10].

As the knowledge about microservice oriented architecture pro-
gresses, more tools are being developed to manage applications con-
sisting of microservices. Microservices are reliant on communication
between them, and thus it is important that the microservices are able
to know the locations of the other services. Service discovery tools like
etcd are used by microservices to dynamically discover the location of
other services. Another important trend is that the business logic of mi-
croservices is being isolated from the communication logic. Sidecars
are a way to use tried and tested communication layers in conjunction
with the business logic of a microservice. When each microservice has
an attached sidecar responsible for communication between microser-
vices, service meshes can be created. These meshes are able to route
and keep track of traffic between the services, and are able to function
as circuit breakers if failures occur somewhere in the service mesh.
Monitoring is an important factor in management of microservices.
Key metrics such as performance, bugs and health can be logged. In
addition to this, distributed tracing can be used to debug and improve
the microservice architecture. When sidecars responsible for commu-
nication between microservices are added to each microservices, mon-
itoring of communication is trivial. All of the collected metrics can be

SC@RUG 2019 proceedings

115

used to create overviews and where administrators can easily learn
about the health and bottlenecks in the system.

4.1 Expectations for the future
As the use of cloud solutions will only grow in the future we expect
only more increase in the use of microservices or minor variations.
Current cloud applications make use of external global management
applications like Kubernetes, CloudWatch or Rightscale. As the set
of services grows and the need for management and orchestration in-
creases, the management application itself increasingly needs scalabil-
ity. As microservices keep gaining influence the need for less vendor
lock-in and distributed management will increase. As the maximum
potential of microservices is yet to be reached, we expect the future
developers to realize that this extreme form of vendor lock-in cannot
continue infinitely. We think it therefore crucial to invest in devel-
opments steering away from the vendor lock-in currently seen in the
cloud environment. In order to deal with problems that will inherently
arise from this, we expect a future trend towards distributed manage-
ment applications in which microservices manage themselves or few
others in order to guarantee scalability and reliability. Problems that
might be faced in this scenario include communication between these
management services and a clear separation between the microservice
logic and its management layer. Architectures as proposed in [10],
show promising first results, but show challenges that come with the
way the current IaaS providers have structured their services. Other
research is done into different variations of the architectural pattern,
but most of them lie on the foundation that microservices have created
in the world of distributed cloud-enabled software applications.

REFERENCES

[1] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner. From mono-
lith to microservices: A classification of refactoring approaches. CoRR,
abs/1807.10059, 2018.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In USENIX annual technical con-
ference, volume 8. Boston, MA, USA, 2010.

[3] N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis. Cloud computing
interoperability: the state of play. In 2011 IEEE Third International Con-
ference on Cloud Computing Technology and Science, pages 752–757.
IEEE, 2011.

[4] M. Mazzara and S. Govoni. A case study of web services orchestration. In
International Conference on Coordination Languages and Models, pages
1–16. Springer, 2005.

[5] J. Opara-Martins. Taxonomy of cloud lock-in challenges. In Mobile
Computing-Technology and Applications. IntechOpen, 2018.

[6] C. Pahl and P. Jamshidi. Microservices: A systematic mapping study. In
CLOSER (1), pages 137–146, 2016.

[7] Rightscale. State of the cloud report, 2018 Q2.
[8] N. Saarimäki, F. Lomio, V. Lenarduzzi, and D. Taibi. Does migrate a

monolithic system to microservices decreases the technical debt? arXiv
preprint arXiv:1902.06282, 2019.

[9] N. K. Sehgal and P. C. P. Bhatt. Future trends in cloud computing. In
Cloud Computing, pages 171–183. Springer, 2018.

[10] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds. An
architecture for self-managing microservices. In Proceedings of the 1st
International Workshop on Automated Incident Management in Cloud,
pages 19–24. ACM, 2015.

[11] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh. Synapse: a
microservices architecture for heterogeneous-database web applications.
In Proceedings of the Tenth European Conference on Computer Systems,
page 21. ACM, 2015.

[12] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano,
R. Casallas, S. Gil, C. Valencia, A. Zambrano, et al. Cost comparison of
running web applications in the cloud using monolithic, microservice,
and aws lambda architectures. Service Oriented Computing and Applica-
tions, 11(2):233–247, 2017.

[13] Z. Xiao, I. Wijegunaratne, and X. Qiang. Reflections on soa and mi-
croservices. In 2016 4th International Conference on Enterprise Systems
(ES), pages 60–67. IEEE, 2016.

[14] Y. Yu, H. Silveira, and M. Sundaram. A microservice based reference ar-
chitecture model in the context of enterprise architecture. In 2016 IEEE
Advanced Information Management, Communicates, Electronic and Au-
tomation Control Conference (IMCEC), pages 1856–1860. IEEE, 2016.

Prospect tactics and technologies in the microservice management landscape – Edser Apperloo and Mark Timmerman

116

Dynamic Updates In Distributed Data Pipelines

S.J. Mallon, N. Meima

Abstract— This paper investigates the current ecosystem for performing dynamic software updating in distributed data processing
pipelines. A distributed data processing pipeline is a set of combined elements which perform an operation on the data in parallel. The
amount of data that is collected grows each year, and the need for proper distributed data processing tools continues. There are some
major concerns when performing dynamic software updating to distributed data processing pipelines. Changing either the data source
or the actual elements of the pipeline should not interrupt a running pipeline, since that would lead to potentially costly downtime.
We evaluate general implementations of dynamic software updates in distributed systems, and also specific implementations for data
processing frameworks like Apache Spark. Finally, the paper proposes concrete steps to undertake in order to mitigate eventual
fallout from performing updates.

Index Terms—Distributed Data Processing Systems, Dynamic Software Updating, Distributed Systems

1 INTRODUCTION

Due to an every increasing amount of data being collected, the need for
more advanced data processing tools increases. Through the growth of
the Internet-of-Things sector (IoT), rampant user-data collection, and
increasingly cheaper data storage hardware, the amount of data col-
lected is growing fast. However, this ever increasing amount of data
leads to complications when trying to perform the processing of said
data on a single machine: perhaps a single machine does not have
enough disk space to store the entire dataset on, or maybe the workload
is too computationally intensive. Additionally, faster data processing
might also lead to advantages, as it allows businesses to have up-to-
date analytics, which allows to respond to changes in a faster fashion,
giving them an edge over competitors. The processing of any dataset
in the modern world thus necessitates means for faster processing. A
solution which is often employed when there is a need for faster pro-
cessing is the use of parallelization, in specific, the use of distributed
systems. The workload is split over multiple machines, working in
parallel, where each machine process a part of the dataset. After all
machines have finished processing their respective parts of the dataset,
the results are joined together. This distributed way of data processing
introduces a new set of problems for data scientists and system engi-
neers to solve: how can one design a system which can process large
amounts data concurrently in a distributed way?
Here we provide an overview of state-of-the-art distributed data pro-
cessing techniques and their dynamic software updating function-
alities. It is found that current popular distributed data process-
ing frameworks have limited support for dynamic software updating
[19, 4, 8, 5]. In Dynamic Software Product Lines (DSPs) an update
only entails switching between pre-defined elements in the pipeline,
which is useful in some cases but does not allow for adding additional
elements to the pipeline after deployment. Also, tools spark-dynamic
use a wrapper approach, creating a layer around the distributed data
processing framework for does allow adding additional elements to
the pipeline after deployment. Although the aforementioned solutions
are not all-encompassing and need further research, they do clearly
show the usefulness of dynamic software updating functionalities. If a
pipeline can be updated whilst running, this reduces downtime which
saves resources.

1.1 Data Processing Pipeline
A data processing pipeline is a term to indicate a set of data process-
ing ’elements’, where the output of one element is connected to the
input of another. The term pipeline arises from the sequential na-
ture of the data transformations in directed acyclic graphs (DAGs).

• S.J. Mallon, E-mail: s.j.mallon@student.rug.nl.
• N.Meima, E-mail: n.meima@student.rug.nl.

A data processing element in a pipeline could, for example, refer to
a function that transforms the data in a meaningful way, or a func-
tion which stores the transformed data into a database. Imagine an
example, where a user performs research on climate change and is
measuring temperature as a function of time. The raw data is recorded
in Fahrenheit. However, before doing any kind of data analysis, it
is necessary to transform the data from Fahrenheit to Celsius. In the
beginning of the pipeline, we could have an element that transforms
the temperature data from Fahrenheit to Celsius, and afterwards, the
data can be processed by the subsequent elements of the pipeline. A
pipeline is a sequential set of transformations, which means that dis-
tributed computing cannot help performing these elements in parallel,
as we need a fixed order of operations. However, it is very much pos-
sible to process the data in parallel. In general, we could refer to any
data processing program as a pipeline.
The data processing pipelines in frameworks like Apache Spark have
to be designed up-front after which they are submitted as processing
jobs to the framework’s controller 1. This controller has the task of
distributing the submitted job over workers. These workers each take
care of processing part of the submitted processing job, realizing dis-
tributed data processing. After the submission of a processing job,
the workers will be in a running state, and the process and data are
immutable. This immutability is a limitation that comes with the use
of such distributed data processing frameworks. However, there are
many real-world scenarios in which the ability of dynamically chang-
ing elements of running pipelines is required. For example, a devel-
oper might find an error in the code of a stage in the pipeline which has
not been reached yet. Instead of discarding the intermediary results of
the earlier stages in the pipeline by submitting a new processing job
in which the error no longer exists, an improvement might be to allow
a dynamic software update to the stage of the pipeline affected by the
error. Also, it might be required that new functionalities are added
to the pipeline without interrupting the processing of incoming data,
i.e. the pipeline cannot be shutdown temporarily. For example, the
documentation of the distributed data processing framework Apache
Spark, only proposes two mechanisms for updating application code
of running pipelines [2]. The first option is to start a new process-
ing job with the updated application code and run it in parallel to the
existing processing job. Once the new processing job is ready to re-
ceive data, the previous processing job can be shut down. The data
is then redirected to the new processing job. A downside to this ap-
proach is that the resources required for running a second, possibly
complex, resource intensive and expensive, processing pipeline in par-
allel with the already running pipeline, must be available. The second
option is to gracefully shut down the already running processing job.
A graceful shutdown entails that the data that has been received has
been processed completely before shutdown. After shutdown, the new

1https://spark.apache.org/docs/latest/submitting-applications.html

117

processing job can be started, picking up from the same point as where
the other application left off. This approach leads to inevitable down-
time, which might be very costly and not at all an option for some use
cases.

2 BACKGROUND

In this overview we will take a look at current state-of-the-art meth-
ods for performing dynamic software updates in distributed systems
and their applicability to currently popular distributed data processing
frameworks, together with advantages and points of caution.

2.1 Dynamic Software Updating
Dynamic software updating (DSU) can be compared to changing gears
in a running engine. When applying a dynamic software update, the
processes that are being updated do not have to be stopped, allowing
them to preserve their progress, state and connections with other pro-
cesses. Using DSU thus prevents the potentially costly stopping of the
to be updated processes.

2.1.1 Dynamic Update Types
Endler and Wei proposed two types of dynamic updates which have
been identified as necessary for most applications in need of DSU
functionality: ad-hoc and programmed reconfiguration updates [7].
The ad-hoc dynamic update type entails designing updates while the
process is already running. The designed updates are then configured
using an interactive reconfiguration manager. The programmed recon-
figuration dynamic update entails pre-programming alternative modus
operandi into the application, which can be switched between during
runtime. The most interesting dynamic update type is the ad-hoc type,
which allows the most freedom and is the most viable strategy when
compared to the programmed configuration type. Often, it is not pos-
sible to think of all software requirements in advance or requirements
simply change due to external factors.

2.1.2 Dynamic Update Scopes
Dynamic software updates can also have different scopes. Most sys-
tems supporting DSU functionality do so by providing functions as a
unit of code, meaning that only functions can be updated at runtime.
However, there also exist DSU systems which support updates of the
complete code running on the system. Which kind of updates the DSU
system supports depends heavily on the environment of the system in
combination with the software implementation.
When functions are the unit of code and the software implementa-
tion makes use of programming languages which compiles to machine
code (e.g. C and C++), DSU functionality can often be realized by
using a specialized compiler [14, 10]. The specialized compiler then
adds a point of indirection in the code. In C or C++ such a point of
indirection can be regarded to as a function pointer. A function pointer
points to an address in memory containing the start of of a piece of ex-
ecutable code, like a function. The DSU functionality is then realized
by updating the point of indirection is to the latest version of the exe-
cutable code when an update arrives. Such solutions are often platform
dependent, since they require specialized compilers which compile to
machine code. This increases the difficulty and inflexibility of such a
solution.
The larger the scope of the dynamic software updates become, the
more sophisticated the environment needs to be. For example, if the
unit of code grows larger than just functions and the software imple-
mentation is done in a programming language targeting virtual ma-
chines, the sophisticated VM can providing existing infrastructure to
realize DSU functionality. The Java programming language is such a
language targeting a virtual machine. A Java Virtual Machine (JVM)
supporting DSU functionality is the HotSpot JVM 2. Compared to the
previous solution, the targeting of a VM provides a more platform
agnostic solution, since the VM runs as a separate layer on the in-
frastructure. This makes the solution less complex and more flexible,

2https://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-
140102.html

since we have full control over the memory of the application at any
time. However, the developer is still bound to certain programming
languages and virtual machines. There exist also systems which are
more language agnostic. For example, Katana realizes this agnosti-
cism by operating on the level of ELF binaries [17]. On the contrary,
there also exist complete environments supporting DSU functionality.
The earliest example is the dynamic modification systems (DYMOS)
[15]. the DYMOS DSU system consists of a complete environment for
writing programs in a derivative of the Modula (which on its own is
a derivative of the more well known Pascal language) language. The
environment comes with all necessary tools, like: a command inter-
preter, a compiler and a runtime environment. The DYMOS environ-
ment also makes promises about and enforces type-safety of updates
by inspecting the current software that is running.

2.2 Dynamic Software Updating in Distributed Systems

Updating a single instance of a running application on a single ma-
chine is a well-researched and documented phenomenon [14, 10, 15,
17]. However, with the rise of distributed computing and a large in-
crease in the size of the data to be processed, these solutions do no
longer fit the modern requirements.
In turn, because of the growing need and adaptation of distributed
computing, it is an active field of research [18]. In grid computing,
where we have multiple machines performing an identical task, a solu-
tion to the problem was proposed: send updates simultaneously to all
machines, along with a timestamp of when to start the specific changes
[6].
However, in Spark’s case, multiple machines do not necessarily per-
form an identical task: they perform heterogeneous tasks. However,
this can still be resolved by keeping track of the state of all the ma-
chines in the grid, and only perform the update for the machines that
are performing the relevant task to be updated.
When distributed data processing workloads are migrated from the
grid to the cloud, the ability to directly interface with the machine the
application is running on is severely limited. Only a limited amount
of direct modification is feasible, like changing the database schema
on the fly [13]. The benefit of these cloud providers is that they al-
low dynamic and automatic provisioning, which allows users to focus
on solving the problem at hand instead of dealing with the secondary
problem of managing infrastructure.
With systems like Apache Spark, a specialized distributed processing
platform, update methods are either very limited or not applicable at
all. The simplest way to update the data processing pipeline is to first
stop the pipeline and then restart the pipeline again with the newest
version of the application. If availability is a premium, this would
mean that whenever an update is necessary, a second data processing
pipeline needs to be active so we can switch with limited downtime.
However, if the data processing pipeline is very resource intensive,
this solution can be very expensive. In a worst case scenario, this is
not possible at all due to the data processing pipeline requiring more
resources than allocated, for example in a private cloud. If availabil-
ity is not a premium, it should be considered that simply restarting a
pipeline might be the best solution in such a use-case. Dynamic up-
dates of the pipeline are complex, and a pipeline with a very short
run-time might just as well be restarted, resulting in a simpler updat-
ing process. Only processes which are running permanently or those
which have a long execution time are justified to be updated dynami-
cally.
It is also possible to create DSU functionalities by establishing vari-
ation points in the program [9]. At runtime, the user can choose
between a set of pre-defined implementations of certain parts of the
pipeline (perhaps through a configuration file, or a GUI). However,
this does not solve the problem of wanting to introduce a new type of
algorithm into the dedicated pipeline. To be more precise: this would
only work for situations which the user anticipates to happen and has
created pre-defined elements for.

Dynamic Updates In Distributed Data Pipelines – S.J. Mallon and N. Meima

118

2.2.1 Cloud Web Solutions
Cloud Web orchestration solutions like Kubernetes also provide
infrastructure to limit downtime and tools that lead to smoother
rollouts of new software versions. Kubernetes allows for an (almost)
seamless transition between versions: a container with the new
application can be started, which then replaces an older version,
after which the older version is terminated. This allows for minimal
downtime for any users of the software.
The use of containerized applications is also helpful in rolling back
to a previous version if the current version of the application does
not function properly: we re-specify which version of the software is
used to create an active instance. Such solutions are relatively easy
to implement when the application controlled by the orchestration
framework is ephemeral. Data processing frameworks are inherently
stateful, making it harder to use similar orchestration techniques as a
means of dynamically updating distributed data processing pipelines.
Additionally, one can choose to perform a red/green update, where a
percentage of your application instances run on a newer version, and
a set of application instances on an older version. Such functionality
could be useful in distributed data processing pipelines. For example,
when you want to update an element of the pipeline. However, this
would require complete control over the element which is being
replaced and segmentation of all elements in the pipeline: all elements
should be independent of other elements. Such an approach is shown
by OpenWhisk Composer, where serverless functions are arranged in
compositions 3. The OpenWhisk Composer gives the user complete
control over individual functions and their segmentation, however,
the user needs to implement often used primitives in distributed data
processing frameworks themselves.

2.3 Applicability of DSU to Distributed Data Processing
Frameworks

Unfortunately, these previously mentioned techniques are not
feasible candidates for realizing DSU capabilities for distributed
data processing frameworks such as Apache Spark with currently
available framework APIs. Those techniques and applications require
the user to have complete control over every resource of the data
processing system. In the case of systems using a data processing
framework, the user has no control over system resources. The data
processing framework now takes control of system resources and
automatically allocates and manages resources. Also, the submitted
user application is not directly part of the data processing framework,
making it impossible to incorporate the DSU functionality due to
the aforementioned limitations due to lack of resource control. A
potential solution would be to re-write core parts of the API of the
data processing framework of choice. The re-writes would change the
core functionalities of the data processing framework to support DSU
capabilities.
There have been attempts at such a re-write of a data processing
framework. One such example is the JStorm framework developed by
Alibaba, which is a partly rewrite of the Apache Storm project. The
JStorm framework offers new utilities, which are not present in the
original Apache Storm project, which provide DSU like behaviour for
parts of the pipeline 4. For example, the framework offers the ability
to dynamically adapt the number of workers and also add and new
components to the pipeline. However, the JStorm project is no longer
updated and documentation is lacking

2.4 Specific requirements of DSU to Distributed Data Pro-
cessing Frameworks

In general, a data processing pipeline is a static, fixed structure of op-
erations, with a well-defined environment. The data source, sequence
of operations, and eventual goal are all fixed in the pipeline. Mak-
ing all these static elements dynamic and react to changes causes sev-

3https://openwhisk.apache.org/
4https://github.com/alibaba/jstorm

eral challenges. Of course, if the runtime of the application is short
enough, restarting the processing pipeline after updating the source
code is a feasible solution. However, if applications are executed for a
very long time (or even continuously, in the case for streaming data),
or their availability is paramount, on-the-fly modification of the pro-
cessing pipeline is not only useful, but necessary.
Pipelines where the data processing source is continuous (such as
streaming data), or where the workload is sufficiently large, thus have
similar needs for this dynamic updating. The solutions that are offered
apply to both of these processing pipeline configurations.
However, the solutions are constrained by the platform that the data
processing pipeline is provided by. In the coming sections, Apache
Spark is used as the distributed data processing framework. The use of
a third-party implementation provider limits the direct control the user
has over the application runtime, and thus limits the venues by which
can be searched to provide a solution.

2.5 Update Safety

As with any distributed system, the user needs to ensure that all com-
ponents of the distributed system work together. This requires some
kind of mechanism which ensures that updates posted to the system
are valid and do not endanger the running state of the system.

2.6 Dynamic Data Source Switching

Another challenge lies in dynamically switching between data sources.
A data source refers to the origin of the data received by the distributed
data processing framework. This could either be a database, or perhaps
streaming data. The research by Lazovik et al. proposes a solution for
dynamically switching between data sources [12].
Dynamic data source switching is useful in a data processing pipeline,
as it allows the application not to be restarted in other to use another
data source (or if we want combined results from two or more data
sources). In an ideal world scenario, on-the-fly data source switching
should not require more code than using only a single data source.
Unfortunately, in the case where the data processing pipeline resides
within Apache Spark, it is not possible to natively instruct Apache
Spark to switch between data sources, because an API providing such
functionalities does not exist.
Additionally, dynamic data source switching requires the user to en-
sure that both data sources are heterogeneous, as the processing plat-
form no longer has the same data source, but still performs the same
operations on the data.
This introduces the need for the user to provide some sort of interme-
diary layer between the data and the Spark instance, in order to allow
for this dynamic switching. Lazovik uses the term Data Access Layer
(DAL) that facilitates this sort of design. The DAL is responsible for
communicating with the data source and is able to indicate which sub-
set of the data is required. In general, database developers provide a
so-called driver through which the user can interact with the database.
the DAL can use this driver to fulfill its tasks. Furthermore, it can fre-
quently happen that a data source does offer any interface by which
we can select subsets of the data (e.g. a text file containing the data).
the DAL then needs to take care of filtering all data in order to provide
the requested data.
Furthermore, in the case of a fixed pipeline, but using a different data
source, the DAL must account for difference in data types and data
structures between the different data sources. The DAL thus requires
some sort of data transformation elements in order to ensure compati-
bility and homogeneity of the two different data sources.
Finally, we want the DAL to take data locality into account. Data lo-
cality refers to performing operations on data as close as possible to
where the data resides in memory (i.e. on the node that also stores that
subset of the data source). We thus want the DAL to distribute the data
in such a way that the data that each worker node has to process is on
that exact node. This prevents data from being moved around from
node to node, which slows down the processing speed.
To summarize, the DAL should function in the following concrete
ways:

SC@RUG 2019 proceedings

119

Fig. 1. Architecture of a Spark data processing pipeline using an exter-
nal data provider for data source switching [12]

• Interact with data source and indicate which subset of data source
is required

• Retrieve the selected data (either through queries, or filter the
data based on selected criteria)

• Abstract away difference between data formats to present con-
sistent data to the application

• Take into account data locality when providing batches of data

2.6.1 External Data provider
This implementation resorts to using an external data provider, acting
as the DAL.
Normally, the data source is very tightly coupled to the data processing
pipeline, or it may even be considered a direct element of it. If we
decouple the data source, the pipeline no longer has a system that is
always reachable in the vacant spot where the data source normally
is. The user thus needs to introduce some sort of system that takes on
this role. Furthermore, we would still like to guarantee data locality.
This would mean that the processing pipeline external data provider
and the data source(s) are located on the same node in the cluster, and
distributed in the same way as the data processing pipeline and the
data source(s).

3 STATE OF THE ART SOLUTIONS

The aforementioned limitations show that there is a need for more so-
phisticated solutions, which allow for more direct control over the dis-
tributed data processing pipeline. There are three promising state-of-
the-art approaches which will be discussed together with their advan-
tages and disadvantages.

3.1 Dynamic Software Product Lines
A software product line (SPL) is defined by the Software Engineer-
ing Institute (SEI) as a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way 5. The key aim of an
SPL is to create a software architecture according to which reusable
core components can be developed. These core components can then
be used to create new products, allowing for more variability whilst
decreasing the cost of development time. SPLs have been extended
by dynamic software product lines (DSPLs) [9]. In a DSPL, the soft-
ware that is developed is capable of adapting to fluctuations in user

5www.sei.cmu.edu/productlines

needs and evolving resource constraints. DSPLs have so called vari-
ation points, which are bound at run time. These variation points are
initialized based on environmental conditions and are changed when
those conditions change. However, the possible values of such vari-
ation points have to be predefined: an application submitted to the
pipeline controller is immutable.
Research using such DSPLs with variation points in combination with
Apache Storm as a data processing framework has shown the feasibil-
ity of such an approach [16].

3.1.1 Advantages and Disadvantages
However, the limitations are very clear: it is not possible to intro-
duce new values (constants, algorithms, etc.) which can be bound
after the data processing pipeline has been started without restarting
the pipeline. This means that only those values which are anticipated
before the start of the data processing pipeline and thus are included,
can be used as values for the variation points. Although this approach
improves upon a completely non-dynamic approach, allowing for at
least some dynamicity, it is still very limited. It is not possible to
account for all possible feature values of the variation points, thus
another more sophisticated approach should be considered. Such an
approach should offer the ability to update the variation points of an
already running data processing pipeline.

3.2 Google Cloud Dataflow
Google Cloud Dataflow is a managed pipeline solution which of-
fers DSU functionality only for streaming jobs when powered by the
Apache Beam SDK [3]. The functionality is achieved by replacing
the existing streaming job with a new job, which runs the updated ap-
plication. It is possible both to scale the streaming jobs on the fly,
by adding workers and to update the functionality of the element in
the streaming processing job. Due to processing pipeline being man-
aged by Google’s cloud environment, downtime to a lack of resources
whilst spinning a replacement processing job is limited. Also, Google
Cloud Dataflow makes several statements about updating a streaming
processing job:

(i) In-flight data will still be processed by the transforms in your
new processing job

(ii) There is no guarantee that new processing job elements take ef-
fect directly, depending on whether the in-flight is buffered

(iii) The new processing job needs to pass a job compatibility check
to prevent breaking compatibility between the new and the old
processing job

3.2.1 Advantages and Disadvantages
The Google Cloud Dataflow solution offers the ability to update your
streaming processing job in a managed cloud environment. The cloud
environment solves scalability issues and provides clear guarantees
when it comes to updating the streaming processing job. There are
also disadvantages which come with Google’s solution. it is not pos-
sible to dynamically switch data sources, since the data is buffered.
Also, is not possible to choose any other distributed data processing
framework than Apache Beam.

3.3 Spark-dynamic
Another solution to the problem of applicability of DSU functional-
ity to popular data processing frameworks was proposed by Lazovik
et al. [12]. The research developed a proof-of-concept framework
called spark-dynamic, which is build on the data processing frame-
work Apache Spark [19]. The proposed proof-of-concept framework
offers the DSU functionality where parameters and algorithms in var-
ious steps of the data processing pipeline can be adapted without
restarting the pipeline itself. Lazovik et al. split the problem of
DSU with respect to distributed data processing frameworks into two
subproblems: on-the-fly switching between data sources and dynamic
change of functionality in processing elements within one processing
pipeline.

Dynamic Updates In Distributed Data Pipelines – S.J. Mallon and N. Meima

120

Fig. 2. Architecture of dynamic-spark Spark extension for data source
switching [12]

3.3.1 On-the-fly Switching between Data Sources
Two methods for switching in an on-the-fly manner between data
sources have been proposed. The first method that was proposed in-
volves a custom Apache Spark extension. By creating a custom spark
extension using the API from SparkSQL which acts as an extra layer
between the data processing pipeline and the data sources. The result-
ing architecture is shown in Fig. 2. This solution is specific to the
Apache Spark distributed data processing framework, due to the use
of APIs specific to Apache Spark.
A more generic approach has also been developed in the form of the
data access layer (DAL) which has been mentioned in the background
section already. This approach showed to lead to a viable approach in
which dynamically switching between data sources was possible.

3.3.2 Dynamic Change of Functionality in Processing Ele-
ments within one Processing Pipeline

A method for dynamically changing parameters and algorithms within
elements of one processing pipeline was also proposed. In this ap-
proach Lazovik et al. created wrapper functions for the core functions
of Spark. These wrapper functions then make use of a polling based
approach, in which a REST update server is polled for updates. If an
update is found using polling, the update mechanism is triggered.

3.3.3 Advantages and Disadvantages
The dynamic-spark prototype provides true DSU functionalities, mak-
ing it possible to dynamically switch between data sources and dynam-
ically update elements of the processing pipeline. However, there are
still some limitations which should be given attention to. For example,
switching between heterogeneous data sources remains a problem. For
this, some kind of query translator needs to be designed, which allows
the DAL layer to handle the heterogeneity of the various data formats
and interfaces associated with different data sources. Also, there is a
slight cost in resources (around 10% max.) due to overhead. The au-
thors also mention various other shortcomings related to the dynamic
updates: version synchronization, error handling and dynamic exe-
cution plan changes. For example, in the current state the prototype
cannot prevent that different workers in the distributed data process-
ing pipeline are on different versions. Such a state could occur due to
updates not propagating correctly. Also, the current way of error han-
dling is lacking: an error due to a dynamic software update will stop
the pipeline. However, the described work has clearly shown the fea-
sibility of an implementation which realizes real DSU functionalities
in a distributed data processing pipeline.

4 POINTS OF CAUTION

Companies (users) want to limit the effects of updates. IBM intro-
duces an interesting perspective with regards to performing updates: it
is transformed into a cost-benefit analysis [11]. Gartner estimates the

cost of downtime to be around $5,600.00 per minute, or $366,000.00
per hour in general [1]. One could see why preventing downtime is of
utmost importance to companies.
Also introduced is the ripple effect, which has stronger ties to soft-
ware that serves multiple people. For example, a web-based store. In
this example, downtime in this sort of software leads to people not
being able to place their orders, which leads to lower customer sat-
isfaction, which leads to decreased likelihood of orders being placed
in the future. The effect caused by downtime of the application ”rip-
ples” through the various users and eventually causes devastating con-
sequences.

(i) Updates can cause downtime

(ii) Updates can cause fallout

(iii) Updates may be retracted

(iv) Updates may be partially applied

IBM proposes a number of steps one might undertake in order to mit-
igate the impact of performing updates on a running system.

4.1 Take a holistic view of IT technical support strategy
In order to deal with fallout of dynamic updates, or performing updates
in general, it is advisable to have either on-site support or remote sup-
port. Furthermore, it proves beneficial to focus attention on incident
management and preventative maintenance (either through a support-
ing team or allocating company time). Additionally, it is imperative
that the software is able to produce detailed error reports whenever the
system experiences unforeseen circumstances.

4.2 Conduct a thorough assessment of your current IT
support structure

Solving the problem ad hoc can be good for unconventional problems,
but will most probably yield unconventional solutions. These solutions
are not sustainable in the long-term, and users should try to undertake
preventative steps in order not to resort to ad hoc solutions. One can
also prepare for downtime in a reactive manner: a keystone in this
approach is providing a single point of contact for end users. Addi-
tionally, Service-Level Agreements can be implemented and agreed
upon in order to protect both the user and the provider (e.g., promises
over percentage of uptime of your service).
Additionally, it can be useful for companies to reflect on the impact
downtime has on their customers and on themselves, as it could be that
this changes based on the service the company provides, but also the
number of users of the service. In line with this evaluation is consid-
ering which parts of your service are mission-critical, i.e. what causes
a company the most pain to resolve.

5 CONCLUSION

We have discussed what data processing pipelines are, why they are
useful, and how they work. We discussed particular frameworks such
as Apache Spark that provide these data processing pipelines in detail.
However, the drawback of frameworks like Apache Spark is that the
user hands control of resources over to the framework, which limits
the venues over which the user can dynamically update the pipeline
without making modifications to the framework source code. Careful
thought should be given to making modifications to the core function-
alities of the data processing frameworks. Is it really the job of the
data processing framework to allow for DSU or should they just pro-
vide the core functionality of processing data. In the current landscape,
where multiple data processing frameworks exist, a layer which wraps
around the existing frameworks and provides DSU functionalities in
such a way, would be ideal. No adaptations of core functionalities of
the data processing frameworks are required, whilst providing the new
DSU functionalities. However, no such truly general approach exists
yet.
We evaluated current software implementations that provide dynamic

SC@RUG 2019 proceedings

121

software updating in the context of distributed data processing frame-
works. Most of the implementations providing dynamic software up-
dating functionality are not applicable in the domain of distributed
computing in combination with the chosen data processing pipeline.
Unfortunately, if users do not use dynamic software updating with data
processing pipelines, this usually incurs costs. The user can grace-
fully shutdown the pipeline after which an updated pipeline can be
started. However, this means that there will be a period of downtime,
which might lead to high costs. Alternatively, the user can run an-
other updated pipeline in parallel and switch off the old pipeline once
the updated pipeline is fully up and running. However, this might be
complex and costly, since a complete replica of the infrastructure is
needed for running the updated pipeline. The provided solutions for
data source switching, such as using a Data Access Layer (DAL) or an
external data provider are implementations that can work regardless
of the data processing pipeline framework of choice. We evaluated
Dynamic Software Product Lines (DSPL), which introduce variation
points in the software which can be changed based on environmen-
tal conditions. Additionally, we discuss spark-dynamic, a proof-of-
concept implementation framework which allows for some facets of
DSU: on-the-fly switching between data sources and dynamic change
of functionality in processing elements within one processing pipeline.
Finally, we discuss the impact (faulty) updates can have on a running
system. We provide concrete steps in mitigating the downtime that
can resolve from performing system updates, and steps towards pre-
venting any further fallout. We discuss the steps towards developing a
roadmap for dealing with updating a running system.

REFERENCES

[1] The cost of downtime. https://blogs.gartner.com/
andrew-lerner/2014/07/16/the-cost-of-downtime/.
Accessed : 22-02-2019.

[2] Streaming programming guide: upgrading application code.
https://spark.apache.org/docs/latest/streaming-programming-
guide.htmlupgrading-application-code. Accessed : 20-02-2019.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al.
The dataflow model: a practical approach to balancing correctness, la-
tency, and cost in massive-scale, unbounded, out-of-order data process-
ing. Proceedings of the VLDB Endowment, 8(12):1792–1803, 2015.

[4] M. Bhandarkar. Mapreduce programming with apache hadoop. In 2010
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pages 1–1. IEEE, 2010.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single en-
gine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

[6] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A powerful
live updating system. In 29th International Conference on Software En-
gineering (ICSE’07), pages 271–281. IEEE, 2007.

[7] M. Endler and J. Wei. International Workshop on Configurable Dis-
tributed Systems. 1992.

[8] M. Fu, A. Agrawal, A. Floratou, B. Graham, A. Jorgensen, M. Li, N. Lu,
K. Ramasamy, S. Rao, and C. Wang. Twitter heron: Towards extensible
streaming engines. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pages 1165–1172. IEEE, 2017.

[9] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic software
product lines. Computer, 41(4):93–95, April 2008.

[10] G. Hjalmtysson and R. Gray. Dynamic c++ classes-a lightweight mecha-
nism to update code in a running program.

[11] IBM Global Technology Services. https://www-01.ibm.com/
common/ssi/cgi-bin/ssialias?subtype=WH&infotype=
SA&appname=GTSE_MT_MT_USEN&htmlfid=MTW03011USEN&
attachment=MTW03011USEN.PDF, 2014. Accessed: 20-02-2019.

[12] E. Lazovik, M. Medema, T. Albers, E. Langius, and A. Lazovik. Runtime
modifications of spark data processing pipelines. In 2017 International
Conference on Cloud and Autonomic Computing (ICCAC), pages 34–45.
IEEE, 2017.

[13] I. Neamtiu, J. Bardin, M.Uddin, D.-Y. Lin, and P.Bhattacharya. Improv-
ing cloud availability with on-the-fly schema updates. 2013.

[14] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic soft-
ware updating for c. SIGPLAN Not., 41(6):72–83, June 2006.

[15] R. P. Cook and I. Lee. Dymos: A dynamic modification system. ACM
SIGPLAN Notices, 18:202–202, 08 1983.

[16] C. Qin and H. Eichelberger. Impact-minimizing runtime switching of dis-
tributed stream processing algorithms. In EDBT/ICDT Workshops, 2016.

[17] A. Ramaswamy, S. Bratus, S. w. Smith, and E. Locasto. Katana:
a hot patching framework for elf executable. https://www.cs.
dartmouth.edu/˜sws/pubs/rbls10.pdf.

[18] S. N. Srirama, P. Jakovits, and E. Vainikko. Adapting scientific comput-
ing problems to clouds using mapreduce. Future Generation Computer
Systems, 28(1):184 – 192, 2012.

[19] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the ACM,
59(11):56–65, 2016.

Dynamic Updates In Distributed Data Pipelines – S.J. Mallon and N. Meima

122

faculty of science
and engineering

computing science

SC@RUG 2019 proceedings

Rein Smedinga, Michael Biehl (editors)

16th SC@RUG
2018-2019

1
6

th
 S

C
@

R
U

G
 2

0
1

8
-2

0
1

9

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

