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A B S T R A C T

Exposure to severe or persistent social stress may lead to the development of psychiatric disorders such as
anxiety and depression. These mood disorders are associated with structural alterations of neural architecture in
limbic brain regions that control emotion, mood and cognition. Structural remodeling may either be a sign of
successful adaptation, or of failure to do so. In neuropsychiatric disorders like depression structural remodeling
involves apoptosis, reduced neurogenesis, and structural remodeling of neuronal dendrites which most likely
reflects the latter. Here we review key findings from animal models of psychosocial stress that have been used to
gain insights into the relation between stress-related behavioral disorders like depression and structural plas-
ticity. Specifically, we focus on models having a high face validity like social defeat stress in the resident-intruder
paradigm and chronic stress of social subordination in social housing conditions. Moderate to severe social stress
appears to stimulate plasticity and neuronal growth in regions of the amygdala, whereas the effects in the
hippocampus and prefrontal cortex tend to be opposite. A major focus of the current review is to characterize
social stress induced structural changes in these brain regions, aiming to provide insight in pathways and factors
that underlie behavioral effects of stress and depression.

1. Introduction

Depression is a severe psychiatric disorder which affects more than
3.5% of the world's population as reported by the World Health
Organization (WHO). Stress has been considered a major risk factor in
the development of mood and anxiety disorders, especially in in-
dividuals with certain genetic vulnerability [1,2]. Based on these
findings, rodents exposed to high and sustained levels of stress have
been used to study neurobiological mechanisms underlying mood and
anxiety disorders in humans. These animal studies highlighted the
critical role played by mechanisms involved in neuronal plasticity eli-
cited by acute or chronic stress. Interestingly, stress-induced neuro-
plasticity was mainly observed in brain structures that are considered to
be key in the behavioral symptoms of depression and may, therefore,
provide convergence between human and rodent studies.

Brain imaging studies in patients have confirmed the findings in
animal models and show selective structural changes across various
limbic and non-limbic circuits in the brains of depressed patients [3–6].
These structural alterations range from total volumetric changes of

specific brain areas that control emotion, mood and cognitive functions
to changes at a cellular level [7–10]. Postmortem morphometric studies
in brains from these patients revealed detailed alterations at a cellular
level such as changes in neuronal densities, dendritic atrophy or hy-
pertrophy, loss of neurons and glial cells in selected brain structures
[11–13] supporting the idea that major depression may be related to
impaired structural plasticity in some regions and increased plasticity in
others.

Brain regions like the amygdala, hippocampus and medial pre-
frontal cortex (mPFC) are known to be directly involved in the reg-
ulation of the neuroendocrine and behavioral response to stress [14].
These responses are triggered as adaptive responses in the short-term
(allostasis) but may become maladaptive in the long term (allostatic
load). This particularly occurs when individuals are confronted with
chronically stressful conditions that cannot be controlled or predicted
[14,44]. Observations from neuroimaging studies in humans have
clearly indicated that brain region specific functional and structural
changes in patients with mood disorders [6,16–18] are similar to the
brain changes observed following stress. The prefrontal cortex seems to
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have a decreased activity in severely depressed patients, which coin-
cides with impaired decision-making and higher propensity to act on
negative emotional valence resulting in suicidal behavior [19–21]. In
addition, structural and functional abnormalities have also been found
in depression in subcortical limbic brain regions like the hippocampus
and amygdala. Decreased hippocampal volumes have been reported in
depression, and patients with decreased hippocampal volumes are more
prone to relapse [22–24]. Inconclusive results have been reported re-
lated to the changes in amygdalar volume. Some studies in depressive
patients have shown reduced volume in the amygdala, but others show
increased volume [24,25]. For instance, morphometric analysis with
magnetic resonance imaging revealed that depressed women had a
smaller amygdala core [9], while another study on both men and
women reported a larger total amygdala volume in depressed subjects
[26]. Furthermore, postmortem histopathological studies revealed re-
duced number of glial cells in the amygdala in major depressive dis-
order, while no change was found in neuronal numbers [27]. Studies
suggest that the impairments in the structural plasticity and volumetric
changes of these brain areas mentioned above contribute to the pa-
thophysiology of mood disorders [3,28–30].

2. Responses to social stress in animals

The vast majority of information on the impact of stress on brain
and behavior in animals has been gathered following exposure to non-
social, physical stressors. In these cases, stressors mostly involve nox-
ious or physically distressing stimuli such as electric foot shock, tail
pinch, forced swimming, physical restraint or immobilization, water
and food deprivation, cold exposure or soiled cages [31]. Most common
stressors in humans, however, are psychosocial in nature. To bridge this
gap between animal studies and humans, the focus is shifting to animal
models with higher face validity, such as the social defeat stress para-
digm in rodents and tupaia's (tree shrews). For example, the episodic
social defeat in the resident-intruder paradigm is the situation where
victim animals, usually males, are defeated by larger aggressive con-
specific males and housed singly after one or more defeat experiences
[32–34] (Fig. 1A). A variation to this resident-intruder paradigm is the
so-called sensory contact model (Fig. 1B), where victims are housed in
continuous close, visual and olfactory contact with neighboring at-
tackers which makes this more a chronic social stress model with a
dominant and a subordinate animal [35,36]. The third variant is also
making use of hierarchical dominance contexts where chronic social
stress of subordination is studied in hierarchical colony structures such
as the visible burrow system [37–39] (Fig. 1C). A variety of studies have
been performed in these social stress situations and their behavioral,
physiological and neurobiological readouts indicate that these para-
digms are useful to get a better understanding of how social stressors
can lead to alterations in brain and behavior that are reminiscent of the
pathologies observed in patients with mood and anxiety disorders.

Defeated animals in the resident-intruder paradigm and subordinate
animals living in social colonies show profound changes in behavior
[2,40]. Defeat produces specific behaviors resembling the signs and
symptoms of humans with affective disorders, such as anhedonia, social
avoidance, despair and anxiety. Furthermore, defeated animals reduce
their locomotor activity and cease self-grooming behavior. Body weight
is frequently reduced following the stress exposure and clear dis-
turbances are observed in circadian patterns in body temperature and
cardiac readouts like heart rate and blood pressure. Sleeping pattern is
characterized by an increased number of early waking episodes
[2,41,42].

Although there are many commonalities between social and non-
social stressors like the rapid activation of the sympathoadrenal and the
hypothalamic-pituitary-adrenal (HPA) axis [42,43], also some differ-
ences appear. Socially defeated, but not restrained, animals show ac-
tivation of the medial hypothalamic responsive circuit, a region also
engaged in different forms of social behavior [44]. Another difference

between these stressors was reported in expression of c-fos in the
amygdala brain regions. In a study using a 2-day stress paradigm con-
taining restraint stress, increased c-fos expression was found in the
basolateral and central nuclei of the amygdala [45]. With social defeat,
on the other hand, higher levels of c-fos expression was observed in the
medial nucleus of the amygdala [46]. Another study reported increased
microglial activity in the medial amygdala following repeated social
defeat stress, but not in chronic restraint stress [47,48]. Moreover,
chronic restraint stress or long-term glucocorticoid treatment induces
loss of hippocampal neurons [49] which failed to occur in male tree
shrews after 4 weeks of psychosocial stress [41]. Hence, it seems that
although physical and psychological stressors trigger a similar periph-
eral stress response there are notable differences in the neural activa-
tion of brain regions involved in the organization of this response.

This review will mainly focus on structural remodeling triggered by
social stress in brain regions known to be affected in the development of
mood disorders. We realize that animal stress models, including social
defeat stress, not only induce behavioral and neurobiological changes
mimicking human depression but also anxiety behavior. In this review,
however, we will focus on translation toward depressive disorders. A
comparison will be made with results obtained in non-social stress
models.

3. Structural remodeling elicited by stress

Exposure to prolonged stress elicits divergent patterns of structural
and functional changes in the hippocampus, amygdala and medial
prefrontal cortex [50]. The most commonly studied neuro-morpholo-
gical changes that contribute to volumetric changes of brain regions
include alteration in dendritic arborization, including the number,
shape and size of spines as well as neuronal and glial cell counts [29].
Early evidence of stress induced structural plasticity was established by
a series of seminal studies by McEwen and colleagues that focused on
the hippocampus. They observed significant apical dendritic atrophy
occurring in the pyramidal neurons of the CA3 sub region of the hip-
pocampus after 21 days of chronic restraint stress (CRS) [51–53]. Si-
milarly, the prefrontal cortex showed dendritic atrophy in response to
similar forms of stress [54–56]. In the amygdala, however, chronic
immobilization stress has been shown to induce dendritic hypertrophy
[57]. These variations in the structural effects across various brain re-
gions could be due to cross-regional influences. Although these mor-
phological changes are well established to occur after physical stressors
such as restraint, the effects of psychosocial stress on the neuronal
morphology remain largely unexplored. In particular, information on
structural remodeling in the amygdala and mPFC following psychoso-
cial stress exposure is relatively scarce.

3.1. Hippocampus

The hippocampus plays a pivotal role in cognitive functions and is a
very sensitive and plastic brain region susceptible to stress. Structurally,
the hippocampus consists of the dorsal hippocampus and the ventral
hippocampus on the basis of various anatomical, behavioral and gene
expression studies. The dorsal hippocampus, along with various cortical
regions, is known for its involvement in cognitive functioning whereas
the ventral hippocampus, along with the hypothalamus and the
amygdala, is strongly related to the regulation of stress and emotions
[58,59]. Since dorsal and ventral hippocampus differ not only in their
respective functionality but also in their connectivity [59], stress may
differentially affect these two regions [60]. This is also indicated in a
study on rats that were subjected to 4 weeks of chronic unpredictable
stress where a differential effect on dendritic remodeling across the
dorso-ventral axis was shown. Volumetric reduction was observed in
the dorsal hippocampus as a result of atrophy of CA3 and CA1 apical
dendrites whereas increased ventral hippocampal volume was observed
with hypertrophy in the CA3 apical dendrites [61]. Dendritic atrophy in
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the dorsal hippocampus was extensively shown in rodent exposed to
non-social stressors [52,62]. Multiple factors may be causal in volu-
metric changes such as structural remodeling, neuro- and gliogenesis
and apoptosis [29,63,64]. Social stress paradigms such as psychosocial
stress in the resident-intruder paradigm and chronic stress of sub-
ordination in the visible burrow system in several animal models
showed dendritic atrophy in CA1 and CA3 pyramidal neurons that
persisted even after prolonged stress free recovery periods
[39,41,65,66]. Somewhat surprisingly, dendritic atrophy in CA3 neu-
rons was not only observed in animals exposed to chronic social stress
but also observed in rats that were socially dominant in social colony
structures like the visible burrow system [65] which may indicate that
maintaining social dominance can be a source of chronic social stress.
Rats that were exposed to repeated defeat exposure in the resident-in-
truder model [12] every other day for a period of 21 days showed
strong reduction of the CA3 apical dendritic tree [67]. In the same study
rats were exposed to a double defeat and sacrificed three weeks later.
These animals not only showed a reduced apical tree of CA3 neurons
but also a striking extension of dendrites of the basal tree of these
neurons. This indicates that temporal dynamics may play an important
role in dendritic remodeling of basal and apical trees and that this may
relate to functional properties of the neurons involved [67]. Long-term
psychosocial stress not only induces neuronal plasticity but also astro-
glial plasticity. Five weeks of psychosocial stress in adult male tree
shrews decreased both the number and somal volume of astroglia which
was significantly correlated with stress-induced hippocampal volume
reduction [68].

Chronic stress not only causes dendritic remodeling but also
changes spine shape and density depending upon duration, intensity
and type of stressor. Evidence from various physical stressors has
mainly reported decrease in spine density in CA3 and CA1 pyramidal
neurons, associating it with depression like behaviors observed in the

animals [69–71]. However, there are only few studies available which
show alterations in the dendritic spines induced by social stress.
Chronic social defeat stress in susceptible mice decreases dendritic
spine density in the neurons of CA3 and dentate gyrus region of hip-
pocampus [72]. Repeatedly defeated rats from a feral strain (wild-type
Groningen rats) exhibited robust decrease in spine density in the CA1
pyramidal apical dendrites [66]. Another study showed a significant
decrease in stubby spines, and an increase in long-thin spines within the
CA1 stratum radiatum region when adolescent male mice were sub-
jected to 10 days of defeat [73]. These structural brain changes are
analogous to changes seen in a human postmortem study where the
subjects had undergone severe psychological distress [74].

Neurons that are generated during adulthood represent a unique
form of structural plasticity that can be regulated by the environment. It
has been suggested that high levels of corticosteroids, as well as
stressful conditions, may be correlated with accelerated damage re-
sulting even in the loss of hippocampal pyramidal neurons [49].
Aversive social experiences have also been demonstrated to decrease
the production of immature granule cells and also inhibit proliferation
of granule cell precursors [75]. This can be due to reduction in gene
expression in hippocampus important for neuronal proliferation and
plasticity [76]. Exposure to paradigms of social subordination result in
a decrease in neurogenesis in marmosets [77], tree shrews [34,63,78],
and rats [79]. A suppressive effect of stress on the number of BrdU-
labeled cells has been observed in the dentate gyrus of adult rats living
as subordinates in a visible burrow system for 4 days [75]. A study in
marmosets, however, showed no long-term consequence on neurogen-
esis when evaluated 2 weeks after psychosocial stress [80]. Neural
plasticity and stress coping is also studied in teleost fishes where
chronic social stress experienced by subordinate fishes in social hier-
archies leads to suppression of brain cell proliferation [81].

Fig. 1. Commonly used ethologically relevant
animal models of social stress. (A) Social defeat
stress models like resident-intruder paradigm,
involving physical fight among animals fol-
lowed by single housing of defeated intruder
rats; and sensory contact model (B), where
animals are housed in a compartment of the
cage of the resident. At unpredictably moments
a partition separating the two compartments is
briefly removed allowing a physical conflict
and defeat exposure. After replacement of the
separator experimental animals experience
continuous threat of defeat by visual and ol-
factory contact. (C) Schematic representation
of the visible burrow system as currently used
in our laboratory. In this semi-natural social
structure there is an open arena with a circa-
dian light-dark regime which is connected via
two entry points (black arrows) with con-
tinuously dark burrows with tunnels and
chambers. Behavior of animals in the burrows
can be observed with an infrared camera be-
cause the burrows are covered with a fully
black Perspex plate (Perspex 962 IR) that is
only transparent for infrared light. Rats or mice
can be individually recognized by fur-marking
or fully automated tracking software. Social
colony housing usually consists of single or
mixed sex rodents housed together in a semi-
natural environment. This leads to establish-
ment of social hierarchy among animals which
may induce stress in subordinates as well as in
dominant animals.

D. Patel, et al. Behavioural Brain Research 369 (2019) 111900

3



3.2. Amygdala

Neurobiological studies have implicated the amygdala as one of the
crucial brain areas in stress responses and the debilitating affective
symptoms seen in stress-related psychiatric disorders, such as depres-
sion and chronic anxiety. Structurally, the amygdala is a complex brain
region that is divided into three sub-nuclei: the basolateral nucleus
(BLA), the corticomedial nucleus (MeA) and the central (CeA) nucleus
[82] and these different nuclei play distinguishing roles in the regula-
tion of fear and anxiety related behaviors [83,84]. Further, the BLA
consists of lateral, basal and accessory basal nuclei of the amygdala.
The BLA is essential for the formation and retrieval of conditioned fear
memories [85] whereas, the CeA is an output nucleus of the amygdala
[86]. The MeA is another major output nucleus of the amygdala which
plays an important role in controlling social behaviors like sexual be-
havior, as well as the processing of predator odor-induced defensive
reactions [87–89].

Animal studies have reported contrasting patterns of structural
plasticity in the basolateral amygdala compared to the hippocampus
and mPFC. Repeated social stress in rats induces enhanced dendritic
arborization in the basal dendrites of BLA pyramidal neurons. This ef-
fect is accompanied by an increase in social avoidance behavior sug-
gesting stress-induced increase in social anxiety in the rats [66]. This
confirms the previously published effect using models of physical
stressors such as restraint and immobilization [50,69]. Twenty-four
hours after chronic immobilization stress, principal neurons in the BLA
exhibit dendritic hypertrophy which persists even after three weeks of
stress free recovery [57,90]. Further, similar to the BLA, enhanced
dendritic arborization was also observed in the BNST but not in the CeA
[91]. Interestingly, with chronic unpredictable stress, atrophy was ob-
served in the bipolar but not in the principal neurons of the BLA. The
animals subjected to chronic unpredictable stress also did not exhibit
high anxiety-like behavior like those subjected to chronic immobiliza-
tion stress when tested on the elevated plus-maze [57].

Chronic and acute immobilization stress are both known to enhance
spinogenesis across both primary and secondary branches of spiny
neurons in the BLA where acute immobilization stress induces gradual
formation of new spines over time but without any effect on dendritic
arbors [92]. Interestingly, this delayed generation of spines after acute
immobilization stress was accompanied by a gradual development of
anxiety-like behavior in rodents. This study shows that high anxiety in
rodents can arise due to BLA spinogenesis in the absence of dendritic
hypertrophy. Contrastingly, chronic immobilization stress has an op-
posite effect in the MeA where a loss of spines is observed which is
suggested to be mediated by the extracellular matrix protease, tissue
plasminogen activator, that has no role in spinogenesis in the BLA
[93,94]. Social instability stress of 5 weeks exerted opposite effects on
adolescent rats and adult rats, where adolescent rats reduced their
dendritic field and spine density in basal and lateral amygdala neurons
whereas adult rats showed increase in spine density. This study sug-
gested that social instability stress hinders neuronal development in the
amygdala in the adolescent brain, while mature neurons in the amyg-
dala are capable of adapting to this type of stress [95]. Another sub-
cortical limbic structure that is involved in mood regulation but also in
reward mechanisms, the nucleus accumbens, shows increase in stubby
spine density after 10 days of social defeat stress [96].

3.3. Medial prefrontal cortex (mPFC)

The medial prefrontal cortex is another region known to critically
participate in regulating the behavioral and endocrine response to
stress and is also affected by stress. It plays a key role in working
memory, decision making and mediating higher executive functions.
Broadly, the mPFC is composed of the prelimbic (PL) and infra limbic
cortices (IL), each with distinct functions and interestingly opposite
roles in conditioned fear expression and extinction [97,98].

Inactivation studies targeting the individual sub regions of the mPFC
reveal that the PL cortex is required for fear expression while the IL
cortex is required for fear extinction [99].

The neurons of the mPFC region are highly sensitive to stress and
show structural plasticity in the same direction as hippocampal neu-
rons. Five weeks of daily social stress is known to inhibit glial cell
proliferation in the adult medial prefrontal cortex. In the same study,
fluoxetine treatment has shown to counteract the inhibitory effect of
stress [100]. The pyramidal neurons of mainly the prelimbic region
undergo reversible structural remodeling like hippocampus
[55,56,101,102]. On the other hand, dendritic atrophy in adult rats was
not seen with repeated social defeat stress [66]. Moreover, with chronic
restraint stress, an increase in the length and dendritic branching of the
IL and PL pyramidal neurons was observed in females while opposite
effects were observed in the male rats [103–105]. This sex difference in
the structural remodeling following stress exposure was not only ob-
served in the prefrontal cortex but also in the hippocampal CA3 neurons
where female rats did not show apical dendritic atrophy after restraint
stress [106]. An explanation for the sexual dimorphism is not yet
available although differences in the glucocorticoid stress response and
glutamatergic innervation of hippocampal regions are suggested to play
a role [106].

Along with dendritic atrophy, spine loss is also observed in apical
dendrites of the pyramidal mPFC neurons in male rats subjected to
chronic restraint stress [55,56,107–109]. Interestingly, a partial rever-
sibility of reduced spine density was shown after 21 days of stress free
recovery [110]. Chronic restraint stress also alters spine morphology for
instance, a reduction in mature mushroom spine density and increase in
immature thin spine density was observed in male rats with an overall
decrease in mean dendritic spine volume and surface area [111]. This
shift in spine shape correlates with its functionality. Spine strength
depends mainly on the density of incorporated glutamatergic receptors
which are abundant in mature mushroom spines. Whereas, thin spines
are functionally weaker [112]. These structural alterations are in line
with human postmortem study where decreased expression of synapse-
related genes responsible for loss of dendrites and spines was observed
in subjects with major depression disorders [113].

Mechanisms underlying the structural alterations in these brain
areas are currently explored extensively and a number are addressed in
the section below. However, our understanding of these mechanisms is
far from complete and hence, therapeutic intervention specifically
targeting structural remodeling is not yet available. A basic under-
standing of the relation between these mechanisms involved in cellular
and structural plasticity and depression can serve as the much needed
push for neuroplasticity targeting therapeutics.

4. Mechanisms underlying structural plasticity

The mechanisms underlying structural remodeling in the brain areas
discussed above are likely to be mediated by stress-induced changes in
glucocorticoids, neurotrophic factors, neurotransmitters, genetics and
epigenetic factors [69,114] (Fig. 2).

4.1. HPA axis and glucocorticoids

Mounting evidence has helped to understand the (mal)adaptive role
of glucocorticoids in mediating the stress response in these brain areas
[114]. In humans, HPA axis dysfunction is a consistent finding in de-
pressed adults [115]. The levels of glucocorticoid hormones, being
principal effectors in the stress response, rise from the activation of
hypothalamic-pituitary-adrenal (HPA) axis induced by stress. Due to
their lipophilic nature, these glucocorticoids directly impact the brain
exerting a broad range of molecular, structural and functional effects
through mineralocorticoid receptors (MR) and glucocorticoid receptors
(GR) [116,117]. Stress alters expression of GR and MR mainly by
downregulating them, as observed in the hippocampus, PFC and the
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amygdala [118–120], the regions which are known to regulate HPA
axis differentially (Fig. 2A). If glucocorticoids and GR/MR expression
would be directly linked to neuronal morphology and associated be-
havioral functionality, it is somewhat surprising that GR and MR are
reported to be similarly suppressed in all these three regions. Particu-
larly considering the fact that structural remodeling in hippocampal
and prefrontal brain regions is frequently reported to be opposite to that
in the amygdala. Subordinate rats exposed to social stress show de-
crease in expression of GR, MR, and growth-associated protein GAP-43
mRNAs in CA1 region of the hippocampus. This change in gene ex-
pression correlates with a rise in corticosteroid hormone level [37].

Findings from a study in male mice show that corticotropin-re-
leasing hormone (CRH) and forebrain CRH receptor 1 (CRHR1) mediate
some of the rapid effects of chronic social defeat stress on dendritic
spine morphology and modulate learning and memory. The impaired
spatial memory and CA3 neuronal dendritic remodeling induced by
stress is prevented by forebrain CRHR1 deficiency in adult male mice.
In addition, hippocampal expression of nectin-3, a synaptic cell adhe-
sion molecule important in synaptic remodeling, was negatively af-
fected by chronic stress in a CRHR1-dependent fashion. This reveals the
importance of CRH-CRHR1 signaling in modulating social stress-in-
duced cognitive, structural and molecular adaptations [121].

4.2. Neurotransmitters

Evidence from studies indicate that NMDARs (N-methyl-D-aspartate
receptor) and glutamate are involved in stress induced structural re-
modeling in hippocampus, and PFC brain regions [114,122]. Gluco-
corticoids have been shown to act synergistically with neurochemical
transmission, like glutamate, to regulate structural changes in the
neurons [123]. The concentration of glutamate, which is the main ex-
citatory neurotransmitter in the brain, along with expression of gluta-
mate receptors, mainly NMDA and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), is altered in the brain by stress. This
alteration could be due to glutamate receptor trafficking and mobility
[123]. Acute stress increases extracellular glutamate levels and causes
increased surface expression of NMDARs and AMPARs at the post-
synaptic membranes as well as a substantial rise in the densities of these
receptor clusters [123–125]. One of the signaling cascades which is
activated by stress and glucocorticoid in the PFC region is through GR
mediated activation of the serum- and glucocorticoid-inducible kinases

(SGKs), which plays a role in controlling glutamate receptor trafficking
through formation of GDI (GDP dissociation inhibitor)-RAB4 complexes
[126]. However, in the hippocampus, excitatory amino acids released
by the mossy fiber pathway plays an important role in the remodeling
of CA3 neurons [120].

Chronic stress also leads to reduced number or weakened activity of
the astrocytes [127]. This may lead to an increase in extracellular
glutamate concentration in the synaptic cleft, eventually increasing the
risk of excitotoxicity and cell damage. Another possible mechanism by
which the altered activity of astrocytes can induce structural abnorm-
alities is by decreased production of the neurotrophic factors. Astro-
cytes synthesize and release many neurotrophic factors such as brain-
derived neurotrophic factor (BDNF), glial-derived neurotrophic factor
and many more, which are vital for the neuronal health [128,129].
These neurotrophic factors regulate neuronal growth, maintenance, and
plasticity, and their reduced availability can result in increased cellular
vulnerability or even cell death [68].

4.3. Neurotrophic factors

Neurotrophic factors are neuromodulatory molecules that may
mediate stress induced structural changes. BDNF, along with its re-
ceptor, tyrosine kinase receptor B (TrkB) and its downstream signaling
pathway have been implicated in structural remodeling. Activation of
its downstream effectors like Rho GTPases and cofilin leads to mod-
ulation of actin dynamics which is essential for spine growth and en-
largement [130–132].

Chronic immobilization stress is known to elicit hippocampal den-
dritic atrophy in connection with reduced levels of BDNF whereas in the
amygdala BDNF level increases, which in turn relates to dendritic hy-
pertrophy in rodents [133–135]. Studies have also shown that trans-
genic overexpression of BDNF in mice has antidepressant effects and
prevents hippocampal atrophy induced by chronic stress while at the
same time causing spinogenesis in the BLA [136]. This would suggest
that hippocampal atrophy is leading in the depressed mood. A study in
mice shows, however, a general decrease in BDNF mRNA expression in
hippocampus, amygdala as well as other subcortical and cortical brain
regions 24 h after social defeat stress [137]. This is in contradiction to
the increase in BDNF mRNA expression found in nucleus accumbens
post defeat experience in rats [138]. Along with these findings, work
from McAllister et al. [131] reveals a role of BDNF as a modulator of

Fig. 2. (A) Brain areas involved in mediating a
stress response by differentially activating the
hypothalamic-pituitary-adrenal (HPA) axis in-
clude hippocampus, amygdala and prefrontal
cortex. The hypothalamus secretes cortico-
tropin-releasing hormone (CRH) in response to
stress exposure. CRH in turn binds to specific
receptors on pituitary cells, which produce
adrenocorticotropic hormone (ACTH). ACTH is
then transported via the blood circulation to
the adrenal glands where it triggers the pro-
duction and secretion of corticosteroids.
Corticosterone subsequently negatively feeds
back to activity of the HPA-axis via the hy-
pothalamus, pituitary, hippocampus and pre-
frontal cortex while there is a positive feedback
on HPA-activity via the amygdala. (B)
Molecular players involved in stress-induced
structural plasticity. Abbreviations: AMPAR –
α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid receptor, NMDAR – N-
methyl-D-aspartate receptor, TrkB – tropo-
myosin receptor kinase B, BDNF – brain-de-

rived neurotrophic factor, pBDNF – precursor BDNF, tPA – tissue plasminogen activator, GR – glucocorticoid receptor, GRE – glucocorticoid response element, SGK –
serum and glucocorticoid-inducible kinase, GDI – GDP (guanosine diphosphate) dissociation inhibitor, p – phosphorylated, CREB – cAMP response element-binding
protein.
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structural plasticity. Interestingly, evidence suggests a diagnostic po-
tential of mature BDNF (mBDNF) and its precursor proBDNF in plasma
to distinguish bipolar depression from major depressive disorders
during acute depressive episodes. In the patients with major depressive
disorders, ratio of mBDNF to proBDNF was significantly higher than
those with bipolar depression [139]. A key regulatory element which
plays an important role in the conversion of proBDNF to mBDNF is
tissue plasminogen activator (tPA) [140]. In CA1 region of hippo-
campus and medial amygdala region, chronic stress induced loss of
spines is mediated by tPA [70,94]. A recent study, however, indicates
that the antidepressant action induced by ketamine may be caused by
increasing the expression of tPA resulting in increased levels of mature
BDNF at the cost of levels of proBDNF in the hippocampus of rats ex-
posed to chronic unpredictable mild stress [141] (Fig. 2B).

Many other mechanisms involving signaling pathways and synaptic
or cytoskeletal proteins are currently explored next to the processes
mentioned above in their relationship to structural remodeling and
behavioral changes including behavioral stress pathologies.

5. Conclusion

Despite the current interest in the use of social stress paradigms in
animals to understand neurobiological consequences and etiology of
depression and anxiety-related pathologies, there are also some lim-
itations of using these models which should be taken into consideration.
According to WHO records, women are more affected by depression
than men. However, most of the studies in rodents measuring con-
sequences of social stress make use of offensive aggression of males
directed to competitor males in a territorial context. This offensive
aggression of male residents or dominant males in a colony is, however,
directed much less toward female conspecifics, which makes this model
less attractive to study consequences of stress in females. Females do
exhibit aggressive behavior and establish territories but tend to defend
them less fiercely with agonistic behavior like males do [142]. Studies
in hamsters and rats show that females do display male-like territorial
behavior toward both male and female intruders [143–145]. This ma-
ternal aggression against intruders is expressed by females shortly be-
fore gestation till the first week postpartum and then gradually declines
[146]. Up till now, however, it is not known whether these female
aggressive attacks result in detrimental consequences modeling de-
pressive-like behavioral disorders in either male or female victims.
Frequent male intruder placement during lactation not only enhances
maternal aggressive behavior but also has negative consequences for
the growth of both mother and offspring [147]. In this respect this
model can be considered as a chronic social stress model and can be
used to study structural remodeling in the brain regions of socially
stressed female rodents.

Another issue lies in the use of relatively docile laboratory rat
strains. Stress in victimized animals is elicited best using highly ag-
gressive conspecific resident or dominant males. Particularly in rats the
propensity to show high levels of aggressive behavior decreased dra-
matically in the majority of laboratory strains with the process of

domestication [148]. Rats from Long–Evans strains [38] and feral rats
[148] do show this propensity and are therefore used frequently in rat
models of social stress. An advantage of social stress models can be that
ferocity and number of physical attacks and threats from residents/
dominants are variable depending upon individual characteristics of
these animals in defending their environment at a particular time. This
may lead to unpredictable situations for intruder/subordinate animals
and can further contribute to the behavioral and neurobiological re-
sponses to stress in animals since lack of predictability and controll-
ability are crucial players in failing adaptive capacity [43]. Non-social
stress models have the risk of habituation to the stressor because of
their predictive nature.

Comparing stress-induced effects on neuronal plasticity between
physical, non-social stressors such as restraint and social stressors re-
veals more similarities than dissimilarities at different levels of neural
organization (Table 1). This supports the conclusions of Motta and
Canteras [44], who compared neuronal activation following restraint
and defeat stress. Differences are mainly observed in brain regions that
are particularly involved in the control of social behavior like hy-
pothalamic regions and the medial amygdala.

Also within the same stress model, being either social or non-social,
differential effects on neuronal plasticity in brain regions are reported.
Differences may occur due to environmental conditions (intensity,
frequency and duration of the stressor, housing condition, previous
experience, etc.) and endogenous factors (sex, age, strain, coping style,
genetic make-up). An important factor to consider is how stress is
perceived by the individual. Some individuals are rather resilient to the
negative consequences of severe exposure to stress whereas other are
susceptible. This may also be related to individual differences in coping
styles. Trait-like differences in the behavioral and physiological re-
sponse to environmental challenges are observed in animals with either
a proactive (aggressive) or a reactive (docile) coping style [149]. De-
pending on the environmental conditions, negative health conditions
may arise when there is a mismatch between the expressed coping style
and the optimal behavioral response to successfully cope with an en-
vironmental stressor. In some situations, individuals having a high
behavioral flexibility as observed in a reactive coping style may have a
higher capacity to successfully adapt whereas in other situations
proactive individuals being less sensitive to changes in their environ-
ment and responding in a more rigid and routine-like manner to en-
vironmental challenges may be more successful in coping with the si-
tuation [149,150]. Susceptible individuals are the ones which are more
prone to develop psychiatric disorders like depression. Understanding
functional differences in neural circuitry involved in coping with stress
like prefrontal cortex and the amygdala will contribute to a better in-
sight in unraveling the relevance of stress-induced structural plasticity
in these brain regions in relation to differences in stress-resilience and
susceptibility.

Depression is a very complex disorder. It is not possible to cover all
the symptoms shown by human patients in rodent models focusing only
on social stress paradigms. Therefore, using different stress paradigms
to induce depressive-like symptoms can help to reproduce multiple

Table 1
Comparison of non-social and social stress-induced spatiotemporal patterns of plasticity at different levels of neural organization. There are more similarities than
dissimilarities observed comparing both types of stressors.

Different levels of neural
organization

Hippocampus Amygdala mPFC

Non-social Social Non-social Social Non-social Social

Behavior Spatial memory contextual
fear memory
↓ [50,151]

Contextual fear
memory
↓ [152]

Fear memory
anxiety
↑ [50]

Fear memory
anxiety
↑ [15,153]

Working memory fear
extinction
↓ [50]

Working memory fear
extinction
↓ [152,154]

Neurons (dendrites) ↓ [50] ↓ [66] ↑ [50] ↑ [66] ↓ [50] ↔ [66]
Synapses (spines) ↓ [50] ↓ [66,72] ↑ [50] ↔ [66] ↓ [50] ↓ [72]
Molecules (BDNF) ↓ [50] ↓ [155] ↑ [50] ↑ [155] ↓ [156] ?
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aspects of behavioral manifestations of the depressive syndrome.
Connecting these alterations to processes involved in structural re-
modeling in specific brain regions will contribute to a better under-
standing of the pathogenesis of mood disorders and hopefully also to
better treatment.
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