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Abstract 

Differences in the presence of even a few genes between otherwise identical bacterial strains 

may result in critical phenotypic differences. Here, we systematically identify microbial genomic 

structural variants (SV) and find them to be prevalent in the human gut microbiome across phyla 

and to replicate in different cohorts. SVs are enriched for CRISPR-associated and antibiotic 

producing functions and depleted from housekeeping genes, suggestive of a role in microbial 

adaptation. We find multiple novel associations between SVs and host disease risk factors, 

many of which replicate in an independent cohort. Exploring genes clustered in the same SV, 

we uncover several possible mechanistic links between the microbiome and its host, including a 

region in Anaerostipes hadrus encoding a composite inositol catabolism-butyrate biosynthesis 

pathway, whose presence is associated with lower host metabolic disease risk. Overall, our 

results uncover a nascent layer of variability in the microbiome associated with microbial 

adaptation and host health. 

  

 

  

  



Introduction 

Genes that are deleted or duplicated within different members of a species (also termed copy 

number variation; CNV), are a phenomenon common across all kingdoms of life1,2. Even a small 

number of bacterial genes can underlie phenotypes such as virulence3, antibiotic resistance4, 

host metabolic disease5, and host longevity6, making genetic variation highly important to both 

the microbe and its host. 

  Greenblum et al.7 performed a systematic characterization of intra-species CNVs across 

the human microbiome, and showed that it is highly prevalent7. This variability could be critical 

to human pathophysiology, as gut microbes were found to be involved in multiple host 

processes8–10 and associated with multiple disorders11–15. However, this and other studies 

analyzing the genetic repertoire of the microbiome12,16–18 were potentially limited by the scope of 

the annotation databases used and by ignoring the co-variation of genes from the same 

genomic region. Such co-variation is important as it encodes information such as operon 

membership, gene regulation or susceptibility to horizontal transfer that is only evident when 

analyzing genes in their neighboring genomic context. Other functional characterization 

methods12,16–18 may be limited with regards to within-species variation of genes. 

In this study, we aimed to detect segments of varying lengths, potentially containing 

multiple genes, that are deleted from certain bacteria in some individuals or present in a variable 

number of copies in others. We term this phenomenon “structural variation”19 to differentiate it 

from CNVs at the level of specific genes without genomic context7. 

We devised an Iterative Coverage-based Read Assignment (ICRA) algorithm that 

resolves ambiguous read assignments to regions that are similar between different bacteria, 

using information on bacterial relative abundances in the microbiome, their genomic 

sequencing-coverage, and sequencing and alignment qualities. We show that our algorithm 

correctly assigns reads in complex metagenomic settings. 



We further developed SGV-Finder, allowing us to systematically detect 7,479 SVs in 56 

species from 887 human gut microbiome samples11,20, demonstrating their prevalence. We 

show that SVs contain distinct genetic functions, are associated with bacterial growth rates, and 

are stable within the same person. We demonstrate the potential importance of SVs to the 

human host by discovering 124 significant associations between SVs and multiple disease risk 

factors. We analyze the Dutch Lifelines DEEP cohort21 and show replication of 76% of all SVs in 

bacteria present in both cohorts, and of 40 associations with risk factors, together suggesting 

that some variability is shared between distinct populations, while other is population-specific. 

We highlight several cases in which the gene content of a region can reveal potential underlying 

mechanisms. Overall, we show that SVs represent a nascent layer of information in the 

microbiome that is likely to be of high relevance to human health. 

  

Results 

  

Accurate metagenomic read assignment using ICRA 

  

To accurately detect SVs we sought a correct assignment of metagenomic reads to their 

genome of origin, overcoming the large number of regions shared between different microbes. 

We analyzed microbiome and clinical data collected on 887 healthy subjects11,20 (Methods), in 

which over 15% of the metagenomic reads were assigned ambiguously to multiple references 

upon mapping to a database of 3,953 bacterial genomes (ED Fig. 1a, Methods). 

  To address this problem, we devised the ICRA algorithm (ED Fig. 1b, Supplementary 

Methods), which uses read assignments, read and mapping qualities, sequencing coverage 

depth along microbial entities (e.g., bacterial genomes or genes), and microbial relative 

abundances, to reassign ambiguously mapped reads. ICRA introduces a demand for sufficient 

coverage over entities that are to be considered present in a sample, making it robust to 



genomic regions with extremely high or low coverage that may arise from misassemblies, 

homology to other microbes, or phage activation. Such regions could otherwise bias the 

estimated relative abundances, potentially even assigning abundances to genomic entities that 

are absent from the sample. 

  To test the performance of ICRA, we validated the two key components of the algorithm: 

its ability to resolve ambiguous read assignments, and the accuracy of the species relative 

abundances that it infers (Supplementary Note 1, ED Fig. 1,2).  

  

SVs are highly prevalent in the microbiome 

  

We next sought to systematically characterize structural variation across the healthy human 

microbiome. We developed SGV-Finder, which we applied to ICRA-corrected read assignments 

of 887 metagenomic samples11,20 to a reference database of 3,953 representative microbial 

genomes (Methods). SGV-Finder analyzes coverage depth across all microbial genomes in all 

samples to characterize SVs with respect to the standardized coverage of a genome in a given 

sample (Methods). 

We differentiate between deletion-SVs, that are deleted and not covered in 25-75% of 

samples, and variable-SVs, that have highly variable coverage across samples (Methods). In 

both SV types, segments are united based on co-occurrence (deletion-SVs) or correlation 

(variable-SVs; Methods). An online metagenome explorer for all SVs and the genes they 

encompass is available at http://genie.weizmann.ac.il/SV/ (ED Fig. 3). 

Overall, we detected 2,423 variable-SVs and 5,056 deletion-SVs in 56 bacteria that 

passed our coverage thresholds (ED Fig. 4a). SVs were detected in 6 bacterial phyla and one 

archaeal phylum, with 5-241 SVs per species in 1.4-18.6 kbp average size per species. 

Variable- and deletion-SVs make up 0.3-8.4% and 5.0-26.9% of the microbial genome, 

respectively (ED Fig. 4a). This apparent disparity in size may suggest inherent differences in the 

http://genie.weizmann.ac.il/SV/


formation of the two types of SVs. Out of 887 samples, 769 carried SVs for Blautia wexlerae, 

727 had 104 deletion-SVs and 33 variable-SVs in A. hadrus, and 668 carried SVs for 

Bacteroides uniformis. We detected SVs in every subject and strain analyzed, demonstrating 

the ubiquity of such variations. 

  

SV is prevalent across distinct populations 

  

To test the universality of these regions and reinforce their biological relevance, we applied 

ICRA and SGV-Finder independently to 1020 samples from the Dutch Lifelines DEEP cohort21 

(hereinafter “Lifelines”; Methods). We found that in 47 of 56 bacteria present in both cohorts, an 

average of 72.9% of variable-SVs (0-99.1%) and 78.3% of deletion-SVs (35.3-94.5%) 

overlapped with SVs found in our cohort (one-sided hypergeometric p<10-10; Fig. 1a, ED Fig. 

4b). Notably, for 75% of microbes, more than 70% of the regions were replicated despite the 

different populations examined with different genetic background, lifestyle, and dietary 

preferences; and the different methods, centers, and staff involved in assembling the two 

cohorts (Fig. 1a). 

  Some bacteria, such as Ruminococcus bicirculanus, showed very low concordance 

between the cohorts (27% overlap over 10 variable-SVs totalling 23 kbp; Fig. 1a, ED Fig. 4b), 

suggestive of geographically-confined variability, or strong population-specific environmental 

factors. Other bacteria, such as Parabacteroides merdae, showed high concordance (95% of 46 

variable-SVs totalling 281 kbp; Fig. 1a, ED Fig. 4b).  

 

SVs are person-specific and shared with habitat 

  

We next examined the variability of SVs across people by correlating variable- and deletion-SVs 

between different subjects. We found that different individuals mostly have different SV profiles, 



with a median correlation of 0.02 and 0 for variable- and deletion-SVs, respectively (Spearman; 

Fig. 1b,c). In contrast, SVs were highly stable within the same individual, even over time periods 

exceeding one year, with median within-person correlations of 0.89 and 0.66 for variable- and 

deletion-SVs, respectively (Spearman, p<10-20 for both; Fig. 1b,c; Methods). 

We further analyzed data from co-habiting individuals and for pairs of parents-children / 

siblings who do not live together22 (“relatives”; Methods). We found that they share SVs to a 

significantly higher degree as compared to two random subjects (average Spearman ⍴ of 0.45 

and 0.16 for variable- and deletion-SVs, respectively; p<10-10 for both; Fig. 1b,c). Interestingly, 

relatives have significantly less similar microbiome SV profiles compared to co-habiting subjects 

(Mann-Whitney U p<0.001 for both variable- and deletion-SVs, Fig. 1b,c). This result is 

conservative, as non-cohabiting relatives could still share environmental exposures affecting 

their microbiome, such as traditional food preferences or shared meals. These results further 

support our previous findings22 that the environment dominates over genetics in determining 

microbiome composition. 

  

SVs are potentially involved in microbial adaptation 

  

We sought to systematically characterize the function of SVs by searching for enriched or 

depleted genetic functions. We annotated gene functions across variable-SVs, deletion-SVs, 

and ‘conserved’ regions (covered in at least 98% of samples containing the bacteria), and 

sought KEGG23 modules that were over- and under-represented in these regions (Methods). 

Using the KEGG BRITE hierarchy, we found that ‘housekeeping’ modules such as nucleotide 

and amino acid metabolism or carbohydrate and lipid metabolism were significantly depleted 

from SVs and significantly enriched in conserved regions (p<2*10-5 for all; Methods; Fig. 2a-c; 

Table S1). Conversely, modules classified as ABC-2 type- and other transport systems were 

significantly enriched in variable-SVs (p<2*10-5; Fig. 2a). In addition, the type-IV secretion 



system (T4SS) module was enriched in SVs (p<2*10-5; Fig. 2a,b) and depleted from conserved 

regions (p<2*10-5; Fig. 2c), suggesting that bacterial conjugation systems, to which the T4SS is 

related, strongly associate with variability, further implicating SVs as tools of adaptation and 

speciation. 

  SVs were additionally enriched with genes with no assigned function (p<2*10-5; Fig. 

2a,b, red star). We therefore performed a textual enrichment analysis on the Ensembl functional 

annotation24 of the genes analyzed (Methods). Bacteriophage-, plasmid- and transposon-related 

genes, and genes encoding other horizontal gene transfer (HGT) mechanisms were enriched in 

SVs and depleted from conserved regions (FDR-corrected q<10-4 for all), suggesting an 

important role for these mechanisms in the formation of SVs. Analysis of Pfam25 motifs 

pertaining to HGT mechanisms corroborated this finding (q<10-4; Methods). In addition, variable-

SVs were enriched with antibiotic-producing genes (q<0.005) and deletion-SVs were enriched 

with CRISPR-associated genes (q<0.05) suggesting that these regions function as attainable 

microbial tools for interacting with their environment. This analysis also demonstrates how SGV-

Finder, which operates directly at the genomic level, accommodates analyses with multiple 

annotation datasets. 

To further characterize the potential contribution of SVs to microbial adaptation, we 

searched for SVs associated with the fitness of their harboring microbe. As a proxy for fitness, 

we calculated bacterial growth rates of 21 strains with sufficient coverage and complete 

reference genomes, using a method that estimates growth from DNA copy number differences 

created during DNA replication26. We found 44 highly significant associations of these growth 

rates with deletion-SVs within the same bacteria (Methods; Mann-Whitney U test, significant 

with Bonferroni cutoff of p<3x10-5; Fig. 2d; Table S2), suggesting that certain SVs may be 

important for bacterial adaptation and fitness. 

To probe the mechanisms potentially underlying this adaptation, we systematically 

examined the genetic content of growth-associated deletion-SVs, and found similar functional 



profiles as in all SVs, with a depletion of housekeeping functions and enrichment for genes 

involved with CRISPR-, transposon- and HGT-associated genes (q<0.05; Methods), and a 

significant enrichment for genes with unknown functions (p<10-5, ED Fig. 5). 

We further examined two such regions, which were significantly positively and negatively 

associated (p<10-10 for both) with the growth of the harboring species (Eubacterium eligens; ED 

Fig. 6). Notably, the negatively-associated SV (ED Fig. 6a,b) contains, among others, genes for 

flagellin, flagellar hook-associated protein and lipopolysaccharide (LPS) choline 

phosphotransferase (Table S3). Flagellin and the flagellar hook protein were shown to elicit 

strong immune responses27,28; LPS choline phosphotransferase attaches choline phosphate to 

the bacterial LPS molecule, which was shown to increase C-reactive protein-mediated innate 

immune clearing29. Both of these could potentially inhibit microbial growth, and increase growth 

rates in bacteria missing them may point to loss-of-function adaptation to the host gut and 

immune system. In contrast, the SV that was positively associated with the microbe’s growth 

rates (ED Fig. 6c,d) contained several hypothetical genes, and also a gene for antibiotic 

transport system ATP-binding protein, whose presence could endow a selective advantage in 

certain human hosts by conferring resistance to antibiotics30 (Table S3). These results 

demonstrate the ability of our methodology to suggest underlying mechanisms using the 

genomic content of SVs. 

  Overall, SVs associate with common mechanisms of conjugation, transposition and 

phage lysogeny, and may thus be powerful tools of adaptation. Microbial evolution in densely 

populated ecosystems such as the human microbiome may thus be driven strongly by SVs, 

affecting both microbes and host. 

  

SVs associate with risk factors across cohorts 

  



To explore the potential relevance of microbiome SVs to human health, we associated the 

abundance of variable-SVs and the presence of deletion-SVs with metrics of health and risk 

factors: mean arterial blood pressure (MAP); total and HDL cholesterol; waist circumference; 

weight; body mass index (BMI); median glucose levels over one week; percent glycated 

hemoglobin (HbA1c%); and age. We found 81 (Spearman; Fig. 3a, ED Fig. 7) and 43 (Mann-

Whitney U; Fig. 3b) significant associations FDR corrected at 0.1 for variable- and deletion-SVs, 

respectively, demonstrating the potential importance of microbial SVs to the human host. 

In several cases, the relative abundances of a microbe harboring risk-factor-associated 

SVs were correlated with the same risk factors. For example, we found five deletion-SVs in A. 

hadrus to be associated with lower BMI, body weight and waist circumference, and with higher 

HDL cholesterol levels (Fig. 3b), and indeed A. hadrus was negatively correlated with weight 

(p<10-5), waist circumference (p<10-5), median blood glucose levels (p<10-4) and BMI (p<0.005) 

and positively correlated with HDL cholesterol levels (p<10-7). Even so, the associations of 

specific SVs with risk factors allows us to pinpoint specific regions and mechanism that may 

underlie the association. 

Notwithstanding, the relative abundances of some bacteria have opposite associations 

with host phenotypes compared to the SVs they contain. For example, three variable-SVs in 

Ruminococcus torques were negatively associated with multiple risk factors (Fig. 3a) but R. 

torques abundance was positively associated with weight (p<10-3) and BMI (p<0.05), similar to 

results from a different cohort31. Several variable-SVs in Eubacterium rectale were positively 

associated with age (Fig. 3a), while the relative abundances of E. rectale were negatively 

associated with it (p<10-6). A 2-kbp deletion-SV in Faecalibacterium cf. prausnitzii KLE1255 was 

positively associated with the weekly median blood glucose level (Fig. 3B), and though F. 

prausnitzii was not significantly associated with it in our cohort, two studies found it was 

negatively associated with type II diabetes, characterized by high blood glucose levels12,32. 

These seemingly paradoxical associations between SVs and risk factors further suggest that 



SVs represent a different layer of information compared to the taxonomic level, one which may 

assist in obtaining mechanistic insights into host-microbe interactions. 

To test the replicability of these associations, we ran ICRA on samples from the Lifelines 

cohort, and calculated the coverage of the SVs defined from the 887-person cohort. We then 

calculated the association of these regions with host risk factors measured in the Lifelines 

cohort, and compared those to the associations found in our cohort (Methods). Notably, despite 

presumed inter-cohort differences in genetics, dietary preferences and lifestyles, more than a 

third (40 out of 117) of the associations found in microbes present in both cohorts were 

replicated, while only 4 of the remaining 77 were significantly associated in the opposite 

direction (Fig. 3; ED Fig. 7). 

  

SV-risk associations facilitate mechanistic insights 

As with bacterial adaptation, examining the genetic content of disease-risk-associated SVs 

facilitated a potentially mechanistic view into these phenomena. While many SVs harbor genes 

with unknown function, we observed several intriguing functions coded in risk-associated SVs. 

For example, the presence of a 11-kbp deletion-SV from E. rectale is associated with higher 

HbA1c% (p<10-4; n=630, 377 retaining; ED Fig. 8a). An examination of this region reveals a 

class 1 CRISPR-Cas system and three genes of unknown function (ED Fig. 8b). Interestingly, 

subjects harboring this region had a higher abundance of the microbe (Mann-Whitney U 

p<0.02), which we had previously shown to increase in abundance following a diet inducing high 

postprandial glucose responses11. A 6-kbp variable-SV from R. torques is inversely associated 

with median blood glucose levels (Spearman ⍴=-0.237, p<10-5; Fig. 4a) and features genes 

encoding phage-associated proteins and additional genes of unknown function, suggesting that 

this SV is a prophage, and that it may carry additional functionality (Fig. 4b). These genes of 

unknown function are therefore putatively related to host glucose metabolism, demonstrating 

the utility of our methods for generating mechanistic hypotheses. 



Other examples include a 4-kb deletion-SV in A. hadrus that is inversely associated with 

BMI (median 1.15kg/m2 lower for retention; p<10-4; n=681, 405 retaining; ED Fig. 8c) and weight 

(median 3.5kg lower; p<10-4). This SV contains genes coding for the enzymes ADC synthase 

(EC2.6.1.85) and 4-amino-4-deoxychorismate lyase (EC4.1.3.38), both instrumental in folate 

biosynthesis (ED Fig. 8d,e). An 18-kb deletion-SV in Roseburia intestinalis that is significantly 

associated with total cholesterol (median 12.5mmHg lower for retention; p<10-4; n=262, 68 

retaining; ED Fig. 8f) contained multiple beta- and other glucosidases (ED Fig. 8g), potentially 

suggesting microbial adaptation to a fiber-rich host diet. An 8-kb deletion-SV in Coprococcus 

comes which is significantly associated with BMI (median 2.4kg/m2 higher for retention; n=450; 

292 retaining; p<10-5; ED Fig. 8h) and weight (median 5kg higher; p<10-4) contains several ABC 

transporters of possible future interest with undetermined substrates (ED Fig. 8i). Notably, all 

the above regions were also detected in the Lifelines cohort (ED Fig. 9) and replicate the 

patterns detected in our cohort. 

As one particularly intriguing example, a 31-kbp deletion-SV in A. hadrus was 

significantly associated with lower weight (median 6kg lower for retention; p<10-6; n=681, 468 

retaining; Fig. 4c), waist circumference (median 4cm lower; p<10-4; ED Fig. 10a), BMI (median 

1.17kg/m2 lower; p<0.001; ED Fig. 10b), and higher HDL cholesterol (median 5.7mg/dL higher; 

p<10-4; ED Fig. 10c), and was well annotated, allowing us to demonstrate the potential of SGV-

Finder detected regions to expose potential underlying mechanisms. 

  This SV encodes a metabolic module for inositol catabolism33 metabolizing myo-inositol 

or D-chiro inositol to (a) glycerone phosphate, a precursor for glyceraldehyde-3-phosphate; and 

(b) 3-oxopropanoate, a precursor for acetyl-CoA. The region also encodes a metabolic module 

that metabolizes 3-hydroxybutanoyl-CoA to butyrate, a short-chain fatty acid (SCFA), while 

oxidizing an electron-transferring flavoprotein, also encoded in this SV. These two pathways are 

connected through reactions encoded elsewhere in the A. hadrus genome (Fig. 4d,e, Table S4). 



This SV additionally encodes seven sugar transporters, one of which specific to sorbitol and six 

are unassigned to a target; two transcriptional regulators; and several other genes. 

Altogether, we hypothesize that this SV is unifunctional, providing the capability to 

ferment sugar alcohols to SCFAs in an energetically-favorable procedure. The myo-inositol 

catabolism module combined with glycolysis and acetyl-CoA synthesis has a positive energetic 

effect, and the butyrate synthesis module consumes energy for butyrate production, with a 

positive effect on the energy metabolism of A. hadrus, earning a net gain of 2 ATP- and 2 

NADH-equivalent molecules. 

This SV is replicated in the Lifelines cohort (ED Fig. 9), and so are several of its 

associations with host phenotypes: Dutch individuals retaining the region exhibiting lower BMI 

(median 0.9kg/m2 lower for retention; n=797, 547 retaining; p<0.005; ED Fig. 10d), weight 

(median 4kg. lower; p<0.01), and waist-to-hip ratio (median 0.017 lower; p<0.001) potentially 

pointing to a generalized mechanistic association between SV and disease-risk. This region is 

also associated with a significantly different predicted metabolic profile at the entire microbiome 

level (Supplementary Note 2). 

     

Discussion 

  

In this work we systematically detect SVs across metagenomic samples, and show that they are 

highly abundant in the human microbiome and largely conserved across different cohorts. We 

found that SVs harbor genes of distinct functions, and are associated with bacterial growth 

rates, indicating a potential utility in bacterial adaptation. Finally, we found they are associated 

with numerous host disease risk-factors, many of which replicated in an independent cohort, 

and that they facilitate exploration of genes varying together, exposing a new layer of putative 

mechanistic information regarding host-microbiome interactions. 



Following a functional analysis of genes in those regions, we hypothesize that the main 

forces driving SVs are mechanisms of HGT as evident from the enrichment of genes performing 

these functions in SVs. Many genes found in SVs, such as antibiotic biosynthesis genes, can 

possibly be characterized as passengers to this process of transposition and may have 

important roles in the adaptation of microbes to their environments and in communication with 

the host.  

Our current methodology depends on a reference dataset, typically sufficient for human 

microbiome analyses. We note that this is a practical rather than a conceptual limitation, as any 

type of database would suffice, even that created through ad-hoc assembly. Creation and 

validation of such methodologies could be pursued in future work. 

Detecting SVs directly from sequencing coverage facilitates an independent analysis of 

their encoded functions. We demonstrated the utility of such examination with several SVs 

whose genes were well annotated. This includes an A. hadrus SV containing genes 

hypothesized to enable the transport and metabolism of sugar alcohols to butyrate, and which 

was strongly associated with lower metabolic risk. SCFAs, and specifically butyrate, have been 

shown to nourish host intestinal cells34 and mitigate inflammatory disease35. In mice, SCFAs 

were shown to improve insulin sensitivity and increase energy expenditure36. We therefore 

hypothesize that by possessing this SV, bacteria demonstrate increased symbiosis with the 

host, as fermenting sugar alcohols to butyrate benefits the microbe by producing additional 

energy and benefits the host with the advantageous effects of butyrate. 

The associations described here between SVs and host health are not directional or 

causal, and could also be confounded. While further research is needed to fully understand the 

interactions between the host, its microbiome, and disease, we demonstrate the wealth of 

mechanistic hypotheses obtained through examining genes with variable copy number along 

with neighboring variable genes. This type of analysis, connecting genomic variation with 



genetic function, could be instrumental for raising multiple mechanistic hypotheses about the 

pathophysiological role of the microbiome.  

Our methodology is highly adaptable to any metagenomic scenario and could be used, 

for example, to detect SVs in the soil microbiome. It is especially useful for raising mechanistic 

hypotheses, and could therefore be useful in case-control microbiome studies. Taken together, 

our study exposes a new facet of the microbiome that brings us closer to mechanistically 

understanding host-microbe interactions. 
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Figure Legends 

  

Figure 1. SVs replicate across cohorts and are stable within individuals over time. (a) The 

genomic length overlap of SVs replicated in the Lifelines cohort for all microbes analyzed. (b-c) 

Boxplots (centre, median; box, IQR; whiskers, 1.5*IQR) of the correlations between variable- (b) 

or deletion-SV (c) across different subjects (green, n=704), within the same subject (blue, 

n=21), among co-habiting subjects (yellow, n=39) and among pairs of siblings or 

parents/children (‘1st deg. relatives’, red, n=38). **- two-sided Mann Whitney U p<0.01 

***p<0.001 ****p<10-5. 

  

Figure 2. SVs associate with microbial growth rates and specific functions. (a-c) Statistical 

significance (Methods) vs. fold change of KEGG23 modules in variable-SVs (a), deletion-SVs (b) 

and conserved regions (Methods; c). (d) Statistical significance in a two-sided Mann-Whitney U 

test vs. difference in median value, comparing bacterial growth rates (PTR26) under deletion 

http://www.nature.com/reprints
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versus retention of 1,756 SVs in 21 microbes. See Tables S1 (panels a-c), S2 (d) for group 

sizes.  

  

Figure 3. SVs associate with disease risk, replicated in another cohort. (a-b) Heatmap of 

statistically significant correlations (Methods) between disease risk factors and variable- (a) or 

deletion-SVs (b). Stars, associations replicated (yellow), replicated using a different variable 

(orange) or reversed (gray) in the Lifelines cohort21. Striped stars, rows from the same bacteria 

that were collapsed for display purposes (see ED Fig. 7 for full heatmap).  

 

Figure 4. Risk-associated SVs harbor functionally diverse genes  (a) Scatterplot showing 

the Spearman correlation between the abundance of a 6-kbp variable-SV in R. torques and 

weekly median glucose levels (n=373); p - Methods. (b) (top) Standardized variability (y-axis; 

plotted lines, percentiles 1, 25, 50, 75 and 99) along a genomic region of R. torques (x-axis). 

(bottom) gene locations (arrows) colored according to function (legend). (c) Boxplot (centre, 

median; box, IQR; whiskers, IQR*1.5) of weight in individuals harboring a 31-kbp deletion in the 

A. hadrus genome (blue, n=213) and individuals with no deletion (maroon, n=468). p - two-sided 

Mann-Whitney U test. (d) (top) Deletion rate across the cohort (y-axis) along a genomic region 

of A. hadrus (x-axis). (bottom) gene locations (arrows) colored according to function (legend). 

(e) The metabolic pathways encoded in this SV, which turns inositol to butyrate. Note 

correspondence of enzyme commission (EC) numbers with panel d. 

 

 

 

  



Methods 

  

Reference database preprocessing 

We downloaded the EMBL progenomes37 5,306 representatives dataset and used dRep38 to 

calculate distances between genomes. Next, we applied ward hierarchical clustering with a 

Euclidean distance metric to the dRep distance matrix, calculated a dendrogram and retrieved 

the cut tree at a height of 0.15 (corresponding to approximately 15% dissimilarity in genome 

sequence) resulting in 3,953 clusters. As a representative species for each cluster we chose the 

genome with the minimal distance to all other genomes in the cluster. In clusters with only two 

members, we chose one randomly. Database taxa and assembly accession numbers are listed 

in Table S5. 

  

Metagenomic samples - Israeli cohort 

We obtained metagenomic samples from two studies11,20 (accession numbers ENA: 

PRJEB11532, ENA: PRJEB17643). In the latter study20, only baseline samples were used 

(before the intervention took place). 

  

Gut microbiome analysis 

To prevent bias generated by analyzing single- and paired-end sequenced samples together, 

we took the first end of all samples, and trimmed each read to a maximal length of 75bp (100bp 

for Lifelines DEEP cohort). We filtered metagenomic reads containing Illumina adapters, filtered 

low quality reads and trimmed low quality read edges. We detected host DNA by mapping with 

GEM39 to the Human genome with inclusive parameters, and removed those reads. We 

randomly subsampled all samples to 10M reads, and removed samples with less than 10M 

reads from subsequent analyses. 



For MetaPhlAn2 comparisons, we obtained relative abundances (RA) from metagenomic 

sequencing via MetaPhlAn240 with default parameters. For Kraken41 comparisons, we built a 

custom Kraken database using our preprocessed database and subsequently classified with 

default parameters and generated a Kraken report. For Bracken42 abundance estimation, we 

generated a Bracken-database file using bracken-build on the above Kraken database with a 

kmer length of 31 and read length of 100bp and used it to estimate abundance using the 

aforementioned Kraken report. 

  

SV detection - preprocessing 

We mapped metagenomic reads to the reference database of 3,953 representative microbial 

genomes detailed above and corrected read assignments using ICRA. All scaffolds from each 

microbial genome were concatenated and subsequently divided into 1 kbp bins. For each 

genome in each microbial sample, we counted the number of reads mapped to each of the bins. 

In the rare case in which ICRA produces a distribution of probabilities of different read 

assignment for a specific read rather than a deterministic assignment, we determined the read 

count that was added to each bin using the probability of assignment calculated by ICRA. To 

ensure proper statistical support for coverage analyses, we discard genomes in samples whose 

median bin coverage is lower than 10 reads (corresponding to a genome coverage of 1x, with 

ten 100bp reads in each 1kbp bin), and microbial genomes present in less than 75 subjects. In 

addition, we removed microbes in which the median bin coverage across samples was lower 

than one read for more than 30% of the bins. 

  

Detection of deletion SVs 

We examined the coverage in each metagenomic bin across all samples to detect regions that 

were deleted from some individuals and retained in others. To this end, for each microbe in 

each sample, we calculated a histogram of coverage across all metagenomic bins. We then 



searched for a trough, separating bins whose coverage is close to 0 from bins whose coverage 

is close to the median across the microbe, which we previously demanded to be greater than 10 

reads. The position of the trough separates the two modes of the distribution, between bins 

which were deleted (number of reads per bin smaller than the trough position) and retained 

(number of bins greater than the trough position). To mark a bin as a deletion-SV, we 

demanded that it be deleted in 25-75% of samples. We concatenated adjacent deletion-SV bins 

into stretches based on bin cooccurrence dissimilarity, defined as the proportion of samples 

which are in disagreement on the deletion-state of the two bins being compared (wherein one 

bin is deleted and one is retained for the same sample) out of all samples that harbor the 

microbe. Bins were concatenated to an existing stretch if they had an average cooccurrence 

dissimilarity lower than 0.25 with all the bins in the stretch, and that the newly created stretch is 

deleted in 25-75% of samples. We then clustered deletion SV stretches belonging to the same 

microbe based on cooccurrence. First, we calculated a cooccurrence dissimilarity matrix for any 

two bins within the microbe (calculated as 1 minus the cooccurrence metric defined above). 

Next, using this bin-dissimilarity matrix we calculated a region dissimilarity matrix by calculating 

the average distance between all bins of one region to all bins of the other region. We next 

calculated linkage over the bin-dissimilarity matrix using the ‘average’ method of the 

cluster.hierarchy.linkage function in scipy v1.1.0 and divided into clusters with maximal 

cooccurrence dissimilarity of 0.25. 

  

Detection of variable SVs 

For each microbe, we first removed all bins that were deleted in more than 95% of subjects. We 

examined the coverage in each remaining metagenomic bin across all samples to detect 

regions with variable coverage. To this end, we standardized the coverage across all non-

deleted bins of a single microbe in each sample by subtracting the mean coverage and dividing 

by the standard deviation. Next, for each bin, we fit a beta-prime distribution over all samples 



and marked bins whose value is in the top 5th percentile of the fit distribution as variable SV. 

We concatenated adjacent variable SVs into stretches if their average correlation (Spearman) 

with all bins in the stretch was higher than 0.75 and the resulting stretch was in the top 5th 

percentile of the beta-prime fit distribution of the resulting bin size. We then clustered variable 

SV stretches similarly to deletion SV stretches, with a dissimilarity metric calculated as 1-

((⍴(u,v)+1)/2), where ⍴ is the Spearman correlation and u, v are the bin vectors being compared; 

and a threshold of 0.125. This roughly corresponds to an average Spearman correlation 

threshold of 0.75. 

  

Detection of conserved regions 

For each microbe in each sample, we detected retained / deleted bins as above and defined 

conserved regions to be stretches of bins that were deleted in less than 1% of samples. 

  

Analysis of replication in Dutch Lifelines DEEP cohort 

To analyze the overlap between SVs detected in the Israeli cohort to those detected in the 

Lifelines DEEP cohort, we ran ICRA and SGV-Finder independently on 1020 out of 1135 

samples from the Lifelines DEEP cohort (EGA: EGAS00001001704) that had more than 10M 

reads, and computed the percent of overlap between regions in both cohorts. To analyze 

replication of associations between cohorts, we calculated for each SV region in the Israeli 

cohort, its presence / absence (deletion SV) or standardized coverage (variable SV) in the 

Lifelines DEEP cohort. We then tested the association of these regions with mean arterial 

pressure, waist-to-hip ratio (stand in for the Israeli cohort waist circumference), body weight, 

BMI, fasting glucose (stand in for the Israeli cohort median glucose), glycated hemoglobin, age, 

total and HDL cholesterol measured in the Lifelines DEEP cohort, using a Mann-Whitney U test 

(deletion-SVs) or the Spearman correlation (variable-SVs). 

   



Calculation of SV conservation in co-habiting and related individuals 

We calculated Spearman correlations between the deletion- and variable-SV vectors of 39 pairs 

of individuals registered in our cohort as living in the same house. To calculate SV retention in 

first degree relatives, we calculated these correlations in 38 pairs of individuals whose genomic 

SNP-based similarity22 was between 40 and 60% and whose self-reported residential addresses 

were different. 

  

Functional enrichment analysis 

This analysis was performed similarly yet separately to variable-SVs, deletion-SVs, conserved 

regions, and regions significantly associated with the PTR of their harboring microbe. For 

brevity, we collectively term them “regions”. We examined all gene annotations for all microbial 

genomes analyzed using Ensembl functional annotation24 available through progenomes37, and 

annotated orphan ORFs by mapping the protein sequence to all KEGG23 protein sequences 

using DIAMOND43 and selecting the top result with e-value<10-6 and at least 50% identity. We 

then used KEGG annotations to assign genes to modules, and calculated the following textual 

categories by searching the progenomes gene function annotation using the following regular 

expressions: 

Transposon: transpos\S*|insertion|Tra[A-Z]|Tra[0-9]|IS[0-9]|conjugate transposon 

Plasmid: relax\S*|conjug\S*|mob\S*|plasmid|type IV|chromosome partitioning|chromosome segregation 

Phage: capsid|phage|tail|head|tape measure|antiterminatio 

Other HGT mechanisms: 

integrase|excision\S*|exonuclease|recomb|toxin|restrict\S*|resolv\S*|topoisomerase|reverse transcrip 

Carbohydrate active: glycosyltransferase|glycoside 

hydrolase|xylan|monooxygenase|rhamnos\S*|cellulose|sialidase|\S*ose($|\s|\-

)|acetylglucosaminidase|cellobiose|galact\S*|fructose|aldose|starch|mannose|mannan\S*|glucan|lyase|glycosyltransfe

rase|glycosidase|pectin|SusD|SusC|fructokinase|galacto\S*|arabino\S* 

Antibiotic resistance: azole resistance|antibiotic resistance|TetR|tetracycline resistance|VanZ|betalactam\S*|beta-

lactam|antimicrob\S*|lantibio\S* 



We searched for genes containing Pfam25 modules with the keywords ‘phage’, ‘prophage’, 

‘transposon’, ‘conjugative transposon’ using hmmscan (HMMER v3.144) with cutoff 1e-5. We 

next counted, for each KEGG module, KEGG brite functional category, progenomes textual 

gene category and Pfam keyword category the number of genes included and excluded in all 

regions combined across all microbes. As the location of genes along microbial genomes is not 

random, p-values were calculated by permutations. In each permutation the sizes of both the 

regions and the gaps between them were preserved but their ordering was randomly shuffled, 

followed by examinations of genes in these regions and comparison of the number of included 

and excluded gene in each KEGG module, brite functional category, etc., to the number found 

without randomization. This was performed 100,000 times. 

  

Calculation of microbial growth rates 

Microbial growth rates were quantified as peak-to-trough ratio (PTR) using the method and 

software provided in ref. 26. PTRs were calculated for all the strains that were found to contain 

at least one deletion-SV and that whose reference genome sequence was complete (i.e., not 

fragmented to contigs, as required by the PTR method26), skipping the step of selecting a 

representative strain per species. Mann-Whitney U-test was ran between PTRs of a bacteria in 

samples in which it contained a certain deletion-SV and PTRs of the same bacteria in samples 

in which the same region was deleted, provided that at least 25 samples of each kind were 

present. 

 

Association of SVs with disease-risk factors 

Variable-SVs were Spearman correlated to disease risk factors (MAP, waist circumference, 

weight, BMI, week-long median glucose levels, glycated hemoglobin, age, total and HDL 

cholesterol) and p-values were calculated, ensuring a minimum of 20 subjects in each 

comparison. Two-sided Mann-Whitney U test was used to calculate significance of associations 



between deletion-SVs and the same disease risk factors, demanding at least 5 subjects in each 

comparison and at least 5 unique values in each group. FDR correction was performed on 

variable- and deletion-SV associations separately. 

 

Statistical analyses 

Unless otherwise mentioned, all relevant statistical tests used were two-sided. p-values for 

Spearman correlations where calculated using the t-distribution, through the implementation in 

the python scipy.stats.spearmanr module (http://www.scipy.org/). FDR was performed using 

the Benjamini and Hochberg method45 implemented in the python mne package.  

 

ICRA - Iterative Coverage-based Read Assignment algorithm 

We devised an iterative read assignment algorithm which uses read assignments and 

sequencing qualities to calculate the sequencing coverage depth along genomic elements (i.e., 

bacterial genomes or gene sequences) in the microbiome. Sequencing coverage is then used to 

both qualitatively assess the presence or absence of each microbe by demanding a minimum 

coverage across each genomic element, as well as to quantitatively estimate the relative 

abundance of each microbe disregarding outlier genomic positions where extremely high or low 

coverage exists. Microbial relative abundances are subsequently used to estimate read 

assignments, repeating the process to convergence. 

For a more formal description of our algorithm, let i=1,2,…,R be the index of 

metagenomic reads in a sample; let j=1,2,…,G be the index of genomic elements in a database 

of such elements; and 𝑝(𝑖, 𝑗)𝑘  =  𝑝(𝑖, 𝑗)1, 𝑝(𝑖, 𝑗)2, … , 𝑝(𝑖, 𝑗)𝑁(𝑖,𝑗) be all the possible alignment 

positions for read i in genomic element j (N(i,j) is the total number of possible alignments of i to 

element j, in most cases only one), such that if the metagenomic read i is assigned to position 

http://www.scipy.org/


𝑝(𝑖, 𝑗)𝑘, it spans an alignment from 𝑝(𝑖, 𝑗)𝑘 to approximately 𝑝(𝑖, 𝑗)𝑘  +  𝜌𝑖, where 𝜌𝑖 is the length 

of read i. 

Our goal is, therefore to find, for each i, j and k, 𝜆𝑖,𝑗,𝑘, an indicator variable for the origin 

of read i: 

𝜆𝑖,𝑗,𝑘 = 1 𝑖𝑓𝑓 𝑟𝑒𝑎𝑑 𝑖 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑗 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝(𝑖, 𝑗)𝑘 

To approximate 𝜆𝑖,𝑗,𝑘, we calculate, for each read the probability 𝛿𝑖,𝑗,𝑘 that read i 

originated from the genomic element j at position 𝑝(𝑖, 𝑗)𝑘, as: 

𝛿𝑖,𝑗,𝑘 =
𝜋𝑗𝜃𝑗𝑞𝑖,𝑗,𝑘

∑ 𝜋𝑙𝜃𝑙𝑞𝑖,𝑙,𝑚𝑙,𝑚

 

Where: 

● 𝜋𝑗 = 𝑓({𝛿𝑖,𝑗,𝑘  ∀𝑖, 𝑘}) 

𝜋𝑗 is the estimated relative abundance of the genomic element j. In the initial iteration of 

the algorithm, 𝜋𝑗 is calculated by counting all reads mapped to genomic element j and 

then dividing the result by the total number of reads. Reads mapped to multiple genomic 

elements are initially distributed according to quality of mapping (see q below). 

Function f divides the genomic element j to bins of a size defined by the user (1kbp by 

default), calculates bin coverage by summing all 𝛿𝑖,𝑗,𝑘(from previous iteration) in each 

genomic bin, and calculates 𝜋𝑗as the median of the n% most closely covered bins in the 

genomic element, with n defined by the user. For the default n of 60, we calculate the 

difference between the most covered bin and the least covered bin for every subset 

spanning 60% of the bins, find the subset in which the difference is minimal, and take its 

median coverage. This median is then multiplied by the number of reads to reach an 

estimation of the true number of reads originating from the genomic element j. This 

number is then divided by the total number of reads assigned to all genomic elements to 

calculate 𝜋𝑗. 𝜋𝑗 is then normalized by the length of the genomic element (or its harboring 

microbe), but this could be turned off by the user. 



● 𝜃𝑗 = ∑ 𝐼𝑖,𝑗,𝑘𝑖,𝑘  

Where 𝐼𝑖,𝑗,𝑘 = 1 𝑖𝑓𝑓 𝛿𝑖,𝑗,𝑘 > 𝛿𝑖,𝑙,𝑚 ∀𝑙, 𝑚  

i.e., the sum of reads preferentially mapped to this genomic element. This parameter 

facilitates faster convergence but results in reduced accuracy, and is suggested for use 

in case of very large reference datasets. With default ICRA parameters, it will be set to 1 

(and therefore ignored). 

● 𝑞𝑖,𝑗,𝑘 = ∏ 𝑞𝑢𝑎𝑙(𝑝𝑜𝑠)𝜇(𝑖,𝑗,𝑝(𝑖,𝑗)𝑘+𝑝𝑜𝑠)(1 − 𝑞𝑢𝑎𝑙(𝑝𝑜𝑠))1−𝜇(𝑖,𝑗,𝑝(𝑖,𝑗)𝑘+𝑝𝑜𝑠)𝜌
𝑝𝑜𝑠=0  

is the probability of a correct mapping, given the mismatches in the read and the 

sequencing qualities. Where qual(pos) is the probability of correct sequencing in position 

pos calculated from fastq qualities and 𝜇(𝑖, 𝑗, 𝑝(𝑖, 𝑗)𝑘 + 𝑝𝑜𝑠) = 1if there is a match 

between nucleotide in position pos in read i to the one in position 𝑝(𝑖, 𝑗)𝑘+pos in genomic 

element j and 0 otherwise. 

● The term ∑ 𝜋𝑙𝜃𝑙𝑞𝑖,𝑙,𝑚𝑙,𝑚  is used to normalize 𝛿𝑖,𝑗,𝑘such that the sum of all possible 

assignments of read i equals 1, where l and m refer to all possible genomic elements 

and positions thereof to which read i is mapped. 

 

If 𝛿𝑖,𝑗,𝑘 is lower than a user-set parameter 𝜖, with a default of 10-6, this specific mapping is 

removed from subsequent analysis thereby reducing noise typically originating by highly 

homologous regions from in subsequent iterations. 

  

Bacterial strain culture and sequencing 

Seven strains were obtained and grown to stationary phase as listed in Table S6. DNA was 

extracted using QIAgen DNAeasy Blood & Tissue kit (Cat# 69504) by the protocol using 

pretreatment of Gram-positive or Negative bacteria following purification of total DNA from 

animal tissues. 

Following that, 100 ng of DNA was sonicated using Covaris E220X and and Illumina 

library was prepared for each strain as previously described46. The seven strains were 



sequenced to a minimum depth of 3M reads by a NextSeq® 500 machine with Illumina NS 

500/550 High Output V2 75 cycle kit.  

 

CAMI dataset comparison 

We downloaded all 180bp-spaced toy datasets for the 1st CAMI challenge47 from the CAMI 

challenge website (https://data.cami-challenge.org/participate). We created a database of all 

taxonomic entities in CAMI using NCBI taxon IDs provided for all gold-standard abundances. 

We indexed this database using GEM indexer39 and mapped all metagenomic reads to the 

indexed database using GEM mapper. In the baseline setting, read assignment was not 

corrected using ICRA, and the assignment of reads that were mapped to more than one 

genome was a uniform division between these genomes. In the ICRA-corrected setting, read 

assignment was given by applying ICRA to GEM mapper output. For MetaPhyler48 read 

classification, we created a MetaPhyler classifier based on the same CAMI reference database 

using the buildMetaphyler.pl command with a sequence length of 100bp and classified CAMI 

reads using the runClassifier.pl command with default parameters. For Kraken41 comparison, 

we built a custom Kraken database based on the same CAMI reference database and ran 

Kraken as above. The four resulting assignment sets were compared to the gold standard 

provided by CAMI to derive correct assignment ratios. 

 

SV explorer 

SV explorer, presented in ED Fig. 3 and accessible through https://genie.weizmann.ac.il/SV/, 

was created using bokeh for Python (http://bokeh.pydata.org) 

  

Code availability 

ICRA, SGV-Finder, and the SV Browser are available through github at 

https://github.com/segalab/SGVFinder. 

https://data.cami-challenge.org/participate
http://bokeh.pydata.org/
https://github.com/segalab/SGVFinder
https://github.com/segalab/SGVFinder
https://github.com/segalab/SGVFinder
https://github.com/segalab/SGVFinder


  

Data availability 

The 7 strains samples used in Fig. 1c are available through ENA, accession ENA: 

PRJEB25194. The 887 samples are publicly available through ENA, accession numbers ENA: 

PRJEB11532, ENA: PRJEB17643. The raw metagenomic sequencing data for the LifeLines 

DEEP cohort, and age and sex information per sample are available from the European 

genome-phenome archive (https://www.ebi.ac.uk/ega/) at accession number 

EGAS00001001704. Other phenotypic data can be requested from the LifeLines cohort study 

(https://lifelines.nl/lifelines-research/access-to-lifelines) following the standard protocol for data 

access. 
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Extended Data Figure 1. Superior assignment of metagenomic reads using the Iterative 

Coverage-based Read-Assignment (ICRA) algorithm. (a) Boxplot (centre, median; box, IQR; 

whiskers, 10th and 90th percentiles) of ambiguous read assignment ratios of 887 samples11,20 

mapped to a reference database of 3,953 representative microbial genomes (Methods) before 

(blue) and after (yellow) ICRA correction. (b) Illustration of our computational pipeline. (c-e) 

Swarm-plots of the ratio of correct read assignment per taxonomy level with no assignment 

correction (blue) or following assignment correction with ICRA (yellow), Kraken41 (red) or 

MetaPhyler48 (green) for CAMI47 high complexity (c; n=5), medium complexity (d; n=2) and low 

complexity (e; n=1) datasets. Note that MetaPhyler did not provide sub-species level read 

assignments. * two-sided Mann-Whitney U p<0.05, **p<0.01.  

  

Extended Data Figure 2. ICRA estimates relative abundances with accuracy comparable 

to other tools. (a) Dot-plot of the calculated relative abundance of 7 bacterial species in 100 

samples, using either ICRA (yellow), MetaPhlAn240 (blue), or Bracken42 (red), as compared to 

the true relative abundances. Inset shows a violin plot (white dot, median; black rectangle, IQR, 

whiskers, 1.5*IQR) of Bray-Curtis dissimilarities between the estimates (n=100) of each method 

and the true abundances. ** two-sided Wilcoxon signed-rank p=1.3x10-4 **** p=3.0x10-18. (b-h) 

Dot-plot of the calculated relative abundance (y-axis) of A. finegoldii (b), B. faecium (c), C. 

flavigena (d), E. faecalis (e), L. gasseri (f), S. cristatus (g) and A. muciniphila (h) in 100 samples, 

using either ICRA (yellow), MetaPhlAn (blue), or Bracken (red), as compared to the true relative 

abundances (x-axis). R2 was calculated using Pearson correlation. 

 

Extended Data Figure 3. SV Explorer enables investigation of co-varying genes. (a-b) 

Illustration of the online SV explorer available at http://genie.weizmann.ac.il/SV/, spanning the 

entire R. torques genome (a) and spanning a 26-kbp region of this genome (b). 

  



Extended Data Figure 4. SVs are prevalent in the human microbiome across two cohorts. 

(a) Heatmap showing the number of subjects with SVs (yellow color scale), the number of SVs 

(green color scale), the mean SV size (blue color scale) and the fraction of the genome that is 

variable (red color scale), for each microbe analyzed, along with their phylogenetic tree. (b) 

Heatmap showing the genomic length percentage of variable- and deletion-SVs replicated in the 

Lifelines cohort for each microbe analyzed.  

 

Extended Data Figure 5. Growth rates-associated SVs harbor specific functions. Fold 

difference (x-axis) and statistical significance (Methods; y-axis) of the enrichment of functional 

KEGG modules in SVs present in regions significantly associated with microbial growth 

dynamics. A total of 56,088 genes were considered, 3,805 of them in growth rates-associated 

SVs.  

  

Extended Data Figure 6. SVs are associated with microbial growth rates. (a) Boxplot 

(centre, median; box, IQR; whiskers, IQR*1.5) of microbial growth rates calculated using PTR26 

in individuals harboring a 7-segment deletion in the E. eligens genome (blue, n=281) and 

individuals with no deletion (maroon, n=166); (b) Genomic map of E. eligens with the 7 

segments marked in yellow. (c) As in (a) for a 9-segment deletion-SV in the E. eligens genome 

(blue, n=57) and individuals with no deletion (maroon, n=390); (d) As in (b) with the 9 segments 

marked in orange. p - two-sided Mann-Whitney U test. 

  

Extended Data Figure 7. SVs are associated with disease risk, replicated in a second 

cohort. Full heatmap of statistically significant correlations (Methods) between disease risk 

factors and variable-SVs, depicting associations replicated (yellow star), replicated using a 

different variable (orange star) or reversed (gray star) in the Lifelines cohort. 

  



Extended Data Figure 8. Gene content of SVs associated with host risk factors. (a) 

Boxplot (centre, median; Box, IQR; whiskers, IQR*1.5) of glycated hemoglobin in individuals 

harboring an 11-kbp deletion in the E. rectale genome (blue, n=253) and individuals with no 

deletion (maroon, n=377); p - two-sided Mann-Whitney U test. (b) Same as Fig. 4d for this 11-

kbp genomic region of E. rectale. (c) Boxplot of BMI in individuals harboring a 4-kbp deletion in 

the A. hadrus genome (blue, n=276) and individuals with no deletion (maroon, n=403). (d) Same 

as Fig. 4d for this 4-kbp genomic region of A. hadrus. (e) Depiction of the genes encoded in the 

region, which encode key enzymes in the folate biosynthesis pathway. Note correspondence of 

enzyme commission (EC) numbers with panel d. (f) Boxplot of total cholesterol in individuals 

harboring an 18-kbp deletion in the R. intestinalis genome (blue, n=194) and individuals with no 

deletion (maroon, n=68). (g) same as Fig. 4d for a 10-kbp stretch of the 18-kbp region in R. 

intestinalis. (h) Boxplot of BMI in individuals harboring an 8-kbp deletion in the C. comes 

genome (blue, n=158) and individuals with no deletion (maroon, n=294). (i) Same as Fig. 4d for 

this 8-kbp genomic region of C. comes. p - two-sided Mann-Whitney U test. Boxplots - centre, 

median; box, IQR; whiskers, IQR*1.5. 

  

Extended Data Figure 9. Detailed examples of SV replication. Replication of deletion and 

variable regions depicted in Fig. 4 and ED Fig. 8 between the Israeli (yellow) and Dutch Lifelines 

DEEP (blue) cohorts. 

  

Extended Data Figure 10. A SV of A. hadrus associated with host risk factors. (a-c) 

Boxplot of waist circumference (a), BMI (b) and HDL cholesterol (c) in individuals of the Israeli 

cohort harboring the 31-kbp deletion in the A. hadrus genome depicted in Fig. 4 (blue, n=213) 

and individuals with no deletion (maroon, n=468). (d) Boxplot of BMI in individuals of the Dutch 

Lifelines DEEP cohort harboring the same 31-kbp deletion in the A. hadrus genome (blue, 



n=249) and individuals with no deletion (maroon, n=547). p - two-sided Mann-Whitney U test. 

Boxplots - centre, median; box, IQR; whiskers, IQR*1.5. 

 

 


