
 

 

 University of Groningen

Limit-point/limit-circle classification for Hain-Lust type equations
Hassi, Seppo; Moller, Manfred; de Snoo, Henk

Published in:
Mathematische Nachrichten

DOI:
10.1002/mana.201600254

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hassi, S., Moller, M., & de Snoo, H. (2018). Limit-point/limit-circle classification for Hain-Lust type
equations. Mathematische Nachrichten, 291(4), 652-668. https://doi.org/10.1002/mana.201600254

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1002/mana.201600254
https://research.rug.nl/en/publications/e9f9985a-c388-49f8-b568-d1d45d865e15
https://doi.org/10.1002/mana.201600254


Received: 15 June 2016 Revised: 14 June 2017 Accepted: 26 June 2017

DOI: 10.1002/mana.201600254

O R I G I N A L PA P E R

Limit-point/limit-circle classification for Hain–Lüst type
equations

Seppo Hassi1 Manfred Möller2 Henk de Snoo3

1Department of Mathematics and Statistics,

University of Vaasa, P.O. Box 700, 65101

Vaasa, Finland

2The John Knopfmacher Centre for Applica-

ble Analysis and Number Theory, School of

Mathematics, University of the Witwaters-

rand, Wits, 2050, South Africa

3Johann Bernoulli Institute for Mathemat-

ics and Computer Science, University of

Groningen, P.O. Box 407, 9700 AK

Groningen, Nederland

Correspondence
Professor Henk de Snoo, Johann Bernoulli

Institute for Mathematics and Computer Sci-

ence, University of Groningen, P.O. Box 407,

9700 AK Groningen, Nederland

Email: hsvdesnoo@gmail.com

Funding Information
Finnish Academy of Science and Letters;

NRF of South Africa, Grant No. 69659.

Abstract
Hain–Lüst equations appear in magnetohydrodynamics. They are Sturm–Liouville

equations with coefficients depending rationally on the eigenvalue parameter. In this

paper such equations are connected with a 2 × 2 system of differential equations,

where the dependence on the eigenvalue parameter is linear. By means of this connec-

tion Weyl's fundamental limit-point/limit-circle classification is extended to a general

setting of Hain–Lüst-type equations.

K E Y W O R D S
Hain–Lüst equation, mixed-order differential system, Sturm–Liouville problem, Weyl's limit-point/limit-

circle classification

M S C ( 2 0 1 0 )
Primary: 34B20; Secondary: 34A30, 34B07, 34B24

1 INTRODUCTION

Let −𝐷𝑝𝐷 + 𝑞 be a Sturm–Liouville expression on the interval [0,∞), where the coefficient functions 𝑝 and 𝑞 are real-valued

and measurable with 𝑝 ≠ 0 a. e. and 𝐷 denotes differentiation with respect to the single variable. In [48] it was shown by Weyl

that for this expression there is the so-called limit-point/limit-circle alternative. This means firstly that for every nonreal 𝜆, the

set of solutions of (−𝐷𝑝𝐷 + 𝑞)𝑦 = 𝜆𝑦 belonging to 𝐿2[0,∞) is a vector space of dimension 2 or 1, and secondly that either for

each 𝜆 ∈ ℂ this solution space has dimension at most 1 or for each 𝜆 ∈ ℂ its dimension is 2. Years later Weyl came back to this

theme in [49, Equation (13)], in which he gave a similar treatment for a first-order system of differential equations where the

eigenvalue parameter appears in the coefficients in a linear-fractional way.

In the present paper a Sturm–Liouville expression will be considered on [0,∞) whose coefficient functions depend rationally

on the eigenvalue parameter. In fact, this Sturm–Liouville expression is closely connected to the differential expression

𝕃 =
(
−𝐷𝑝𝐷 + 𝑞 −𝐷𝑐 + 𝑎

𝑐𝐷 + 𝑎 𝑟

)
, (1.1)

which is a 2 × 2 system of mixed-order formal differential expressions considered on the interval [0,∞), where the coefficient

functions 𝑝, 𝑞, 𝑐, 𝑟, 𝑎 are real-valued and measurable with 𝑝 ≠ 0 a. e. Appropriate additional assumptions on the coefficient

functions will be given later. It is Weyl's classical approach that will be generalized to the system 𝕃. To this end it is important

to observe the following. For any solution 𝑦 = (𝑦1, 𝑦2)⊺ of the equation (𝕃 − 𝜆)𝑦 = 0 the first component 𝑦1 is a solution of the

(generalized) Sturm–Liouville equation

−
(
𝜔(⋅, 𝜆)𝑦′1

)′ + (𝑞(⋅, 𝜆) − 𝜆)𝑦1 = 0, (1.2)
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where the coefficients are given by

𝜔(⋅, 𝜆) = 𝑝 + 𝑐2

𝜆 − 𝑟
, 𝑞(⋅, 𝜆) = 𝑞 −

(
𝑐𝑎

𝜆 − 𝑟

)′
+ 𝑎2

𝜆 − 𝑟
, (1.3)

while the second component 𝑦2 is related to the first component 𝑦1 via

𝑦2 =
𝑐

𝜆 − 𝑟
𝑦′1 +

𝑎

𝜆 − 𝑟
𝑦1. (1.4)

Conversely, it is easily seen that any solution 𝑦1 of (1.2) with 𝑦2 defined by (1.4) gives a solution 𝑦 = (𝑦1, 𝑦2)⊺ of (𝕃 − 𝜆)𝑦 = 0.

Note that the coefficient functions in (1.3) depend rationally on the eigenvalue parameter. Of course, restrictions on 𝜆 have to be

imposed such that (1.3) and (1.4) are well-defined. Although the differential equation (1.2) for 𝑦1 can be considered in its own

right, 𝑦2 given by (1.4) is needed to find the appropriate regularity condition for the solutions, i. e., 𝑦 ∈
(
𝐿2[0,∞)

)2
rather than

𝑦1 ∈ 𝐿2[0,∞) turns out to be the adequate criterion for the limit-point/limit-circle classification.

The first part of the Weyl approach, the pointwise limit-point/limit-circle alternative for 𝜆 ∈ ℂ ⧵ℝ, is based on Green's

formula for 𝕃, and as such is a generalization of the results obtained in [13] for the case 𝑎 = 0. Subject to a suitable definition of

the quasi-derivative, the proof is identical to that in the classical case. For the second part, Equation (1.2) will be used, and the

classical variation of constants approach will be employed. This requires the components 𝑦1 and 𝑦2 of all solutions 𝑦 involved,

although originally only the component 𝑦1 occurs in (1.2). The occurrence of the function 𝑦2 is due to the fact that integration

by parts has to be used in order to obtain useful estimates. Indeed, taking two linearly independent solutions 𝜑1 and 𝜓1 of (1.2)

with 𝜆 = 𝜆0 and a solution 𝜒1 of (1.2), the variation of constants formula already involves 𝜑2, 𝜓2 and 𝜒2, so that they must be

taken into account. This integration by parts requires certain regularity conditions on the coefficient functions.

The motivation to consider expressions as in (1.1) or equations as in (1.2) is provided by their occurrence in magnetohy-

drodynamics. After separation of variables, a cylindrical plasma configuration can be described by a 3 × 3 system, where one

component is a second-order ordinary differential equation, whereas all other components are first-order differential equations

or multiplications, see [11, (8)]; see also [10, (9.28)], [33]. Eliminating two of the three components of the system leads to the

celebrated Hain–Lüst equation, see [11, (9)] or [10, (9.31)], which is a second-order ordinary differential equation depending

rationally on the spectral parameter. More precisely, the 3 × 3 system is a 2 × 2 block system whose block diagonal elements are

a second-order differential operator and a multiplication operator, respectively, whereas the off-diagonal blocks are first-order

differential operators. An abstract theory of 2 × 2 blocks of unbounded operators has been initiated in [4,12]; the above 3 × 3
system was shown to be a particular example, where the Hain–Lüst equation is the Schur complement of the multiplication

block.

Various aspects related to such blocks of differential operators of different order or corresponding differential operators

depending rationally on the eigenvalue parameter, such as selfadjoint realizations, spectral functions, and essential spectra have

been dealt with in the literature. Results on the essential spectrum can be found in [1,4,8,9,12,13,19,25,29,35,36,43]; see also

[47]. Titchmarsh–Weyl theory for second-order differential equations depending rationally on the eigenvalue parameter was

considered in [1,3,6,13,28,31,46], where apart from [3] the denominator of the rational coefficients depends linearly on the

eigenvalue parameter, that is, the problem is of the form (1.2). The simplest form of such a 2 × 2 block system of differential

operators is when the system itself is 2 × 2, and if such a system is additionally formally selfadjoint, then it is of the form (1.1).

Most of the publications above have dealt with this case, in particular when 𝑐 = 0 (and 𝑝 = 1).

As indicated above in the present setting it is the original approach of Weyl which is being adapted to treat the delicate

interaction between systems of the form (1.1) and differential expressions in (1.2) with coefficients of the form (1.3). The results

in the present paper provide a suitable framework for an operator-theoretic and spectral-theoretic treatment of boundary value

problems for Hain–Lüst-type differential expressions generated by the system of differential equations in (1.1) along the lines

of the particular case treated in [13]. In particular, the limit-point/limit-circle classification will play a fundamental role when

associating appropriate boundary triplets to the differential expression 𝕃; see also the remarks at the end of the paper.

An outline of this paper follows. In Section 2, Green's formula for the differential expression is derived. The second-order

differential expression generated by 𝕃 is considered in Section 3, which also contains an existence and uniqueness result for

an initial value problems associated with the equation (𝕃 − 𝜆)𝑦 = 0. In Section 4 and Section 5 the limit-point/limit-circle

alternative will be shown for the system (1.1) under mild conditions on the coefficient functions; see Theorem 4.1 and Corollary

5.4. Furthermore, conditions on 𝜆0, 𝜆 ∈ ℂ will be given such that limit-circle at 𝜆0 implies limit-circle at 𝜆 when 𝜆0 and 𝜆 do not

belong to the essential range of the functions 𝑟 and 𝑐2∕𝑝; see Theorem 5.3. These results generalize the classical result known

for Sturm–Liouville expressions of the form −𝐷𝑝𝐷 + 𝑞; see Corollary 6.1. In addition, in Section 6 the effect of the coefficients
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𝑎 and 𝑐, determining the off-diagonal entries in (1.1), on the limit-point/limit-circle classification is discussed by means of some

examples.

For a measurable set Λ ⊂ ℝ and a measurable function 𝑓 ∶ Λ → ℂ the spectrum of the multiplication operator induced by 𝑓

is denoted by

𝜎(𝑓 ) =
{
𝜆 ∈ ℂ ∶ ess inf𝑥∈Λ |𝑓 (𝑥) − 𝜆| = 0

}
.

Note that 𝜎(𝑓 ) coincides with the essential range of 𝑓 .

In order not to make the formulation unnecessarily lengthy, notations like almost everywhere are dropped or essential limit

inferior is shortened to limit inferior, which imposes no loss of generality if the functions involved are suitably changed on a set

of Lebesgue measure zero. In this sense, the support of 𝑓 defined on [0,∞), supp(𝑓 ), is the closure of {𝑥 ∈ [0,∞) ∶ 𝑓 (𝑥) ≠ 0}.

2 GREEN 'S FORMULA FOR THE DIFFERENTIAL EXPRESSION 𝕃

Some formal properties of the differential expression 𝕃 in (1.1), which is a 2 × 2 system of mixed-order formal differential

expressions, will be presented. The following set of conditions on the coefficients guarantees that the differential expression 𝕃
is well-defined.

Assumption 2.1. The functions 𝑝, 𝑞, 𝑐, 𝑟, 𝑎 ∶ [0,∞) → ℝ are measurable and satisfy the following conditions:

(i) 𝑝(𝑥) ≠ 0 for all 𝑥 ∈ [0,∞);
(ii) 1∕𝑝 and 𝑞 belong to 𝐿1

loc[0,∞);

(iii) 𝑎 belongs to 𝐿2
loc[0,∞);

(iv) 𝑐2∕𝑝 and 𝑟 belong to 𝐿∞
loc[0,∞).

In the rest of this paper the following notation

𝛾 = 𝑐2∕𝑝 (2.1)

will be useful; by assumption the function 𝛾 belongs to 𝐿∞
loc[0,∞). Observe that Assumption 2.1 has as a direct consequence:

(𝑐∕𝑝)2 = (1∕𝑝)𝛾 ∈ 𝐿1
loc[0,∞) or

𝑐∕𝑝 ∈ 𝐿2
loc[0,∞). (2.2)

Let 𝐴𝐶loc[0,∞) denote the set of all functions which are absolutely continuous on every compact subset of [0,∞). For a

2-vector function 𝑦 ∈
(
𝐿2
loc[0,∞)

)2
whose first component 𝑦1 belongs to 𝐴𝐶loc[0,∞) define the following quasi-derivative

𝑦[1] = 𝑝𝑦′1 + 𝑐𝑦2. (2.3)

The next result describes a natural domain on which the differential expression in 𝕃 in (1.1) is meaningful. This interpretation

of 𝕃 will be used in the rest of this paper.

Proposition 2.2. Let the domain of 𝕃 be defined by

𝐷(𝕃) =
{
𝑦 ∈

(
𝐿2
loc[0,∞)

)2 ∶ 𝑦1, 𝑦
[1] ∈ 𝐴𝐶loc[0,∞)

}
. (2.4)

Then 𝕃 maps 𝐷(𝕃) into 𝐿1
loc[0,∞) × 𝐿2

loc[0,∞) and

𝕃𝑦 =
(
−𝐷𝑦[1] + 𝑞𝑦1 + 𝑎𝑦2
𝑐𝐷𝑦1 + 𝑎𝑦1 + 𝑟𝑦2

)
(2.5)

for all 𝑦 ∈ 𝐷(𝕃).
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Proof. It follows from (1.1) that for 𝑦 ∈ 𝐷(𝕃),

𝕃𝑦 =
(
−𝐷𝑝𝐷 + 𝑞 −𝐷𝑐 + 𝑎

𝑐𝐷 + 𝑎 𝑟

)(
𝑦1
𝑦2

)
=
(
−𝐷𝑝𝐷𝑦1 + 𝑞𝑦1 −𝐷𝑐𝑦2 + 𝑎𝑦2

𝑐𝐷𝑦1 + 𝑎𝑦1 + 𝑟𝑦2

)
,

where 𝐷𝑝𝐷𝑦1 +𝐷𝑐𝑦2 has to be understood as meaning 𝐷(𝑝𝐷𝑦1 + 𝑐𝑦2) = 𝐷𝑦[1]. Therefore 𝕃𝑦 is well-defined for 𝑦 ∈ 𝐷(𝕃) and
it has the representation (2.5). It is clear from Assumption 2.1 that the first component of 𝕃𝑦 belongs to 𝐿1

loc[0,∞) and also that
𝑎𝑦1 + 𝑟𝑦2 belongs to 𝐿2

loc[0,∞). Furthermore,

𝐷𝑦1 =
1
𝑝
(𝑝𝐷𝑦1 + 𝑐𝑦2) −

𝑐

𝑝
𝑦2,

so that by definition of 𝐷(𝕃) and by Assumption 2.1 and its consequence (2.2) it follows that

𝑐𝐷𝑦1 =
𝑐

𝑝
𝑦[1] − 𝑐2

𝑝
𝑦2 ∈ 𝐿2

loc[0,∞).

Hence the second component of 𝕃𝑦 belongs to 𝐿2
loc[0,∞), which completes the proof. □

For 𝑢, 𝑣 ∈ 𝐷(𝕃) define the Lagrange bracket of 𝑢 and 𝑣 by

[𝑢(𝑡), 𝑣(𝑡)] = 𝑢1(𝑡)𝑣[1](𝑡) − 𝑢[1](𝑡)𝑣1(𝑡), 𝑡 ∈ [0,∞). (2.6)

Clearly, the Lagrange bracket is locally absolutely continuous. Furthermore, one sees that (𝕃𝑢)T𝑣 ∈ 𝐿1
loc[0,∞) by Proposition

2.2, and therefore

(𝑢, 𝑣)𝑏 = ∫
𝑏

0
(𝕃𝑢)T(𝑡) 𝑣(𝑡) 𝑑𝑡

is well-defined for all 𝑏 ∈ (0,∞). Green's formula for 𝕃 can now be formulated and shown.

Lemma 2.3. Let 𝑏 > 0 and let 𝑢, 𝑣 ∈ 𝐷(𝕃). Then

(𝑢, 𝑣)𝑏 − (𝑣, 𝑢)𝑏 = [𝑢(𝑏), 𝑣(𝑏)] − [𝑢(0), 𝑣(0)]. (2.7)

Proof. By Proposition 2.2,

(𝑢, 𝑣)𝑏 = −∫
𝑏

0

(
𝑢[1]

)′ (𝑡)𝑣1(𝑡) 𝑑𝑡 + ∫
𝑏

0
(𝑞(𝑡)𝑢1(𝑡) + 𝑎(𝑡)𝑢2(𝑡))𝑣1(𝑡) 𝑑𝑡

+ ∫
𝑏

0
(𝑐(𝑡)𝑢′1(𝑡) + 𝑎(𝑡)𝑢1(𝑡) + 𝑟(𝑡)𝑢2(𝑡))𝑣2(𝑡) 𝑑𝑡.

Integration by parts leads to

(𝑢, 𝑣)𝑏 = −
(
𝑢[1](𝑡)𝑣1(𝑡)

)|||𝑏0 + ∫
𝑏

0
𝑢[1](𝑡)𝑣′1(𝑡) 𝑑𝑡 + ∫

𝑏

0
(𝑞(𝑡)𝑢1(𝑡) + 𝑎(𝑡)𝑢2(𝑡))𝑣1(𝑡) 𝑑𝑡

+ ∫
𝑏

0
(𝑐(𝑡)𝑢′1(𝑡) + 𝑎(𝑡)𝑢1(𝑡) + 𝑟(𝑡)𝑢2(𝑡))𝑣2(𝑡) 𝑑𝑡.

Hence, by symmetry,

(𝑣, 𝑢)𝑏 = −
(
𝑢1(𝑡)𝑣[1](𝑡)

)|||𝑏0 + ∫
𝑏

0
𝑢′1(𝑡)𝑣[1](𝑡) 𝑑𝑡 + ∫

𝑏

0
(𝑞(𝑡)𝑣1(𝑡) + 𝑎(𝑡)𝑣2(𝑡))𝑢1(𝑡) 𝑑𝑡

+ ∫
𝑏

0
(𝑐(𝑡)𝑣′1(𝑡) + 𝑎(𝑡)𝑣1(𝑡) + 𝑟(𝑡)𝑣2(𝑡))𝑢2(𝑡) 𝑑𝑡.
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It follows that

(𝑢, 𝑣)𝑏 − (𝑣, 𝑢)𝑏 = [𝑢(𝑏), 𝑣(𝑏)] − [𝑢(0), 𝑣(0)] + ∫
𝑏

0

{
𝑢[1](𝑡)𝑣′1(𝑡) + 𝑐(𝑡)𝑢′1(𝑡)𝑣2(𝑡) − 𝑢′1(𝑡)𝑣[1](𝑡) − 𝑐(𝑡)𝑣′1(𝑡)𝑢2(𝑡)

}
𝑑𝑡,

where the integrand on the right-hand side is zero in view of

𝑢[1]𝑣′1 − 𝑢′1𝑣
[1] = (𝑝𝑢′1 + 𝑐𝑢2)𝑣′1 − 𝑢′1(𝑝𝑣

′
1 + 𝑐𝑣2) = 𝑐𝑢2𝑣

′
1 − 𝑢′1𝑐𝑣2.

Therefore (2.7) has been shown. □

The following consequence of Green's formula is now immediate.

Lemma 2.4. Let 𝜆, 𝜇 ∈ ℂ with 𝜆 ≠ �̄�, let 𝑢(⋅, 𝜆) ∈ 𝐷(𝕃) be a solution of (𝕃 − 𝜆)𝑦 = 0, and let 𝑣(⋅, 𝜇) ∈ 𝐷(𝕃) be a solution of
(𝕃 − 𝜇)𝑦 = 0. Then

∫
𝑏

0
𝑢(𝑡, 𝜆)⊺𝑣(𝑡, 𝜇) 𝑑𝑡 = [𝑢(𝑏, 𝜆), 𝑣(𝑏, 𝜇)] − [𝑢(0, 𝜆), 𝑣(0, 𝜇)]

𝜆 − �̄�
(2.8)

holds for all 𝑏 ∈ (0,∞).

Proof. Observing that

(𝜆 − �̄�)∫
𝑏

0
𝑢(𝑡, 𝜆)⊺𝑣(𝑡, 𝜇) 𝑑𝑡 = (𝑢(⋅, 𝜆), 𝑣(⋅, 𝜇))𝑏 − (𝑣(⋅, 𝜇), 𝑢(⋅, 𝜆))𝑏 ,

(2.8) follows immediately from (2.7). □

3 THE HOMOGENEOUS DIFFERENTIAL EQUATION

The solutions of the equation (𝕃 − 𝜆)𝑦 = 0 with 𝑦 ∈ 𝐷(𝕃) will now be connected to the solutions of the equations (1.2) and

(1.4); moreover, an existence and uniqueness theorem will be presented for the corresponding initial value problems. In order

to give an appropriate meaning to formulas like (1.2) and (1.4) one needs to restrict the parameter 𝜆 ∈ ℂ.

Definition 3.1. The sets Ω and Ω′ of 𝕃-admissible numbers 𝜆 ∈ ℂ are defined by

Ω = ℂ ⧵ 𝜎(𝑟), Ω′ = ℂ ⧵ (𝜎(𝑟) ∪ 𝜎(𝑟 − 𝛾)),

respectively, where 𝛾 is as in (2.1).

Now the conditions in the following Assumption 3.2 will be assumed; they are stronger than the ones in Assumption 2.1.

Assumption 3.2. The functions 𝑝, 𝑞, 𝑐, 𝑟, 𝑎 ∶ [0,∞) → ℝ are measurable, satisfy the conditions (i)–(iv) from Assumption 2.1,
and satisfy in addition:

(v) the functions 𝑎 and 𝑐 are locally absolutely continuous on [0,∞);
(vi) for all 𝑑1 > 0, 𝑟 is absolutely continuous on some open neighborhood of supp(𝑐𝑎) ∩ [0, 𝑑1) in [0,∞).

Observe that it immediately follows from Assumption 3.2, (v)–(vi) that for 𝜆 ∈ Ω one has

𝑐𝑎

𝜆 − 𝑟
∈ 𝐴𝐶loc[0,∞). (3.1)

Proposition 3.3. Let 𝜆 ∈ Ω and assume that (𝕃 − 𝜆)𝑦 = 0 with 𝑦 ∈ 𝐷(𝕃). Then, with the quasi-derivative 𝑦[1] defined as in
(2.3), one has

𝜔(⋅, 𝜆)𝑦′1 = 𝑦[1] − 𝑐𝑎

𝜆 − 𝑟
𝑦1, (3.2)

and 𝜔(⋅, 𝜆)𝑦′1 ∈ 𝐴𝐶loc[0,∞). Moreover, (1.2) and (1.4) are satisfied.
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Proof. Recall from (2.4) that 𝑦 ∈ 𝐷(𝕃) means that 𝑦1, 𝑦2 ∈ 𝐿2
loc[0,∞) and that 𝑦1, 𝑦[1] ∈ 𝐴𝐶loc[0,∞). Observing the represen-

tation (2.5) of 𝕃𝑦 one sees from the second component of (𝕃 − 𝜆)𝑦 = 0 that 𝑦2 can be expressed by 𝑦1 as in (1.4). It then follows
that

𝑦[1] − 𝑐𝑎

𝜆 − 𝑟
𝑦1 = 𝑝𝑦′1 + 𝑐𝑦2 −

𝑐𝑎

𝜆 − 𝑟
𝑦1 = 𝑝𝑦′1 +

𝑐2

𝜆 − 𝑟
𝑦′1 +

𝑐𝑎

𝜆 − 𝑟
𝑦1 −

𝑐𝑎

𝜆 − 𝑟
𝑦1 = 𝜔(⋅, 𝜆)𝑦′1,

which is (3.2).
As 𝑦1, 𝑦[1] ∈ 𝐴𝐶loc[0,∞), it follows from (3.1) and (3.2) that 𝜔(⋅, 𝜆)𝑦′1 ∈ 𝐴𝐶loc[0,∞). It remains to show that (1.2) holds. By

substituting 𝑦2 as in (1.4) to the first component of (𝕃 − 𝜆)𝑦 = 0 and applying (3.2) one obtains

0 = −𝐷𝑦[1] + 𝑐𝑎

𝜆 − 𝑟
𝑦′1 +

𝑎2

𝜆 − 𝑟
𝑦1 + (𝑞 − 𝜆)𝑦1

= −(𝜔(⋅, 𝜆)𝑦′1)
′ −

(
𝑐𝑎

𝜆 − 𝑟

)′
𝑦1 +

𝑎2

𝜆 − 𝑟
𝑦1 + (𝑞 − 𝜆)𝑦1

= −(𝜔(⋅, 𝜆)𝑦′1)
′ + (𝑞(⋅, 𝜆) − 𝜆)𝑦1.

Thus also (1.2) is satisfied. □

The above proof shows that the left-hand side of (1.2) is the Schur complement in 𝕃 − 𝜆 of its lower right entry 𝑟 − 𝜆.

Lemma 3.4. Let 𝜆 ∈ Ω and let 𝑢, 𝑣 ∈ 𝐷(𝕃) be solutions of (𝕃 − 𝜆)𝑦 = 0. Then

𝑢[1]𝑣1 − 𝑢1𝑣
[1] = 𝜔(⋅, 𝜆)𝑢′1𝑣1 − 𝑢1𝜔(⋅, 𝜆)𝑣′1 (3.3)

is constant.

Proof. In view of Proposition 3.3, (3.2) and (1.2) hold. Thus the identity (3.3) follows. Differentiating this identity and using
(1.2) lead to (

𝑢[1]𝑣1 − 𝑢1𝑣
[1])′ = (

𝜔(⋅, 𝜆)𝑢′1
)′
𝑣1 − 𝑢1

(
𝜔(⋅, 𝜆)𝑣′1

)′ = (𝑞(⋅, 𝜆) − 𝜆)𝑢1𝑣1 − 𝑢1(𝑞(⋅, 𝜆) − 𝜆)𝑣1 = 0.

□

The further study of the solutions of the equation (𝕃 − 𝜆)𝑦 = 0 requires a restriction to the set Ω′ ⊂ Ω of 𝕃-admissible num-

bers; cf. Definition 3.1.

Lemma 3.5. Let 𝜆 ∈ Ω′. Then

1∕𝜔(⋅, 𝜆) ∈ 𝐿1
loc[0,∞), 𝑞(⋅, 𝜆) ∈ 𝐿1

loc[0,∞).

Proof. The first statement immediately follows from (1.3), (2.1), Assumption 2.1, and

𝜔(⋅, 𝜆) = 𝑝

𝜆 − 𝑟
(𝜆 − 𝑟 + 𝛾). (3.4)

The second statement is clear by Assumption 3.2 and by (3.1). □

The next result is a converse to Proposition 3.3.

Proposition 3.6. Let 𝜆 ∈ Ω′, let 𝑦1 ∈ 𝐴𝐶loc[0,∞), and assume that 𝜔(⋅, 𝜆)𝑦′1 ∈ 𝐴𝐶loc[0,∞). Then

𝑦2 =
𝑐

𝜆 − 𝑟
𝑦′1 +

𝑎

𝜆 − 𝑟
𝑦1 ∈ 𝐿2

loc[0,∞) (3.5)

and 𝑦 = (𝑦1, 𝑦2)⊺ ∈ 𝐷(𝕃). Moreover, if 𝑦1 satisfies (1.2) then (𝕃 − 𝜆)𝑦 = 0.

Proof. In order to check (3.5) observe that (3.4), (2.2), the definition of Ω′, and the present assumptions show that

𝑐

𝜆 − 𝑟
𝑦′1 =

𝑐

𝜆 − 𝑟

1
𝜔(⋅, 𝜆)

𝜔(⋅, 𝜆)𝑦′1 =
𝑐

𝑝

1
𝜆 − (𝑟 − 𝛾)

𝜔(⋅, 𝜆)𝑦′1 ∈ 𝐿2
loc[0,∞).

By Assumption (2.1) and 𝜆 ∈ Ω′ one sees that 𝑎(𝜆 − 𝑟)−1 ∈ 𝐿2
loc[0,∞), so that 𝑎(𝜆 − 𝑟)−1𝑦1 ∈ 𝐿2

loc[0,∞). This proves (3.5).
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By the definitions (2.3) of 𝑦[1] and (3.5) of 𝑦2 it is now clear by direct substitution that

𝑦[1] = 𝑝𝑦′1 + 𝑐𝑦2 = 𝜔(⋅, 𝜆)𝑦′1 +
𝑐𝑎

𝜆 − 𝑟
𝑦1.

Thus by (3.1) and the present assumptions it follows that 𝑦[1] ∈ 𝐴𝐶loc[0,∞). Hence 𝑦 ∈ 𝐷(𝕃), and the second component of
(𝕃 − 𝜆)𝑦 is zero. One sees by direct substitution that

−𝐷𝑦[1] + 𝑞𝑦1 + 𝑎𝑦2 − 𝜆𝑦1 = −
(
𝜔(⋅, 𝜆)𝑦′1 +

𝑐𝑎

𝜆 − 𝑟
𝑦1

)′
+
(

𝑐𝑎

𝜆 − 𝑟
𝑦′1 +

𝑎2

𝜆 − 𝑟
𝑦1

)
+ (𝑞 − 𝜆)𝑦1

= −(𝜔(⋅, 𝜆)𝑦′1)
′ + (𝑞(⋅, 𝜆) − 𝜆)𝑦1.

Hence, if 𝑦1 satisfies (1.2) then also the first component of (𝕃 − 𝜆)𝑦 is zero. □

Together, Proposition 3.3 and Proposition 3.6 show the following correspondence. Recall that Assumption 3.2 is used through-

out.

Corollary 3.7. For 𝜆 ∈ Ω′ the equation (𝕃 − 𝜆)𝑦 = 0 is equivalent to the pair of equations (1.2), (1.4). In particular, there is a
one-to-one relation between the solutions 𝑦 of (𝕃 − 𝜆)𝑦 = 0 and the solutions 𝑦1 of (1.2).

Theorem 3.8. Let 𝜆 ∈ Ω′ and let 𝑐1, 𝑐2 ∈ ℂ. Then the initial value problem

(𝕃 − 𝜆)𝑦 = 0, 𝑦1(0) = 𝑐1, 𝑦[1](0) = 𝑐2,

has a unique solution 𝑦 = 𝑦(⋅, 𝜆) ∈ 𝐷(𝕃). For a fixed 𝑥 ∈ [0,∞) the functions 𝜆 → 𝑦1(𝑥, 𝜆) and 𝜆 → 𝑦[1](𝑥, 𝜆) are holomorphic
on Ω′.

Proof. Uniqueness. Let 𝑦 ∈ 𝐷(𝕃) be a solution of (𝕃 − 𝜆)𝑦 = 0 with 𝑦1(0) = 𝑐1 and 𝑦[1](0) = 𝑐2. From (3.2) it follows that

𝑦′1 = − 𝑐𝑎

(𝜆 − 𝑟)𝜔(⋅, 𝜆)
𝑦1 +

1
𝜔(⋅, 𝜆)

𝑦[1]. (3.6)

According to Proposition 3.3 one has (1.2) with (1.3). Thus differentiating (3.2) and using (3.6) leads to

𝐷𝑦[1] =
(

𝑐𝑎

𝜆 − 𝑟

)′
𝑦1 +

𝑐𝑎

𝜆 − 𝑟
𝑦′1 +

(
𝜔(⋅, 𝜆)𝑦′1

)′
=
(

𝑐𝑎

𝜆 − 𝑟

)′
𝑦1 +

𝑐𝑎

𝜆 − 𝑟
𝑦′1 +

(
𝑞 −

(
𝑐𝑎

𝜆 − 𝑟

)′
+ 𝑎2

𝜆 − 𝑟
− 𝜆

)
𝑦1

=
(
− 𝑐2𝑎2

(𝜆 − 𝑟)2𝜔(⋅, 𝜆)
+ 𝑞 + 𝑎2

𝜆 − 𝑟
− 𝜆

)
𝑦1 +

𝑐𝑎

(𝜆 − 𝑟)𝜔(⋅, 𝜆)
𝑦[1]. (3.7)

Hence by (3.6) and (3.7) one has the first-order system of differential equations(
𝑦1
𝑦[1]

)′
= 𝐴(⋅, 𝜆)

(
𝑦1
𝑦[1]

)
, (3.8)

where 𝐴(⋅, 𝜆) is a 2 × 2 matrix function whose entries belong to 𝐿1
loc[0,∞) in view of Assumption 3.2, (3.1), and Lemma 3.5

and depend holomorphically on 𝜆 in Ω′. In view of [34, Theorem 2.5.3], the system (3.8) has a unique fundamental matrix
𝑌 (⋅, 𝜆) with 𝑌 (0, 𝜆) being the identity matrix, and the entries of 𝑌 (⋅, 𝜆) are locally absolutely continuous on [0,∞) and depend
holomorphically on 𝜆 in Ω′. Then 𝑦1(⋅, 𝜆) and 𝑦[1](⋅, 𝜆) are the components of 𝑌 (⋅, 𝜆)(𝑐1, 𝑐2)⊺, which shows that for a fixed
𝑥 ∈ [0,∞) the functions 𝜆 → 𝑦1(𝑥, 𝜆) and 𝜆 → 𝑦[1](𝑥, 𝜆) are holomorphic onΩ′. Furthermore,

(
𝑦1(⋅, 𝜆), 𝑦[1](⋅, 𝜆)

)⊺ are uniquely
determined by the initial conditions. In view of Proposition 3.3, 𝑦2 has the representation (1.4), and substituting (3.6) gives

𝑦2 =
𝑐

(𝜆 − 𝑟)𝜔(⋅, 𝜆)
𝑦[1] +

(
𝑎

𝜆 − 𝑟
− 𝑐2𝑎

(𝜆 − 𝑟)2𝜔(⋅, 𝜆)

)
𝑦1 . (3.9)

This shows that the solution of the initial value problem (𝕃 − 𝜆)𝑦 = 0, 𝑦1(0) = 𝑐1, 𝑦[1](0) = 𝑐2 is unique.
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Existence. Let 𝑐1, 𝑐2 ∈ ℂ and define
(
𝑦1, 𝑦

[1])⊺ = 𝑌 (⋅, 𝜆)(𝑐1, 𝑐2)⊺, where 𝑌 (⋅, 𝜆) is the fundamental matrix of (3.8) with 𝑌 (0, 𝜆)
being the identity matrix. Then 𝑦1 ∈ 𝐴𝐶loc[0,∞) and 𝑦[1] ∈ 𝐴𝐶loc[0,∞) are solutions of the system (3.6), (3.7). From (3.6) and
(3.1), it is easily seen that 𝜔(⋅, 𝜆)𝑦′1 ∈ 𝐴𝐶loc[0,∞). Substituting 𝑦[1] from (3.6) into (3.7) leads to

(𝜔(⋅, 𝜆)𝑦′1)
′ = 𝐷𝑦[1] −

(
𝑐𝑎

𝜆 − 𝑟
𝑦1

)′

=
(
− 𝑐2𝑎2

(𝜆 − 𝑟)2𝜔(⋅, 𝜆)
+ 𝑞 + 𝑎2

𝜆 − 𝑟
− 𝜆

)
𝑦1 +

𝑐𝑎

𝜆 − 𝑟
𝑦′1 +

𝑐2𝑎2

(𝜆 − 𝑟)2𝜔(⋅, 𝜆)
𝑦1 −

(
𝑐𝑎

𝜆 − 𝑟

)′
𝑦1 −

(
𝑐𝑎

𝜆 − 𝑟

)
𝑦′1

=
(
𝑞 −

(
𝑐𝑎

𝜆 − 𝑟

)′
+ 𝑎2

𝜆 − 𝑟
− 𝜆

)
𝑦1 = (𝑞(⋅, 𝜆) − 𝜆)𝑦1,

that is, 𝑦1 satisfies (1.2). Defining 𝑦2 by (3.5), it follows that 𝑦[1] = 𝑝𝑦′1 + 𝑐𝑦′2; moreover one sees that 𝑦 = (𝑦1, 𝑦2) ∈ 𝐷(𝕃)
and (𝕃 − 𝜆)𝑦 = 0 by Proposition 3.6. Hence the initial value problem (𝕃 − 𝜆)𝑦 = 0, 𝑦1(0) = 𝑐1, 𝑦[1](0) = 𝑐2 has a solution
𝑦 ∈ 𝐷(𝕃). □

With 𝜆 ∈ Ω′ it follows from Theorem 3.8 that the mapping 𝑦 →
(
𝑦1(0), 𝑦[1](0)

)⊺ ∈ ℂ2 is bijective for solutions 𝑦 of

(𝕃 − 𝜆)𝑦 = 0. Hence

Corollary 3.9. Let 𝜆 ∈ Ω′. The set of solutions 𝑦 ∈ 𝐷(𝕃) of (𝕃 − 𝜆)𝑦 = 0 is a vector space of dimension 2.

Due to Corollary 3.7, the following result is an obvious consequence of Theorem 3.8.

Corollary 3.10. Let 𝜆 ∈ Ω′ and let 𝑐1, 𝑐2 ∈ ℂ. Then the initial value problem (1.2), 𝑦1(0) = 𝑐1, 𝑦[1](0) = 𝑐2 with 𝑦1, 𝜔(⋅, 𝜆)𝑦′1 ∈
𝐴𝐶loc[0,∞) has a unique solution 𝑦1 = 𝑦1(⋅, 𝜆). For fixed 𝑥 ∈ [0,∞) the functions 𝜆 → 𝑦1(𝑥, 𝜆) and 𝜆 → 𝑦[1](𝑥, 𝜆) are holo-
morphic on Ω′.

Note that according to (3.2) the initial conditions 𝑦1(0) = 𝑐1, 𝑦[1](0) = 𝑐2 for the Sturm–Liouville equation (1.2) in Corollary

3.10 stand for

𝑦1(0) = 𝑐1,
[
𝜔(⋅, 𝜆)𝑦′1 +

𝑐𝑎

𝜆 − 𝑟
𝑦1

]
(0) = 𝑐2,

where the functions 𝑦1, 𝜔(⋅, 𝜆)𝑦′1, and
𝑐𝑎

𝜆−𝑟𝑦1 belong to 𝐴𝐶loc[0,∞).

4 SQUARE-INTEGRABILITY OF SOLUTIONS FOR 𝝀 ∈ ℂ ⧵ℝ

The square-integrability of the solutions of the equation (𝕃 − 𝜆)𝑦 = 0 when 𝜆 ∈ ℂ ⧵ℝ will be considered. The arguments given

here are entirely classical once the necessary adaptations have been taken care of.

Let −𝜋∕2 < 𝛼 ≤ 𝜋∕2. By Corollary 3.9 the eigenvalue problem (1.2) has two linearly independent solutions 𝜑1(⋅, 𝜆) and

𝜓1(⋅, 𝜆), holomorphic in 𝜆 ∈ Ω′, which are defined by the initial conditions{
𝜑1(0, 𝜆) = sin 𝛼, 𝜓1(0, 𝜆) = cos 𝛼,
𝜑[1](0, 𝜆) = − cos 𝛼, 𝜓 [1](0, 𝜆) = sin 𝛼. (4.1)

Note that for a fixed 𝑥 ∈ [0,∞) the functions

𝜆 → 𝜑1(𝑥, 𝜆), 𝜆 → 𝜑[1](𝑥, 𝜆), 𝜆 → 𝜓1(𝑥, 𝜆), and 𝜆 → 𝜓 [1](𝑥, 𝜆)

are holomorphic on Ω′; cf. Corollary 3.10. The vector functions 𝜑(⋅, 𝜆) and 𝜓(⋅, 𝜆) are defined according to Proposition 3.6.

Theorem 4.1. Let 𝜆 ∈ ℂ ⧵ℝ. Then the set of solutions 𝑦 of (𝕃 − 𝜆)𝑦 = 0 belonging to
(
𝐿2(0,∞)

)2 is a vector space of dimension
1 or 2.

Proof. The proof follows the usual reasoning in the Sturm–Liouville case, see e.g. [7, Chapter 9, Theorems 2.2 and 2.3], but a
number of adaptations is needed. Let 𝑏 > 0. Every solution of (1.2) is a linear combination of 𝜑1(⋅, 𝜆) and 𝜓1(⋅, 𝜆). Consider
on the interval [0, 𝑏] the function 𝜒1(⋅, 𝜆, 𝑧) defined by

𝜒1(⋅, 𝜆, 𝑧) = 𝜑1(⋅, 𝜆) + 𝑧𝜓1(⋅, 𝜆) (4.2)
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with a number 𝑧 ∈ ℂ. Then at 𝑏 the function 𝜒1(⋅, 𝜆, 𝑧) satisfies the boundary condition

cos 𝛽 𝜒1(𝑏, 𝜆, 𝑧) + sin 𝛽 𝜒 [1](𝑏, 𝜆, 𝑧) = 0 for some 𝛽 ∈ (−𝜋∕2, 𝜋∕2] (4.3)

if and only if 𝑧 is given by

𝑧 = −𝐴 cot 𝛽 + 𝐵

𝐶 cot 𝛽 +𝐷
, (4.4)

with the usual interpretation for 𝛽 = 0, where the numbers 𝐴, 𝐵, 𝐶 , and 𝐷 are defined by

𝐴 = 𝜑1(𝑏, 𝜆), 𝐵 = 𝜑[1](𝑏, 𝜆), 𝐶 = 𝜓1(𝑏, 𝜆), 𝐷 = 𝜓 [1](𝑏, 𝜆).

By Lemma 3.4 and the initial conditions (4.1),

𝜑1(⋅, 𝜆)𝜓 [1](⋅, 𝜆) − 𝜓1(⋅, 𝜆)𝜑[1](⋅, 𝜆) = 1. (4.5)

In other words, with the above definitions one has

𝐴𝐷 − 𝐵𝐶 = 1.

In terms of the Lagrange bracket notation in (2.6) the above definitions give rise to the following identities:

𝐴𝐷 − 𝐵𝐶 = [𝜑(𝑏, 𝜆), 𝜓(𝑏, 𝜆)], 𝐶𝐷 − 𝐶𝐷 = −[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)].

Observing that the initial conditions in (4.1) are real, two particular Lagrange brackets (2.6) have the values

[𝜑(0, 𝜆), 𝜑(0, 𝜆)] = 0, [𝜓(0, 𝜆), 𝜓(0, 𝜆)] = 0. (4.6)

Since 𝜆 ∈ ℂ ⧵ℝ it follows from Lemma 2.4 with 𝜇 = 𝜆 that

∫
𝑏

0
|𝜓(𝑡, 𝜆)|2 𝑑𝑡 = [𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]

2𝑖Im 𝜆
, (4.7)

where the following notation is being used: |𝑑| = (
𝑑T 𝑑

) 1
2 for 𝑑 ∈ ℂ2. In particular, [𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)] ≠ 0 for all 𝑏 > 0 and

thus 𝐶𝐷 ∈ ℂ ⧵ℝ. It follows that (4.4) maps the extended real line represented by cot 𝛽, 𝛽 ∈ (−𝜋∕2, 𝜋∕2], onto a circle 𝐶𝑏 in the
𝑧-plane. On the other hand, (4.3) means that a nontrivial real linear combination of 𝜒1(𝑏, 𝜆, 𝑧) and 𝜒 [1](𝑏, 𝜆, 𝑧) is zero, which
is equivalent to 𝜒1(𝑏, 𝜆, 𝑧)𝜒 [1](𝑏, 𝜆, 𝑧) being real. But

[𝜒(𝑏, 𝜆, 𝑧), 𝜒(𝑏, 𝜆, 𝑧)] = 2𝑖Im𝜒1(𝑏, 𝜆, 𝑧)𝜒 [1](𝑏, 𝜆, 𝑧),

so that 𝐶𝑏 is the set of all 𝑧 ∈ ℂ for which [𝜒(𝑏, 𝜆, 𝑧), 𝜒(𝑏, 𝜆, 𝑧)] = 0. Writing this condition in the form

[𝜒(𝑏, 𝜆, 𝑧), 𝜒(𝑏, 𝜆, 𝑧)]
[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]

= 0, (4.8)

an expansion of the numerator shows that (4.8) can be written as

𝑧𝑧 − 𝐴𝐷 − 𝐵𝐶

𝐶𝐷 − 𝐶𝐷
𝑧 − 𝐵𝐶 − 𝐴𝐷

𝐶𝐷 − 𝐶𝐷
𝑧 + 𝐴𝐵 − 𝐵𝐴

𝐶𝐷 − 𝐶𝐷
= 0, (4.9)

and that the inside of𝐶𝑏 corresponds to the left-hand side of (4.9) being< 0. In particular, the inside of the circle𝐶𝑏 is described
by those 𝑧 ∈ ℂ with < instead of = in (4.8).

Hence the center 𝑐𝑏 and the radius 𝑟𝑏 of the circle 𝐶𝑏 are given by

𝑐𝑏 =
𝐴𝐷 − 𝐵𝐶

𝐶𝐷 − 𝐶𝐷
= − [𝜑(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]

[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]
,
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𝑟𝑏 =
|𝐴𝐷 − 𝐵𝐶||𝐶𝐷 − 𝐶𝐷| = 1|[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]| . (4.10)

Observing that the initial conditions in (4.1) are real, Lemma 2.4, the definition (4.2) of 𝜒1(⋅, 𝜆, 𝑧), (4.5), and (4.6) show that
one has

[𝜒(𝑏, 𝜆, 𝑧), 𝜒(𝑏, 𝜆, 𝑧)] = 2𝑖Im 𝜆∫
𝑏

0
|𝜒(𝑡, 𝜆, 𝑧)|2 𝑑𝑡 + [𝜒(0, 𝜆, 𝑧), 𝜒(0, 𝜆, 𝑧)]

= 2𝑖Im 𝜆∫
𝑏

0
|𝜒(𝑡, 𝜆, 𝑧)|2 𝑑𝑡 − 2𝑖Im 𝑧.

Hence

[𝜒(𝑏, 𝜆, 𝑧), 𝜒(𝑏, 𝜆, 𝑧)]
[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]

= 2𝑖Im 𝜆

[𝜓(𝑏, 𝜆), 𝜓(𝑏, 𝜆)]

(
∫

𝑏

0
|𝜒(𝑡, 𝜆, 𝑧)|2 𝑑𝑡 − Im 𝑧

Im 𝜆

)
, (4.11)

and it follows from (4.8) that 𝑧 in (4.2) is on the circle 𝐶𝑏 if and only if

∫
𝑏

0
|𝜒(𝑡, 𝜆, 𝑧)|2 𝑑𝑡 = Im 𝑧

Im 𝜆
, (4.12)

and from (4.7) and (4.11) that 𝑧 is inside the circle 𝐶𝑏 if and only if

∫
𝑏

0
|𝜒(𝑡, 𝜆, 𝑧)|2 𝑑𝑡 < Im 𝑧

Im 𝜆
. (4.13)

Therefore (4.12) and (4.13) imply that 𝑏 < 𝑏′ leads to the circle 𝐶𝑏′ being inside the circle 𝐶𝑏.
As 𝑏 gets larger new circles are contained in previous ones; there is a limit-point when lim𝑏→∞ 𝑟𝑏 = 0 and there is a limit-

circle when lim𝑏→∞ 𝑟𝑏 > 0. Any point 𝑧 on the limit-circle in the limit-circle case or the limit point 𝑧 in the limit-point case lies
inside 𝐶𝑏 for any 𝑏 > 0 so that the corresponding 𝜒(⋅, 𝜆, 𝑧) ∈ (𝐿2(0,∞))2 as follows from (4.13). Therefore (𝕃 − 𝜆)𝑦 = 0 has at
least one solution belonging to

(
𝐿2(0,∞)

)2, which means that the set of solutions of (𝕃 − 𝜆)𝑦 = 0 with 𝑦 ∈
(
𝐿2(0,∞)

)2 forms
a vector space of dimension at least one. By Corollary 3.10, this dimension can be at most two. The theorem is proved. □

It should be emphasized that the interpretation of Theorem 4.1 for the square-integrability of the solutions 𝑦1 of the differential

equation (1.2) is in conjunction with the square-integrability of the function 𝑦2 in (1.4). In other words, the square-integrability

condition is 𝑦 ∈ (𝐿2(0,∞))2 rather than just 𝑦1 ∈ 𝐿2(0,∞).
In the proof of Theorem 4.1 it was shown that 𝜒(⋅, 𝜆, 𝑧) ∈

(
𝐿2(0,∞)

)2
. The identities (4.10) and (4.7) show that in the limit-

circle case the solution 𝜓(⋅, 𝜆) ∈
(
𝐿2(0,∞)

)2
and that in the limit-point case the solution 𝜓(⋅, 𝜆) ∉

(
𝐿2(0,∞)

)2
. Since 𝜓(⋅, 𝜆)

and 𝜒(⋅, 𝜆, 𝑧) are linearly independent, this leads to the following terminology:

Definition 4.2. The differential expression 𝕃 is said to be
(i) limit-point at 𝜆 ∈ ℂ ⧵ℝ if the set of solutions of (𝕃 − 𝜆)𝑦 = 0 which belong to

(
𝐿2(0,∞)

)2 forms a one-dimensional
space;

(ii) limit-circle at 𝜆 ∈ ℂ ⧵ℝ if all solutions of (𝕃 − 𝜆)𝑦 = 0 belong to
(
𝐿2(0,∞)

)2.

In fact, in the following the notion of limit-circle will be extended. The differential expression 𝕃 is said to be limit-circle at

any 𝜆 ∈ Ω′ if all solutions of (𝕃 − 𝜆)𝑦 = 0 belong to (𝐿2(0,∞))2.

5 LIMIT-POINT/LIMIT-CIRCLE ALTERNATIVE

Assume that at some 𝜆0 ∈ Ω′ the differential expression 𝕃 is limit-circle, i.e., all solutions of (𝕃 − 𝜆0)𝑦 = 0 belong to(
𝐿2(0,∞)

)2
. The question is now what one can say about the square-integrability of the solutions of (𝕃 − 𝜆)𝑦 = 0 at 𝜆 ∈ Ω′

when 𝜆 ≠ 𝜆0. In this section it will be shown the the classical limit-point/limit-circle alternative holds on Ω′.

Here the coefficient functions of the differential expression 𝕃 in (1.1) are assumed to satisfy the following conditions, which

are stronger than the ones in Assumption 3.2.
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Assumption 5.1. The functions 𝑝, 𝑞, 𝑐, 𝑟, 𝑎 ∶ [0,∞) → ℝ are measurable, satisfy the conditions (i)–(vi) from Assumption 3.2,
and satisfy in addition:

(vii) there exists some 𝑑0 > 0 such that for all 𝑑1 > 𝑑0, 𝑟 is absolutely continuous on an open neighborhood of supp(𝑐) ∩ [𝑑0, 𝑑1]
in [0,∞) and 𝛾 in (2.1) is absolutely continuous on [𝑑0, 𝑑1].

Observe that it immediately follows from Assumption 5.1 that for 𝜆 ∈ Ω′ one has

𝑐2

𝜔(⋅, 𝜆)
= 𝛾

(
1 + 𝛾

𝜆 − 𝑟

)−1
∈ 𝐴𝐶[𝑑0, 𝑑1] for all 𝑑1 > 𝑑0, (5.1)

as follows from (3.4) and (2.1).

In order to formulate a variation of constants formula to express solutions of (𝕃 − 𝜆)𝑦 = 0 in terms of solutions of (𝕃 − 𝜆0)𝑦 =
0 the function 𝑃 (⋅, 𝜆0, 𝜆) will be introduced for 𝜆0 ∈ Ω′ and 𝜆 ∈ ℂ:

𝑃 (𝑥, 𝜆0, 𝜆) =
𝜆 − 𝑟(𝑥) + 𝛾(𝑥)
𝜆0 − 𝑟(𝑥) + 𝛾(𝑥)

, 𝑥 ≥ 0. (5.2)

Lemma 5.2. Let 𝜆0, 𝜆 ∈ Ω′ be distinct and let 𝑑0 be as in Assumption 5.1. Let𝜑,𝜓 ∈ 𝐷(𝕃) be two linearly independent solutions
of (𝕃 − 𝜆0)𝑦 = 0 satisfying initial conditions of the form{

𝜑1(0) = sin 𝛼, 𝜓1(0) = cos 𝛼,
𝜑[1](0) = − cos 𝛼, 𝜓 [1](0) = sin 𝛼.

(5.3)

Let 𝜒 ∈ 𝐷(𝕃) be a solution of (𝕃 − 𝜆)𝑦 = 0. Then for all 𝑥 > 𝑑 > 𝑑0,(
𝜒1(𝑥)

𝑃 (𝑥, 𝜆0, 𝜆)𝜒2(𝑥)

)
= 𝑐1(𝑑)𝜑(𝑥) + 𝑐2(𝑑)𝜓(𝑥)

+ (𝜆 − 𝜆0)𝜓(𝑥)∫
𝑑

𝑥

𝜑(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + (𝜆 − 𝜆0)𝜑(𝑥)∫
𝑥

𝑑

𝜓(𝑡)⊺𝜒(𝑡) 𝑑𝑡, (5.4)

where 𝑐1(𝑑) and 𝑐2(𝑑) are constants depending on 𝑑.

Proof. By Assumption 5.1 and Proposition 3.3,

(
𝑝 + 𝑐2

𝜆0 − 𝑟

)
𝜒 ′
1 =

1 + 𝛾

𝜆0 − 𝑟

1 + 𝛾

𝜆 − 𝑟

(
𝑝 + 𝑐2

𝜆 − 𝑟

)
𝜒 ′
1

is locally absolutely continuous on (𝑑0,∞). Since 𝜒1 is a solution of (1.2) on (𝑑0,∞), it follows that

0 = −
([

𝑝 + 𝑐2

𝜆 − 𝑟

]
𝜒 ′
1

)′
+ (𝑞(⋅, 𝜆) − 𝜆)𝜒1

= −
([

𝑝 + 𝑐2

𝜆0 − 𝑟

]
𝜒 ′
1

)′
−
([

𝑐2

𝜆 − 𝑟
− 𝑐2

𝜆0 − 𝑟

]
𝜒 ′
1

)′
+ (𝑞(⋅, 𝜆0) − 𝜆0)𝜒1 + (𝑞(⋅, 𝜆) − 𝑞(⋅, 𝜆0) + 𝜆0 − 𝜆)𝜒1,

which can be rewritten as

−
([

𝑝 + 𝑐2

𝜆0 − 𝑟

]
𝜒 ′
1

)′
+ (𝑞(⋅, 𝜆0) − 𝜆0)𝜒1

= (𝜆 − 𝜆0)
[
−
(

𝑐2

(𝜆 − 𝑟)(𝜆0 − 𝑟)
𝜒 ′
1

)′
+
(
1 −

(
𝑐𝑎

(𝜆 − 𝑟)(𝜆0 − 𝑟)

)′
+ 𝑎2

(𝜆 − 𝑟)(𝜆0 − 𝑟)

)
𝜒1

]

= (𝜆 − 𝜆0)
[
𝜒1 −

(
𝑐

𝜆0 − 𝑟
𝜒2

)′
+ 𝑎

𝜆0 − 𝑟
𝜒2

]
,
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where it was used that

𝑐𝜒2
𝜆0 − 𝑟

= 𝑐2

(𝜆0 − 𝑟)(𝜆 − 𝑟)𝜔(⋅, 𝜆)
𝜔(⋅, 𝜆)𝜒 ′

1 +
𝑐𝑎

(𝜆0 − 𝑟)(𝜆 − 𝑟)
𝜒1

is locally absolutely continuous on (𝑑0,∞) by Proposition 3.3, Assumption 5.1, and (5.1). With the solutions 𝜑,𝜓 ∈ 𝐷(𝕃) of
(𝕃 − 𝜆0)𝑦 = 0 satisfying the initial conditions (5.3), the variation of constants method, Lemma 3.4, and (4.5) gives, with 𝑑 > 𝑑0
and constants 𝑐1, 𝑐2,

𝜒1(𝑥) = 𝑐1𝜑1(𝑥) + 𝑐2𝜓1(𝑥) + (𝜆 − 𝜆0)𝜓1(𝑥)∫
𝑑

𝑥

𝜑1(𝑡)
(
𝜒1(𝑡) −

[
𝑐(𝑡)

𝜆0 − 𝑟(𝑡)
𝜒2(𝑡)

]′
+ 𝑎(𝑡)
𝜆0 − 𝑟(𝑡)

𝜒2(𝑡)
)
𝑑𝑡

+ (𝜆 − 𝜆0)𝜑1(𝑥)∫
𝑥

𝑑

𝜓1(𝑡)
(
𝜒1(𝑡) −

[
𝑐(𝑡)

𝜆0 − 𝑟(𝑡)
𝜒2(𝑡)

]′
+ 𝑎(𝑡)
𝜆0 − 𝑟(𝑡)

𝜒2(𝑡)
)
𝑑𝑡.

Observing that 𝜑1, 𝜓1, 𝑐𝜒2∕(𝜆0 − 𝑟) ∈ 𝐴𝐶loc[𝑑,∞), integration by parts leads to

𝜒1(𝑥) = 𝑐1𝜑1(𝑥) + 𝑐2𝜓1(𝑥) + (𝜆 − 𝜆0)
{
𝜓1(𝑥)∫

𝑑

𝑥

𝜑1(𝑡)𝜒1(𝑡) 𝑑𝑡 + 𝜑1(𝑥)∫
𝑥

𝑑

𝜓1(𝑡)𝜒1(𝑡) 𝑑𝑡

+ 𝜓1(𝑥)∫
𝑑

𝑥

𝜑2(𝑡)𝜒2(𝑡) 𝑑𝑡 + 𝜑1(𝑥)∫
𝑥

𝑑

𝜓2(𝑡)𝜒2(𝑡)𝑑𝑡

− 𝜓1(𝑥)𝜑1(𝑑)
𝑐(𝑑)

𝜆0 − 𝑟(𝑑)
𝜒2(𝑑) + 𝜑1(𝑥)𝜓1(𝑑)

𝑐(𝑑)
𝜆0 − 𝑟(𝑑)

𝜒2(𝑑)
}

,

so that

𝜒1(𝑥) = 𝑐1(𝑑)𝜑1(𝑥) + 𝑐2(𝑑)𝜓1(𝑥) + (𝜆 − 𝜆0)
{
𝜓1(𝑥)∫

𝑑

𝑥

𝜑(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + 𝜑1(𝑥)∫
𝑥

𝑑

𝜓(𝑡)⊺𝜒(𝑡) 𝑑𝑡
}

, (5.5)

where

𝑐1(𝑑) = 𝑐1 +
𝜆 − 𝜆0

𝜆0 − 𝑟(𝑑)
𝑐(𝑑)𝜓1(𝑑)𝜒2(𝑑),

𝑐2(𝑑) = 𝑐2 −
𝜆 − 𝜆0

𝜆0 − 𝑟(𝑑)
𝑐(𝑑)𝜑1(𝑑)𝜒2(𝑑).

This proves the identity (5.4) for the first components. Differentiation of (5.5) leads to

𝜆 − 𝑟(𝑥)
𝜆0 − 𝑟(𝑥)

𝜒2(𝑥) = 𝑐1(𝑑)𝜑2(𝑥) + 𝑐2(𝑑)𝜓2(𝑥)

+ (𝜆 − 𝜆0)
{
𝜓2(𝑥)∫

𝑑

𝑥

𝜑(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + 𝜑2(𝑥)∫
𝑥

𝑑

𝜓(𝑡)⊺𝜒(𝑡) 𝑑𝑡

− 𝜓1(𝑥)
𝑐(𝑥)

𝜆0 − 𝑟(𝑥)
𝜑2(𝑥)𝜒2(𝑥) + 𝜑1(𝑥)

𝑐(𝑥)
𝜆0 − 𝑟(𝑥)

𝜓2(𝑥)𝜒2(𝑥)
}

= 𝑐1(𝑑)𝜑2(𝑥) + 𝑐2(𝑑)𝜓2(𝑥)

+ (𝜆 − 𝜆0)
{
𝜓2(𝑥)∫

𝑑

𝑥

𝜑(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + 𝜑2(𝑥)∫
𝑥

𝑑

𝜓(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + 𝑐2(𝑥)
𝜔(𝑥, 𝜆0)

𝜒2(𝑥)
(𝜆0 − 𝑟(𝑥))2

}
,

where 𝜔(⋅, 𝜆0)𝜓 ′
1𝜑1 − 𝜔(⋅, 𝜆0)𝜑′

1𝜓1 = 1 has been used. Rearranging terms, this gives

𝑃 (𝑥, 𝜆0, 𝜆)𝜒2(𝑥) = 𝑐1(𝑑)𝜑2(𝑥) + 𝑐2(𝑑)𝜓2(𝑥) + (𝜆 − 𝜆0)
{
𝜓2(𝑥)∫

𝑑

𝑥

𝜑(𝑡)⊺𝜒(𝑡) 𝑑𝑡 + 𝜑2(𝑥)∫
𝑥

𝑑

𝜓(𝑡)⊺𝜒(𝑡) 𝑑𝑡
}

.

This completes the proof of the lemma. □
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The next result is the main theorem of this paper.

Theorem 5.3. Let 𝜆0, 𝜆 ∈ Ω′ be distinct. Assume that 𝕃 is limit-circle at 𝜆0. Then 𝕃 is also limit-circle at 𝜆.

Proof. Writing 𝑃 (𝑥, 𝜆0, 𝜆) defined by (5.2) in the form

𝑃 (𝑥, 𝜆0, 𝜆) = 1 +
𝜆 − 𝜆0

𝜆0 − 𝑟(𝑥) + 𝛾(𝑥)
, 𝑥 ≥ 0,

one obtains an upper bound, independent of 𝑥 ∈ [0,∞), as follows

|𝑃 (𝑥, 𝜆0, 𝜆)| ≤ 1 +
|𝜆 − 𝜆0|

inf𝑥∈[0,∞) |𝜆0 − 𝑟(𝑥) + 𝛾(𝑥)| .
Interchanging 𝜆 and 𝜆0 gives

𝐶2 ∶= sup
𝑥∈(𝑑0,∞)

||𝑃 (𝑥, 𝜆0, 𝜆)||−1 < ∞.

Let 𝜑, 𝜓 , and 𝜒 be as in Lemma 5.2, and for 𝑑 > 𝑑0 put

𝑀(𝑑) ∶= max
{‖‖‖𝜑|(𝑑,∞)

‖‖‖ , ‖‖‖𝜓|(𝑑,∞)
‖‖‖ ∶ 𝑗 = 1, 2

}
,

where the norm is the norm in
(
𝐿2(𝑑,∞)

)2. Since 𝕃 is limit-circle at 𝜆0, it follows that 𝑀(𝑑) < ∞ for all 𝑑 > 𝑑0, 𝑀 is a
decreasing function, and lim𝑑→∞𝑀(𝑑) = 0. For 𝑑0 < 𝑑 < 𝑥 < ∞ and 𝑗 = 1, 2 put

𝑁𝑗(𝑑, 𝑥) ∶=
‖‖‖𝜒𝑗|(𝑑,𝑥)‖‖‖ , 𝑁(𝑑, 𝑥) ∶= ‖‖‖𝜒|(𝑑,𝑥)‖‖‖ .

Applying the Cauchy–Schwarz inequality to the integrals on the right-hand side of (5.4) it follows for all 𝑥 > 𝑑 and 𝑗 = 1, 2 that

|𝜒𝑗(𝑥)| ≤ 𝐶𝑗

[
(|𝑐1(𝑑)| + |𝑐2(𝑑)|)max(|𝜑(𝑥)|, |𝜓(𝑥)|) + |𝜆 − 𝜆0|(|𝜓(𝑥)| + |𝜑(𝑥)|)𝑀(𝑑)𝑁(𝑑, 𝑥)

]
, (5.6)

where 𝐶1 = 1. Taking 𝐿2-norms over (𝑑, 𝑏) for 𝑑0 < 𝑑 < 𝑏 in (5.6) it follows that

𝑁𝑗(𝑑, 𝑏) ≤ 2𝐶𝑗

[
(|𝑐1(𝑑)| + |𝑐2(𝑑)|)𝑀(𝑑) + |𝜆 − 𝜆0|𝑀(𝑑)2𝑁(𝑑, 𝑏)

]
.

Putting 𝐶 = 2(𝐶1 + 𝐶2) this gives

𝑁(𝑑, 𝑏) ≤ 𝐶
[
(|𝑐1(𝑑)| + |𝑐2(𝑑)|)𝑀(𝑑) + |𝜆 − 𝜆0|𝑀(𝑑)2𝑁(𝑑, 𝑏)

]
.

Choosing 𝑑 so large that 𝐶|𝜆 − 𝜆0|𝑀(𝑑)2 < 1, it follows for all 𝑏 > 𝑑 that

𝑁(𝑑, 𝑏) ≤ 𝐶
(
1 − 𝐶|𝜆 − 𝜆0|𝑀(𝑑)2

)−1(|𝑐1(𝑑)| + |𝑐2(𝑑)|)𝑀(𝑑),

and since the right-hand side is independent of 𝑏, it follows that 𝜒 belongs to
(
𝐿2(𝑑,∞)

)2
. □

Combining Theorem 5.3 with Theorem 4.1 gives the following alternative.

Corollary 5.4. Either all 𝜆 ∈ ℂ ⧵ℝ are limit-circle or all 𝜆 ∈ ℂ ⧵ℝ are limit-point.

Proof. If one 𝜆 ∈ ℂ ⧵ℝ is limit-circle, then all 𝜆 ∈ ℂ ⧵ℝ are limit-circle by Theorem 5.3. If all 𝜆 ∈ ℂ ⧵ℝ are not limit-circle,
then they must be limit-point by Theorem 4.1. □

6 PERTURBATION RESULTS

In the standard Sturm–Liouville case the limit-circle occurs at 𝜆0 if and only if the limit-circle case occurs at 𝜆 for any 𝜆0, 𝜆 ∈ ℂ.

This result can be easily deduced as a corollary from Theorem 5.3.
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Corollary 6.1. Let 𝑝 and 𝑞 be real-valued and measurable functions on [0,∞) such that 1∕𝑝, 𝑞 ∈ 𝐿1
loc[0,∞). If −𝐷𝑝𝐷 + 𝑞 is

limit-circle at one point in ℂ, then −𝐷𝑝𝐷 + 𝑞 is limit-circle at all points in ℂ.

Proof. Putting 𝑎 = 𝑐 = 0 and 𝑟 constant, the functions 𝑝, 𝑞, 𝑎, 𝑐, 𝑟 satisfy Assumption 5.1. In particular, 𝛾 = 0, and therefore
Ω′ = ℂ ⧵ {𝑟}. In view of Theorem 5.3 it follows that the corresponding operator 𝕃 is limit-circle at all 𝜆 ∈ Ω′ if it is limit-circle
at one 𝜆 ∈ Ω′. Since (1.2) becomes (−𝐷𝑝𝐷 + 𝑞 − 𝜆)𝑦1 = 0 under the current assumptions, the one-to-one relation between the
solutions of (1.2) and (𝕃 − 𝜆)𝑦 = 0 established in Propositions 3.3 and 3.6, implies that −𝐷𝑝𝐷 + 𝑞 is limit-circle at all 𝜆 ∈ Ω′

if it is limit-circle at one 𝜆 ∈ Ω′. Taking two distinct values for the constant function 𝑟, it follows that 𝜆 ∈ Ω′ can be replaced
by 𝜆 ∈ ℂ. □

Hence, in the standard Sturm–Liouville case, either all 𝜆 ∈ ℂ are limit-circle or all 𝜆 ∈ ℂ ⧵ℝ are limit-point. Now the dif-

ferential expression (1.2) may be seen as a perturbation of the standard Sturm–Liouville expression. It will be shown as an

application of the results in Section 5 that the limit-point/limit-circle alternative is not stable under such perturbations.

In order to substantiate this claim recall the following simple result; see e.g. [22, Example 3.4].

Example 6.2. For 𝜌 > 0 the differential expression 𝐿𝜌 ∶= −𝐷2 − 𝛿𝑥𝜌, 𝛿 > 0, on 𝐿2[𝑏,∞), 𝑏 ≥ 0, is in the limit-point case if
0 < 𝜌 ≤ 2, and in the limit-circle case if 𝜌 > 2.

In the previous sections, results have been formulated for the interval [0,∞). Clearly, they are true for any interval [𝑏,∞),
mutatis mutandis. Observe, that the differential expression 𝕃 in (1.1) can be interpreted as an, in general, unbounded perturbation

of the differential expression

𝕃(0) =
(
−𝐷𝑝𝐷 + 𝑞 0

0 𝑟

)
, (6.1)

by the differential expression:

𝕃(1) =
(

0 −𝐷𝑐 + 𝑎

𝑐𝐷 + 𝑎 0

)
.

For 𝜆 ∈ Ω it is clear that
(
𝕃(0) − 𝜆

)
𝑦 = 0 if and only if (−𝐷𝑝𝐷 + 𝑞 − 𝜆)𝑦1 = 0 and 𝑦2 = 0. Hence, the limit-point/limit-circle

alternative for 𝕃(0) is determined by the standard Sturm–Liouville expression −𝐷𝑝𝐷 + 𝑞 appearing in the first diagonal entry

in (6.1); cf. Corollary 6.1. Now it will be shown that 𝕃 in (1.1) and 𝕃(0) in (6.1) can have different behavior with respect to the

limit-point/limit-circle classification depending on the choice of the coefficient functions 𝑎 and 𝑐 in the perturbation. Note that

even when the perturbation is just off-diagonal multiplication (i.e., when 𝑐 = 0), this different behaviour may appear. In the first

example, 𝕃(0) is limit-circle while 𝕃 is limit-point. In the second example, 𝕃(0) is limit-point while 𝕃 is limit-circle.

Example 6.3. Consider the differential expression 𝕃(0) in (6.1) on [𝑏,∞) with the choice 𝑝 = 1 and 𝑞 = −𝑥3. It is clear that
𝐿3 and, therefore, also 𝕃(0) is in the limit-circle case. Now for the differential expression 𝕃 in (1.1) different choices of the
coefficients 𝑎, 𝑐, and 𝑟 will be made.

(i) Take 𝑐(𝑥) ≡ 0, 𝑟(𝑥) ≡ −1, and 𝑎(𝑥) = (𝑥3 − 𝑥)1∕2 for 𝑥 ≥ 𝑏 with 𝑏 = 1. Then it follows from (1.3) that

𝜔(𝑥, 𝜆) = 𝑝(𝑥) ≡ 1, 𝑞(𝑥, 𝜆) = 𝑞(𝑥) + 𝑎2

𝜆 − 𝑟
= −𝑥3 + 𝑥3 − 𝑥

𝜆 + 1
, 𝑥 ≥ 1.

Hence one sees that 𝛾 = 0 and that Ω = Ω′ = ℂ ⧵ {−1}. Furthermore, it is easily checked that Assumption 5.1 is satisfied, so
that Theorem 5.3 may be applied. Now consider the point 𝜆 = 0 ∈ Ω′. Then Equation (1.2) takes the form(

−𝐷2 − 𝑥
)
𝑦1 = 0,

and the differential expression in the left-hand side coincides with 𝐿1 (𝜌 = 1, 𝛿 = 1), which by the above discussion is in the
limit-point case. In particular, by Corollary 6.1 𝐿1 cannot be limit-circle at any 𝜆 ∈ ℂ. It follows that the differential expression
𝕃 cannot be limit-circle at 𝜆 = 0. Then by Theorem 5.3𝕃 is limit-point at all 𝜆 ∈ ℂ ⧵ℝ.

(ii) Take 𝑐(𝑥) ≡ 1, 𝑟(𝑥) ≡ −1, and 𝑎(𝑥) = 𝑥3∕2, for 𝑥 ≥ 𝑏 with 𝑏 = 0. Then it follows from (1.3) that

𝜔(𝑥, 𝜆) = 1 + 1
𝜆 + 1

, 𝑞(𝑥, 𝜆) = −𝑥3 − 3
2

𝑥1∕2

𝜆 + 1
+ 𝑥3

𝜆 + 1
, 𝑥 ≥ 0.
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Hence one sees that 𝛾(𝑥) ≡ 1 and that Ω′ = ℂ ⧵ {−1,−2}. Furthermore, it is easily checked that Assumption 5.1 is satisfied, so
that Theorem 5.3 may be applied. For 𝜆 = 0 ∈ Ω′ Equation (1.2) takes the form

2
(
−𝐷2 − 3

4
𝑥1∕2

)
𝑦1 = 0,

containing the differential expression 𝐿1∕2 (𝜌 = 1∕2, 𝛿 = 3∕4), which by the above discussion is in the limit-point case. The
same reasoning as in item (i) shows that the differential expression 𝕃 is limit-point at all 𝜆 ∈ ℂ ⧵ℝ.

Example 6.4. Consider the differential expression 𝕃(0) in (6.1) with the choice 𝑝=1 and 𝑞 =1. The equation−𝐷2𝑦+ (1− 𝜆)𝑦=0
can be explicitly solved and one concludes that 𝕃(0) is in the limit point-case at all 𝜆 ∈ ℂ ⧵ℝ. For the differential expression 𝕃
in (1.1) the following choice of the coefficients 𝑎, 𝑐, and 𝑟 will be made: 𝑐 = 0, 𝑎(𝑥) = 𝑥4 + 1, and 𝑟(𝑥) = 𝑥4 + 2, for 𝑥 ≥ 𝑏 with
𝑏 = 0. Then it follows from (1.3) that

𝜔(𝑥, 𝜆) = 𝑝(𝑥) ≡ 1, 𝑞(𝑥, 𝜆) = 1 + (𝑥4 + 1)2

𝜆 − (𝑥4 + 2)
, 𝑥 ≥ 0.

Now one sees that 𝛾 = 0, and that Ω = Ω′ = ℂ ⧵ [2,∞). Moreover, Assumption 5.1 is satisfied, so that Theorem 5.3 may be
applied. Now consider the point 𝜆 = 1 ∈ Ω′. Then 𝑞(𝑥, 1) = −𝑥4 and the equation (1.2) takes the form(

−𝐷2 − 𝑥4
)
𝑦1 = 0,

and the differential expression in the left-hand side coincides with 𝐿4 (𝜌 = 4, 𝛿 = 1) and by the above discussion is in the
limit-circle case for the first component 𝑦1. For the second component (1.4) gives

𝑦2(𝑥) =
𝑎(𝑥)

1 − 𝑟(𝑥)
𝑦1(𝑥) = −𝑦1(𝑥).

Hence, 𝑦1 and 𝑦2 both belong to 𝐿2[0,∞) for each solution 𝑦 of (𝕃 − 𝜆)𝑦 = 0. Therefore, 𝕃 is limit-circle at 𝜆 = 1 and then
according to Theorem 5.3 𝕃 is limit-circle at all 𝜆 ∈ ℂ ⧵ [2,∞).

Some historical remarks At the suggestion of an associate editor some historical remarks about the defect indices of square-

integrable solutions of (systems of) differential equations are added. The function-theoretic approach going back to H. Weyl [48]

was augmented by different approaches appearing in the books of M. H. Stone (1932) and E. C. Titchmarsh (1946). A bit later

Weyl's theory was extended to general even order equations by K. Kodaira [23]. The generalization of Weyl's theory to the setting

of so-called singular 𝑆-hermitian systems, which are formally more general than the first-order canonical systems, but can be

reduced to them (see [30]) was initiated in [44,45] in the case of real 𝑆-hermitian systems and was soon extended to the case

of general complex 𝑆-hermitian systems in [38–40]. In these papers an approach using monotonicity arguments was developed,

see also [5] for a simplified treatment based on multivalued selfadjoint limit values of monotone matrix functions. Constancy of

defect indices for these systems can be found e.g. in [44, Satz 6.23], [45, Sazt 1.9], [39, p. 655] as Weyl's first theorem, while

the generalization of the limit-point/limit-circle classification, called the second Weyl's theorem, is given in [44, Satz 9.1], [45,

Sazt 3.17], and [39, Satz 5.9]; cf. also [26, Chapters V–VI]. Further results on constancy of (formal) defect indices and various

other results about them for symmetric systems of differential equations have been established in the more widely known paper

[24] by V. I. Kogan and F. S. Rofe-Beketov. In the functional-analytic/operator theoretic approach the idea is to associate to a

(symmetric) system of differential equations a (symmetric) operator in a suitably constructed Hilbert space and then apply the

general theory of abstract (symmetric) operators. This approach then yields e.g. the constancy of (formal) defect indices, in the

half-planes ℂ± in case of a symmetric operator [37], or, more generally, in connected components of the points of regular type

[27]. For a long time this approach was restricted by the requirement that the (minimal) symmetric operator be densely defined

in a suitably chosen Hilbert space. The introduction of linear relations (multivalued operators) meant that this restriction no

longer needed to be imposed. In particular, for canonical systems of differential equations this point of view was chosen in [41];

a systematic treatment for 2-dimensional canonical systems was worked out in [20,21], see also [14] for a further exposition

of this approach. More recently the framework of symmetric linear relations in Hilbert space has been used in the general

setting of symmetric first-order systems in [32], where generalizations for several earlier results and criteria concerning (formal

and ordinary) defect indices have been obtained. The connection between the Titchmarsh–Weyl coefficient and the square-

integrable solutions has been investigated in [15–18] for special cases. For singular canonical systems of differential equations

the method of boundary triplets has been worked out in [5] offering a functional-analytic/operator theoretic framework to express
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square-integrable solutions via the corresponding Weyl functions as an analog of the use of Titchmarsh–Weyl coefficients for

the usual Sturm–Liouville expressions.
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