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In this paper, we will study the complete equations of motion for a ghost-free quadratic-curvature infinite-
derivative gravity. We will argue that within the scale of nonlocality, a Schwarzschild-type singular metric
solution is not permissible. Therefore, the Schwarzschild-type vacuum solution which is a prediction in
Einstein-Hilbert gravity may not persist within the region of nonlocality. Wewill also show that just quadratic-
curvature gravity, without infinite derivatives, always allows Schwarzschild-type singular metric solution.

DOI: 10.1103/PhysRevD.98.064023

I. INTRODUCTION

Arguably, Einstein’s theory of general relativity is one
of the most successful descriptions of spacetime. It has
seen numerous confirmations of observational tests at
different length scales, predominantly in the infrared (IR)
(far away from the source and at late time scales) [1],
including the fascinating detection of gravitational waves
[2]. In spite of this success, at short distances and at small
time scales, i.e., in the ultraviolet (UV), the Einstein-
Hilbert action leads to well-known singular solutions, in
terms of black-hole solutions in the vacuum, and the
cosmological singularity in a time-dependent background
[3]. The nature of the latter singularity is indeed very
different from the former, which brings uncertainty to the
cosmological models at the level of initial conditions for
inflation and the big bang cosmology. In reality, one
would expect that nature would avoid any kind of classical
singularities, whether they are covered by an event
horizon or they are naked—a stronger version of the
cosmic censorship hypothesis [4,5]. In this respect, it can
be argued that the singularities present in the Einstein-
Hilbert action are mere artifacts of the action, and there
must be a way to ameliorate the singularities in nature.
Indeed, removing the singularities is one of the foremost
fundamental questions of gravitational physics.
Recently, Biswas, Gerwick, Koivisto, and Mazumdar

(BGKM) have shown that the quadratic-curvature infinite-
derivative theory of gravity in four spacetime dimensions
can be made ghost free and avoid both cosmological and
black-hole singularities at the linearized level around the

Minkowski background [6],1 while the cosmological
singularity can be resolved even at the full nonlinear level
[9–13]. At the linear level (around asymptotically
Minkowski background), resolution of black-hole singu-
larities has been studied both in the static case [6,14–19]
and in a rotating case [20] by various groups. Furthermore,
lack of formation of singularity at the linear level has also
been studied in a dynamical context by Frolov and his
collaborators [21,22].
In Ref. [6], the authors have shown that for ghost-free

quadratic-curvature gravitational form factors, at short
distances the gravitational metric-potential tends to be a
constant, while at large distances from the source, the
metric potential takes the usual form of 1=r behavior in the
IR. Furthermore, the gravitational force quadratically
vanishes towards the center in the UV. Such a system
behaves very much like a compact object, but by con-
struction there is no curvature singularity, nor there is an
event horizon. The gravitational entropy calculated by the
Wald’s formalism [23] leads to the area law [24]. Since, all
the interactions are purely derivative in nature, the gravi-
tational form factors give rise to nonlocal interactions for
such a spacetime [25–29]. The nonlocality is indeed
confined within the scale Ms, which has a very interesting
behavior.

1See previous to this work other relevant Refs. [7–9], where
the authors have argued absence of singularity in infinite-
derivative gravity motivated from the string theory. However,
the full quadratic-curvature action including the Weyl term with
two gravitational metric potentials were first presented in [6].
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The aim of this short paper is to show that the full
nonlinear metric solution of the BGKM gravity will not
permit a1=r-type metric potential, i.e., Schwarzschild-type
solution, for the static background. Note that what is
relevant for us is indeed the 1=r part of the metric potential,
be it in isotropic coordinates or Schwarzschild coordinates.
Near the vicinity of singularity, at r ¼ 0, what dominates is
indeed the 1=r part of the metric potential in Einstein’s
theory of gravity. Also, such a singular solution exists in
quadratic-curvature gravity as well [30], see for instance
[31], therefore it is a pertinent question to ask whether
1=r-kind of metric potential would survive the infinite-
derivative theory of gravity or not?

II. THE INFINITE COVARIANT
DERIVATIVE ACTION

The most general quadratic-curvature action (parity
invariant and free from torsion) has been derived around
constant curvature backgrounds in Refs. [6,14,32],
given by2

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ αc½RF 1ð□sÞR

þ RμνF 2ð□sÞRμν þWμνλσF 3ð□sÞWμνλσ�Þ; ð2Þ

where G ¼ 1=M2
p is the Newton’s gravitational constant,

αc ∼ 1=M2
s is a dimensionful coupling,□s ≡□=M2

s , where
Ms signifies the scale of nonlocality at which new gravi-
tational interaction becomes important. In the limit
Ms → ∞, the action reduces to the Einstein-Hilbert term.
The d’Alembertian term is □ ¼ gμν∇μ∇ν, where μ, ν ¼ 0,
1, 2, 3, and we work with a metric convention which is
mostly positive ð−;þ;þ;þÞ. The F i’s are three gravita-
tional form-factors,

F ið□sÞ ¼
X
n

fi;n□n
s ; ð3Þ

reminiscence to any massless theory possessing only
derivative interactions. In this theory, the graviton remains
massless with transverse and traceless degrees of freedom
(d.o.f.). However, the gravitational interactions are nonlocal
due to the presence of the form factors F i’s, see [6]. These
form factors contain infinite covariant derivatives, which
shows that the interaction vertex in this class of theory
becomes nonlocal. In fact, the gravitational interaction in

this class of theory leads to smearing out the point source
by modifying the gravitational potential, as shown in [6].
The nonlocal gravitational interactions are also helpful to
ameliorate the quantum aspects of the theory, which is
believed to be UV finite [25–28]. The scale of nonlocality is
governed by M−1

s .
Around the Minkowski background the three form

factors obey a constraint equation, in order to maintain
only the transverse-and traceless graviton d.o.f., i.e., the
perturbative tree-level unitarity [6,14]3

6F 1ð□sÞ þ 3F 2ð□sÞ þ 2F 3ð□sÞ ¼ 0: ð4Þ
Let us first discuss very briefly the linear properties of this
theory around an asymptotically Minkowski background
before addressing the nonlinear equations of motion. The
linear solutions are indeed insightful and provides a lot of
understanding of the solutions within BGKM gravity. Even
though, we will not discuss explicitly nonlinear solution,
but any nonlinear solution should have a limit in the linear
regime. Note that the mass of the source is the relevant
parameter, which plays a crucial role in determining linear
and nonlinear solutions. In Refs. [6,15,16], it was shown
that for að□sÞ ¼ eγð□sÞ, where γ is an entire function, the
central singularity is avoided, while recovering the correct
1=r dependence in the metric potential in the IR. For a
specific choice of að□sÞ ¼ e□s , and assuming the Dirac-
delta mass distribution, mδ3ðrÞ at the center, the gravita-
tional metric potential, i.e., the Newtonian potential
remains linear, as long as:

mMs ≤ M2
p; ð5Þ

with the gravitational metric potential in static and isotropic
coordinates is given by [6]:

ϕðrÞ ¼ −
Gm
r

Erf

�
rMs

2

�
; ð6Þ

2The original action was first written in terms of the Riemann,
but it is useful to write the action in terms of the Weyl term which
is related to the Riemann as:

Wμ
ανβ ¼ Rμ

ανβ −
1

2
ðδμνRαβ − δμβRαν þ Rμ

νgαβ − Rμ
βgανÞ

þ R
6
ðδμνgαβ − δμβgανÞ ð1Þ

3In order to make sure that the full action Eq. (2) contains the
same original dynamical d.o.f. as that of the massless graviton in
four dimensions. This is to make sure that the action is ghost free,
there are no other dynamical d.o.f. in spite of the fact that there
are infinite derivatives. The graviton propagator for the above
action gives rise to

Πðk2Þ ¼ 1

aðk2ÞΠðk
2ÞGR ¼ 1

aðk2Þ
�
Pð2Þ

k2
−
Pð0Þ

2k2

�
;

where Pð2Þ and Pð0Þ are spin-2 and 0 projection operators, and
aðk2Þ ¼ eγðk2=M2

s Þ, is exponential of an entire function—γ, which
does not contain any poles in the complex plane, therefore no new
d.o.f. other than the transverse and traceless graviton, see for
details [6,33]. The gravitational form factors F ið□sÞ cannot be
determined simultaneously in terms of að□sÞ, if we switch one of
the F i ¼ 0, then we can express the other form factors in terms of
að□sÞ, for instance for F 2 ¼ 0 yields, F 1 ¼ −½ðað□sÞ −
1Þ=12□s� and F 3 ¼ ½ðað□sÞ − 1Þ=4□s�, see [14].
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approaches to be constant with a magnitude less than 1 for
r < 2=Ms. Since the error function goes linearly in r for
r < 2=Ms, the metric potential becomes finite in this
ultraviolet region. For r > 2=Ms, the metric potential
follows as ∼Gm=r, in the infrared region. However, in
our case, the typical scale of nonlocality is actually larger
than the Schwarzschild radius as shown in [18,19]

rNL ∼
2

Ms
≥ rsch ¼

2m
M2

p
; ð7Þ

thus avoiding the event horizon as well.4 Now, for the rest
of the discussion, let us focus on the full nonlinear
equations for the above action Eq. (2).

III. TOWARDS THE IMPOSSIBILITY OF THE
SCHWARZSCHILD METRIC SOLUTION

The complete equations of motion have been derived
from action Eq. (2), and they are given by [14],

Pαβ ¼ −
Gαβ

8πG
þ αc
8πG

ð4GαβF 1ð□sÞRþ gαβRF 1ð□sÞR − 4ð∇α∇β − gαβ□sÞF 1ð□sÞR
− 2Ωαβ

1 þ gαβðΩσ
1σ þ Ω̄1Þ þ 4Rα

μF 2ð□sÞRμβ

− gαβRμ
νF 2ð□sÞRν

μ − 4∇μ∇βðF 2ð□sÞRμαÞ þ 2□sðF 2ð□sÞRαβÞ
þ 2gαβ∇μ∇νðF 2ð□sÞRμνÞ − 2Ωαβ

2 þ gαβðΩσ
2σ þ Ω̄2Þ − 4Δαβ

2

− gαβWμνλσF 3ð□sÞWμνλσ þ 4Wα
μνσF 3ð□sÞWβμνσ

− 4ðRμν þ 2∇μ∇νÞðF 3ð□sÞWβμναÞ − 2Ωαβ
3 þ gαβðΩγ

3γ þ Ω̄3Þ − 8Δαβ
3 Þ

¼ −Tαβ; ð8Þ

where Tαβ is the stress energy tensor for the matter
components, and we have defined the following symmetric
tensors, for the detailed derivation, see [14]:

Ωαβ
1 ¼

X∞
n¼1

f1n
Xn−1
l¼0

∇αRðlÞ∇βRðn−l−1Þ;

Ω̄1 ¼
X∞
n¼1

f1n
Xn−1
l¼0

RðlÞRðn−lÞ; ð9Þ

Ωαβ
2 ¼

X∞
n¼1

f2n
Xn−1
l¼0

Rμ;αðlÞ
ν Rν;βðn−l−1Þ

μ ;

Ω̄2 ¼
X∞
n¼1

f2n
Xn−1
l¼0

RμðlÞ
ν Rνðn−lÞ

μ ; ð10Þ

Δαβ
2 ¼

X∞
n¼1

f2n
Xn−1
l¼0

½RνðlÞ
σ Rðβσ;αÞðn−l−1Þ − Rν;αðlÞ

σ Rβσðn−l−1Þ�;ν;

ð11Þ

Ωαβ
3 ¼

X∞
n¼1

f3n
Xn−1
l¼0

Wμ;αðlÞ
νλσ W νλσ;βðn−l−1Þ

μ ;

Ω̄3 ¼
X∞
n¼1

f3n
Xn−1
l¼0

WμðlÞ
νλσW

νλσðn−lÞ
μ ; ð12Þ

Δαβ
3 ¼

X∞
n¼1

f3n
Xn−1
l¼0

½WλνðlÞ
σμW

βσμ;αðn−l−1Þ
λ

−Wλν ;αðlÞ
σμ W βσμðn−l−1Þ

λ �;ν: ð13Þ

The notation RðlÞ ≡□
lR has been used for the curvature

tensors and their covariant derivatives. The trace equation is
much more simple, and just for the purpose of illustration,
we write it below [14]:

P ¼ R
8πG

þ αc
8πG

ð12□sF 1ð□sÞRþ 2□sðF 2ð□sÞRÞ
þ 4∇μ∇νðF 2ð□sÞRμνÞ þ 2ðΩ1σ

σ þ 2Ω̄1Þ
þ 2ðΩ2σ

σ þ 2Ω̄2Þ þ 2ðΩ3σ
σ þ 2Ω̄3Þ − 4Δ2σ

σ − 8Δ3σ
σÞ

¼ −T ≡ −gαβTαβ: ð14Þ

The Bianchi identity has been verified explicitly in Ref. [14].
Here we briefly sketch the Weyl part, since this will be the
most important part of our discussion. To accomplish this,
note that the computations are simplified if one uses the
following tricks by rewriting the equations of motion with
one upper and one lower index, express Ricci tensor through

4This could potentially resolve the information-loss paradox,
since there is no event horizon and the graviton interactions for
rNL ∼ 2=Ms becomes nonlocal; therefore, for interacting grav-
itons, the spacetime ceases to hold any meaning in the Minkowski
sense.
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the Einstein tensor (who’s divergence is zero due to the
Bianchi identities), and recalling the fact that the divergence
of the Weyl tensor is the third rank Cotton tensor, which can
be expressed through the Schouten tensor:

∇γWαμνγ ¼ −∇αSμν þ∇μSαν;

where the Schouten tensor in four dimensions is given by

Sμν ¼
1

2

�
Rμν −

1

6
gμνR

�
:

With this in mind, the rest of the computations amount to
careful accounting of the symmetry properties of the Weyl
tensor (which are identical to those of the Riemann tensor).
We should also note that the Bianchi identities should hold
regardless of the precise form of functions F i, and inde-
pendently for each and every coefficient fi;n, because these
are mere numerical coefficients, which are required to make
the theory ghost free [14].5 Technically, this means that we
should not bother about the summation over n, but
rather concentrating on the inner summation over l in
Eqs. (9)–(13). Finally, the symmetry with respect to
α ↔ β permutation in the equations of motion can be
accounted by rearranging the summation over l in the
inverse order from n − 1 to 0. With all the above precautions
in mind, we can perform a direct substitution and check term
by term that all the contributions vanish upon computing the
divergence of the equations of motion. As stated above, it is
not a surprise that the Bianchi identities hold. However, it is a
very good check for the equations of motion, mostly for the
mutual coefficients in front of the different terms, details can
be found in Ref. [14].
Let us note that in GR, we have a vacuum solution,

around an asymptotically Minkowski background for a
static case,

R ¼ 0; Rμν ¼ 0: ð15Þ

In this case the energy momentum tensor vanishes in all the
region except at r ¼ 0, where the source mδ3ðrÞ is
localized. One of the properties of such a vacuum solution
is the presence of 1=r- static and spherically symmetric
metric solution, similar to the Schwarzschild metric,
given by

ds2 ¼ −bðrÞdt2 þ b−1ðrÞdr2 þ r2ðdθ2 þ sin2ðθÞdϕ2Þ;
ð16Þ

where bðrÞ ¼ 1–2Gm=r with the presence of a central
singularity at r ¼ 0, and also the presence of an event
horizon. As we have already discussed, for r < 2Gm, what
dominates is the 1=r part of bðrÞ, which dictates the rise in
the gravitational potential all the way to r ¼ 0. Note that,

although the vacuum solution permits R ¼ 0, Rμν ¼ 0, the
Weyl-tensor is nonvanishing in the case of a Schwarzschild
metric, where

WμνλσWμνλσ → ∞;

as r → 0. Now in our case, indeed the full equations of
motion are quite complicated, nevertheless, we might be able
to test this hypothesis of setting R ¼ 0, Rμν ¼ 0, and study
whether the Schwarzschild metric, or 1=r-type metric
potential is a viable metric solution of our theory of gravity
or not?
Let us then demand that the above action, Eq. (2), along

with the equations of motion Eq. (8), permits a solution
which is Schwarzschild metric with Pαβ ¼ 0, and R ¼ 0
and Rμν ¼ 0. In fact, in the region of nonlocality where
higher derivative terms in the action are dominant, it
suffices to demand that R ¼ const and Rμν ¼ const. Let
us now concentrate on the full equations of motion (8) with
the Weyl part of the full equations of motion:

Pαβ ¼ 0 ¼ Pαβ
3 ¼ αc

8πG
ð−gαβWμνλσF 3ð□sÞWμνλσ

þ 4Wα
μνσF 3ð□sÞWβμνσ

− 4ðRμν þ 2∇μ∇νÞðF 3ð□sÞWβμναÞ
− 2Ωαβ

3 þ gαβðΩ3γ
γ þ Ω̄3Þ − 8Δαβ

3 Þ: ð17Þ

Indeed, we would expect that in order to fulfill the
necessary condition (but not sufficient) for the
Schwarzschild metric to be a solution of Eq. (8), we would
have both the left and the right-hand side of the above
equation vanishes identically. The failure of this test will
imply that the Schwarzschild metric cannot be the permis-
sible solution of the equation of motion for Eq. (8).
There are a couple of important observations to note,

which we summarize below:
(1) F ið□sÞ contain an infinite series of □s.
(2) The Bianchi identity holds for each and every order

in □s, as we have already discussed.
(3) The right-hand side of Eq. (17) should vanish at each

and every order in □s. This is due to the fact that
when we compare the terms, assigned to coefficients
fi;n (where the box operator has been applied n
times, i.e., □n

s ) with terms where the box operator
has been applied nþ 1 times (□nþ1

s , assigned to
coefficient fi;nþ1), then the 1=rn dependence would
at least be changed to 1=rnþ2 in this process. Note
that the box operator has roughly two covariant
derivatives in r. Therefore, if we are not seeking any
miraculous cancellation, between different orders in
□s, it is paramount that each and every order in
□s, the right-hand side must vanish to yield the
Schwarzschild-like metric solution.

5We have checked that the Bianchi identity holds true at each
and every order of □s.
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(4) In fact, we could repeat the same argument for
higher-order singular metric Ansätze, such as 1=rα,
for α > 0 at short distances, near the ultraviolet.

In order to obtain some insight into this problem, let us
first consider the right-hand side of Pαβ

3 with one □s only,
such that

F 3ð□sÞ ¼ ðf30 þ f31□sÞ:

Therefore, Eq. (17) becomes

Pαβ
3 ¼ αc

8πG
ð−gαβWμνλσðf30 þ f31□sÞWμνλσ

þ 4Wα
μνσðf30 þ f31□sÞWβμνσ

− 4ðRμν þ 2∇μ∇νÞððf30 þ f31□sÞWβμναÞ
− 2f31∇αWμνργ∇βWμνργ

þ gαβf31ð∇αWμνργ∇βWμνργ þWμνργ
□sWμνργÞ

− 8f31ðWγν
ρμ∇αWγ

βρμ −Wγ
βρμ∇αWγν

ρμÞ;νÞ:
ð18Þ

In the static limit, after some computations, we can infer the
following:
(1) All the terms combining f30 terms cancel each other

from the above expression in Eq. (18). This is indeed
reminiscence, and agrees to the earlier computations
performed in this regard in Ref. [31], where the
action corresponds to just the quadratic in curvature,
but with local quadratic-curvature action:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ αc½R2 þ RμνRμν

þWμνλσWμνλσ�Þ: ð19Þ

Such an action indeed provides singular solutions
with metric coefficients bðrÞ ∼ 1=r for r ≪ rsch, as
the leading order contribution, in spite of the fact that
the above action has been shown to be renormaliz-
able, but with an unstable vacuum, due to spin-2
ghost [30]. The BGKM action indeed attempts to
address the ghost problem of quadratic-curvature
gravity.

(2) The first nontrivial result comes from the fact that
the only terms that do not cancel, and survive from
the right-hand side of Eq. (18), are those propor-
tional to f31, and one can show explicitly that they
go as

1=r8;

in the UV (r ≪ 1=Ms); for details, see the Appen-
dix. This means that, indeed, 1=r as a metric
solution does not pass through our test, since the
right-hand side of the above equation of motion is

nonvanishing, but the left-hand side ought to vanish
in lieu of the vacuum condition, Pαβ ¼ 0.

(3) In fact, we may be able to generalize our results to
any orders in □s by noting that the higher orders
beyond one box would contribute at least two more
covariant derivatives in r in going from □

n
s to □

nþ1
s

terms (assuming that □s ∼ 1
M2

s
∂2
r).

6 This means that

the full computation for the right-hand side of
Eq. (18) would yield

Pαβ
3 ∽ gαβ

�
f31O

�
1

r8

�
þ f32O

�
1

r10

�
þ � � �

þ f3nO
�

1

r6þ2n

�
þ � � �

�
; ð20Þ

(gαβ is defined from the metric (16), see the exact
definition of Pαβ

3 in the Appendix) which would
require too much fine-tuning to cancel each and
every term, while keeping in mind that f3n are mere
constant coefficients. Barring such unjustified can-
cellation, it is fair to say that indeed 1=r for r ≪
1=Ms as a metric potential for the BGKM gravity is
not a valid solution, if F 3 has a nontrivial depend-
ence on □s.

Similar conclusions have already been drawn in Ref. [19],
with a complementary arguments. In Ref. [19], the argument
was based on taking a smooth limit from the nonlinear
solution of Eq. (2) to the linear solution. For any physical
solution to be valid, the nonlinear solution must pave the way
smoothly to the linear solution.
At the linear level (where the metric potential is bounded

below 1), it was shown that the Weyl term vanishes
quadratically in r [19], for a nonsingular metric solution
given by a metric potential Eq. (6). Therefore, at the full
nonlinear level, the 1=r-type metric potential cannot be
promoted as a full solution for the nonlinear equations of
motion for the BGKM action, since there is noway it can be
made to vanish quadratically at the linear level. Similar
conclusions can be made for any metric potential which
goes as 1=rα for α > 1.
Indeed, this intriguing and potentially very powerful

conclusion leads to the fact that the BGKM action with
quadratic-curvature, infinite–covariant derivative gravita-
tional action not only ameliorates the curvature singularity
at r ¼ 0, but also gives rise to a metric potential which is
bounded below one in the entire spacetime regime. The
notion about the physical mechanism which avoids forming
a trapped surface, also yields a static metric solution of
gravity, which has no horizon, see [34]. The only viable
solution of Eq. (2) remains that of the linear solution,
around the Minkowski background, already described by

6For the Schwarzschild metric, this takes the form
□s ¼ 1

M2
s
gνμ∇ν∇μ ¼ 1

M2
s
½ð1 − 2m

r Þ∂2
r − 2ð− m

r2 þ ð1 − 2m
r Þ 1rÞ∂r�.
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Eq. (6). Indeed, this last step has to be shown more
rigorously, which we leave for future investigation.
Another important conclusion arises due to the nonlocal

interactions in the gravitational sector, which yields a
nonvacuum solution, such that R ≠ 0 and Rμν ≠ 0, within
length scale ∼2=Ms [19]. This is due to the fact that the
BGKM gravity smears out the Dirac-delta source, and
therefore a vacuum solution does not exist any more like in
the case of the Einstein’s gravity, or any fðRÞ gravity, or
even in the context of local quadratic-curvature gravity;
see Eq. (19).

IV. CONCLUSION

The conclusion of this paper is very powerful. We have
argued that the Schwarzschild metric or 1=r-type metric
potentials cannot be the solution of the full BGKM action
given by Eq. (2), and the full nonlinear equations of motion
(8). By the 1=r-type metric potential, we mean the non-
linear part of the Schwarzschild metric, for r < 2Gm,
where m is the Dirac delta source. The presence or absence
of singularity is judged by the Weyl contribution. In the
pure Einstein-Hilbert action, indeed the Weyl term in the
Schwarzschild metric is nonvanishing, and contributes
towards the Kretschmann singularity at r ¼ 0. In the case
of infinite derivatives in four dimensions, we have shown
here that this is not the case, and the infinite-derivative
Weyl contribution contradicts with 1=r being the metric
solution for a vacuum configuration, for which the energy
momentum tensor vanishes, for a static and spherically
symmetric solution for the BGKM action. By itself the
result does not prove or disprove a nonsingular metric

potential, but it provides a strong hint that the full equations
of motion cannot support the Schwarzschild-type of
1=r-type metric potential. We have also argued that on a
similar basis even 1=rα for α > 0 will not serve as a full
solution to the BGKM gravity. It would be very interesting
to explore that if the BGKM gravity may allow other static/
nonstatic singular metric solutions or not.
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APPENDIX: NONVANISHING CONTRIBUTIONS
FROM THE WEYL TERM

Here we show the relevant terms, present in Eq. (18),
assuming bðrÞ ¼ 1–2Gm=r in the metric (16). The explicit
enumeration of each term is important to understand how
the coefficient f30 and f31 appear and how they might
cancel. Let us define

Pαβ
3 ¼ αc

8πG

X6
i¼1

Fαβ
i

(1) For the first term, Fαβ
1 ¼ −gαβWμνλσðf30 þ f31□sÞWμνλσ, the calculation yields

Fαβ
1 ¼ gαβ

48G2

r8
m2

M2
s

0
BBBBBB@

− ðf30M2
sr3−6f31GmÞ

r 0 0 0

0 − ðf30M2
sr3−6f31GmÞ

r 0 0

0 0 − ðf30M2
sr3−6f31GmÞ

r 0

0 0 0 − ðf30M2
sr3−6f31GmÞ

r

1
CCCCCCA
: ðA1Þ

(2) The second term, Fαβ
2 ¼ þ4Wα

μνσðf30 þ f31□sÞWβμνσ, is given by

Fαβ
2 ¼ −gαβ

48G2

r8
m2

M2
s

0
BBBBBB@

− ðf30M2
sr3−6f31GmÞ

r 0 0 0

0 − ðf30M2
sr3−6f31GmÞ

r 0 0

0 0 − ðf30M2
sr3−6f31GmÞ

r 0

0 0 0 − ðf30M2
sr3−6f31GmÞ

r

1
CCCCCCA
: ðA2Þ

We can verify, at this point, that the first two terms cancel each other.
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(3) The third term, Fαβ
3 ¼ −4ð2Rμν þ∇μ∇νÞðf30 þ f31□sÞWβμνα, is given by

Fαβ
3 ¼ gαβ

288G2

r8
m2

M2
s
f31

0
BBBBBB@

− ð5r−11GmÞ
r 0 0 0

0 − ðr−3GmÞ
r 0 0

0 0
ð3r−7GmÞ

r 0

0 0 0
ð3r−7GmÞ

r

1
CCCCCCA
; ðA3Þ

which only depends on the f31 coefficient.
(4) The fourth term, Fαβ

4 ¼ −2f31∇αWλ
μνσ∇βWλ

μνσ , is given by

Fαβ
4 ¼ gαβ

288G2

r8
m2

M2
s
f31

0
BBBBBB@

0 0 0 0

0 − 3ðr−2GmÞ
r 0 0

0 0 − ðr−2GmÞ
r 0

0 0 0 − ðr−2GmÞ
r

1
CCCCCCA
: ðA4Þ

(5) The fifth term, Fαβ
5 ¼ þgαβf31ð∇αWμνργ∇βWμνργ þWμνργ

□sWμνργÞ, is given by

Fαβ
5 ¼ gαβ

144G2

r8
m2

M2
s
f31

0
BBBBBB@

ð5r−12GmÞ
r 0 0 0

0
ð5r−12GmÞ

r 0 0

0 0
ð5r−12GmÞ

r 0

0 0 0
ð5r−12GmÞ

r

1
CCCCCCA
: ðA5Þ

(6) The sixth term, Fαβ
6 ¼ −8f31ðWγν

ρμ∇αWγ
βρμ −Wγ

βρμ∇αWγν
ρμÞ;ν, is given by

Fαβ
6 ¼ gαβ

576G2

r8
m2

M2
s
f31

0
BBBBBB@

0 0 0 0

0 − ðr−2GmÞ
r 0 0

0 0
ð3r−7GmÞ

r 0

0 0 0
ð3r−7GmÞ

r

1
CCCCCCA
: ðA6Þ

Having computed each term of Pαβ
3 , we can conclude that the stress energy momentum tensor dependence on the f30

coefficient is vanishing, and only the one box, □s, contributions survive. Finally, we have the nonvanishing contribution,

Pαβ
3 ¼ gαβ

144G
8πr8

m2

M4
s
f31

0
BBBBBB@

− 5ðr−2GmÞ
r 0 0 0

0 − 7ðr−2GmÞ
r 0 0

0 0
ð21r−50GmÞ

r 0

0 0 0
ð21r−50GmÞ

r

1
CCCCCCA
: ðA7Þ

Second order in□s contributions: In order to strengthen our arguments, we present below the additional contribution for
the second order in box, i.e., □2

s :
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Pαβ
3 ð□2

sÞ ¼ −gαβ
576G
8πr10

m2

M6
s
f32

0
BBB@

a00 0 0 0

0 a11 0 0

0 0 a22 0

0 0 0 a33

1
CCCA:

ðA8Þ

with the dimensionless matrix elements, defined as

a00 ¼
ð939G2m2 − 744Gmrþ 140r2Þ

r2
;

a11 ¼
ð195G2m2 − 132Gmrþ 20r2Þ

r2
;

a22 ¼ −
ð789G2m2 − 534Gmrþ 80r2Þ

r2
;

a33 ¼ −
ð789G2m2 − 534Gmrþ 80r2Þ

r2
:

Let us now consider, e.g., the P22
3 element at □2

s , namely:

P22
3 ¼ αc

8πG

�
f31

�
3024G2m2

r10M2
s

−
7200G3m3

r11M2
s

�

þf32

�
46080G2m2

r12M4
s

−
307584G3m3

r13M4
s

þ454464G4m4

r14M4
s

�

þ���
�
: ðA9Þ

Demanding that P22
3 ¼ 0, implies that f31 ¼ f32 ¼ 0. We

can now ask what would happen for higher orders in □s.
Since □s ∼ 1

M2
s
∂2
r , we have at the lowest third order

contribution in box, in powers of r, is proportional to

f33
G2m2

r14M6
s
: ðA10Þ

Therefore, since we already concluded that f31 ¼ f32 ¼ 0,
we now have to demand that the contribution of f33 G2m2

r14M6
s

vanishes identically. The lowest fourth order contribution,
in powers of r, will go as

f34
G2m2

r16M8
s
; ðA11Þ

we are left with the option that f33 ¼ f34 ¼ 0. Obviously,
we do not claim that this is a rigorous mathematical
demonstration; however, we can hint, by dimensional
analysis, that the lowest nth order contribution will be
always proportional to

f3n
G2m2

r8þ2nM2n
s
: ðA12Þ

Indeed, the above analysis suggests that for a nonvanishing
coefficient f3n it is hard to imagine how we could make the
contribution from P22

3 vanish.
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