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The gravitationally unstable gas disk of a starburst 
galaxy 12 billion years ago
K. Tadaki1*, D. Iono1,2, M. S. Yun3, I. Aretxaga4, B. Hatsukade5, D. H. Hughes4, S. Ikarashi6, T. Izumi1, R. Kawabe1,2,7, K. Kohno5,8, 
M. Lee1,9, Y. Matsuda1,2, K. Nakanishi1,2, T. Saito10, Y. Tamura9, J. Ueda1, H. Umehata5,11, G. W. Wilson3, T. Michiyama1,2, M. Ando1,2  
& P. Kamieneski3

Galaxies in the early Universe that are bright at submillimetre 
wavelengths (submillimetre-bright galaxies) are forming stars at a 
rate roughly 1,000 times higher than the Milky Way. A large fraction 
of the new stars form in the central kiloparsec of the galaxy1–3, a 
region that is comparable in size to the massive, quiescent galaxies 
found at the peak of cosmic star-formation history4 and the cores 
of present-day giant elliptical galaxies. The physical and kinematic 
properties inside these compact starburst cores are poorly 
understood because probing them at relevant spatial scales requires 
extremely high angular resolution. Here we report observations with 
a linear resolution of 550 parsecs of gas and dust in an unlensed, 
submillimetre-bright galaxy at a redshift of z = 4.3, when the 
Universe was less than two billion years old. We resolve the spatial 
and kinematic structure of the molecular gas inside the heavily dust-
obscured core and show that the underlying gas disk is clumpy and 
rotationally supported (that is, its rotation velocity is larger than 
the velocity dispersion). Our analysis of the molecular gas mass 
per unit area suggests that the starburst disk is gravitationally 
unstable, which implies that the self-gravity of the gas is stronger 
than the differential rotation of the disk and the internal pressure 
due to stellar-radiation feedback. As a result of the gravitational 
instability in the disk, the molecular gas would be consumed by star 
formation on a timescale of 100 million years, which is comparable 
to gas depletion times in merging starburst galaxies5.

Since the discovery of submillimetre-bright galaxies (SMGs) at high 
redshift6,7 two decades ago, studies of their global physical properties, 
such as redshift, gas mass and kinematics, have helped us to understand 
the origin of the extreme starburst8–12. With the same goal in mind, we 
obtained observations of the CO J = 4–3 emission line in the z = 4.3 
SMG COSMOS-AzTEC-1 (hereafter ‘AzTEC-1’) with the highest angu-
lar resolution yet achieved using the Atacama Large Millimeter/ 
submillimetre Array (ALMA). AzTEC-1 is one of the brightest 
unlensed objects of this type, with an extraordinarily high star forma-
tion rate of −
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36 1 (where M is the mass of the Sun) and a 
compact starburst with a half-light radius of R1/2 = 1.1 ± 0.1 kpc meas-
ured in the 860-μm continuum13. These ALMA observations resolve 
the CO emission at a resolution of 0.08″ (550 pc in the physical scale) 
to reveal the morphology and kinematics of molecular gas within the 
central 2 kpc of the galaxy. In Fig. 1 we show ALMA maps of the CO 
line and the dust continuum at 3.2 mm and 860 μm, the velocity field 
and the velocity dispersion. The spatial distributions of the CO line and 
the 3.2-mm continuum emission independently confirm the existence 
of two off-centre clumps (clump 2 and clump 3), which were first 
detected in the 860-μm continuum13. Previous lower-resolution (0.15″–
0.3″) observations1–3,14 have found that SMGs and optically selected 
massive galaxies are associated with a very compact and dusty star- 
forming region with R1/2 = 1–2 kpc. However, our higher-resolution  

data demonstrate that the central structure of molecular gas and dust 
is more complicated than just a single, compact component. Such 
clumps of molecular gas are also seen in the central disk of the z = 3 
gravitationally lensed star-forming galaxy SDP 8115,16.

In addition, we made a 0.06″-resolution CO cube and a 0.05″-resolution  
860-μm continuum image with different visibility weightings, to filter 
out the underlying disk emission and to highlight the clump structures 
(Methods). The higher-resolution velocity-integrated CO maps show 
that the clumps of molecular gas are aligned with the dusty star-forming  
clumps in the 860-μm continuum (Fig. 2). They are the second- and 
third-brightest clumps of 11 clumps identified previously13 at 860 μm. 
Because the brightest clump is very close to the nucleus, it is difficult to 
isolate even at a resolution of 0.06″. Other faint star-forming clumps are 
not detected in the CO data, probably owing to poor sensitivity.

We fit the CO spectra of the clumps with a single Gaussian 
to derive full-width at half-maximum (FWHM) line widths of 
250 ± 50 km s−1 and 240 ± 50 km s−1 for clumps 2 and 3, respec-
tively. These line widths are one or two orders of magnitude larger 
than those of giant molecular clouds in nearby galaxies17. The inte-
grated CO line flux is SCOdv = 0.056 ± 0.009 Jy km s−1 for clump 2 and 
SCOdv = 0.042 ± 0.007 Jy km s−1 for clump 3, indicating that each clump 
contains only a few per cent of the total gas mass. (Here and elsewhere, 
the errors quoted correspond to one standard deviation.) Adopting 
a CO-to-H2 conversion factor of αCO = 0.8M (K km s−1 pc2)−1 
and a CO excitation of R41 = 0.91, we derive gas masses of 
MCO,gas = (2.2 ± 0.3) × 109M and MCO,gas = (1.7 ± 0.3) × 109M for 
the two gas clumps (Methods), which are 3–5 orders of magnitude 
larger than the virial mass of giant molecular clouds. Therefore, these 
giant clumps are completely different from giant molecular clouds in 
nearby galaxies.

We fit the CO cube with a dynamical model to derive the kinematic 
properties of the CO-emitting gas. The observed velocity field is well 
characterized by a rotating disk with R1/2 = 1.05 ± 0.02 kpc, a de- 
projected maximum rotation speed of vmax =  −

+227 6
5 km s−1 and a local 

velocity dispersion of σ0 = 74 ± 1 km s−1. The starburst gas disk is rota-
tion-dominated with a ratio of rotation velocity to velocity dispersion 
of vmax/σ0 = 3.1 ± 0.1. In the local Universe, 80% of massive early-type 
galaxies with stellar masses of log(Mstar/M) > 11.8 exhibit dispersion- 
dominated stellar kinematics with vmax/σ0 < 1, whereas less-massive 
ones are rotation-dominated18,19. Given the large stellar mass of 

= . ×− .
+ .

M M(9 9 ) 10star 2 6
0 4 10  (Methods), AzTEC-1 is near the massive 

end at z = 4 and might eventually evolve to become one of the most 
massive early-type galaxies at z = 0. If molecular gas and stars share the 
same kinematics, then the observed properties of the rotating disk sug-
gest that the most massive galaxies do not lose much of their angular 
momentum during the formation phase; instead, they lose it during the 
subsequent evolution phase, such as during major mergers20.
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Until recently, clumpy rotating disks at high redshift have been dis-
covered from observations of ionized gas21. Now, higher-resolution 
observations of molecular gas using ALMA can be used similarly. 
Observational and numerical studies show that giant clumps are 
spawned by gravitational instability in the outskirts of gas-rich disks 
and migrate inward by dynamical friction22,23. Using the ALMA maps 
of the CO line intensity and velocity dispersion without any correction 

for beam smearing (Fig. 1), we compute the local Toomre Q parameter,  
which describes the balance between self-gravity of molecular gas 
and turbulent pressure by stellar radiation and other sources. A thick, 
rotating disk can become unstable against local axisymmetric pertur-
bations24 if Q < Qcri = 0.7. The local Q values that we measured are less 
than Qcri over the entire disk, indicating that the gas disk should frag-
ment and collapse through gravitational instability in the inter-clump 
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Fig. 2 | Spectra and maps of the two large clumps. a, For Clump 2 (top) 
and clump 3 (bottom), CO spectra are extracted from the Briggs-weighted 
cube with an angular resolution of 0.069″ × 0.058″. The grey shaded region 
indicates the standard deviation of the noise spectra. b–d, ALMA maps of 
the CO line (b), 3.2-mm continuum (c) and 860-μm continuum (d) for the 

two clumps. The CO flux densities are integrated over the velocity range 
indicated by the yellow shaded regions in a. White filled circles represent 
the angular resolution of each map. The contours are plotted every 1σ from 
2σ in b and c and from 4σ in d, and at every 5σ from 10σ.

Fig. 1 | CO morphology and kinematics of AzTEC-1. a–f, ALMA 
maps of the CO (J = 4–3) line (a), 3.2-mm continuum (b) and 860-μm 
continuum (c), velocity field (d), velocity dispersion (e) and Toomre Q 
parameter (f). The numbers in parentheses in b and c refer to the rest-
frame wavelength. The angular resolution (indicated by the white ellipses) 

is 0.093″ × 0.072″ in all cases. The CO line is integrated in the velocity 
range −315 km s−1 to +315 km s−1. Contours in a–c are plotted every 2σ 
from 3σ to 11σ and every 5σ from 11σ, where 1σ is the noise level; the 
contours in a are also overplotted in d–f.
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regions. On the other hand, Q < Qcri at the clump locations means that 
the gas is gravitationally bound rather than gravitationally unstable. We 
also derive radially averaged Q parameters using the best-fit kinematic 
parameters with corrections for beam smearing and inclination. Here, 
the uncertainties in Q arise mainly from measurements of gas mass. 
We tackle this issue by determining three independent estimates of gas 
mass, from the C i (J = 2–1), CO (J = 4–3) and dust continuum data. 
All three methods indicate that Q < 1 is in the central 2.5 kpc of the 
galaxy, even after allowing for some variations in carbon abundance, 
CO excitation and the gas-to-dust mass ratio (Fig. 3).

In the current framework of galaxy evolution, galaxies self-regulate 
star formation with a marginally unstable disk25,26. If a galactic disk 
is unstable with Q < Qcri, intense stellar radiation temporarily boosts 
turbulent pressure and heats the disk until Q > Qcri. Once the disk is 
stable, star formation becomes inefficient, leading to a drop in turbu-
lent pressure. On the other hand, gas accretion may increase the gas 
mass per unit area in the disk, and when the increased self-gravity of 
the gas overcomes the decreased pressure the disk becomes unstable 
again. Thus, galaxy disks are kept marginally unstable with Q ≈ Qcri. 
In AzTEC-1, stellar radiation pressure is unlikely to support the self- 
gravity of gas, resulting in small Q values across the entire disk. The 
local velocity dispersion increases only slightly as the star-formation 
rate per unit area increases (Fig. 4), which suggests that stellar feedback 
by intense star formation does not control the velocity dispersion in 
the molecular gas in this case. We also find that the velocity disper-
sion of σ ≈ 100 km s−1 in the two clumps is not much higher than 
in the rest of the disk. Our results imply that star-forming clumps are 
stable and not disrupted by radiative feedback. On the other hand, 
there is a strong correlation between the molecular gas mass per unit 
area (Σgas) and the star-formation rate per unit area (ΣSFR), fitted by 

the linear relation log[ΣSFR/(M yr−1 kpc−2)] = (1.4 ± 0.2) × log[Σgas/
(M pc−2)] + (−3.6 ± 0.7). The gas mass per unit area derived for 
AzTEC-1 is extremely high, with log[Σgas/(M pc−2)] = 3.8–4.4, similar 
in magnitude to that seen in nearby starburst galaxies5. The implied 
gravitational instability is a consequence of the strong concentration 
of molecular gas.

In such a gravitationally unstable gas disk, molecular clouds are 
expected to be converted into stars efficiently. The gas depletion time in 
the starburst disk, defined as the gas mass divided by the star-formation 
rate, is comparable to the galaxy-averaged gas depletion time in nearby 
starburst galaxies (Fig. 4). The molecular gas reservoir of AzTEC-1 will 
be consumed by star formation within 100 million years, a timescale that 
is roughly ten times shorter than the gas depletion time in star-forming 
galaxies at z = 1–327 and comparable to the gas depletion times in nearby 
merging galaxies such as Arp 220 and Arp 2995 and the z = 3 lensed 
star-forming galaxy SDP 8116. An extreme starburst at high redshift may 
occur over a very short timescale, resulting in episodic bright periods in 
the submillimetre band. Otherwise, it requires new gas flowing into the 
central region to maintain the current level of star-formation activity.

It is still uncertain how a large amount of molecular gas is concen-
trated in the central 2 kpc of the galaxy. A gas-rich major merger is 
the most straightforward scenario, because several numerical simula-
tions have successfully reproduced the physical properties of SMGs28, 
including the compact gas distribution and the enhanced star-forming 
activity. We cannot necessarily reject the major merger scenario for 
rotating disk because nearby merger remnants frequently host a rota-
tionally supported structure29; however, we do not have direct evidence 
for a major merger in AzTEC-1. In addition to a past gas-rich major 
merger, multiple gas-rich minor mergers or clumpy gas streams could 
also lead to gas transport to the central 2 kpc30. Isolated galaxies require 
a non-axisymmetric structure such as spiral arms or a bar to remove the 
angular momentum and transport a large amount of gas into the galaxy 
centre. AzTEC-1 does not have such a non-axisymmetric structure. To 
determine the roles of major mergers in extreme starbursts, we need to 
investigate morphological and kinematic structures in a large sample of 
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high-redshift SMGs using high-resolution (less than 0.1″) and sensitive 
observations with ALMA.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0443-1.
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Methods
Sample. AzTEC-1 was first discovered as one of the brightest sources in a 1.1-mm 
continuum survey of the COSMOS field obtained using the AzTEC bolometer 
camera on the James Clerk Maxwell Telescope (JCMT)31. Follow-up observa-
tions with the Redshift Search Receiver on the Large Millimeter Telescope (LMT) 
detected CO (4–3) and CO (5–4) lines and yielded a spectroscopic redshift of 
z = 4.342, which is also confirmed by the detection of the [C ii] line using the 
Submillimetre Array32. Previous ALMA observations of the 860-μm continuum 
emission at 0.02″ resolution revealed that AzTEC-1 is composed of a compact 
core, an extended disk and multiple 200-pc clumps within the disk13. The half-
light radius for the 860-μm continuum emission is R1/2 = 1.1 ± 0.1 kpc. The 
rest-frame ultraviolet continuum emission is not resolved even by Hubble Space 
Telescope (HST)/WFC3 imaging, which is also suggestive of compact emission 
with R1/2 < 2.6 kpc33. In this work, the Chabrier initial mass function34 and the 
following cosmological parameters are assumed: present-day Hubble parameter 
H0 = 70 km s−1 Mpc−1, matter-density parameter ΩM = 0.3 and density parame-
ter for the cosmological constant ΩΛ = 0.7. At z = 4.342, an angular scale of 0.1″ 
corresponds to a physical scale of 670 pc.
Observations. In AzTEC-1, we carried out observations of the CO (4–3) emission 
line at the rest-frame frequency of 461.040 GHz (86.309 GHz in the observed 
frame), with ALMA band-3 receivers covering the frequency range of 85.4–89.1 
GHz and 97.5–101.2 GHz in two array configurations and baseline lengths of 
41 m to 16.2 km. The shortest 5th-percentile baseline is 600 m, corresponding 
to the maximum recoverable scale of 1.15″ at 86.3 GHz. The observations were 
executed on 2017 October (C43-10 array configuration) and November (C43-
8). On-source time was 5.8 h and 1.2 h, respectively. The total observing time 
including calibration and overhead was 14 h. We used the Common Astronomy 
Software Application (CASA) package35 for data calibration. We first estimated 
the continuum flux density in the frequency range excluding 86.1–86.5 GHz, and 
then subtracted it from the data in the visibility plane using the CASA/uvcontsub 
task. We used the CASA/tclean task with natural weighting to make a cube with 
a velocity width of 30 km s−1. The resultant angular resolution and the noise 
level are 0.093″ × 0.072″ (624 pc × 483 pc in physical scale) and 1σ = 78 μJy per 
30 km s−1, respectively. We cleaned down to the 2σ noise level in a circular mask 
with a radius of 0.4″. We also made a high-resolution cube of the CO (4–3) line 
with a Briggs weighting (robust parameter of +0.5). The angular resolution is then 
0.069″ × 0.058″ (470 pc × 390 pc) and the noise level is 1σ = 87 μJy per 30 km s−1. 
To show the significance of the clump detection in AzTEC-1, we also made a 
0.055″ × 0.042″ map of the 860-μm continuum emission using archival ALMA 
data13. We adopted a taper of 0.03″ in the visibility plane, resulting in a standard 
deviation of 47 μJy. We use the high-resolution cube and map only for studying 
the clump properties in Fig. 2.

Extended Data Fig. 1 shows the galaxy-integrated CO (4–3) spectrum extracted 
within an aperture of 0.8″ centred on AzTEC-1. The Gaussian line width derived 
is 305 ± 17 km s−1 (FWHM). We made the CO moment maps of velocity- 
integrated intensity, velocity field and velocity dispersion in the velocity range 
between −315 km s−1 and +315 km s−1 using the CASA/immoments task. A 2σ 
masking threshold was adopted when creating the velocity field and velocity dis-
persion maps. The total CO line flux measured is SCOdv = 1.84 ± 0.17 Jy km s−1 
with 0.8″ aperture photometry in the velocity-integrated intensity map. The 
uncertainty in the CO line flux measurement is estimated by placing 300 random 
apertures in the same map. The CO line flux and the velocity width measured 
by the LMT are32 SCOdv = 1.75 ± 0.24 Jy km s−1 and Δv = 380 km s−1, in good 
agreement with the ALMA-derived flux of SCOdv = 1.60 ± 0.13 Jy km s−1 with 
Δv = 390 km s−1.

We also created two 3.2-mm line-free continuum maps with the same angu-
lar resolution as the CO (4–3) cubes by excluding the CO frequency range. The 
root-mean-square noise is 3.0 μJy per beam in the 0.093″ × 0.072″ map and 
3.3 μJy per beam in the 0.069″ × 0.058″ map. We derived a total flux density of 
S3.2mm = 273 ± 41 μJy with an aperture of 0.8″, consistent with the 3-mm continuum 
flux density of S3mm = 300 ± 40 μJy from Plateau de Bure interferometer observa-
tions with a 6″ beam36.

We made follow-up observations of the C i (1–0) line at 92.134 GHz in the 
observed frame and the C i (2–1) line at 151.511 GHz with ALMA band-3 and 
band-4 receivers in March 2018. We reduced the data in a similar way as for the 
CO (4–3) data and created a cube with a spectral resolution of 30 km s−1 and a 
map of the 2.1-mm continuum with a Briggs weighting (robust parameter of +0.5). 
The angular resolution is 1.7″ × 1.1″ in the C i (1–0) map and 0.8″ × 0.7″ in the 
C i (2–1) map. The noise level is 1σ = 0.49 mJy in each 30 km s−1 channel in the 
C i (1–0) cube, 1σ = 0.38 mJy in the C i (2–1) cube and 1σ = 20 μJy in the 2.1-mm 
continuum map. For the flux measurements of the two C i lines, we integrated the 
line flux density in the same velocity range as for the CO (4–3) line. We also made 
a natural weighted C i (2–1) map with the same angular resolution as for the C i 
(1–0) map using the CASA/imsmooth task, which is used to obtain a C i (1–0)/C i 

(2–1) line ratio. In Extended Data Fig. 1 and Extended Data Table 1, we show the 
line spectra and tabulate the measured line fluxes and luminosities. The 2.1-mm 
continuum flux density is S2.1mm = 989 ± 20 μJy. We also detected the CO (7–6) 
emission line at 151.007 GHz, but do not discuss this information here.
Global SED properties of AzTEC-1. We collected the photometric data for 
AzTEC-1 from the latest multi-wavelength catalogues (Subaru37, VISTA37, 
Spitzer37, Hershel38,39 and VLA40). After excluding marginal detections below 5σ 
and adding our ALMA photometry at 860 μm, 2.1 mm and 3.2 mm, we constrained 
the global spectral energy distribution (SED) from optical to radio (Extended Data 
Fig. 2). To account for possible zero-point offsets, we added a systematic  
uncertainty of 0.1 mag to the flux errors in the optical and near-infrared bands. 
Using the MAGPHYS code41,42, we fitted the observed SED to stellar population 
synthesis models43, taking into account dust attenuation and dust emission in a 
physically consistent way. The best-fitting SED model indicates that AzTEC-1 is a 
massive, star-forming galaxy with a stellar mass of = . ×− .

+ .
M M(9 9 ) 10star 2 6

0 4 10  and  
a star-formation rate of = −

+ −
MSFR 1,186 yr291

36 1 . The dust emission is charac
terized by a total infrared luminosity of = . ×− .

+ .
L L(1 9 ) 10dust 0 3

0 0 13 , a dust mass  
of Mdust = (1.1 ± 0.2) × 109M and a dust temperature of = −

+T 43 Kdust 2
4 . The  

uncertainties are based on the 2.5th–97.5th-percentile range of the probability 
distributions.
Gas mass. We derived two independent estimates the molecular gas mass for 
AzTEC-1 using the CO (4–3) line and [C i] line luminosities. For the gas-mass 
estimates based on the CO (4–3) luminosity, there are uncertainties about the CO 
excitation = ′ / ′− −R L L41 CO(4 3) CO(1 0)  and the CO-to-H2 conversion factor 
α = / ′M LCO gas CO . Alternatively, the [C i] line is an independent, optically  
thin tracer of cold molecular gas mass in nearby and high-redshift galaxies44–48, 
and having both [C i] line measurements provides useful constraints on  
the physical conditions of the emitting gas. First, we estimated an excitation  
temperature of Tex = 27.7 ± 4.8 K from the C i (1–0)/C i (2–1) line ratio of 
RCi = 0.52 ± 0.13 in the 1.7″ × 1.1″ resolution maps, using the relation45 
Tex = 38.8 K/ln(2.11/RCi). Then, using the C i (2–1) line flux in the 0.8″ × 0.7″  
map, we computed a neutral carbon mass of MCi = (1.7 ± 0.3) × 107M  
from = . × × / × . / ′−

−M Q T T L4 566 10 ( ) 1 5 exp(62 5 )CI
4

ex ex CI(2 1), where Q(Tex) =  
1 + 3exp(−23.6/Tex) + 5exp(−62.5/Tex) is the partition function45. The  
uncertainty in the neutral carbon mass includes the error in the flux measurement 
and the uncertainty in the excitation temperature. The molecular gas mass derived 
from the [C i] line luminosity is MCi,gas = (7.2 ± 1.3) × 1010M, adopting carbon 
abundance of XCi = 4 × 10−5, which is the average of the typical value of 3 × 10−5 
in normal star-forming galaxies44–48 and the elevated value of 5 × 10−5 in the cen-
tral region of the local starburst galaxy M8249. The resulting gas-to-dust mass ratio 
MCi,gas/Mdust = 65 ± 17 is smaller than the average value of δGDR = 120 ± 28 in 18 
nearby starburst galaxies50, but is still in the 5th–95th-percentile range, 
δGDR = 44–589. The CO (4–3) luminosity also gives a gas mass of MCO,gas = (6.6 ± 
0.6) × 1010 × αCO/0.8 × (1.0/R41)M. If the CO (4–3) line is thermalized (R41 = 1) 
and the conversion factor of αCO = 0.8M (K km s−1 pc2)−1 is used11,12,51,52, then 
the CO-based gas mass is similar to the C i-based gas mass. For consistency 
between C i and CO, we adopt a gas excitation of R41 = 0.91, which is larger than 
the average value for SMGs at high redshift (R41 = 0.46) and comparable with the 
average value for quasi-stellar objects (R41 = 0.87)53. Adopting αCO = 4M 
(K km s−1 pc2)−1, commonly used in normal star-forming galaxies51, is not appro-
priate because the CO-based gas mass substantially exceeds the C i-based gas mass. 
Modelling suggests that CO emission in dense clumps is more highly excited, 
compared with the entire disk54. If the gas is thermalized with R41 = 1, then the gas 
mass of clumps can be 10% smaller.
SFR and gas mass per unit area. We obtained the total star-formation rate SFRtotal 
and gas mass Mgas,total in AzTEC-1 as mentioned above. Because the 860-μm 
(160 μm in the rest frame) continuum flux density S860μm traces star formation, 
we compute star-formation-rate surface densities in each pixel as ΣSFR = SFRtotal ×  
(S860μm/S860μm,total)/Ωbeam, where S860μm,total = 16.9 ± 0.7 mJy and Ωbeam is the effec-
tive beam area of 0.344 kpc2. Here, we use the 860-μm continuum map with a pixel 
scale of 0.07″ to avoid oversampling, although the original pixel scale is 0.01″. 
The uncertainties of ΣSFR include errors in the flux measurements of S860μm and 
S860μm,total and systematic errors in the SED modelling. In a similar way, using the 
CO (4–3) map, we derive gas mass surface densities as Σgas = Mgas,total × (SCOdv/
SCO,totaldv)/Ωbeam.
Disk modelling and dynamical mass. We fit the natural-weighted CO cube with 
dynamical models of a disk galaxy using the GalPaK3D code55. We adopt a thick 
exponential disk with an arctan rotation curve of v(R) ∝ vmaxarctan(R/Rt), where 
vmax is the maximum circular velocity and Rt is the turnover radius. A model galaxy 
consists of ten free parameters: centroid position (x, y), systematic velocity vsys,  
line flux Sdv, half-light radius R1/2, turnover radius Rt, inclination i, position angle 
PA, maximum circular velocity vmax and velocity dispersion σ0. These parameters 
are convolved with the clean beam and are fitted to the data cube using a  
Markov chain Monte Carlo (MCMC) algorithm. The CO spectra extracted along 

© 2018 Springer Nature Limited. All rights reserved.
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the kinematic major axis in the observed cube together with the best-fitting model 
are shown in Extended Data Fig. 3. The observed CO kinematics is well charac-
terized by a rotating disk. The best-fit values are = . + . − .

−S vd 1 88 Jy km s0 02 0 01
1, 

R1/2 = 1.05 ± 0.02 kpc, Rt = 0.18 ± 0.03 kpc, i = 44° ± 1°, PA = −64° ± 1°, 
= −

+ −v 227 km smax 6
5 1 and σ0 = 74 ± 1 km s−1. We adopt the median and the 95% 

confidence interval of the last 60% of the MCMC chain for 20,000 iterations as the 
best-fit values and the uncertainties (Extended Data Fig. 4). For a symmetric oblate 
disk, the inclination corresponds to the projected minor-to-major-axis ratio of 
qobs = 0.73 as = − / −i q qsin ( ) (1 ) (1 )2

obs
2

int
2 , assuming a disk thickness of55 qint = 0.15.

Toomre Q parameter. In a thin rotating gas disk with epicyclic frequency κ, the dis-
persion relation for an axisymmetric perturbation is ∣ ∣ω κ π Σ σ= − +G k k22 2

gas 0,gas
2 2, 

where ω is the growth rate and k is the wavenumber of the perturbation56–58. The 
perturbation grows exponentially in time when ω2 < 0, leading to gravitational 
collapse of gas clouds. This condition is characterized by the Toomre Q parameter 
Q = κσ0,gas/(πGΣgas), and the threshold value is Qcri = 1 for a thin gas disk and 
Qcri = 0.67 for a thick disk21,26. When the disk consists of two components (gas and 
stars) with the same velocity dispersion, the threshold value increases to59 
Qcri,2com = 1.3. The self-gravity of gas overcomes the repelling forces by pressure 
and differential rotation when Q < Qcri. Using the maximum circular velocity 
derived from the disk model and the measured molecular gas mass per unit area 
and velocity dispersion without correction for beam-smearing, we estimated the 
local Q parameter in each pixel assuming a flat rotation curve with58 κ = 1.4vmax/R 
(Fig. 2). In Fig. 3, we show radially averaged CO fluxes and Q parameters along 
elliptical rings with the axis ratio of 0.73 using the best-fit kinematic parameters 
with correction for beam smearing and inclination.
Code availability. The ALMA data were reduced using the CASA pipeline version 
5.1.1, available at https://casa.nrao.edu/casa_obtaining.shtml. The disk modelling 
code GalPaK3D is publicly available at http://galpak.irap.omp.eu55.
Data availability. This work makes use of the following ALMA data: ADS/JAO. 
ALMA#2017.1.00300.S and 2017.A.00032.S. Calibrated data that support the findings 
of this study are publicly available in the ALMA archive (https://almascience.eso.org/
aq/?project_code=2017.1.00300.S, https://almascience.eso.org/aq/?project_code= 
2017.A.00032.S). The HerMES data were obtained through the Herschel Database in 
Marseille (HeDaM; http://hedam.lam.fr), which is operated by CeSAM and hosted 
by the Laboratoire d’Astrophysique de Marseille.
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Extended Data Fig. 1 | Galaxy-integrated CO (4–3), CO (1–0) and  
C i (2–1) spectra of AzTEC-1. The CO (4–3) spectrum is extracted using 
an 0.8″-diameter aperture in the natural-weighted map cube. The C i (1–0) 
and C i (2–1) spectra are extracted from the peak positions in map cubes 
with 1.7″ × 1.1″ and 0.8″ × 0.7″ resolution, respectively. Yellow shaded 
regions show the velocity range v = −315 km s−1 to v = +315 km s−1, in 
which the velocity-integrated line fluxes are measured.
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Extended Data Fig. 2 | Galaxy-integrated SED of AzTEC-1. Red circles 
show the photometric data from Subaru (r′, i′, z′)37, VISTA (Ks)37, Spitzer 
(3.6 μm, 4.4 μm)37, Herschel (250 μm, 350 μm, 500 μm)38,39, ALMA 
(860 μm, 2.1 mm, 3.2 mm) and JVLA (10 cm)40. The black line shows the 
best-fitting SED model from MAGPHYS41,42.
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Extended Data Fig. 3 | CO spectra along the kinematic major axis. 
Spectra are extracted at a position angle of PA = −64°. The spatial offset 
x from the galactic centre is shown at the upper left of each panel. Red 

lines indicate the spectra of the best-fitting dynamical model produced by 
GalPaK3D.
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Extended Data Fig. 4 | Full MCMC chain for 20,000 iterations. Red solid lines and black dashed lines indicate the median and 95% confidence interval 
of the last 60% of the MCMC chain.
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Extended Data Table 1 | Line fluxes in AzTEC-1

*The flux within a 0.8″ aperture in the 0.093″ × 0.072″ map.
†The peak flux in the 1.7″ × 1.1″ map.
‡The peak flux in the 0.8″ × 0.7″ map.
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