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MiR-320d is a novel mediator of inhaled corticosteroids, regulating the pro-inflammatory response of
the airway epithelium http://ow.ly/r4IV30nCQeE

Cite this article as: Faiz A, Steiling K, Roffel MP, et al. Effect of long-term corticosteroid treatment on
microRNA and gene-expression profiles in COPD. Eur Respir J 2019; 53: 1801202 [https://doi.org/10.1183/
13993003.01202-2018].

ABSTRACT The aim was to investigate whether microRNA (miRNA) expression is modulated by
inhaled corticosteroid (ICS) treatment

We performed genome-wide miRNA analysis on bronchial biopsies of 69 moderate/severe chronic
obstructive pulmonary disease (COPD) patients at baseline and after 6- and 30-month treatment with the
ICS fluticasone propionate or placebo. The effect of ICS on miRNA expression was validated in
differentiated primary bronchial epithelial cultures, and functional studies were conducted in BEAS-2B
cells. MiRNAs affected by ICS and their predicted targets were compared to an independent miRNA
dataset of bronchial brushings from COPD patients and healthy controls.

Treatment with ICS for both 6 and 30 months significantly altered the expression of four miRNAs,
including miR-320d, which was increased during ICS treatment compared with placebo. The ICS-induced
increase of miR-320d was confirmed in primary airway epithelial cells. MiR-320d negatively correlated
targets were enriched for pro-inflammatory genes and were increased in the bronchial brushes of patients
with lower lung function in the independent dataset. Overexpression of miR-320d in BEAS-2B cells
dampened cigarette smoke extract-induced pro-inflammatory activity via inhibition of nuclear factor-κB.

Collectively, we identified miR-320d as a novel mediator of ICS, regulating the pro-inflammatory
response of the airway epithelium.
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Introduction
Chronic obstructive pulmonary disease (COPD) is characterised by chronic, not fully reversible airflow
limitation that is usually progressive and associated with an inflammatory response in the airways [1].
Inhalation of noxious gases, including cigarette smoke, is the major risk factor for COPD. Several studies
have investigated the efficacy of inhaled corticosteroids (ICS) in COPD [2–4], with conflicting results
[2–4]. Only a subgroup of patients responds well to ICS. Given this heterogeneity, it is of relevance to
perform studies on therapy response in COPD. Our Groningen and Leiden Universities study of
Corticosteroids in Obstructive Lung Disease (GLUCOLD), a double-blind, randomised, placebo-controlled
study to investigate the long-term efficacy of fluticasone propionate with or without added salmeterol in
COPD, found a greater improvement in lung function decline upon ICS treatment than most earlier
studies [5]. This may have been due to the distinct inclusion criteria, requiring patients to not have had
ICS treatment for ⩾6 months before inclusion in the study, and 95% of patients never used ICS at all. In
GLUCOLD, placebo-treated patients experienced a considerable decline in their forced expiratory volume
in 1 s (FEV1), whereas the rate of FEV1 decline was close to zero for fluticasone propionate and fluticasone
propionate/salmeterol treatment [5]. These results suggest that ICS can be beneficial, at least in a subgroup
of COPD patients. In a follow-up study, we performed genome-wide gene-expression analysis on bronchial
biopsies from GLUCOLD patients at baseline, and after 6 and 30 months of treatment [6], which enabled
us to distinguish between ICS-sensitive and -insensitive patients based on their gene-expression profiles.
However, the mechanisms controlling ICS-induced gene-expression changes remained unknown, and
understanding this process may lead to identification of novel anti-inflammatory pathways.

MicroRNAs (miRNA)s are small noncoding messenger (m)RNA transcripts with the ability to degrade or
inhibit mRNA transcripts, leading to suppression of protein levels. Since each individual miRNA can
modulate the expression of >100 genes [7], variations in miRNA levels can radically alter gene-expression
profiles. In the present study, we hypothesised that miRNAs are crucial in regulating ICS-induced gene
expression in the airways of COPD patients. To investigate this, we assessed alterations in miRNA
expression after short- and long-term treatment with ICS, and we were able uncover their target genes,
since both miRNA and mRNA data were available from the same bronchial biopsies. We confirmed the
functional role of the identified miRNAs in vitro in human bronchial epithelial cells. Our study identified
miR-320d, as a novel anti-inflammatory miRNA that is upregulated by corticosteroids.

Methods
Patients and study design
MiRNA expression profiling was performed in bronchial biopsies from COPD patients participating in the
GLUCOLD study [5]. The inclusion criteria and GLUCOLD study design have been described previously [5].
Briefly, patients were required to be without ICS treatment for ⩾6 months before inclusion, current or
ex-smokers with moderate to severe COPD. Patients included in this study were treated with 1) placebo twice
daily for 30 months; 2) fluticasone propionate 500 µg twice daily for 30 months; or 3) fluticasone propionate
500 µg + salmeterol 50 µg twice daily for 30 months (table 1). Bronchial biopsies were taken at baseline and 6
and 30 months after treatment for microarray gene-expression profiling and histology. The study was
approved by the local medical ethics committee and all patients provided their written informed consent.
Methods for miRNA isolation, labelling, microarray hybridisation (GeneChip miRNA 1.0 Array; Affymetrix,
Santa Clara, CA, USA) are described in the supplementary material, while the methods for the mRNA
extraction and microarray processing have been described previously [6]. Gene- and miRNA-expression data
are available through the Gene Expression Omnibus repository (www.ncbi.nlm.nih.gov/geo/) with the
accession numbers GSE36221 and GSE76774, respectively. In an independent cohort, miRNA expression
profiling was obtained from bronchial brushings from 30 COPD (defined by FEV1/forced vital capacity <70
and FEV1 <80% predicted) and 30 non-COPD controls using Illumina HiSeq (San Diego, CA, USA).

Statistics
To identify miRNAs altered by ICS treatment, we performed linear mixed effects models with treatment as
a categorical variable with two levels: ICS or ICS + long-acting β2-agonist (LABA) (two separate analyses
were run) versus placebo (R statistical software, V3.0.2; www.r-project.org). Time was defined as a
categorical variable with three levels: baseline, 6- and 30-month treatment. These methods are explained in
extensive detail in the supplementary material.

Predicted target approach
To identify the potential targets of differently expressed miRNAs, treatment-induced changes in miRNA
expression were compared to changes in mRNA expression in the same biopsies [6]. Pearson correlations
were conducted at 1) baseline and 2) change in miRNA and mRNA expression after 6 months focusing on
predicted mRNA targets for each miRNA (based on the combination of Target Scan v7.1 [7] and
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TABLE 1 Patient demographics

Placebo Fluticasone propionate Fluticasone propionate + salmeterol

Baseline 6 months 30 months Baseline 6 months 30 months Baseline 6 months 30 months

Subjects 23 17 17 22 24 20 18 16 12
Current smoking 16 (69.57) 10 (58.82) 8 (47.06) 13 (59.09) 11 (45.83) 9 (45.00) 12 (66.67) 11 (68.75) 5 (41.67)
Male 19 (82.61) 15 (88.24) 16 (94.12) 19 (86.36) 22 (91.67) 17 (85.00) 16 (88.89) 15 (93.75) 12 (100)
RIN 3.35±1.32 3.95±1.6 5.23±1.75** 3.35±1.42 3.57±1.37 5.12±1.7 3.1±1.45 3.16±0.96 4.45±0.77
Age years 59.22±8.21 59.06±7.9 61.24±6.6 60.55±7.37 62.71±7.02 61.2±7.24 61.06±8.56 61.13±8.23 60.67±8.87
BMI kg·m2 24.16±3.76 23.78±3.61 23.47±3.59 26.07±4.34 25.96±4.75 25.91±4.01 25.39±3.53 25.51±3.6 25.98±3.39
FEV1 % pred 61.13±8.44 63.38±9.51 56.98±8.34 65.08±8.71 65.11±10.7 64±11.58 60.71±10.76 62.29±10.76 64.61±13.97
RV % pred 146.52±25.61 144.74±30.83 139.35±20.93 140.18±31.93 144.01±26.1 133.88±31.24 158±40.97 137.78±33.87 137.04±40.52
RV/TLC % pred 124.9±16.87 122.95±16.11 120.38±13.96 122.49±19.39 122.87±17.92 115.86±25.38 126.87±19.82 116.03±19.06 116.86±25.58
SGRQ score 31.28±17.86 29.85±21.53 33.4±20.07 31.71±10.78 29.28±16.72 28.46±15.12 25.75±13.85 26.17±13.98 24.09±13.91
PC20 methacholine# mg·mL−1 0.64±2 1.39±2.43 0.06±2.38

Data are presented as n, n (%) or mean±SD. Differences in variables before and after treatment were analysed using a two-sided paired t-test. RIN: RNA integrity number; BMI: body
mass index; FEV1: forced expiratory volume in 1 s; RV: residual volume; TLC: total lung capacity; SGRQ: St George’s Respiratory Questionnaire; PC20: provocative dose causing a 20% fall
in FEV1. **: p<0.01 versus baseline. #: geometric mean±SD.
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DIANAmicroT). Negatively correlated miRNA targets that were negatively correlated with both analyses
(p<0.05) were selected for pathway analysis using Gene Set Enrichment Analysis (GSEA) and
GeneNetwork [6].

Following this analysis, the negatively correlated predicted targets altered by ICS were studied in bronchial
brushings from 63 smokers with COPD and 135 control smokers without a history of using ICS or oral
corticosteroids in an independent cohort using the continuous COPD-related measurement of FEV1.
GeneNetwork analysis was performed to investigate the predicted targets of identified miRNAs (nominal
p-value <0.05) [8].

GeneNetwork analysis uses an independent gene expression dataset of ∼78000 samples to predict the
function of genes in an unbiased way. We used this method to predict (currently unknown) gene
functions based on known biological pathways available in the molecular signatures database MSigDB (GO
biological process and the reactome) (www.broadinstitute.org) [8].

Primary bronchial epithelial cell culture
Primary bronchial epithelial cells (PBECs) were obtained from tracheobronchial tissue of nine healthy lung
donors by pronase treatment as described previously [9]. Cells were cultured as described previously [9]
and as detailed in the supplementary material. MiRNA expression was assessed by real-time PCR as
described in detail in the supplementary material.

Preparation of cigarette smoke extract
Cigarette smoke extract (CSE) was prepared as described previously and in the supplementary material [9].
Concentrations of CSE used for each cell line was evaluated by a concentration series of 0–50% CSE and
then annexin V and propidium iodide (PI) staining [10]. A concentration for each cell line was selected to
minimise cellular death compared to control. For BEAS-2B 10% CSE was selected while for PBECs 20%
CSE was selected (supplementary figure S1A and B).

MiR-320d overexpression in BEAS-2B cells and PBECs
Human bronchial epithelial cell line BEAS-2B and PBECs were cultured as described previously [11]. For
transfection, cells were seeded in duplicates in RPMI/5% fetal bovine serum or bronchial epithelial cell
growth medium at 1×105 in 24-well plates for BEAS-2B and PBEC, respectively. After 24 h, cells were then
transfected with miR-320d mimic (1 nM; Qiagen, Venlo, the Netherlands) and nontargeting control
(1 nM; Qiagen) using RNAimax (Invitrogen, Groningen, the Netherlands), grown to confluence,
serum-deprived for 24 h and treated with BEAS-2B (10% CSE for 24 h in presence and absence of
fluticasone propionate (10−8 M) pre-treatment for 3 h) while PBECs were treated with 20% CSE for 8 and
24 h. Annexin V PI staining was used to confirm that no additional cellular death occurred between the
transfection of scrambled and miR-320d mimic (supplementary figure S1C). A higher dose of CSE was
selected for PBECs, as we have shown previous that primary cells are less sensitive to CSE than cell lines [12].
Cell lysates and cell-free supernatants were collected to determine the miR-320d expression and
CXCL8 levels at the 24 h time point (R&D Systems, Abingdon, UK), while mRNA was collected at 8 h
stimulation for PBECs and extracted to measure interleukin (IL)-1β and CXCL8 mRNA levels using
quantitative PCR [13].

TABLE 2 MicroRNAs (miRNAs) that changed after 6 and 30 months of inhaled corticosteroid
treatment compared with placebo

Noncoding RNA 0–6 months fluticasone propionate
versus placebo

0–30 months fluticasone
propionate versus placebo

t-value p-value FDR t-value p-value

hsa-miR-155# −3.465 8.17×10−4 0.168 −2.601 0.011
hsa-miR-320d# 3.103 0.003 0.168 2.944 0.004
hsa-miR-22 3.080 0.003 0.168 1.249 0.215
hsa-miR-339-3p# 3.031 0.003 0.168 2.175 0.032
hsa-miR-342-3p# −2.987 0.004 0.168 −0.671 0.504
hsa-miR-708 −2.852 0.005 0.207 −2.448 0.016

FDR: false discovery rate. #: miRNAs changing in the same direction at both 6 and 30 months of
corticosteroid treatment compared with placebo.
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Gene-expression analysis in publicly available datasets
To investigate genes which lead to an increase of CXCL8 during smoke exposure we analysed a publicly
available dataset (GSE30660) of air–liquid interface (ALI)-differentiated PBECs (n=4) from healthy donors
with/without repeated cigarette smoke challenge (30 min exposure on four separate days). We focused on
genes that were increased by cigarette smoke (fold change >2, false discovery rate (FDR) <0.05) using R
version 3.1.4 and the limma package.

Nuclear factor-κB activity
To investigate whether overexpression of miR-320d directly suppresses nuclear factor (NF)-κB activity, we
used a renilla luciferase reporter assay according to the manufacturer’s instructions (Promega, Leiden, the
Netherlands) as described in the supplementary material.

Results
Change in miRNA expression after 6- and 30-month treatment with ICS
We identified six miRNAs with altered expression after 6 months of ICS treatment compared with placebo
in bronchial biopsies of COPD patients (FDR <0.25). A full list is presented in table 2 and a heatmap and
volcano plots are illustrated in figure 1a–c. Four of these six miRNAs (downregulated: miR-708 and
miR-155; upregulated: miR-320d and miR-339-3p) remained significant in the same direction after
30 months treatment (nominal p<0.05). None of the four miRNAs identified were found to be altered
between current and ex-smokers at baseline, indicating that smoking has no effect on these miRNAs (data
not shown).

Associations between changes in miRNA expression and mRNA expression
We next examined whether the miRNAs altered by ICS negatively regulate the expression of their
predicted targets in the COPD-derived bronchial biopsies. We conducted a cross-sectional analysis at
baseline and longitudinal analysis between 6 months and baseline. All four identified miRNAs had at least
one significant negative-correlated predicted target within either the cross-sectional or longitudinal
analysis, with an overlap between these analyses for each miRNA ranging between 30.9% and 80.7%
(supplementary figure S2A–D). Supplementary table S1 presents all associations. Connected network
analysis identified two main clusters of miRNAs and their predicted targets: 1) miR-708 and miR-155,
which were decreased by ICS treatment; and 2) miR-320d and miR-339-3p, which were increased by ICS
treatment (figure 1d).

Replication of miRNA altered by ICS
For further validation of the identified miRNA, we investigated the third arm of the GLUCOLD cohort,
i.e. patients treated with ICS + LABA. A candidate-based approach identified that of the four miRNAs,
miR-320d, miR-339-3p and miR-708 were also significantly altered in the same direction by ICS + LABA
compared to placebo at 6 months treatment (p<0.05). A comparison between the ICS and ICS + LABA
analysis is illustrated in supplementary figure S3 Next, we investigated in the independent dataset whether
miR-320d, miR-339-3p and miR-708 were altered between COPD patients using ICS (n=6) compared to
COPD patients not on ICS (n=24). For the replication, we focused additionally on the miR-320 family, as
miR-320a-d all have very similar sequences and have the same predicted targets (supplementary figure
S4A). Here we found that the miR-320 family (miR-320a, miR-320b-1, miR-320b-2 and miR-320c-2) were
significantly increased by ICS, while miR-320c-1 and miR-320d was found to have a trend for an increase
(p=0.057 and p=0.086, respectively) reflecting the results found in initial analysis (supplementary figure
S4B–G and supplementary table S2). MiR-339-3p and miR-708 were not found to be significantly altered
by ICS in the same direction.

Pathway analysis of miRNA targets
Using GeneNetworks, we found that miR-320d negatively correlated predicted targets were associated with
pro-inflammatory related pathways including tumour necrosis factor (TNF)-α signalling and cytokine
production, while miR-339-3p predicted targets were associated with regulation of ion transport (nominal
p-value <0.05). Finally, miR-708 negatively correlated predicted targets were found to associate with the
regulation of ion transport and activation of phospholipase C activity (nominal p-value <0.05). The list of
the top five pathways for each miRNA is displayed in table 3; an extended list is provided in the
supplementary material (supplementary table S4). To evaluate whether the miRNA negatively correlated
predicted targets were ICS sensitive, we performed GSEA on the GLUCOLD data before and after
6 months of ICS treatment compared to placebo. As expected, the majority of miRNA negatively
correlated predicted targets were altered by ICS in the opposite direction to their targeting miRNA, with
miR-708 negatively correlated targets being increased and miR-339-3p and miR-320d negatively correlated
targets being decreased by ICS (figure 2a and supplementary figure S5).
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Treatment-related changes in miRNA expression are associated with presence of COPD or
severity of airflow obstruction in an independent cohort
To determine whether miRNAs affected by ICS treatment are clinically relevant, we investigated the
association of miRNA expression and presence of COPD and level of FEV1 % pred in an independent
cohort of bronchial brushings, where miRNA expression profiles were available from 30 smokers with and
30 without COPD [14]. Of the three miRNAs altered following ICS treatment, miR-708 was found to be
altered in the opposite direction between COPD and controls, with higher expression in COPD-derived
bronchial brushes (p<0.05). No difference was found for miR-320d or miR-339-3p.

Next, to investigate whether the negatively correlated miRNA predicted targets are relevant to disease
pathogenesis, we performed GSEA on an expanded population from the same independent cohort with
whole-genome gene-expression data available in bronchial brushings of 63 current or former smokers with
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FIGURE 1 MicroRNA (miRNA) altered by inhaled corticosteroid (ICS) treatment compared to placebo in bronchial biopsies of chronic obstructive
pulmonary disease (COPD) patients. a, b) Heatmap showing changes in miRNA expression in response to ICS versus placebo at a) 6 and
b) 30 months compared to baseline in bronchial biopsies of COPD patients; c) volcano plot showing changes in miRNA expression in response to
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the thickness of the edges (lines connecting miRNAs and genes) is associated with the strength of correlations between miRNA and target
messenger RNA.
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and 135 without COPD [14]. As with the miRNA analysis, it was conducted on the continuous
COPD-related FEV1 measurement. The miR-320d negatively correlated predicted targets were enriched
among the genes increased in subjects with lower lung function, while the miR-708 negatively correlated
predicted targets were enriched among the genes decreased in subjects with lower lung function (figure 2b
and supplementary figure S6). No such association was found for miR-339-3p predicted targets.

MiR-320d is upregulated by corticosteroid treatment in vitro
Next, we examined whether ICS directly regulate the expression of the identified miRNAs in
ALI-differentiated PBECs from healthy donors. Treatment with fluticasone propionate (10 nM) for 24 h
resulted in significant upregulation of miR-320d, while miR-708 expression trended to a decrease and
miR-339 was not altered (figure 2c and d).

MiR-320d acts as an anti-inflammatory miRNA through regulation of IL-1β-induced NF-κB
signalling
As miR-320d was predicted to target genes associated with cytokine production, we hypothesised that
miR-320d regulates the expression of pro-inflammatory cytokines/chemokines such as CXCL8, a major
pro-inflammatory cytokine that is increased in COPD. To investigate this, we overexpressed miR-320d in
the human bronchial epithelial cell line BEAS-2B and PBECs (figure 3a) and assessed CXCL8 release in
response to 10% and 20% CSE. Overexpression of miR-320d significantly reduced CSE-induced CXCL8
release in BEAS-2B and PBECs (figure 3b and c). In addition, overexpression of miR-320d reduced
CXCL8 mRNA levels during smoke exposure in the PBECs, supporting the protein data (supplementary
figure S7A). Incidentally, we found that smoking has a minimal effect on CXCL8 mRNA levels at 6 h.
CXCL8 is not a predicted target gene of miR-320d and therefore other upstream mediators are probably
involved. To investigate how miR-320d affects cigarette smoke-induced pro-inflammatory epithelial
responses, we used a publicly available dataset of ALI-cultured PBECs derived from healthy controls that
were either exposed or not exposed to gaseous cigarette smoke (GSE30660). 62 genes were increased by
cigarette smoke treatment (fold change >2, FDR <0.05). String network analysis identified that these 62
genes had an enrichment for protein–protein interactions and that this list was associated with chronic
inflammation (supplementary table S4, supplementary figure S7B). Of interest, IL-1β was identified as a
hub gene in this network (supplementary figure S7C and D); IL-1β is a cytokine previously identified as a
key positive regulator of inflammation in COPD increased by cigarette smoke exposure [15]. We
previously observed that CSE upregulates IL-1 mRNA expression in PBECs [16]. Furthermore, we found

TABLE 3 Top five pathways associated with predicted microRNA gene targets

Pathway or process p-value

miR-320d
Positive regulation of protein oligomerisation 4×10−7

Necrotic cell death 7×10−5

Tumour necrosis factor-mediated signalling pathway 7×10−5

Regulation of protein homo-oligomerisation 10×10−5

Regulation of protein oligomerisation 10×10−5

miR-339-3p
Positive regulation of transport 2×10−9

Regulation of cellular localisation 2×10−8

Second-messenger mediated signalling 2×10−8

Cytosolic calcium ion transport 3×10−8

Positive regulation of ion transport 4×10−8

miR-708
Calcium ion transport 6×10−29

Cellular ion homeostasis 7×10−29

Regulation of ion transport 1×10−27

Regulation of metal ion transport 5×10−27

Second-messenger mediated signalling 8×10−27

miR-155
Viral reproduction 2×10−63

Nuclear transport 2×10−59

Nucleocytoplasmic transport 1×10−58

Protein targeting 8×10−56

Protein localisation to organelle 2×10−54
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FIGURE 2 Gene Set Enrichment Analysis of microRNA (miRNA) negatively correlated predicted targets and in vitro validation. a) Negatively
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that overexpression of miR-320d at baseline significantly decreases IL-1β mRNA levels (supplementary
figure S7E). These results suggest that CSE induces CXCL8 production by activating the IL-1β pathway.

Based on these findings, we assessed whether miR-320d can attenuate IL-1β-induced CXCL8 production
via inhibition of NF-κB, a well-known downstream mediator of IL-1β pro-inflammatory function. To this
end, BEAS-2B cells were transfected with a reporter construct for NF-κB and treated with IL-1β for 24 h
in the presence and absence of miR-320d overexpression. IL-1β treatment significantly activated NF-κB
signalling, and miR-320d overexpression was found to significantly decrease the IL-1β-induced activation
of NF-κB signalling compared to negative miRNA control (figure 3d). A proposed mechanism of
miR-320d is provided in figure 3e.
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serum-deprived overnight. a) Nontargeting microRNA (miRNA)/mimic control or miR-320d was overexpressed in the BEAS-2B and PBECs and its
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used to test for statistical significance. *: p<0.05.
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Discussion
In the present study, we identified four miRNAs that are affected by short- and long-term treatment with
ICS compared to placebo in patients with moderate to severe COPD. Additionally, we show that the
predicted targets of these miRNAs are altered by ICS treatment and that specifically miR-320d targets are
enriched among genes associated with decreased lung function. In vitro, we confirmed the direct effect of
ICS on miR-320d expression in bronchial epithelium and observed that miR-320d overexpression
decreases CSE-induced CXCL8 release. This anti-inflammatory function was found to be mediated in part
by inhibition of the IL-1β/NF-κB pathway.

We further observed that the negatively correlated predicted targets of miR-320d are decreased by ICS
treatment. Although miRNA profiling in bronchial brushes in an independent cohort showed no significant
decrease in miR-320d with COPD, miR-320d predicted target genes were increased with COPD in this
cohort. The latter may indicate that miR-320d regulation of gene expression may be disturbed in COPD

We have, for the first time, identified an anti-inflammatory role of miR-320d. This was suggested by our
pathway analysis, which identified miR-320d as a negative regulator of genes associated with
pro-inflammatory pathways, including TNF-α signalling and cytokine production. The miR-320d
anti-inflammatory role was validated in vitro in airway epithelium, since we showed that miR-320d
overexpression suppresses CSE-induced CXCL8 release through inhibition of NF-κB activation. Here,
IL-1β stimulation was shown to be a potent inducer of NF-κB activity. Our data are in line with previous
studies showing that airway epithelial cells release IL-1β in response to cigarette smoke treatment [17, 18].
Genes associated with the NF-κB pathway were upregulated in differentiated PBECs treated with cigarette
smoke, and increased NF-κB activity has been observed in COPD [19, 20]. CXCL8 is a key mediator in
neutrophil infiltration into airway tissue acting as neutrophil chemoattractant [21].

Cigarette smoke provides one of the main inflammatory initiators in COPD [22, 23]; however, the
mechanism responsible for aberrant inflammatory response in smokers with COPD and why this cannot
efficiently be suppressed by ICS in all patients remains uncertain. Our results support the hypothesis that
miR-320d regulates cigarette smoke-induced CXCL8 by inhibiting NF-κB signalling, and may thus be
involved in the anti-inflammatory effect of ICS.

In addition, miR-155 may be of potential interest in regulating inflammatory responses, as it was identified
in our original analysis and it has previously been shown to be associated with airway inflammation in
murine models of asthma [24]. However, we did not investigate miR-155 further as we could not replicate
its downregulation in our second analysis.

In contrast to our findings, a previous cross-sectional study was unable to find differences in the miRNA
expression profile in bronchial biopsies between treatment with and without ICS in asthmatics [25]. We
believe that the difference between the studies may be due to longitudinal nature, rigorous selection
criteria and higher power of the current study, or possibly the inherent difference between asthma and
COPD patients.

One of the main strengths of this study is the co-analysis of global miRNA and gene-expression change
over time, therefore allowing us to correlate changes in miRNA expression with longitudinal changes in
gene expression of predicted miRNA targets. This experimental setup overcomes one of the main
unknown assumptions of cross-sectional studies on matched miRNA and mRNA samples, namely that the
relationship between miRNA and gene expression remains consistent over time [26, 27]. Validation of our
finding in an in vivo mouse model of COPD may provide further insight into the anti-inflammatory role
of miR-320d [28].

There are some limitations to our study. Despite all samples being snap frozen at −80°C following
collection, RNA degradation was found in some samples, as reflected by relatively low RNA integrity
number (RIN) scores. Therefore, we adjusted for RIN score values in all analyses conducted in this study.
Bronchial biopsies contain a mixture of cell populations. Importantly, after adjusting for inflammatory cell
counts, miR-320d, miR-339-3p and miR-708 remained significant, indicating that the change in miRNA
expression was not due to an ICS-induced change in inflammatory cell populations. Finally, as we used
miRNA arrays we may have missed a number of novel miRNAs.

In summary, we have profiled global miRNA expression in bronchial biopsies from patients with moderate
to severe COPD, following longitudinal treatment with ICS compared to placebo at baseline, 6 and
30 months. We found four miRNAs (miR-320d, miR-339-3p, miR-708 and miR-155) to be altered
following ICS treatment. Furthermore, we identified miR-320d as a novel anti-inflammatory miRNA that
suppresses NF-κB activity in vitro. MiRNAs associated with ICS treatment and inflammation provide
important candidates for future studies as possible biomarkers and therapeutic targets in chronic
inflammatory diseases.
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