7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Continuous integration and delivery applied to large-scale software-intensive embedded
systems

Martensson, Torvald

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Martensson, T. (2019). Continuous integration and delivery applied to large-scale software-intensive
embedded systems. University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022


https://research.rug.nl/en/publications/02b86de3-aa7d-4174-9404-2503388e3f0f

Chapter 10

Exploratory Testing of Large-Scale Systems — Testing in
the Continuous Integration and Delivery Pipeline

This chapter is published as: Martensson, T., Stahl, D. and Bosch, J. (2017). Exploratory testing
of large-scale systems — Testing in the continuous integration and delivery pipeline. 18th
International Conference on Product-Focused Software Process Improvement, PROFES 2017,
pp. 368-384.

Abstract: In this paper, we show how exploratory testing plays a role as part of a continuous
integration and delivery pipeline for large-scale and complex software products. We propose a
test method that incorporates exploratory testing as an activity in the continuous integration and
delivery pipeline, and is based on elements from other testing techniques such as scenario-based
testing, testing in teams and testing in time-boxed sessions. The test method has been validated
during ten months by 28 individuals (21 engineers and 7 flight test pilots) in a case study where
the system under test is a fighter aircraft. Quantitative data from the case study company shows
that the exploratory test teams produced more problem reports than other test teams. The
interview results show that both engineers and test pilots were generally positive or very positive
when they described their experiences from the case study, and consider the test method to be an
efficient way of testing the system in the case study.

10.1 Introduction

Exploratory testing was coined as a term by Cem Kaner in the book “Testing Computer
Software” 1988 (Kaner 1988), and was then expanded upon as a teachable discipline
by Kaner, Bach and Pettichord in their book “Lessons Learned in Software Testing” in
2001 (Kaner et al. 2001). The test technique combines test design with test execution,
and focuses on learning about the system under test.

Different setups exist for planning, execution and reporting exploratory testing.
Testing can be organized as charters (Gregory and Crispin 2015, Hendrickson 2013) or
tours (Gregory and Crispin 2015, Whittaker 2010) which are conducted as sessions
(Gregory and Crispin 2015, Hendrickson 2013) or threads (Gregory and Crispin 2015).
Janet Gregory and Lisa Crispin describe the test technique (Gregory and Crispin 2015)
with the following words: “Exploratory testers do not enter into a test session with
predefined, expected results. Instead, they compare the behavior of the system against
what they might expect, based on experience, heuristics, and perhaps oracles. The
difference is subtle, but meaningful.” The core of the test technique is the focus on
learning, shown in for example Elisabeth Hendricksson’s definition (Hendrickson
2013) of exploratory testing: “Simultaneously designing and executing tests to learn
about the system, using your insights from the last experiment to inform the next”.

Coevally with the evolution of exploratory testing, continuous integration and other
continuous practices emerged during the 1990s and early 2000s. The exact moment for

184


https://www-scopus-com.proxy-ub.rug.nl/authid/detail.uri?origin=resultslist&authorId=57192161976&zone=
https://www-scopus-com.proxy-ub.rug.nl/authid/detail.uri?origin=resultslist&authorId=55634303300&zone=
https://www-scopus-com.proxy-ub.rug.nl/authid/detail.uri?origin=resultslist&authorId=56675290800&zone=
https://www-scopus-com.proxy-ub.rug.nl/record/display.uri?eid=2-s2.0-85034601172&origin=resultslist&sort=plf-f&src=s&st1=%22Exploratory+Testing+of+Large-Scale+Systems+%22&st2=&sid=e9f6770bd208cdfb579e5860ac2a5656&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22Exploratory+Testing+of+Large-Scale+Systems+%22%29&relpos=1&citeCnt=0&searchTerm=
https://www-scopus-com.proxy-ub.rug.nl/record/display.uri?eid=2-s2.0-85034601172&origin=resultslist&sort=plf-f&src=s&st1=%22Exploratory+Testing+of+Large-Scale+Systems+%22&st2=&sid=e9f6770bd208cdfb579e5860ac2a5656&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22Exploratory+Testing+of+Large-Scale+Systems+%22%29&relpos=1&citeCnt=0&searchTerm=

the birth of each practice is up for debate. Continuous integration is often referred to as
a term coming from either Kent Beck’s book “Extreme Programming” (Beck 1999) in
1999 or Martin Fowler’s popular article in 2006 (Fowler 2006), and the term continuous
delivery seems to have been established by Jez Humble and David Farley in the book
“Continuous Delivery” in 2010 (Humble and Farley 2010). Automated testing is
described as a corner stone of continuous practices, and automated tests tend to be the
focus when test activities are assembled to a continuous integration and delivery
pipeline (shown in Figure 37). This pipeline splits the test process into multiple stages,
and is described with different terminology by Duvall (2007) as “stage builds”, by
Larman and VVodde (2010) as “multi-stage CI system” or by Humble and Farley (2010)
as the “deployment pipeline” or “integration pipeline”. Humble and Farley (2010)
include exploratory testing in the final stage before release to the customer. We believe
that exploratory testing also can play an important role early in the integration flow,
especially when developing large-scale systems with many dependencies between the
subsystems.

Based on this, the topic of this paper is to answer the following research question:
How can exploratory testing be used in the continuous integration and delivery pipeline
during development of large-scale and complex software products?

The contribution of this paper is three-fold. First, it presents a test method for large-
scale and complex software products. Second, the paper shows how exploratory testing
plays a role as part of a continuous integration and delivery pipeline for large-scale and
complex software products. Third, it provides quantitative data and interview results
from a large-scale industry project. The remainder of this paper is organized as follows.
In the next section, we present the research method. This is followed in Section 10.3 by
a study of related literature. In Section 10.4 we present the test method, followed by
validation in Section 10.5. Threats to validity are discussed in Section 10.6. The paper
is then concluded in Section 10.7.

77777777777777777777777777777777777777777777777777777 teedvack | EXploratory
testing

nward to

v Unitand Delivery
new commit system build
Developer === component =9 checks | System tests Robustness tests
s tests (instant) Foiiptits

feedback |

Figure 37: An example of a continuous integration and delivery pipeline
(including exploratory testing), showing the flow of test activities that follows
a commit of new software.

10.2 Research Method

The first step to answer the research question stated in Section 10.1 was to conduct a
systematic literature review (according to Kitchenham (2004)), which is presented in
Section 10.3. The question driving the review was "Which test methods related to

185



exploratory testing and testing of large-scale and complex systems have been proposed
in literature?”

The test method for exploratory testing of large-scale systems was developed based
on related published literature and experiences in the case study company. The test
method was validated using the following methods to achieve method and data
triangulation (Runeson and Hdst 2009):

o Systematic literature review: Comparison of the test method and related work found
in literature.

o Validation interviews: Interviews with 18 engineers and 7 flight test pilots who used
the test method during ten months.

o Analysis of quantitative data: Exploratory analysis of quantitative data (problem
reports and time used in the test rig) retrieved from the case study.

Interviews were held with 25 of the 28 individuals who were participating in the test
activity in the case study. The remaining three had in two cases changed jobs, and was
in one case on parental leave. The interviews were conducted as semi-structured
interviews, held face-to-face or by phone using an interview guide with pre-defined
specific questions. The interview questions were sent to the interviewee at least one day
in advance to give the interviewee time to reflect before the interview. The questions
in the interview guide were:

e How would you describe your experiences from [name of the test activity in the
project]?

o What did you like or not like about...
— The planning meetings?
— The briefings before testing?
— The test sessions in the rig?
— The debriefings after testing?

o What do you like or not like about [name of the test activity in the project] compared
to other types of test activities?

o Are you interested in participating in this type of activity again?

The interview results were analyzed based on thematic coding analysis as described
by Robson (2016) (pp. 467-481), resulting in three main themes corresponding to the
characteristics of the test method (each supported by statements or comments by
between 15 and 20 of the interviewees). The process was conducted iteratively to
increase the quality of the analysis. Special attention was paid to outliers (interviewee
comments that do not fit into the overall pattern) according to the guidelines from
Robson (2016), in order to strengthen the explanations and isolate the mechanisms
involved.

Detailed data on e.g. types of scenarios selected by the test teams, types of issues
found during the test sessions or detailed interview results are not included in this
research paper due to non-disclosure agreements with the case study company.

186



10.3 Reviewing Literature

10.3.1 Criteria for the Literature Review

To investigate whether solutions related to the research question have been presented
in published literature, a systematic literature review (Kitchenham 2004) was
conducted. A review protocol was created, containing the question driving the review
("Which test methods related to exploratory testing and testing of large-scale and
complex systems have been proposed in literature?”) and the inclusion and exclusion
criteria. The inclusion criterion and the exclusion criterion for the review are shown in
Table 21.

Inclusion criterion Yield

Publications matching the Scopus search string TITLE-ABS-KEY 52
( "exploratory testing™ AND software ) on
March 27, 2017

Exclusion criterion Remaining

Excluding duplicates, conference proceedings summaries and publications | 39
with no available full-text

Table 21: Inclusion and exclusion criteria for the literature review.

To identify published literature, a Scopus search was conducted. The search was
updated before writing this research paper, in order to include the state-of-the-art. The
decision to use only one indexing service was based on the fact that we in previous
work have found Scopus to cover a large majority of published literature in the field,
with other search engines only providing very small result sets not already covered by
Scopus.

10.3.2 Results from the Literature Review

An overview of the publications found in the systematic literature review is presented
in Table 22. The review of the 39 publications retrieved from the search revealed that
five of the publications were not directly related to exploratory testing. These papers
use the term “exploratory testing” as a keyword without a single mention in the article
itself or only mentioning it in passing. In addition to that, one of the papers was a poster
which contained the same information as another paper found in the search.

187



Topic of the publications Number of papers
Not relevant 5

Poster 1

Methods/tools 10

Effectiveness and efficiency of test methods 14

How exploratory testing is used 5

Reporting experiences 4

Summary 39

Table 22:  An overview of the publications found in the systematic literature
review.

Ten of the papers were related to methods and tools, typically combining two test
techniques such as model-based testing and exploratory testing (Frajtak et al. 2017,
Frajtak et al. 2016, Gebizli and Stzer 2016, Schaefer and Do 2014, Schaefer et al.
2013). Two papers proposed different approaches to combine script-based testing and
exploratory testing (Shah et al. 2014a, Rashmi and Suma 2014) and one paper described
how to extract unit tests and from exploratory testing (Kuhn 2013). One paper discussed
“guidance for exploratory testing through problem frames” (Kumar and Wallace 2013)
and finally one paper investigated the feasibility of using a multilayer perceptron neural
network as an exploratory test oracle (Makando et al. 2016).

Fourteen of the publications discussed the effectiveness and efficiency of different
test methods. Two of those were systematic literature reviews (Thangiah and Bastri
2016, Garousi and Méantyld 2016a) and one combined a systematic literature review
and a survey (Ghazi et al. 2015). Eight papers (Itkonen et al. 2016, Afzal et al. 2015,
Itkonen and Méntyl4d 2014, Shah et al. 2014b, Shah et al. 2014c, Prakash and
Gopalakrishnan 2011, Itkonen et al. 2007, Do Nascimento and Machado 2007)
compared exploratory testing and scripted testing (also referred to as test case based
testing or confirmatory testing). The comparisons were based on either true experiments
or experiences from industry projects. Sviridova et al. (2013) discuss effectiveness of
exploratory testing and proposes to use scenarios. Micallef et al. (2016) discuss how
exploratory testing strategies are utilized by trained and not trained testers, and how
this affect the type of defects the testers find. Raappana et al. (2016) report the
effectiveness of a test method called “team exploratory testing”, which is defined as a
way to perform session-based exploratory testing in teams.

Five papers describe in different ways how exploratory testing is used by the testers,
based on either a true experiment (Shoaib et al. 2009), a survey (Pfahl et al. 2014),
video recordings (Itkonen et al. 2013) or interviews (Itkonen et al. 2009, Itkonen et al.
2005). Itkonen and Rautiainen (2005), Shoaib et al. (2009) and Itkonen et al. (2013)
describe how the tester’s knowledge, experiences and personality are important while
performing exploratory software testing in industrial settings. Itkonen et al. (2009)
present the results of a qualitative observation study on the manual testing practices,
and presents a number of exploratory strategies: “User interface exploring”, “Exploring
weak areas”, “Aspect oriented testing”, “Top-down functional exploring”, “Simulating
a real usage scenario”, and “Smoke testing by intuition and experience”.

188



Finally, four papers (Gouveia 2016, Suranto 2015, Moss 2013, Pichler and Ramler
2008) report experiences from exploratory testing in industry, but without presenting
any quantitative or qualitative data as validation. Suranto (2015) describes experiences
from using exploratory testing in an agile project. Pichler and Ramler (2008) describes
experiences from developing and testing a visual graphical user interface editor, and
touches upon the use of exploratory testing as part of an iterative development process.
Gouveia (2016) reports experiences from using exploratory testing of web applications
in parallel with automated test activities in the continuous integration and delivery
pipeline.

In summary, we found no publications that discussed exploratory testing in the
context of large-scale and complex software system. Some publications touched on
topics related to the subject, such as iterative development and continuous integration
(which are commonly used during development of large-scale and complex software
systems).

10.4 Exploratory Testing of Large-Scale Systems

10.4.1 Characteristics of the Test Method

The test method for exploratory testing of large-scale systems is based on related
published literature and experiences from the case study company. In this case,
exploratory testing is used to test a large-scale and complex system, which may consist
of a range of subsystems that are tightly coupled with a lot of dependencies.

The motivation behind developing the test method was an interest in the case study
company to increase test efficiency, and to find problems related to the integration of
subsystems earlier in the development process. The transformation to continuous
development practices implies a transformation from manual to automated testing. This
requires large investments, both a large initial investment in implementing automated
test cases and later costs for maintaining the test cases to keep up with changes in the
system under test. For test activities that is likely to not remain static (the same
specification is run over and over again) it is an alternative to utilize the flexibility of
experienced engineers in manual test activities.

The test method is designed to complement automated testing in the continuous
integration and delivery pipeline, and to provide different feedback and insights than
the results from an automated test case. The characteristics of the test method are:

o Exploratory testing as an activity in the continuous integration and delivery
pipeline: Testing is conducted with an exploratory approach where the testers
simultaneously learn about the system’s characteristics and behavior. Testing is done
regularly on the latest system build, which has passed the test activity in the
preceding step in the continuous integration and delivery pipeline.

o Session-based testing in teams with experienced engineers representing different
subsystems: Testing is conducted in time-boxed sessions by teams of hand-picked
experienced engineers, representing the different subsystems of the product. If the

189



size or complexity of the system under test cannot be covered by a single team, the
test scope can be split between several teams.

e Scenario-based testing with an end-user representative as part of the test team:
Testing is conducted in scenarios, which represent how the product will be used by
the end-user. An end-user representative is participating in both planning and test
execution, securing that the scenarios are reflecting appropriate conditions.

The characteristics of the test method are in different ways described or touched
upon in published literature. Exploratory testing has been described (at least briefly) in
the context of agile or iterative development (Gregory and Crispin 2015, Suranto 2015,
Pichler and Ramler 2008) and one report describes how exploratory testing is used in
the *“continuous integration pipeline” (Gouveia 2016). Exploratory testing is often
combined with the use of sessions (Gregory and Crispin 2015, Hendrickson 2013, Afzal
et al. 2015, Raappana et al. 2016, Itkonen et al. 2013) and the concept of testing in
teams has been described (Raappana et al. 2016) or at least touched upon (Gregory and
Crispin 2015). There are also publications that enhance the importance of experience
and knowledge (Shoaib et al. 2009, Itkonen et al. 2013, Itkonen and Rautiainen 2005).
The use of scenarios is also described in different ways (Gregory and Crispin 2015,
Whittaker 2010, Sviridova et al. 2013, Itkonen et al. 2009), but not specifically with an
end-user representative as part of the test team.

10.4.2 Using the Test Method

The test team work together in planning workshops, test sessions and debriefing
meetings (shown in Figure 38).

Planning
workshop

Debriefing
meeting session

Figure 38: The flow between planning meetings, test sessions and debriefing
meetings.

At the planning meeting, the test team discusses ideas for testing that could result in
finding uncovered problem areas. The team members prioritize and group the test ideas
into scenarios, which could be executed during a test session. A scenario is a chain of
events that could be introduced by either the product’s end-user, derive from a problem
in the product’s software or hardware systems, or be coming from other systems or the
environment where the product is operated (e.g. change of weather if the product is a
car). The test team is monitoring the reports from other test activities in the continuous

190



integration and delivery pipeline, in order to follow new or updated functions or new
problems that have been found which could affect the testing.

During the test session, the scenarios are tested in a test environment which is as
production-like as possible. The test environment must also be equipped so that the test
team is able to test fault injection and collect data using recording tools. Before the test
session the team must also decide on test approaches for the planned test sessions:
Should the team observe as many deviations as possible or stop and try to find root
causes? Should the team focus on the intended scope or change the scope if other issues
come up?

The debriefing meeting is used by the team to summarize the test session. The
responsibility to write problem reports or follow up open issues found in the test session
is distributed among the team members. The team should consider if a problem should
have been caught at a test activity earlier in the pipeline, and report this in an appropriate
way. Decisions are made if the tested scenarios should be revisited at the next session
or not. The team should also discuss how team collaboration and other aspects of test
efficiency could be improved.

10.5 Validation

10.5.1 The Case Study

The case study company is developing airborne systems and their support systems. The
main product is the Gripen fighter aircraft, which has been developed in several
variants. Gripen was taken into operational service in 1996. An updated version of the
aircraft (Gripen C/D) is currently operated by the air forces in Czech Republic,
Hungary, South Africa, Sweden and Thailand. The next major upgrade (Gripen E/F)
will include both major changes in hardware systems (sensors, fuel system, landing
gear etc.) and a completely new software architecture.

The test method described in Section 10.4 was applied to a project within the case
study company for ten months. The system under test was the aircraft system with
functionality for the first Gripen E test aircraft, which was tested in a test rig. The test
pilot was maneuvering the aircraft in a cockpit replica, which included real displays,
panels, throttle and maneuvering stick. In the rig the software was executing on the
same type of computers as in the real aircraft. The aircraft computers were connected
to an advanced simulation computer, which simulated the hardware systems in the
aircraft (e.g. engine, fuel system, landing gear) as well as a tactical environment. A
visual environment was presented on an arc-shaped screen. The test team
communicated with the pilot from a test leader station in a separate room. From the test
leader station the tester could observe the pilot’s displays and the presentation of the
aircraft’s visual environment. The test team could also observe the behavior of the
software in the aircraft computers and inject faults in the simulator during flight (e.g.
malfunction of a subsystem in the aircraft).

Continuous integration practices such as automated testing, private builds and
integration build servers were applied in the development of software for the Gripen

191



computer systems. When a developer committed new software to the mainline, the new
system baseline was tested in multiple stages in a pipeline similar to the example shown
in Figure 37. All test activities on unit, component and system level which were
effectuated up to weekly frequency were automated tests, followed by exploratory
testing and other manually executed test activities.

Testing was conducted in sessions, starting with four hours per session which after
two months was changed to three hours. The testing started with two teams, followed
by a third team after a month. The teams tested at a frequency of one test session per
week for two weeks out of three, meaning that generally two of the three teams tested
every week. The testers were handpicked from the development teams, all being senior
engineers representing different subsystems in the aircraft. A test pilot (from the flight
test organization) was maneuvering the aircraft in the simulator. The engineers (in total
21 individuals) were allocated to the three test teams, each of which focused on one
cluster of subsystems in the aircraft. The last two months the teams were merged to one
test team, due to that no new functions were introduced and not so many new problems
where found during the test sessions.

10.5.2 Validation Interviews

The interviewed 18 engineers who participated in the test activity were generally very
experienced, all with many years of experience from industry software development.
The interviewed 7 pilots were all employed as flight test pilots, with training from
military pilot schools and experience from many years of service in both the air force
and as test pilots in the industry. Both engineers and test pilots were generally positive
or very positive when they described their experiences. “Relevant and good testing”, to
quote one of the test pilots. One of the engineers described it with the following words:
“It was fantastic! We identified a lot of problems. And we learned how the system
worked.”

The three test teams used the way of working described in Section 10.4 with planning
meetings, test sessions and debriefing meetings. The interviewees described that they
“built a backlog” of things to test at the planning meetings, which was then used during
the upcoming test sessions. The planning meetings were described with words as
“creative” or “at least as interesting as the testing itself”. Interviewees from one of the
test teams described that they at first did very little preparations before the testing,
resulting in some unprepared and inefficient test sessions. This changed when the team
focused more on the planning meetings.

All teams held a short briefing (10-15 minutes) right before the test session, in order
to go through the program for the test session. This was appreciated by both engineers
and test pilots, as it gave everyone a picture of what would happen. During the briefing
roles and responsibilities were also clearly distributed (communicating with the pilot,
taking notes etc.). The testing itself was generally described as efficient, where
engineers and the test pilot were working together as a team. One voice asked for better
tools for some of the fault injection procedures, and someone else asked for better
recording capabilities. After the test session the team had a short debriefing, with the
purpose to summarize the findings and decide who was to write problem reports or

192



further examine open issues. The teams often also had a follow-up meeting the day after
the test, focusing on improving test efficiency and ways of working.

Both the engineers and the test pilots were generally very generous with comments
and thoughts regarding their experiences from the test activities. Many engineers
described their experiences with a lot of enthusiasm, and in some cases even referring
to the testing as “great fun”. The experiences shared by the interviewees are
summarized in themes corresponding to the characteristics of the test method:

o Exploratory testing as an activity in the continuous integration and delivery pipeline

o Session-based testing in teams with experienced engineers representing different
subsystems

e Scenario-based testing with an end-user representative as part of the test team

Exploratory testing as an activity in the continuous integration and delivery
pipeline: Both engineers and test pilots described the benefits with exploratory testing,
where the test teams not plainly follow the instructions in a test case step by step. As
one interviewee described it: “We could test according to the ideas we had. We wanted
to understand the system that we were building and to find the weaknesses in the
system”. A few interviewees also described that they during this test activity were
looking for the root cause of the problems that were found, whereas they in other test
activities just wrote down a brief description of the problem. Besides talking about the
benefits from the higher level of freedom, many engineers also described the need for
structure and discipline. A field of improvement seemed to be communication of the
results from other test activities in the continuous integration and delivery pipeline.
Several interviewees described situations where the team was not sure if a problem was
already known, or even if a function was complete or still under development.
However, according to the interviewees the synchronization with other test activities
improved over time.

Session-based testing in teams with experienced engineers representing different
subsystems: Almost all engineers described benefits from testing in teams. According
to the interviewees, many of the questions that came up at a test session could be solved
directly during the test session. Another engineer described that “the quality of the
problem reports improves if there are people from different subsystems participating at
the test”. The engineers described that they were “learning about the system” and
“learning about other subsystems”. A few voices talked about the importance of having
the right people onboard, referring to personality as well as knowledge and experience
from the different subsystems of the product. To have a team of six or up to eight people
participating during the same test session could also be challenging. Several
interviewees described that it sometimes was difficult to see what was going on at the
displays, and it was important that the test leader was good at involving all team
members in the test process.

Scenario-based testing with an end-user representative as part of the test team:
Almost all interviewees described or touched upon that scenarios was a good way to
test the complete system. Both engineers and test pilots described that most of the other
test activities focused on a subsystem in the aircraft, whereas this test activity focused
on the complete aircraft. The interviewees seemed to like to use scenarios as a

193



description of the tests, seeing it as a description that everyone could understand and
more flexible than a traditional test case. Several engineer commented on the value to
use a real test pilot, who could describe how the product would be used by the end user.
The test pilots also described that they could “learn a lot from the engineers”. To quote
one of the test pilots: “During this test activity the engineers who design the product
came in direct contact with the pilots who use it”. A few voices (especially from the
test pilots) asked for more clear objectives with each scenario test.

One of the questions in the interview guide asked the interviewee to compare the
exploratory test activity and other types of test activities. None of the interviewees
wanted to describe one way of testing as better than the other, but did instead in different
ways describe that exploratory testing and specification-based testing are different
types of testing with different purposes. To quote one of the engineers: “Testing
according to [a test specification] verifies that the function is implemented according
to the specification. This type of testing checks that it is good enough, that we can use
the product.”

Two of the engineers were a bit less positive than the others. One of them described
it like “it never worked quite well”, but explained this with that the subsystem he was
representing had very little coupling to other subsystems. The other engineer described
his situation in the following way: “I was never fully in, I do not know why. I had no
clear vision of the whole system. | wished | had known more about my own subsystem,
to be able to answer questions from the others.”

The last question in the interview guide was if the interviewee was interested in
participating in this type of activity again. Twenty-three of the 25 interviewees
answered the question with “yes”. Some of the engineers and some of the test pilots
added that their participation were depending on priority decisions from management.
Two of the participants answered the question with “maybe”. One of them just added
“we’ll see when the question comes up”. The other described himself as “not
completely negative, but not completely positive either” but did not expand this further.

10.5.3 Problem Reports and Testing Time

Each test session in the case study resulted in a number of found defects in the system
or open issues. The open issues were discussed with other developers or system
managers, which sometimes clarified that the behavior was according to design, and
sometimes confirmed that this was a defect in the system. All defects were documented
as problem reports in the organization’s issue management tool. All test sessions were
conducted in one of the test rigs. The test rig was a scarce and valued test resource, as
it was constructed with the same bespoke hardware as a real aircraft and a complex
system for the visual environment (as described in Section 10.5.1).

Figure 39 shows for every month during the test period how many percent of all
problem reports that month that came from the exploratory test teams. The figure also
shows how many percent of all time in the rig that month (rig maintenance not included)
that were booked by the exploratory test teams. The figure shows that except for May
(and July when almost no testing was done due to vacation period) the exploratory test
teams produced a larger share of the problem reports than the exploratory test teams’

194



share of the rig time. As problem reports from other test activities were also written
based on testing in other rigs and test environments, the share of time in all related rigs
and test environments is actually even lower.

Figure 40 shows how the problem reports from the exploratory test teams are
distributed over the ten months when the test activity was conducted. The figure also
shows how all testing time in the rig used by the exploratory test teams is distributed
over the same period of time. Figure 39 and Figure 40 together show that the three test
teams started a bit slow, and did not generate so many problem reports the first month.
This changed during June, and peaked during August. Then the trends seem to stabilize
for three months, followed by a period of time when the activity was run less intensively
due to that no new functions were introduced.

May Jun Ju Aug Sep Oct MNow Dec lan Feb

e 32 0f 2l probiem reports = @ = % of all time in the rig

Figure 39: The exploratory test teams’ share of problem reports (in percent)
and share (in percent) of all time in the rig.

Figure 40: Distribution of problem reports and testing time for the
exploratory test teams.

195



10.6 Threats to Validity

10.6.1 Threats to Construct Validity

One must always consider that a different set of questions and a different context for
the interviews can lead to a different focus in the interviewees’ responses. In order to
handle threats against construct validity, the interview guide was designed with open
questions (presented in Section 10.2). In this paper, we present both the interview guide
and the background for both the interviewees and the case study in order to provide as
much information as possible about the context.

The test rig was considered to be a scarce and valued resource. Therefore, we
measure the number of problem reports (defects found) per unit of rig time in order to
discuss the efficiency of the test method. We do not claim to discuss efficiency on more
general terms, such as comparing the importance of the problem reports from different
types of test activities (which we consider much harder to measure or quantify).

The observed effectiveness of exploratory testing in terms of number of problem
reports may have been influenced by a focus on new functionality. It is conceivable that
using the test method with a more clear focus on regression testing would provide a
different result.

It is conceivable that the effectiveness of the studied test method is affected by the
knowhow and experience of the participants in the study. As the studied test method
was new for the participants, the study represents an early usage phase or basically the
introduction of the test method. Results and feedback from participants may be different
once the test method has turned into an established practice.

10.6.2 Threats to Internal Validity

Of the 12 threats to internal validity listed by Cook, Campbell and Day (1979), we
consider Selection, Ambiguity about causal direction and Compensatory rivalry
relevant to this work:

o Selection: Interviews were held with 25 of the 28 individuals who were participating
in the test activity. The remaining three had in two cases changed jobs, and was in
one case on parental leave. As the interview series managed to cover all of the
participants that were present at the company, there was no selection of interviewees.

o Ambiguity about causal direction: While we in this study discuss correlation, we are
very careful about making statements regarding causation. Statements that include
cause and effect are collected from the interview results, and not introduced in the
interpretation of the data. Due to this, we consider this threat to be mitigated.

e Compensatory rivalry: When performing interviews and comparing scores or
performance, the threat of compensatory rivalry must always be considered. The
questions in our interviews were deliberately designed to be value neutral for the
participants, and not judging performance or skills of the interviewee or the
interviewee’s organization. Generally, the questions were also designed to be
opened-ended to avoid any type of bias and ensure answers that were open and

196



accurate. However, our experiences from previous work is that we found the
interviewees more prone to self-criticism than to self-praise.

10.6.3 Threats to External Validity

The validation of the test method is based on interviews and quantitative data from a
single company. It is conceivable that the findings from this study are only valid for
this company, for companies that operate in the same industry segment (military
aircraft), or for similar products in different types of industry segments (e.g. other types
of vehicles). The characteristics of the test method are in different ways described in
related work (as described in Section 10.4), which we argue supports the
generalizability of the results of this study (external validity). We have also presented
detailed information about both the case study company and the project in the case
study, in order to support attempts to replicate our results in other studies.

10.7 Conclusion

In this paper, we have discussed how exploratory testing can be used in the continuous
integration and delivery pipeline during development of large-scale and complex
software products. We have proposed a new test method with the following
characteristics:

o Exploratory testing as an activity in the continuous integration and delivery pipeline

e Session-based testing in teams with experienced engineers representing different
subsystems

o Scenario-based testing with an end-user representative as part of the test team

The characteristics of the test method are in different ways described or touched
upon in published literature, which we argue strengthens the validation of the test
method. However, none of the found publications presents a test method focusing on
large-scale and complex systems, which we argue strengthens this paper’s position as
a valid contribution. The test method has been validated in a case study, where the
system under test was a fighter aircraft. The test method was used during ten months
by 28 individuals (21 engineers and 7 flight test pilots). Validation is based on
quantitative data and interviews with 25 of the 28 participants.

Quantitative data from the case study company (presented in Section 10.5.3) shows
that the exploratory test teams produced more problem reports than other test teams.
The three test teams started a bit slow, and did not generate so many problem reports
the first month. This changed the following months, and the number of problem reports
peaked during the fourth month.

The interview results (summarized in Section 10.5.2) show that the characteristics
of the test method are considered valuable by the interviewed 18 engineers and 7 flight
test pilots, and that they consider the test method to be an efficient way of testing the
system in the case study. Both engineers and test pilots embraced exploratory testing,
and appreciated more freedom. Coordination with other test activities in the continuous

197



integration and delivery pipeline was described as a problem at the beginning of the
case study, but this improved later on. Many of the engineers described that they were
able to test that the subsystems worked together, and that they learned about other
subsystems due to that the team consisted of engineers from different subsystems.
Engineers and test pilots thought that testing with scenarios was a good way to test the
complete system, and described it as valuable to have the test pilot as an end-user
representative participating in the test activity. The interviewees were generally
positive or very positive when they described their experiences from the case study,
using phrases like “relevant and good testing” or “we learned a lot”.

Consequently, we find that the test method presented in this paper succeeds in
incorporating exploratory testing in the continuous integration and delivery pipeline
and is an efficient test method for large-scale and complex software products. This is a
significant result, as we see great value in how automated testing and exploratory
testing could be complementing one another, each mitigating the weaknesses of the
other by addressing unique concerns. Whereas automated test activities in the pipeline
are able to rapidly provide feedback to developers and to verify requirements,
exploratory testing can provide more in-depth insights about the system under test.
Based on this research study, we believe that exploratory testing should be used in a
continuous integration and delivery pipeline, preferably to test new functions and
systems in a large-scale system.

10.7.1 Further Work

As the validation in this paper is based on a single case study, this calls for validation
from other case studies using the same test method. As a suggestion, the system under
test could be another type of vehicle, such as a car or a truck. This type of study could
also be combined with the use of other methods to compare the efficiency of the test
method (preferably using quantitative data).

198



	Chapter 10



