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on closing large-eddy simulations
Roel Verstappen

Bernoulli Institute, University of Groningen, Netherlands

Abstract
This paper is about models for large-eddy simulation
(LES) of turbulent flow that truncate the small scales
of motion for which numerical resolution is not avail-
able by making sure that they do not get energy from
the larger, resolved, eddies. To identify the resolved ed-
dies, we apply Schumann’s filter to the (incompressible)
Navier-Stokes equations, that is the turbulent velocity
field is filtered as in a finite-volume method. The spatial
discretization effectively act as a filter too; hence we de-
fine the resolved eddies for a finite-volume discretization.
The interpolation rule for approximating the convective
flux through the faces of the finite volumes determines
the smallest resolved length scale δ. The resolved length
δ is twice as large as the grid spacing for an usual in-
terpolation rule. Thus, the resolved scales are defined
with the help of box filter having diameter δ. The clo-
sure model describes the nett effect of the unresolved
scales on the resolved flow field. The closure model is to
be chosen such that the solution of the resulting LES-
equations is confined to length scales that have at least
the size δ. This condition sets a requirement for every
closure model. The direct development of this require-
ment results into a condition that depends explictly on
unresolved scales; hence it is not useable. Therefore,
we make use of Poincaré’s inequality to determine the
amount of dissipation that is to be generated by the clo-
sure model in order to counterbalance the nonlinear pro-
duction of too small, unresolved scales. This dissipation-
production balance results into a condition that depends
on the invariants of the velocity gradient. This condition
is to be scaled properly if the filterbox is anisotropic. In
principle, the scaled truncation condition can be applied
to any LES-model. Here it is applied to an eddy-viscosity
model to illustrate the procedure.

1 Large-eddy simulation
The Navier-Stokes (NS) equations provide a model for
turbulent flow. In the absence of compressibility (∇·u =
0), the NS-equations are

∂tu + ∇·(u⊗ u) − ν∇·∇u + ∇p = 0,

where u denotes the fluid velocity, p stands for the pres-
sure and ν is the viscosity. The entire spectrum - ranging
from the scales where the flow is driven to the smallest,
dissipative scales - is to be resolved numerically when
turbulence is computed from the NS-equations. The
available computing power is often inadequate to resolve
the small scales where the dissipation takes place. In
that case, the NS-equations do not provide a tractable
model. Therefore, finding a coarse-grained description
is one of the main challenges to turbulence research. A
most promising methodology for that is large-eddy simu-
ation [1].

Large-eddy simulation (LES) seeks to predict the dy-
namics of spatially filtered turbulent flows. To that end,
a spatial filter is applied to the NS-equations:

∂tu + ∇· (u⊗ u) − ν∇·∇u + ∇p = ∇· (u⊗u−u⊗ u)

where the filter is denoted by a bar, i.e., u denotes the fil-
tered velocity field, and p stands for the filtered pressure.
Here it may be stressed that it is assumed that the filter
commutes with spatial differential operators. The right-
hand side represents the effects of the residual scales on
the ‘larger eddies’. To remove the explicit dependence on
the residual scales of motion, the commutator of u ⊗ u
and the filter is replaced by a closure model. This yields

∂tv + ∇ · (v ⊗ v) − ν∇·∇v + ∇π = −∇ · τ(v) (1)

where the variable name is changed from u to v (and p
to π) to stress that the solution of Eq. (1) differs from u,
because the closure model τ is not exact [2].

2 Finite-volume discretization
When the LES-equations are discretized in space, the
low-pass characteristics of the discrete operators effec-
tively act as a filter too. This numerical filter will in-
evitably interact with the filter that is explicitly ap-
plied to the Navier-Stokes equations. To try to dist-
inghuish these filters, we apply Schumann’s filter to the
NS-equations [3]. That is, as in a finite-volume method
we take

u = 1
|Ωh|

∫
Ωh
u(x, t) dx,

where Ωh denotes a cell of the computational mesh. To
start, we consider an one-dimensional uniform mesh with
spacing h. Schumann’s filter is then given by

ui = 1
h

∫ xi+h/2

xi−h/2
u(ξ, t) dξ (2)

Like in a finite-volume method, the conservation of mo-
mentum is described by

h
dui
dt + u2

i+1/2 − u2
i−1/2 = · · · (3)

where ui+1/2 denotes the velocity at xi+1/2, that is ex-
actly midway between the grid points xi and xi+1. The
dots in Eq. (3) stand for the linear (diffusive) contribu-
tions to the conservation law. These contributions are
omitted because they are not important here. The core
problem is that the velocities ui+1/2 at the faces of the
control volume (here in 1D) are to be expressed in terms
of the box-filtered velocities ui. To make that connec-
tion, we introduce a second filter with filter length δ:

ũi+1/2 = 1
δ

∫ xi+1/2+δ/2

xi+1/2−δ/2
u(ξ, t) dξ (4)
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Note that this filter is half a grid cell shifted relative to
the original filter. Now by choosing δ = 2h, we obtain
the key relation

ũi+1/2 = 1
2 (ui + ui+1) (5)

This equation does not contain any error! Thus the con-
servation law (Eq. (3)) can also be written as

h
dui
dt + ũ2

i+1/2 − ũ
2
i−1/2 = −σi+1/2 +σi−1/2 + ··· (6)

where σi+1/2 = ũ2
i+1/2 − u

2
i+1/2. According to Eq. (5),

the left-hand side depends on the spatially filtered ve-
locities ui−1, ui and ui+1. In the conventional finite-
volume method, Eq. (5) is viewed as the interpolation
rule for the fluxes - the interpolation rule is then given
by ui+1/2 ≈ ũi+1/2. Consequently, the right-hand side of
Eq. (6) represents the interpolation error. If, however,
Eq. (6) is seen as a closure problem, then the problem
reads: express σi+1/2 in terms of the box-filtered veloc-
ity ũi+1/2. So from that point of view, (the effect) of the
residual of the δ-filter is to be modelled to close Eq. (6).
These different points of view illustrate the entanglement
of the discretization (here: interpolation) error and the
closure model.
Next, we consider two neighboring ‘volumes’, say

[xi−1/2, xi+1/2] and [xi+1/2, xi+3/2], and take δ = 2h.
The two corresponding momentum equations (Eq. (6)
for ui as well as for ui+1) can be added together using
Eq. (5). Thus, we get

δ
dũ
dt i+1/2 + ũ2

i+3/2 − ũ
2
i−1/2 = −σi+3/2 + σi−1/2 + ···

A finite-difference approximation with stepsize δ = 2h
induces a spatial filter too. Indeed,

φi+3/2 − φi−1/2

δ
= 1

δ

∫ xi+3/2

xi−1/2

∂φ

∂x
(ξ) dξ = ∂̃φ

∂x
i+1/2

Hence by combining the two equations above, we obtain

∂tũ + ∂̃xũ2 = ˜∂x(ũ2 − u2) + · · ·

Once again, it may be stressed that the above momen-
tum equation is exact: it does not contain any error
yet. The nonlinear term in the left-hand side is usu-
ally not filtered; hence to put it the standard LES-form,
we add the residual of ∂xũ2 to both the left- and right-
hand side. Furthermore, we assume as in Sect. 1 that
the spatial derivative commutes with the filter. (In fact,
this assumption is superfluous here, but because it is
always made, we do it too). This yields the common
LES-template wherein Schumann’s grid-box filter (hav-
ing filter length h) is replaced by the interpolation filter,
i.e., Eq. (4) with filter length δ = 2h:

∂tũ + ∂xũ
2 = ∂x(ũ2 − ũ2) + · · · (7)

So, in a finite-volume setting, we need to model the ef-
fects of all scales smaller than δ = 2h, and not just the
subgrid contributions. Indeed, the finite-volume tem-
plate (Eq. (6)) can be closed by modeling the effect of
the residue of the interpolation filter (Eq. (4)). If we
view the finite-volume method in this way, we should be
borne in mind that the closure condition is to be imposed
at the scale δ = 2h which is determined by the interpo-
lation rule. It may be remarked here that the highest

frequency that can be represented on the grid (the mode
that equals +1 in the even grid points and -1 in the odd
grid points) lies in the kernel of the interpolation opera-
tor; hence that mode is invisible and therefore it’s effect
need be modelled.

So far, we have only considered one spatial dimension.
The reasoning can simply be extended to more dimen-
sions. In two dimensions, for example, we take volumes
of size (2h)2. The figure below shows five of these vol-
umes. To compute the convective flux through the four
faces of the central control volume (that is, the volume
with the thick edge), we need to to know the velocities
at the faces. The velocities at the faces are to be in-
terpolated. For that we use averages over the four (2h)2

volumes that are centred around a face of the central vol-
ume. In this way, the interpolation filter can be extended
to two and three dimensions.

3 Separation of scales
The very essence of large-eddy simulation is that the
(explicit) calculation of all small-scale turbulence - for
which numerical resolution is not available - is avoided.
This sets a condition to the closure model [4], [5], [6]. To
determine this condition, we consider an arbitrary part
of the flow domain with diameter δ. With the aid of the
associated box filter,

ṽ = 1
|Ωδ|

∫
Ωδ
v(x, t) dx, (8)

the undesirable small scales in the velocity field v are
defined by v′ = v − ṽ. It may be remarked that the size
of the filter box Ωδ is to be selected by the user. As
argued above, the filter box Ωδ will generally be larger
than the grid box Ωh.
The residual v′ consist of scales of size smaller than

δ. The closure model τ must be designed so that these
small scales are decoupled from the larger eddies; here
defined as eddies having a diameter larger than δ. If
this decoupling is achieved the small-scale field v′ need
not be calculated and we can suffice with a simulation of
the larger eddies only. Therefore the nonlinear coupling
between the velocity fields ṽ and v′ must be broken. To
develop this further, we consider the coupling from the
side of the residue v′. By applying the residual operator
to Eq. (1) we find the governing equation for v′ and from
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that we obtain the evolution of it’s L2(Ωδ) norm:

d
dt

∫
Ωδ

1
2 |v
′|2 dx = ν

∫
Ωδ

(∇·∇v)′ · v′ dx (9)

−
∫

Ωδ
(∇·(πI + v ⊗ v + τ ) )′ · v′ dx

The first term in the right-hand side above is the result
of a linear process, the diffusion caused by the fluid vis-
cosity. The second line in Eq. (9) represents the nonlin-
ear processes that modify the energy of the small scales
of motion. Here it may be noted that the nonlinear-
ity of the pressure-velocity relation becomes apperent
when the divergence of Eq. (1) is taken; indeed this gives
∇·∇π = −∇· (v ⊗ v + τ ). Only nonlinear processes can
transfer energy from the box-filtered velocity field ṽ to
the residual field v′ and vice versa. Consequently, if the
closure model is taken so that the terms in the second
line of Eq. (9) cancel each other out, then

d
dt

∫
Ωδ

1
2 |v
′|2 dx = ν

∫
Ωδ

(∇·∇v)′ · v′ dx (10)

and the evolution of the energy of v′ does not depend on
ṽ. Stated otherwise, the energy of residual scales dissi-
pates at its natural rate, without any forcing mechanism
involving ṽ. In this way, all scales of size smaller than δ
are separated from those larger than δ.
The closure model must keep the residual field v′ from

becoming dynamically significant for the ‘larger eddies’,
i.e., the part of the motion consisting of scales of size
larger than the filter length δ. Our guiding principle is
that the residual part of the motion is removed by the
action of viscosity, as described by Eq. (10). Therefore,
the production of small scales of motion is to be balanced
by the modelled dissipation:∫

Ωδ
(∇·τ )′ ·v′ dx = −

∫
Ωδ

(∇·(v ⊗ v + πI) )′ ·v′ dx (11)

In principle, we could verify whether this condition is
met during a LES. But that is not very attractive, be-
cause verifying Eq. (11) requires a fair approximation of
v′, which is quite expensive to compute. The more so
since the user has chosen the filter length δ in such a
way that the residual field v′ is not of interest. Alter-
natively, v′ might be expressed in terms of the resolved
field by means of an approximate deconvolution proce-
dure. However, such a procedure is not attractive either,
since it is inherently ill-conditioned. In short, we are
trapped in a catch-22: we do not want to compute the
small details, but in order to verify that they need not
be computed, we have to compute them..

4 Poincaré’s inequality
We make use of the Poincaré-Wirtinger inequality to de-
velop an alternative for the dissipation-production bal-
ance Eq. (11) that does not explicitly refer to the residual
field v′, see also [4]- [6]. This inequality states that there
exists a constant Cδ depending only on the domain Ωδ
such that ∫

Ωδ
|v − ṽ|2 dx ≤ Cδ

∫
Ωδ
|∇v|2 dx (12)

That is, the L2(Ωδ) norm of the residual field v′ is
bounded by a constant (independent of v) times the

L2(Ωδ) norm of ∇v. Payne and Weinberger [7] have
shown that the Poincaré constant is given by Cδ =
(δ/π)2 for convex (bounded, Lipschitz) domains Ωδ. This
is the best possible estimate in terms of the diameter
alone.

The Poincaré inequality provides an upper bound
for the energy of the unwanted subfilter scales of mo-
tion. Basically, we can take the closure model such that∫

Ωδ |∇v|
2 dx = 0 for all times. Then,

∫
Ωδ |v

′|2 dx = 0
according to Eq. (12). However, before we elaborate on
this reasoning, the Poincaré inequality is to be reconsid-
ered in case the the filter box is quite anisotropic. In
that case, the diameter δ does not provide a sufficiently
detailed description of the geometry of the filter box.
Consequently, the Poincaré upperbound systematically
overestimates a portion of the contributions to L2(Ωδ)
norm. This issue can be solved by scaling Poincaré’s
inequality properly, see also [5].

4.1 Need to scale Poincaré’s inequality
To illustrate the scaling problem, we consider a rectan-
gular box with (very different) dimensions δ1, δ2 and
δ3, respectively. The velocity field is made up of waves
with length λj = δj/nj , that is, the wave number is
kj = 2πnj/δj , where j = 1, 2, 3. To keep the calcu-
lations simple, we consider the following scalar veloc-
ity v(x) = exp(ikjxj), where the Einstein summation
convention applies. A straightforward calculation shows
that in this case the left-hand side of the Poincaré in-
equality Eq. (12) depends only on the ratio nj of wave
length λj to the box size δj ; it does not depend explicitly
on the filter length δj . Whereas the right-hand side (the
upperbound) depends explicitly on both nj and δj , un-
less the filter box is a cube (δj = δ = constant). So, in
conclusion, although for fixed nj the filter length δj does
not affect the L2(Ωδ) norm of the fluctuating velocity,
the Poincaré upperbound does inevitably depend explic-
itly on δj if the filter box is not a cube; that is, if the filter
is anisotropic. For anisotropic filters the upperbound is
proportional to δ−2

j ; hence (for fixed nj) the upperbound
is dominated by contributions associated with the direc-
tion in which the filter length is smallest. Consequently,
the Poincaré upperbound gets a bias in the direction of
the smallest filter length. To remove that dominant di-
rection, we introduce a scaling.

4.2 Scaling of Poincaré’s inequality
Of course, mathematically there is nothing wrong with
Poincaré’s inequality; the problem in question is that
Poincaré’s upperbound is physically not tight enough if
the filter box differs significantly from a cube. This prob-
lem finds its origin in an erroneous functional dependence
on the filter lengths δi: seen physically, it is too impre-
cise to condense all geometrical data into one number,
the Poincaré constant Cδ, if the filter box has (very)
different length scales δi. We can tighten Poincaré’s up-
perbound by scaling the velocity gradient with the filter
length. To that end the derivative in the i-th direction
is multiplied by the corresponding filter length δi; thus,
the scaled partial derivative with respect to xi is defined
by δ̂i = δi ∂i. The components of the scaled velocity
gradient are then described by

(∇̂v)ij = δi ∂ivj (13)

It may be remarked that ∇̂ can be viewed as the gradi-
ent operator in an isotropic computational space that is
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defined through the map xi 7→ x̂i = xi/δi.
If we now consider the (scalar) example from the pre-

vious section, we find that the scaled Poincaré upper-
bound

∫
Ωδ |∇̂v|

2 dx depends only on the ratio ni of the
box length δi to the wave length λi of the velocity. Hence,
the scaled gradient provides a better starting-point for
bounding the small-scale details than the unscaled gra-
dient. Therefore Rozema et al. [5] proposed the modified
Poincaré inequality∫

Ωδ
|v′|2 dx ≤ C

∫
Ωδ
|∇̂v|2 dx (14)

where C is a constant independent of δj . Thus, whereas
the original Poincaré inequality (Eq. (12)) incorporates
the dependence on the size of the filter box in the
Poincaré constant Cδ, the modified Poincaré inequality
incorporates the dependence on the size of the filter box
by scaling the velocity gradient ∂iv with δi.

4.3 Anisotropic Poincaré inequality
Thus far the scaling of Poincaré’s inequality was consid-
ered for a scalair velocity only. If the filter box is highly
anisotropic, we have to considered the scaling of the com-
ponents of the velocity vector too. Here, we choose the
scaling of the velocity components in such a way that
both the convective term and closure remain invariant
under the scaling of the velocity vector. Therefore, we
introduced the scalings

x̂i = xi
δi

and v̂i(x̂, t) = vi(x, t)
δi

Thus, the incompressibility constraint becomes ∇̂· v̂ = 0,
and the momentum equation transforms in

∂tv̂ + ∇̂·(v̂ ⊗ v̂) − ν∇·∇v̂ + ∇̂·π̂ = −∇̂·τ̂ (15)

where π̂ = diag(δ−2
i )π and τ̂ij = τij/(δiδj). So, in con-

clusion, we apply the modified Poincaré inequality to v̂,
that is we make use of∫

Ωδ
|v̂ ′|2 dx ≤ C

∫
Ωδ
|∇̂v̂|2 dx (16)

to bound the residual velocity field.

5 Counterbalancing the produc-
tion of too small scales

Eq. (16) shows that the energy of the too small scales can
be bounded by L2(Ωδ) norm of the velocity gradient ∇̂v̂.
Thus, the production of too small scales of motion can be
counteracted by introducing a suitable amount of eddy
dissipation in the dynamics of the velocity gradient. Here
we re-use the reasoning that led to the scale-truncation
condition Eq. (11), where this time we do not consider
the production and dissipation of the small-scale energy.
Instead we focus on upper bound given by Eq. (16). Ac-
cording to Eq. (15), we have

d
dt

∫
Ωδ

1
2 |∇̂v̂|

2dx =
∫

Ωδ
∇̂ (ν∇·∇v̂) : ∇̂ dx (17)

−
∫

Ωδ
∇̂ ∇̂·(τ̂ + (v̂ ⊗ v̂) + π̂I) : ∇̂v̂ dx

Here it may be remarked that we use the common nota-
tion a : b =

∑
ij aijbij . As in Eq. (9), the second line of

the right-hand side in Eq. (17) represents the nonlinear
production as a result of the pressure, convection and the
modelled eddy-dissipation, respectively. Eq. (17) shows
that

d
dt

∫
Ωδ

1
2 |∇̂v̂|

2dx = −ν
∫

Ωδ
∇̂·∇v̂ : ∇̂·∇v̂ dx ≤ 0 (18)

provided the closure model τ is chosen such that∫
Ωδ̂
∇∇̂·(τ̂ + (v̂ ⊗ v̂) + π̂I) : ∇̂v̂ dx =

∫
∂Ωδ
ν∇̂v̂ : ∂n∇̂v̂ ds

(19)
It goes without saying that we have to initialize the veloc-
ity field such that v′ = 0 at t = 0. Then, v is constant in
Ωδ; hence ∇v = 0 in Ωδ;. Thus, we have

∫
Ωδ |∇̂v̂|

2dx = 0
at t = 0. If Eq. (18) is supplied with this initial condition
we obtain

∫
Ωδ |∇̂v̂|

2dx = 0 for all times t ≥ 0. Now by
applying Poincaré’s inequality (see Eq. (16)) we arrive
at
∫

Ωδ |v̂
′|2 dx = 0. So, in conclusion, Eq. (19) ensures

that all scales of size smaller than δ are insignificant,
and hence need not be computed. Stated otherwise, if
Eq. (19) is satisfied, the closure model τ properly coun-
terbalances the nonlinear production of small, unresolved
scales of motion in a large-eddy simulation of turbulence.

To elaborate on this truncation condition, we use
Cayley-Hamilton’s theorem. For incompressible flows,
Cayley-Hamilton states that ∇̂v̂3 − Q̂∇̂v̂ + R̂I = 0,
where the second and third invariant of the velocity-
gradient tensor are given by Q̂(v̂) = 1

2∇̂v̂ : ∇̂v̂ and
R̂(v̂) = − 1

3∇̂v̂∇̂v̂ : ∇̂v̂ = −det ∇̂v̂, respectively. The
convective contribution to the left-hand side of Eq. (19)
can be written in terms of these invariants. Indeed, since
∂̂kv̂k = 0, we have∫

Ωδ
∂̂i∂̂k (v̂kv̂j) ∂̂iv̂j dx =∫

Ωδ
∂̂iv̂k∂̂kv̂j ∂̂iv̂j + 1

2 ∂̂k

(
v̂k

(
∂̂iv̂j

)2
)
dx

−
∫

Ωδ
3R̂(v̂) dx +

∫
∂Ωδ

Q̂(v̂) v̂ · n̂ ds

where n is the outward-pointing normal vector to the
boundary ∂Ωδ of Ωδ and n̂i = ni/δi. It may be noted
that he Einstein summation convention applies here, i.e.,
the above formula represents a summation over the terms
indexed by i , j and k. In the sequel we will implicitely
use Einsteins notation too.

In conclusion, the nonlinear contributions to the evo-
lution of the L2(Ωδ) norm of ∇̂v̂ are balanced by the
closure model if

∫
Ωδ
∇̂∇̂·(τ̂ + π̂I) : ∇̂v̂ dx = 3

∫
Ωδ
R̂(v̂) dx (20)

−
∫
∂Ωδ

(
Q̂(v̂) v̂ · n̂+ ν∂nQ̂

)
ds

In conclusion, Eq. (20) ensures that the dissipation
provided by the closure model is sufficient to damp the
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production of any scales of size smaller than δ. Thus the
model confines the LES-solution to scales having at least
length δ. In essence Eq. (20) sets a requirement for every
LES-model. It may be noted that the surface integral in
Eq. (20) consists of two parts. The first part represents
the convective flux of Q̂ through the boundary of the box;
the negative sign occurs because the normal is taken in
the outward direction. The second part represents the
viscous diffusion of Q̂ through the boundary of the box
Ωδ. The volume integral of describes the production of
Q̂; note: R̂ provides a measure for the production.

6 Eddy viscosity
The scale-truncation condition (Eq. (20)) applies to any
closure model τ . The eddy-viscosity model is the most
widely used model. For that reason, we consider it here.
That is, we adopt the template

τ(v)− 1
3 tr(τ)I = −2 νt S(v) (21)

where νt denotes the eddy viscosity and S(v) is the sym-
metric part of the velocity gradient, S(v) = 1

2 (∇v+∇v∗).
As usual, the factor -2 is introduced in Eq. (21). More-
over only the deviatoric component of the closure tensor
is described here, because the divergence of the volu-
metric, isotropic component 1

3 tr(τ)I can be incorporated
into the pressure gradient; see Eq. (1). The classical
Smagorinsky model reads νt = C2

S δ
2√4q, where CS is

the Smagorinsky constant and q = 1
2S : S is the second

invariant of S.
The scale-truncation condition can be used to deter-

mine the eddy-viscosity in Eq. (21). By substituting the
eddy-viscosity model into Eq. (20), we obtain the follow-
ing expression for the eddy viscosity

−
∫

Ωδ
∇̂∇·νt∇v̂ : ∇̂v̂ dx = 3

∫
Ωδ
R̂(v̂) dx (22)

−
∫
∂Ωδ

(
Q̂(v̂) v̂ · n̂+ ν∂nQ̂

)
ds

where we neglected the contribution of the pressure, since
we only consider the deviatoric component of the clo-
sure model. The left-hand side represents the eddy-
dissipation of scales that are too small to be resolved, the
volume integral over R̂ represents the production of these
scales, and the surface integrals in the right-hand side
describe their convective and diffusive transport. Now if
we assume that the dissipation balances the production,
then there is no nett production; so there is nothing to be
transported. Therefore we omit the contribution of the
transport terms here. Furthermore, we assume that the
eddy-viscosity consists of large scales only; hence, νt is
taken constant in Ωδ. Under these assumptions, Eq. (22)
simplifies to

−νt
∫

Ωδ
∇̂∇·∇v̂ : ∇̂v̂ dx = 3

∫
Ωδ
R̂(v̂) dx

If we divide this equation by the L2(Ωδ)-norm of the
scaled velocity gradient ∇̂v̂, we get

νt Ray (−∇·∇, ∇̂v̂) =
3
∫

Ωδ R̂(v̂) dx
2
∫

Ωδ Q̂(v̂) dx
(23)

where the Rayleigh quotient is defined by

Ray (−∇·∇, ∇̂v̂) =
∫

Ωδ −∇·∇ ∇̂v̂ : ∇̂v̂ dx∫
Ωδ ∇̂v̂ : ∇̂v̂ dx

(24)

The eddy viscosity νt depends on the (scaled) velocity-
gradient via Q̂ and R̂ as well as on the Rayleigh quotient
of the (negative) Laplacian −∇·∇ in the direction of ∇̂v̂.
The physical dimension of the right-hand side in Eq. (23)
is 1/time; the Rayleigh quotient in Eq. (24) has dimen-
sion 1/length2. So in this set-up, the ratio of the invari-
ants Q̂(v̂) and R̂(v̂) defines the time that is necessary to
construct an eddy-viscosity, and the Rayleigh quotient
provides the length. In other words, the Rayleigh quo-
tient assigns implicitely a value to the filter length, which
is anything but trivial if the filter is anisotropic. We have
been able to circumvent this problem in Sect. 4 by scal-
ing the Poincaré inequality, but the eddy-viscosity model
re-introduces this problem, since it requires an explicit
description of the length scale. A discussion about this
issue can be found in Ref. [8] and [9], e.g.

Unfortunately, calculating the Rayleigh quotient nu-
merically is not a great option, because a direct numer-
ical computation yields a proper approximation of the
spectrum of the Laplacian (and thus of the Rayleigh quo-
tient) only if the filter length is taken much larger than
the grid width, which means in practice that the cost of
the simulation becomes too high. To work around this
we first note that the Rayleigh quotient scales with 1/δ2;
hence, it can be approximated by (c/δ)2, where c denotes
a constant; details to follow. In this way we arrive at

νt = 3δ2

2c2

∫
Ωδ R̂(v̂) dx+∫
Ωδ Q̂(v̂) dx

(25)

where the index ‘+′ denotes the positive part, i.e., f+ =
max{0, f}. Thus, negative values are clipped (see also
[10]).

Next, we bound the Rayleigh quotient on basis of the
smallest eigenvalue of the (negative) Laplacian on Ωδ.
In a numerical simulation, the value of the constant c
depends on the discretization of the convective deriva-
tive, see [11]. The Rayleigh quotient of −∇ · ∇ (in the
direction of ∇̂v̂) can be bounded from below with the
help of the smallest eigenvalue of the discretization of
−∇ · ∇ on Ωδ. On an uniform 1D mesh the smallest
eigenvalue of a second-order central discretization of the
second derivative on an interval of length δ is equal to
4/δ2. The ascociated eigenmode is −1 0 + 1 0 − 1,
i.e., the applitude is zero in the odd grid points and os-
cillates between -1 and +1 in the even grid point. Note:
δ = 2h. It may be noted this will be the dominant mode
if the closure model functions well, since then all other
modes, smaller scales of motion, are effectively damp-
ened by the closure model. Likewise, in 3D, the largest
eigenvalue of a second-order central discretization of the
Laplacian on Ωδ is equal to 12/δ2; hence c2 = 12 in that
case. For this choice of the discretization (and mesh) the
eddy viscosity is given by

νt = δ2

8

∫
Ωδ R̂(v̂) dx+∫
Ωδ Q̂(v̂) dx

(26)

To calculate the eddy viscosity from this expression, the
invariants R̂(v̂) and Q̂(v̂) are to be computed from the
(scaled) discrete velocity gradient, where the gradient is
discretized as in the convective term. Furthermore, the
integrals over the filter box Ωδ are to be approximated
with the help of a quadrature rule, the trapezoidal rule
or the midpoint rule, for example. The eddy-viscosity
model given by Eq. (26) is successfully tested for home-
geneous turbulence as well as for turbulent channel flows;
details can be found in Ref [6].
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Finally it may be stressed that there are multiple ways
to determine an eddy viscosity that meets a scale trun-
cation condition if the mesh is highly nonuniform. In
Ref. [5] a minimum-dissipation model was derived by
making use of the modified Poincaré inequality Eq. (14)
instead of Eq. (16). This yields an expression for the
eddy viscosity that differs from Eq. (26) if the grid is
(strongly) anisotropic. In Ref. [12] the filterbox Ωδ was
equipped with periodic boundary conditions. If this as-
sumption is adopted, the eddy viscosity depends on the
invariants of the symmetric part of the velocity gradient,
see [12] for details. In short, the truncation condition
does not fully establish the eddy viscosity, leaving room
for modelling assumptions, especially about how the grid
anisotropy is taken into account. It may be noted that
it is even possible to impose the truncation condition on
each component of the velocity vector seperately, leading
to three eddy viscosities, one for each component. Fur-
thermore, the simplications made here (omitting pres-
sure and convective/diffusive flux) are not strictly neces-
sary and should be invested further.

7 Conclusions
We discussed closure models for large-eddy simulation of
incompressible turbulent flows. In particular, we aimed
to formulate a condition that ensures that the closure
model provides sufficient dissipation to counteract the
production of any (small) scales for which numerical res-
olution is not available. Here the resolved scales are de-
fined with the help of interpolation rule for approximat-
ing the convective fluxes through the faces of control vol-
umes. We used Poincaré’s inequality to develop the bal-
ance between the production of too small, non-resolved,
scales of motion and the dissipation provided by the clo-
sure model, without explicitly refering to the unresolved
scales. Poincaré’s inequality has a constant that repre-
sents the geometry of the filter box using the diameter
alone. In case the filter is anisotropic, however, the diam-
eter does not provide a sufficiently detailed description of
the geometry of the filter. Consequently, Poincaré’s up-
per bound systematically overestimates a portion of the
small-scale production. Therefore, we have looked care-
fully at ways to incorporate the anisotropy of the filter
into Poincaré’s inequality. A scaled Poincaré inequality
is used to determine the amount of dissipation that is to
be provided by the closure model in order to counterbal-
ance the nonlinear production of too small, unresolved
scales. This dissipation-production balance results into
a truncation condition that depends on the invariants
of the velocity gradient. It is applied within the eddy-
viscosity concept, yielding a novel eddy-viscosity model.
Yet, the truncation condition does not fully establish the
eddy viscosity, leaving room for modelling assumptions,
especially about how the anisotropy is taken into ac-
count. This points out a possible future improvement.
Finally, it may be stressed that the present framework
can be used to assess any LES-models, also models that
are not solely based on an eddy-viscosity assumption.
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