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Keywords:

Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions
of people all over theworld. Cyclic adenosinemonophosphate (cAMP)which is one of themost important second
messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast
role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment
of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and
help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor,
roflumilast, is used as an add-on treatment for patientswith severe COPD associatedwith bronchitis and a history
of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The
current review provides an overview of the regulation of various PDEs and the potential application of selective
PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as away to
increase their therapeutic effectiveness is also emphasized.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Respiratory diseases such as chronic obstructive pulmonary disease
(COPD) and asthma are among the leading causes of morbidity and
mortality today. COPD and asthma combined affect at least 300 million
people worldwide, making investigation of more therapeutic targets
and the development of effective drugs a relevant task in the treatment
of these respiratory diseases (Vogelmeier et al., 2017).

COPD and asthma are characterized by airway obstruction, chronic
inflammation, and airway remodeling. Despite both COPD and asthma
being characterized by airway obstruction, the airway obstruction in
COPD is progressive and not fully reversible, while that in asthma
is reversible by bronchodilators and is associated with airway
hyperresponsiveness (Guerra, 2009; Hogg & Timens, 2009; Meurs,
Gosens, & Zaagsma, 2008). In addition, airway inflammation in COPD is
characterized by an increased number of neutrophils, macrophages
and CD8+ T-lymphocytes, while that in asthma is characterized by the
infiltration of eosinophils, mast cells and CD4+ T-lymphocytes (Mauad
& Dolhnikoff, 2008; Vogelmeier et al., 2017; Welte & Groneberg, 2006).

Currently, therapeutic management of COPD relies mainly on the use
of bronchodilators (β2-adrenoceptor (β2-AR) agonists, anticholinergics
and theophylline), and a combination therapy of inhaled corticosteroid
plus long-acting β2-AR agonists. In patients with severe COPD associated
with bronchitis and a history of frequent exacerbations, the phosphodies-
terase (PDE) 4 inhibitor roflumilast is typically used as an add-on treat-
ment to the above mentioned therapies (Giembycz & Maurice, 2014). In
asthma treatment and/or management, the combination therapies of in-
haled corticosteroid and short-acting β2-AR agonists or long-acting β2-
ARagonists areused to control symptomsandrelievebronchoconstriction
(Dekkers, Racké, & Schmidt, 2013; Reddel et al., 2015; Silva & Jacinto,
2016). In addition to current therapies in asthma treatment, oral
roflumilasthasbeenproposedas abeneficial add-on therapy foruse inpa-
tients with moderate-to-severe asthma (Beghè, Rabe, & Fabbri, 2013).

In this review, we discuss several PDE subtypes and how their selec-
tive inhibitors are of interest for therapeutic application in COPD and
Fig. 1. Cyclic nucleotides signaling in the lung. cAMP is synthesized by adenylyl cyclase (AC
heterotrimeric G-protein subunits. Similarly, cGMP is synthesized by guanylate cyclase (GC)
particulate GC is activated by natriuretic peptides. Cyclic nucleotides binding proteins are cy
protein kinase G, and exchange proteins directly activated by cAMP (Epacs). cAMP and c
inflammatory, anti-remodeling and bronchodilator effects. β2-AR, β2-adrenoceptor; AC, a
triphosphate; sGC, soluble guanylate cyclase; NO, nitric oxide; pGC, particulate guanylate cyc
proteins directly activated by cAMP; PKG, cGMP-dependent protein kinase G; PDE, phosphodie
asthma treatment. The possibility to combine various PDE inhibitors to
increase their therapeutic effectiveness is also emphasized.

2. Systematic overview of the PDE superfamily

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP) are ubiquitous second messengers. cAMP
and cGMP play important roles in regulating numerous cellular func-
tions in physiology and pathology of the lung, including but not limited
to the airway smooth muscle (ASM) tone, cell proliferation, differentia-
tion, apoptosis, migration, secretion of inflammatorymediators, deposi-
tion of extracellular matrix, and themaintenance of the endothelial and
epithelial barrier (Beavo & Brunton, 2002; Billington, Ojo, Penn, & Ito,
2013; Sayner, 2011; Zhang, Zhang, Qi, & Xu, 2016).

Following activation of adenylyl cyclases (ACs) or guanylyl cyclases,
cAMP and cGMP are synthesized from adenosine triphosphate and gua-
nosine triphosphate, respectively (Omori & Kotera, 2007). Subse-
quently, cAMP and cGMP bind to specific intracellular effector
proteins, such as: cyclic nucleotide-gated ion channels, cAMP-
dependent protein kinase (PKA), cGMP-dependent protein kinase
(PKG), exchange proteins directly activated by cAMP (Epacs)
(Oldenburger, Maarsingh, & Schmidt, 2012; Omori & Kotera, 2007;
Pfeifer, Kilić, & Hoffmann, 2013) and the most recently described
Popeye domain containing proteins which bind cAMP with a high affin-
ity (Schindler & Brand, 2016). The intracellular cyclic nucleotide concen-
trations are substantially determined by PDEs (shown in Fig. 1), which
hydrolyze cAMP and cGMP and prevent it from diffusing to other com-
partments thereby compartmentalizing the cyclic nucleotide signal.

The superfamily of PDEs is composed of 11 families with a distinct
substrate specificity, molecular structure and subcellular localization
(Omori & Kotera, 2007). In this article, some of the key features of the
PDE superfamily are discussed, with the reader being referred to
more specific reviews for future insights in the molecular mechanisms
of the regulation of PDE sutypes (Abbott-Banner & Page, 2014; Omori &
Kotera, 2007; Page, 2014; Page & Spina, 2012). Each PDE family has at
) from adenosine triphosphate. AC is activated by a range of molecules via stimulatory
from guanosine triphosphate. Soluble GC is directly activated by nitric oxide, whereas

clic nucleotide-gated ion channels, cAMP-dependent protein kinase A, cGMP-dependent
GMP are hydrolyzed by phosphodiesterases. In the lung, PDE inhibition exerts anti-
denylyl cyclase; ATP, adenosine triphosphate; GC, guanylate cyclase; GTP, guanosine
lase; NPs, natriuretic peptides; PKA, cAMP-dependent protein kinase A; Epacs, exchange
sterases.
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least one (e.g. Pde5a) and often multiple coding genes, resulting in the
mammalian PDE superfamily being composed of more than 21 genes.
(Omori & Kotera, 2007; Page & Spina, 2012). Moreover, most PDE
encoding genes have distinct promoters, and multiple transcriptional
products which are generated by alternative splicing, resulting in
nearly 100 different PDE messenger RNAs (Conti & Beavo, 2007;
Otero et al., 2014).

Based on the substrate preferences for either cAMP or cGMP, PDEs
are sub-divided into 3 groups: the cAMP-specific PDEs (PDE4, PDE7,
and PDE8), the cGMP-specific PDEs (PDE5, PDE6, and PDE9) and dual-
specific PDEs which hydrolyze both cAMP and cGMP (PDE1, PDE2,
PDE3, PDE10 and PDE11). It is worth noting that some dual-specific
PDEs play vital roles in the crosstalk between cAMP and cGMP. For in-
stance, PDE2 is referred to as a cGMP-stimulated cAMP PDE. When
cGMP binds to the amino terminus of the allosteric regulatory site
known as the GAF-B domain of PDE2, the hydrolysis rate of cAMP is in-
creased by10-fold, and therefore cGMP is able to negatively regulate the
cellular concentration of cAMPvia PDE2 (Martinez et al., 2002; Pavlaki &
Nikolaev, 2018). Another PDE involved in the cAMP and cGMP crosstalk
is PDE3, which is termed a cGMP-inhibited cAMP PDE. Due to a higher
affinity and lower catalytic hydrolysis rate for cGMP compared to
cAMP, cGMP acts as a competitive inhibitor of cAMP hydrolysis by
PDE3 (Degerman, Belfrage, & Manganiello, 1997; Shakur et al., 2001).
In Table 1, the PDE substrate specificities, their expression profile in
the lung, and prominent PDE inhibitors are summarized.

3. PDE3

PDE3 is transcribed from two genes, PDE3A and PDE3B, which show
high affinity to both cAMP and cGMP. Due to a lower Vmax value for
cGMP compared to that for cAMP, cGMP functions as a competitive
Table 1
The PDE superfamily: Substrate preference, lung expression profile and most commonly used

PDE
family

Subfamilies Substrate Lung cell types PDE

PDE1 PDE1A cAMP/cGMP Pulmonary arterial smooth muscle cells;
epithelial cells; fibroblasts; macrophages;

8-m
vinp
IC29

PDE1B
PDE1C

PDE2 PDE2A cAMP/cGMP Pulmonary arterial smooth muscle cells;
endothelial cells; macrophages

BAY
oxin

PDE3 PDE3A cAMP/cGMP Bronchial epithelial cells; airway smooth
muscle cells; vascular smooth muscle cells;
fibroblasts; T-lymphocytes; macrophages

Olpr
milr
sigu
mot

PDE3B

PDE4 PDE4A cAMP Inflammatory cells, fibroblasts, pulmonary
arterial smooth muscle cells; airway smooth
muscle cells; epithelial cells; endothelial cells

Rolip
RP73
GPD

PDE4B
PDE4C
PDE4D

PDE5 PDE5A cGMP Airway smooth muscle cells; vascular smooth
muscle cells; epithelial cells; fibroblasts

Zapr
tada
E402

PDE6 PDE6A cGMP Epithelial cells;
other cell types largely unknown

Zapr
vardPDE6B

PDE6C
PDE6D

PDE7 PDE7A cAMP Inflammatory cells; bronchial epithelial cells;
airway smooth muscle cells; lung fibroblasts;
pulmonary arterial smooth muscle cells;
vascular endothelial cells

BRL
comPDE7B

PDE8 PDE8A cAMP Airway smooth muscle cells; T-lymphocytes;
pulmonary arterial smooth muscle cells;
vascular endothelial cells

PF-4
PDE8B

PDE9 PDE9A cGMP Tracheal smooth muscle cells; pulmonary
arterial smooth muscle cells;
other cell types largely unknown

BAY

PDE10 PDE10A cAMP/cGMP Pulmonary arterial smooth muscle cells;
epithelial cells

Papa
(PF-

PDE11 PDE11A cAMP/cGMP Pulmonary arterial smooth muscle cells;
other cell types largely unknown

BC11
inhibitor for cAMP hydrolysis by PDE3 and therefore PDE3 is referred
to as a cGMP-inhibited cAMP PDE (Omori & Kotera, 2007). Three iso-
forms are encoded by Pde3a, PDE3A1 to PDE3A3, and only one isoform
is described for PDE3B (Movsesian, Ahmad, & Hirsch, 2018). PDE3A is
abundant in the cardiovascular system, including themyocardium, arte-
rial and venous smooth muscle, bronchial, genitourinary and gastroin-
testinal smooth muscle as well as the epithelium, megakaryocytes,
and oocytes, while PDE3B is highly expressed in adipose tissue
(Reinhardt et al., 1995). In the lung, PDE3was detected in alveolarmac-
rophages, lymphocytes, monocytes, platelets, endothelial cells, as well
as in epithelial cells and ASM cells (Beute et al., 2018; Chung, 2006;
Gantner, Schudt, Wendel, & Hatzelmann, 1999; Wright, Seybold,
Robichaud, Adcock, & Barnes, 1998; Zuo et al., 2018). A substantial
body of evidence suggests that PDE3 inhibitors including siguazodan,
SK&F94120 and org9935 are potent relaxants in ASM (Bernareggi,
Belvisi, Patel, Barnes, & Giembycz, 1999; Nicholson et al., 1995; Torphy
et al., 1993). Despite detecting PDE3 in T-lymphocytes, however, PDE3
inhibition has been found to have little effect on T-cell proliferation
and cytokine generation (Giembycz, Corrigan, Seybold, Newton, &
Barnes, 1996).

Recently, Beute and co-workers investigated the role of PDE3 in an
acute house dust mite-driven (HDM-driven) allergic airway inflamma-
tion mouse model. Using a targeted deletion of Pde3a or Pde3b gene in
mice, the number of inflammatory cells and the concentration of pro-
inflammatory cytokine were evaluated. They showed that the number
of eosinophils in bronchoalveolar lavage (BAL) fluid was significantly
decreased in both HDM-treated PDE3A-/- mice and PDE3B-/- mice
when compared toHDM-treatedwild type (WT)mice. Other inflamma-
tory cells, including T-lymphocytes, neutrophils, macrophages followed
roughly the same pattern. Moreover, the proportion of IL-5- and IL-13-
positive CD4+ T cells in BAL fluid was significantly decreased in HDM-
inhibitors.

inhibitor References

ethoxymethyl-IBMX;
ocetine; nimodipine; IC86340;
5;

Brown et al. (2007), Dunkern et al. (2007), Kogiso
et al. (2017), Murray et al. (2007), Schermuly et al.
(2007)

60-7550; PDP; EHNA; IC933;
dole; ND-7001;

(Bubb et al. (2014), PDE2 inhibition, 2013, Snyder,
Esselstyn, Loughney, Wolda, and Florio (2005),
Witzenrath et al. (2009)

inone; cilostamide;
onone; cilostazol; milrinone;
azodan; enoximone;
apizone; SK&F94120; org9935;

Giembycz et al. (1996), Hwang et al. (2012), Mokra,
Drgova, Pullmann, and Calkovska (2012), Selige
et al. (2010), Zuo et al. (2018))

ram; roflumilast; cilomast;
401; Ro20-1724; CHF6001;
-1116; ASP3258; YM976;

Armani et al. (2014), Barber et al. (2004), Belleguic
et al. (2000), Hatzelmann and Schudt (2001), Kubo
et al. (2011), Millen et al. (2006), Mori et al. (2008),
Sachs et al. (2007)

inast; DMPPO; sildenafil;
lafil; vardenafil; dipyridamole;
1; avanafil;

Aldashev et al. (2005), Dent et al. (1998), Sebkhi
et al. (2003), Selige et al. (2010)

inast; DMPPO; sildenafil;
enafil;

Nikolova et al. (2010), Zhang et al. (2005)

50481; IC242; T-2585;
pound 21a;

Gantner et al. (1998), Lee et al. (2002), Miró,
Casacuberta, Gutiérrez-López, de Landázuri, and
Puigdomènech (2000), Smith et al. (2003), Wright
et al. (1998)

957325; dipyridamole; Glavas et al. (2001), Johnstone et al. (2018), Vang
et al. (2010)

-73–6691; PF-04447943; Patel et al. (2018), Tajima, Shinoda, Urakawa,
Shimizu, and Kaneda (2018), Tian et al. (2011)

verine; TP-10; MP-10
2545920);

Schmidt et al. (2008), Tian et al. (2011), Wilson
et al. (2015), Zhu et al. (2017))

-38; Tian et al. (2011)
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treated PDE3A-/- and PDE3B-/- mice compared with HDM-treated WT
mice. The effect of PDE3 inhibition was further confirmed in HDM-
sensitized WT mice using PDE3 inhibitors enoximone and milrinone
(Beute et al., 2018), thereby implicating PDE3 as a novel anti-
inflammatory target in allergic airway inflammation.

4. PDE4

Four distinct subfamily genes, Pde4a to Pde4d, encode the cAMP-
specific hydrolyzing PDE4 enzyme. The PDE4 family includes a number
of splice variants, which share similar and highly conserved catalytic
and carboxy terminal domains (Omori & Kotera, 2007). Based on the
presence or absence of upstream conserved regions (UCRs) at the
amino terminus, PDE4 variants are classified as long forms (which
have UCR1 and UCR2 modules), short forms (which lack the UCR1)
and super-short forms (which lack UCR1 and have a truncated UCR2)
(Omori & Kotera, 2007). It has been demonstrated that UCR1 and
UCR2 form a regulatory module that integrates the regulatory effect of
phosphorylation by PKA (MacKenzie et al., 2002; Sette & Conti, 1996).
In addition, it has been reported that UCR1 and UCR2 play an important
role in PDE4 dimerization (Richter & Conti, 2002) and also serve to or-
chestrate the functional consequences of extracellular signal-related ki-
nase phosphorylation of the PDE4 catalytic domain (MacKenzie, Baillie,
McPhee, Bolger, & Houslay, 2000).

The human Pde4a gene, for instance, encodes a short isoform called
PDE4A1 (Sullivan et al., 1998), and the long forms PDE4A4 (Havekes
et al., 2016), PDE4A7 (Johnston et al., 2004), PDE4A10 (Rena et al.,
2001) and PDE4A11 (Wallace et al., 2005). PDE4A protein is detected
in various tissues, with the PDE4A1 isoform expressed specifically in
the cerebellum (Shakur et al., 1995), the PDE4A4 isoform expressed
highly in the cerebral cortex and olfactory bulb (McPhee, Pooley,
Lobban, Bolger, & Houslay, 1995), the PDE4A8 isoform expressed exclu-
sively in the testis (Bolger, McPhee, & Houslay, 1996), and the PDE4A10
isoformexpressed strongly in heart, kidney, olfactory bulb andmajor is-
land of Calleja (Rena et al., 2001) while the PDE4A11 isoform is
expressed predominantly in the stomach, testis, adrenal gland and thy-
roid (Wallace et al., 2005). Interestingly, a novel human PDE4A8 iso-
form has been found to be highly expressed in skeletal muscle and
brain (Mackenzie et al., 2008). With the exception of PDE4A1, all
other PDE4A isoforms have been detected in the lung, especially in in-
flammatory cells, fibroblasts and pulmonary artery smooth muscle
cells (shown in Table 1) (Barber et al., 2004; Mackenzie et al., 2008;
Millen, MacLean, & Houslay, 2006; Sachs et al., 2007).

The Pde4b family is comprised of a super-short form PDE4B5
(Cheung et al., 2007), a short isoform PDE4B2 (McLaughlin, Cieslinski,
Burman, Torphy, & Livi, 1993; Obernolte et al., 1993) and the long iso-
forms PDE4B1 (Bolger et al., 1993), PDE4B3 (Huston et al., 1997) and
PDE4B4 (Shepherd et al., 2003). PDE4B shows ubiquitous expression,
and is especially highly detected in the inflammatory cells, the brain
and the testis (Cheung et al., 2007). Apart from PDE4B5, which is a
brain-specific isoform, other PDE4B isoforms have been detected in var-
ious organs and tissues, including the lung (shown in Table 1) (Cheung
et al., 2007; Shepherd et al., 2003).

There are seven isoforms of PDE4C, PDE4C1 to PDE4C7 (Engels,
Fichtel, & Lübbert, 1994; Engels, Sullivan, Müller, & Lübbert, 1995;
Obernolte et al., 1997; Owens et al., 1997). It has been demonstrated
that human PDE4C is highly expressed in total brain and particularly
in the substantia nigra while it is almost absent in the same regions of
rat brain, indicating that PDE4C has a species-specific expression pat-
tern (Engels et al., 1994). In addition, PDE4C is expressed in several dif-
ferent human organs, including but not limited to the brain, liver, lung,
kidney and heart. Surprisingly, unlike other PDE4 subfamilies, PDE4C is
absent in inflammatory cells (lymphocytes, neutrophils, eosinophils)
(Engels et al., 1994, 1995).

The Pde4d gene encodes 9 isoforms, PDE4D1 to PDE4D9 (Beavo,
Francis, & Houslay, 2006). Six of the PDE4D isoforms (PDE4D3,
PDE4D4, PDE4D5, PDE4D7, PDE4D8 and PDE4D9) are long isoforms
(Bolger et al., 1997; Sheppard et al., 2014; Wang et al., 2003) while
PDE4D1 and PDE4D2 are short forms (Bolger et al., 1997). In addition,
PDE4D6 is categorized as a supershort form with a truncated UCR2
(Wang et al., 2003). The expression of PDE4D is ubiquitous, and differ-
ent organs, tissues and cells express a varied pattern of PDE4D isoforms
whichmay contribute to themultiple and specialized functions that are
unfortunately not yet fully understood (Richter, Jin, & Conti, 2005). In
addition, it has been reported that some PDE4D isoforms show a dra-
matically different tissue distribution pattern in different species. For in-
stance, in humans, PDE4D7 is highly expressed in the lung and kidney,
while in the mouse it is expressed in the heart and testis. In the rat,
PDE4D7 is expressed in the testis (Wang et al., 2003). Of note is that
the mRNA transcripts of all PDE4D isoforms have been detected in the
lung, albeit expression levels of PDE4D4 and PDE4D6 are relatively
low (Richter et al., 2005).

4.1. PDE4: from basic research to clinical findings

Reports have shown that expression levels of PDE4 isoforms vary be-
tween the lung tissue derived from patients with COPD or asthma as
compared to those of healthy donors, thereby pointing to PDE4 as an in-
teresting and potential drug target in the treatment of chronic pulmo-
nary diseases. The mRNA expression of PDE4A, PDE4B and PDE4D for
example, was significantly augmented in alveolar macrophages from
COPD donors compared to that inmacrophages fromnon-smoking con-
trols (Lea, Metryka, Facchinetti, & Singh, 2011). Also, the mRNA of
PDE4A4 was significantly increased in alveolar macrophages from
smokers with COPD compared to smokers without COPD, suggesting
that PDE4A4 could serve as a macrophage-specific anti-inflammatory
target in COPD (Barber et al., 2004). Compared to non-smokers,
PDE4A4 and PDE4B2 transcripts were significantly up-regulated in pe-
ripheral blood monocytes of smokers (Barber et al., 2004). In addition,
a significant increase in the mRNA levels of PDE4B and PDE4D, but not
of PDE4A or PDE4C, was detected in neutrophils from patients with
COPD compared with healthy subjects (Milara et al., 2014). In a
genome-wide association study, a novel single nucleotide polymor-
phism in the PDE4D gene, rs16878037 was identified as being signifi-
cantly associated with COPD (Yoon et al., 2014).

Cigarette smoke (CS), one of themost important risk factors in COPD
(Vogelmeier et al., 2017), plays a critical role in modulating PDE4 sub-
types. By using a novel Förster resonance energy transfer based cAMP
biosensor in mice in vivo and ex vivo precision cut lung slices (PCLS), a
study was conducted to demonstrate the effect of CS on intracellular
cAMP regulation, mainly focusing on cAMP hydrolysis by PDE3 and
PDE4 (Zuo et al., 2018). It was shown that CS exposure for 4 days in-
creased the activity of PDE4 in the airway. The upregulationwasmainly
associated with increased PDE4A (CS ex vivo exposure for 24 hours),
PDE4B (CS in vivo exposure for 4 days) and PDE4D (CS in vivo and
ex vivo exposure)mRNA and protein levels (Zuo et al., 2018). In another
study, it was shown that the activity of PDE4 in the lung was higher in
mice exposed in utero to CS. In addition, the lung from CS exposed
mice exhibited increased PDE4 protein, especially PDE4D5 (Singh
et al., 2003, 2009), thereby emphasizing the importance of PDE4D5.

Studies in ASM cells from asthmatic and non-asthmatic patients
demonstrated that the production of cAMP induced by the β2-AR ago-
nist isoproterenol was reduced by about 50%, an effect related to an in-
creased activity of PDEs but not to a change in the expression profile of
the β2-AR (Trian et al., 2011). Further investigation by immunoblots in-
dicated a significant increase of PDE4D in ASM cells from patients with
asthma compared to the oneswithout asthma (Trian et al., 2011). In an-
other study, Jones and colleagues studied themRNA transcripts of PDE4
subtypes (PDE4A, PDE4B, PDE4C and PDE4D) in CD4+ and CD8+ lym-
phocytes from healthy and asthmatic subjects (Jones et al., 2007). They
found that, although all PDE4 subtypes were present in relatively high
quantities in both CD4+and CD8+ lymphocytes obtained fromhealthy
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and asthmatic subjects, in comparison with healthy subjects no altered
mRNA expression level of any PDE4 subtype was detected in mild asth-
matic subjects (Jones et al., 2007). These conflicting findings could be
partly explained by differences in the cell types. Furthermore, the selec-
tion of patients is crucial in these kinds of studies as it may only be pos-
sible to detect themolecular differenceswhen studying individualswith
a more severe pathology (Jones et al., 2007).

The clinical efficacy and safety of roflumilast has been evaluated in
several phase III/IV randomized double-blind clinical trials in the treat-
ment of COPD (shown in Table 2). In all studies, patients were recruited
with at least 10-20 years pack history of smoking. Studies M2-124, M2-
125,M2-127,M2-128, ACROSS, REACT and RE2SPOND included patients
with severe to very severe airflow limitation as assessed by Global Ini-
tiative for Chronic Obstructive Lung Disease (GOLD) criteria (Calverley
et al., 2009; Fabbri et al., 2009; Martinez et al., 2015, 2016; Zheng
et al., 2014). All clinical studies demonstrated that treatment with 500
μg of roflumilast significantly increased the post-bronchodilator FEV1
Table 2
Clinical studies in patients with COPD: focus on roflumilast

Clinical
trials

Patients Study design Therapy

RECORD 1411 patients (age ≥ 40), history of
COPD ≥ 12 months, current or
ex-smoker (≥ 1 year of smoking
cessation) with a smoking history
of ≥ 10 pack-years, PB FEV1 30–80%
pred., PB FEV1/FVC ratio ≤ 0.70

Placebo-controlled,
double-blind,
randomized,
multicenter study

Roflumilast 250 μ
roflumilast 500 μg
or placebo (n=28
once daily for 24

RATIO 1513 patients (age ≥ 40), current or
ex-smokers (≥ 1 year of smoking
cessation) with a smoking history
of ≥ 10 pack-years, PB FEV1 ≤ 50%
pred., PB FEV1/FVC ratio ≤ 0.70

Placebo-controlled,
double-blind,
parallel-group
randomized study

Roflumilast 500 μ
or placebo (n=75
once daily for 52

M2-124
M2-125

3091 patients with COPD (age ≥
40), with severe airflow limitation,
bronchitic symptoms, and a history
of exacerbations

Placebo-controlled,
double-blind,
multicenter study

Roflumilast 500 μ
(n=1537) or plac
(n=1554) orally
for 52 weeks. Pati
allowed to use SA

M2-127 933 patients (age ≥ 40),
moderate-to-severe COPD, current
or former smokers with a smoking
history (≥ 10 pack-years), PB FEV1
40–70% pred., PB FEV1/FVC ratio ≤
0.70

Double-blind,
multicenter study

Roflumilast 500 μ
or placebo (n=46
once daily for 24
addition to salme

M2-128 743 patients (age ≥ 40) with
moderate-to-severe COPD, current
or former smokers with a smoking
history (≥ 10 pack-years), PB FEV1
40–70% pred., PB FEV1/FVC ratio ≤
0.70

Double-blind,
multicenter study

Roflumilast 500 μ
or placebo (n=37
once daily for 24
addition to tiotrop

ACROSS 626 patients with a history of COPD
≥ 12 months, current or
ex-smokers with a smoking history
(≥ 10 pack-years), ≥ 14 puffs of
rescue medication

Placebo-controlled,
double-blind,
parallel-group,
multicenter study

Roflumilast 500 μ
or placebo (n=31
once daily for 24
Patients were allo
ICS + LABA or LA

REACT 1935 patients (age ≥ 40) with a
diagnosis of COPD with severe
airflow limitation, symptoms of
chronic bronchitis, a smoking
history (≥ 20 pack-years), at least
two exacerbations in the previous
year.

Placebo-controlled,
double-blind,
parallel-group,
multicenter study

Roflumilast 500 μ
or placebo (n=96
once daily for 52
together with a fi
LABA combination

RE2SPOND 2354 patients (age ≥ 40) with
severe/very severe COPD, chronic
bronchitis, two or more
exacerbations and/or
hospitalizations in the previous
year

Placebo-controlled,
double-blind,
randomized,
multicenter study

Roflumilast 500 μ
(n=1178) or plac
(n=1176) orally
for 52 weeks, pre
with ICS-LABA wi
without LAMA for

PB, post-bronchodilator; FEV1, forced expiratory volume in 1 second; pred., prediction; FVC, fo
nists; LABA, long-acting β2-adrenoceptor agonists; LAMA, long-acting muscarinic antagonists
value ranging from 39 ml to 80 ml compared with placebo. In patients
with frequent exacerbations, roflumilast significantly lowered the rate
of exacerbations as compared to placebo (Martinez et al., 2015, 2016).
Additionally, roflumilast showed more beneficial effects in patients al-
ready receiving treatment with the long-acting β2-AR agonist
salmeterol or the anticholinergic bronchodilator tiotropium (Fabbri
et al., 2009) as compared to those that were not, thereby indicating
that roflumilast bears the potential to be used as an add-on treatment
to the existing therapies in COPD.
4.2. The role of PDE4 inhibition

4.2.1. Anti-inflammatory effect
Due to the fact that PDE4 is widely expressed in inflammatory and

immune cells (eosinophils, neutrophils, monocytes, macrophages, T-
lymphocytes and B-lymphocytes) (shown in Table 1), it is believed
that inhibition of PDE4 is an effective way to reduce the activation and
Key findings Number of patients
with adverse events

References

g (n=576),
(n=555),
0) orally
weeks

PB FEV1 was improved significantly
with roflumilast 250 μg (by 74 ml)
and roflumilast 500 μg (by 97 ml)
compared with placebo;
health-related quality of life was
improved with roflumilast 250 μg
and roflumilast 500 μg.

382 (66%) with
roflumilast 250 μg,
370 (67%) with
roflumilast 500 μg
and 174 (62%) in the
placebo group

Rabe et al.
(2005)

g (n=760)
3) orally
weeks

PB FEV1 increased with roflumilast
500 μg by 39 ml compared with
placebo

592 (77.9%) with
roflumilast 500 μg,
584 (77.6%) in the
placebo group

Calverley
et al.
(2007)

g
ebo
once daily
ents were
BA or LABA

PB FEV1 was increased with
roflumilast 500 μg by 48 ml
compared with placebo. The rate of
exacerbations that were moderate
or severe per patient per year was
1.14 with roflumilast and 1.37 with
placebo.

1040 (67%) with
roflumilast and 963
(62%) in the placebo
group

Calverley
et al.
(2009)

g (n=466)
7) orally
weeks, in
terol

Roflumilast 500 μg improved mean
PB FEV1 by 49 ml in patients
treated with salmeterol.

83 (18%) with
salmeterol and
roflumilast, 14 (3%)
with salmeterol and
placebo

Fabbri
et al.
(2009)

g (n=371)
2) orally
weeks, in
ium

Roflumilast 500 μg improved mean
PB FEV1 by 80 ml in those treated
with tiotropium.

45 (12%) with
tiotropium and
roflumilast, and 6
(2%) with
tiotropium and
placebo

Fabbri
et al.
(2009)

g (n=313)
3) orally
weeks.
wed to use
MA

Roflumilast 500 μg improved mean
PB FEV1 by 71 ml compared with
placebo.

65 (20.6%) with
roflumilast and 18
(5.8%) in the placebo
group

Zheng
et al.
(2014)

g (n=969)
6) orally
weeks
xed ICS and

Roflumilast 500 μg lowered the rate
of exacerbations by 13.2%
according to a Poisson regression
analysis and by 14.2% according to
a predefined sensitivity analysis
using negative binomial regression.

648 (67%) with
roflumilast and 572
(59%) in the placebo
group

Martinez
et al.
(2015)

g
ebo
once daily
-treated
th or
3 months

Roflumilast 500 μg significantly
reduced the rate of moderate or
severe exacerbations in a post hoc
analysis in patients with a history
of more than three exacerbations
and/or one or more
hospitalizations in the prior year.

804 (68.3%) with
roflumilast and 758
(64.6%) in the
placebo group

Martinez
et al.
(2016)

rced vital capacity; ICS, inhaled corticosteroids; SABA, short-acting β2-adrenoceptor ago-



Fig. 2. PDE4 inhibition reduces the release of a variety of pro-inflammatory mediators from key inflammatory cells, including neutrophils, lymphocytes, monocytes, macrophages and
eosinophils, as well as structural lung cells, including epithelial cells, airway smooth muscle cells and fibroblasts. IL, interleukin; MMP, matrix metalloproteinase; LTB4, leukotriene B4;
NE, neutrophil elastase; MPO, myeloperoxidase; ROS, reactive oxygen species; IFN-γ, interferon gamma; TNF-α, tumor necrosis factor-α; GM-CSF, granulocyte/macrophage colony-
stimulating factor; CCL, C-C motif ligand; LTC4, leukotriene C4; CXCL, C-X-C motif ligand.
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recruitment of inflammatory cells, and the release of various cytokines
(shown in Fig. 2). A range of studies has shown that PDE4 inhibition re-
pressed the release of a variety of pro-inflammatory mediators from
neutrophils, such as matrix metalloproteinase (MMP)-9, leukotriene
B4, neutrophil elastase, myeloperoxidase and reactive oxygen species
(ROS) (Grootendorst et al., 2007; Hatzelmann & Schudt, 2001; Jones,
Boswell-Smith, Lever, & Page, 2005; Kubo et al., 2011). Likewise, several
research groups showed that PDE4 inhibition was able to block eosino-
phil infiltration into the lungs (Aoki et al., 2000; Lagente, Pruniaux,
Junien, & Moodley, 1995; Silva et al., 2001), to reduce eosinophil sur-
vival (Momose et al., 1998), to inhibit degranulation by granulocyte/
macrophage colony-stimulating factor (GM-CSF) or platelet-activating
factor (Momose et al., 1998), and to suppress eosinophil chemotaxis,
eosinophil cationic protein, CD11b expression and L-selectin shedding
(Berends et al., 1997; Grootendorst et al., 2007; Kaneko, Alvarez, Ueki,
& Nadel, 1995; Liu et al., 2004). In lung macrophages isolated from pe-
ripheral tissues, the PDE4 inhibitor roflumilast and its active metabolite
roflumilast N-oxide concentration-dependently decreased the release
of chemokine (C-C motif) ligand (CCL)2, CCL3, CCL4, C-X-Cmotif ligand
(CXCL)10 and tumor necrosis factor-α (TNF-α) after stimulation with
lipopolysaccharide (LPS) (Buenestado et al., 2012).

In the murine macrophage cell line J774, the PDE4 inhibitor Ro20-
1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone)) showed
an inhibitory effect on the oxidant tert-butylhydroperoxide (tBHP)-in-
duced release of tumor necrosis factor- α (TNF-α) protein (Brown
et al., 2007). In human monocytes, PDE4 inhibition by rolipram and
Ro20-1724 reduced LPS-induced TNF-α and GM-CSF release from
monocytes (Seldon, Barnes, Meja, & Giembycz, 1995; Seldon &
Giembycz, 2001). In human peripheral CD4+ T cells it has been
shown that PDE4 inhibition by RP73401 reduced the release of interleu-
kin (IL)-2, IL-5 and interferon gamma (IFN-γ) (Peter, Jin, Conti,
Hatzelmann, & Zitt, 2007). Likewise, house dust mite-stimulated T-cell
proliferation was inhibited by PDE4 inhibition (Arp et al., 2003;
Manning et al., 1999; Peter et al., 2007). Additionally, PDE4 inhibition
reduced cytokine and chemoattractant release from lung structural
cells. The PDE4 specific inhibitor rolipram blocked the LPS-induced IL-
6 and TNF-α secretion from alveolar epithelial cells (Haddad et al.,
2002). Moreover, it was reported that PDE4 inhibitors rolipram and
roflumilast decreased LPS-induced CXCL1 release in the bronchial la-
vage fluid in a C57BL/6 mouse model (Konrad, Bury, Schick, Ngamsri,
& Reutershan, 2015). In the same study, rolipram and roflumilast
reduced LPS-induced cytoskeletal remodeling in human distal lung ep-
ithelial NCl-H441 cells (Konrad et al., 2015). Furthermore, CHF6001, a
highly potent and selective PDE4 inhibitor designed for inhaled admin-
istration (Armani et al., 2014; Villetti et al., 2015), reduced rhinovirus
(RV1B)-induced IL-8, IL-29, CXCL10 and CCL5 mRNA and protein in
human bronchial epithelial BEAS-2b cells (Edwards, Facchinetti,
Civelli, Villetti, & Johnston, 2016). In human ASM cells, PDE4 inhibition
by RP73401 significantly suppressed the IL-8 release induced by the
Toll-like receptor 3 agonist poly I:C (Van Ly et al., 2013). However, in
lung fibroblast and human lung microvascular endothelial cells, PDE4
inhibition alone did not effectively decrease the release of inflammatory
mediators and other functional molecules but, in combination with ap-
propriate activation of β2-AR, PDE4 inhibition was able to potently in-
hibit the inflammatory process (Blease, Burke-Gaffney, & Hellewell,
1998; Tannheimer, Wright, & Salmon, 2012).

In COPD models, the accumulation and infiltration of neutrophils
was effectively inhibited by the PDE4 inhibitor cilomilast after 3 days
of CS exposure (Leclerc et al., 2006; Martorana, Beume, Lucattelli,
Wollin, & Lungarella, 2005). In chronic CS exposure studies, 8 weeks
oral administration of the PDE4 inhibitor GPD-1116 markedly attenu-
ated the development of CS-induced emphysema in mice (Mori et al.,
2008). Importantly, this finding was confirmed in another study by
oral administration of roflumilast for a duration of 7 months, resulting
in fully preventing CS-induced emphysema (Martorana et al., 2005).
In addition, several different research groups showed that LPS-
induced neutrophil recruitment was significantly attenuated by PDE4
inhibition in mouse (McCluskie et al., 2006; Tang et al., 2010), rat
(Kubo et al., 2012) and monkey models (Seehase et al., 2012). In
patient-related studies, the PDE4 inhibitors roflumilast and cilomilast
were able to reduce neutrophil and eosinophil accumulation as
well as IL-8, TNF-α and GM-CSF in the sputum of patients with
COPD as compared to placebos (Grootendorst et al., 2007; Profita
et al., 2003).

In asthma models, the PDE4 inhibitor roflumilast suppressed
ovalbumin-induced eosinophil increase in both blood and BAL fluid,
and largely reduced the production of IL-4, IL-5, nuclear factor kappa B
(NF-κB) and TNF-α (Mokry et al., 2017). These findings were confirmed
by using other PDE4 inhibitors, such as rolipram and YM976

(Mokrý et al., 2016; Nejman-Gryz, Grubek-Jaworska, Glapiński,
Hoser, & Chazan, 2006). In a separate study it was shown that PDE4B
knockout mice had a significant decrease in eosinophil recruitment
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and did not develop hyperresponsiveness. More importantly, T(H)2 cy-
tokines (IL-4, IL-5, and IL-13), but not the T(H)1 cytokine IFN-γ, were
decreased in the BAL fluid of PDE4B knockout mice, suggesting that
PDE4B is a vital target in T(H)2-cell function and in the development
of airway hyperresponsiveness in allergic asthma (Jin et al., 2010).
Moreover, the PDE4 inhibitor roflumilast significantly suppressed the
allergen-induced increase of sputum eosinophils and neutrophils in
mild allergic asthma subjects (Gauvreau et al., 2011). Moreover, T-cell
receptor-stimulated IFN-γ, IL-2 and IL-17 secretion in BAL fluid was
inhibited by PDE4 inhibitors in bothmild andmoderate asthma patients
(Southworth et al., 2018), providing robust evidence for the anti-
inflammatory effect of PDE4 inhibitors in asthma patients.

4.2.2. Anti-remodeling effect
Epithelial-to-mesenchymal transition (EMT) is a potential mecha-

nism of small airway remodeling, which contributes to small bronchial
narrowing in COPD (Sukhwinder S. Sohal et al., 2010; Sohal & Walters,
2013; Soltani et al., 2010). PDE4 inhibition by roflumilast N-oxide was
able to reduce the CS-induced increase in mesenchymal markers
(α-smooth muscle actin, vimentin and collagen type I) and the loss in
epithelial markers (E-cadherin, ZO-1 and KRT5), to restore CS-induced
apoptosis, and to diminish the CS-induced increase in transforming
growth factor beta1 (TGF-β1) release as well as phospho ERK1/2 and
Smad3 formation, thereby emphasizing PDE4 as a key pharmaceutical
target in inhibiting CS-induced EMT (Milara et al., 2014; Milara et al.,
2015). Further investigation demonstrated that rolipram or PDE4
small interfering RNA potently inhibited TGF-β1-induced EMT changes
in a Smad-independent manner by reducing ROS, p38 and extracellular
signal-regulated kinase phosphorylation in the human alveolar epithe-
lial type II cell line A549 (Kolosionek et al., 2009). Additionally, PDE4 in-
hibition was able to rescue decreased cystic fibrosis transmembrane
conductance regulator activity (Blanchard et al., 2014; Lambert et al.,
2014; Raju et al., 2017; Schmid et al., 2015), to increase airway surface
liquid volume (Schmid et al., 2015; Tyrrell, Qian, Freire, & Tarran,
2015), to stimulate ciliary beating frequency (Milara et al., 2012;
Schmid et al., 2015; Zuo et al., 2018), and subsequently to reverse CS-
induced mucociliary dysfunction. Also, PDE4 inhibitors roflumilast and
piclamilast were able to significantly decrease goblet cell hyperplasia
(Kim et al., 2016; Sun et al., 2006).

Furthermore, Sisson and co-workers showed that PDE4 inhibition
significantly reduced collagen accumulation, decreased the release of
several fibrosis-related chemokines (CCL11, CXCL10, CXCL5 and CCL5),
and inhibited fibroblast profibrotic gene expression (type-1 collagen
and fibronectin) (Sisson et al., 2018). PDE4 inhibitors were able to at-
tenuate proliferation (Kim et al., 2016; Selige, Hatzelmann, & Dunkern,
2011; Selige, Tenor, Hatzelmann, & Dunkern, 2010; Vecchio et al.,
2013) and apoptosis (Park, Ryter, Kyung, Lee, & Jeong, 2013). In lung fi-
broblasts, RP73-401, a selective PDE4 inhibitor, significantly reduced
the MMP-9 activity in ovalbumin-sensitized and -challenged mice
(Belleguic et al., 2000). Interestingly, it has been shown that cilomilast
and rolipramwere able to inhibit fibroblast-mediated collagen contrac-
tion (Kohyama et al., 2002; Kohyama et al., 2002). An inhibitory effect of
roflumilast on TGF-β-induced fibronectin deposition in human ASM
cells and on TGF-β-induced connective tissue growth factor, collagen I
and fibronectin protein expression in human bronchial rings was also
observed (Burgess et al., 2006). This data point to an anti-remodeling
role of PDE4 inhibitors, which would benefit both CODP and asthma.

4.2.3. Bronchodilator effect
In ASM, cAMP regulation is of importance, as elevated cAMP pro-

foundly regulates broncho-relaxation. Since PDE4 is also highly
expressed in ASM cells, it is believed that PDE4 inhibitors could also
serve as bronchodilators. However, conflicting findings have been re-
ported. It has been proven that roflumilast is able to specifically reduce
airway resistance after nebulization in ovalbumin-sensitized guinea
pigs, and this finding was further confirmed with a significant decrease
in tracheal and lung smoothmuscle contractility after cumulative doses
of histamine in the in vitro organ bath model (Medvedova et al., 2015).
Whilst similar conclusions were made by separate studies which
showed that PDE4 inhibition could relax airway tone in isolated bron-
chial muscle (Schmidt et al., 2000; Shahid et al., 1991), other studies
have indicated that PDE4 inhibition alone was not effective (Rabe
et al., 1993), especially on allergen- or leukotriene C4-induced contrac-
tion of human ASM (Schmidt et al., 2000). Intriguingly, using siRNA
targeted to PDE4D5, it has been demonstrated that PDE4D5 plays a
vital role in the control of β2-AR-stimulated cAMP levels in human
ASM cells (Billington, Le Jeune, Young, & Hall, 2008). The importance
of this PDE isoform inmodulating contractile ability of ASMwas further
studied in PDE4D-/- mice. A significant reduction in ASM contractility
was observed in isolated PDE4D-/- tracheas, with a dramatic decrease
in maximal tension and sensitivity to muscarinic cholinergic agonists
(Méhats et al., 2003), thereby indicating that PDE4D was involved in
ASM contractility.

5. PDE5

PDE5 is a cGMP-specific hydrolyzing PDE and is comprised of 3
spliced variants, PDE5A1, PDE5A2 and PDE5A3 (Omori & Kotera,
2007). In humans, high PDE5A transcript levelswere detected in various
tissues, especially in the heart, kidney, lung, skeletal muscle, pancreas
and small intestine (Kotera et al., 1999; Yanaka et al., 1998). In the
lung, PDE5A is widely expressed in ASM, bronchial epithelial cells,
lung fibroblasts, pulmonary vascular smooth muscle of pulmonary ar-
teries as well as in veins and bronchial blood vessels (Aldashev et al.,
2005; Dent et al., 1998; Dunkern, Feurstein, Rossi, Sabatini, &
Hatzelmann, 2007; Sebkhi, Strange, Phillips, Wharton, & Wilkins,
2003). Currently a series of inhibitors has been designed and is available
on the market to target PDE5. These include zaprinast, E4021,
dipyridamole, sildenafil, tadalafil, vardenafil, and avanafil (shown in
Table 1). While these compounds preferentially inhibit PDE5, none of
them is exclusively selective for PDE5, especially at higher concentra-
tions. Intriguingly, most PDE5 inhibitors act excellently as PDE6 inhibi-
tors (Zhang, Feng, & Cote, 2005). Therefore, it is required that more
attention is paid to the concentrations of PDE5 inhibitors used in
research.

PDE5 has a relatively high expression level in vascular smooth mus-
cle cells. In line with this expression profile, PDE5 inhibitors play a piv-
otal role in pulmonary hypertension, due to the fact that inhibition of
PDE5 results in pulmonary vasodilation and inhibition of vascular hy-
pertrophy and remodeling via the cGMP/PKG signaling pathway
(Ghofrani, Osterloh, &Grimminger, 2006). Since asthma and pulmonary
hypertension - a common complication of COPD - share several patho-
logical features, such as inflammation, smooth muscle constriction,
and smooth muscle cell proliferation, PDE5 may be a potential thera-
peutic target in the treatment of both asthma and COPD (Chaouat,
Naeije, & Weitzenblum, 2008; Said, Hamidi, & Gonzalez Bosc, 2010).
Zaprinast, also known as M&B 22948, was originally used as an orally
absorbed mast cell stabilizer. Oral administration of 10mg zaprinast
was used in 12 patients with asthma induced by histamine or with
asthma induced by exercise, respectively. Interestingly, zaprinast had
no significant effect on the response to inhaled histamine but a signifi-
cant effect on the drop in forced expiratory volume in 1s (FEV1) induced
by exercise on a treadmill (Rudd, Gellert, Studdy, & Geddes, 1983), indi-
cating that zaprinast could be used in the treatment of exercise-induced
asthma.

In addition, it is well established that nitric oxide (NO) released by
epithelial ciliated cells, by type II alveolar cells, and by neural fibers, is
responsible for ASM cell relaxation (Belvisi, Ward, Mitchell, & Barnes,
1995; Ricciardolo, Sterk, Gaston, & Folkerts, 2004). Several experimental
data demonstrated that NO-induced ASM cell relaxation via activation
of the soluble guanylyl cyclase resulted in an increase of intracellular
cGMP, and the subsequent activation of PKG. Activation of PKG resulted



232 H. Zuo et al. / Pharmacology & Therapeutics 197 (2019) 225–242
in an inhibition of the inositol trisphosphate receptor (IP3R), a reduction
of Ca2+ sensitivity and deactivation of the myosin light-chain kinase,
consequently leading to airway relaxation (Perez-Zoghbi, Bai, &
Sanderson, 2010). Thus PDE5 inhibitors are likely to induce airway re-
laxation since PDE5 inhibition is able to contribute to further accumula-
tion of cGMP. In concert with the above findings, therefore, inhibition of
PDE5 by zaprinast was able to enhance NO-induced airway relaxation
by maintaining high intracellular cGMP concentrations (Perez-Zoghbi
et al., 2010). In a separate study, the PDE5 inhibitor tadalafil suppressed
acetylcholine and histamine induced contraction in an asthmamodel of
ovalbumin-sensitized guinea pigs (Urbanova et al., 2017). Similar data
were obtained in previous studies with sildenafil - a short acting PDE5
inhibitor (Sousa et al., 2011; Toward, Smith, & Broadley, 2004). Addi-
tionally, inhibition of PDE5 has proven its effectiveness in inflammation.
Intraperitoneal injection of 1.0 mg/kg tadalafil for 7 consecutive days
led to a decrease in blood leukocytes and eosinophils, and eosino-
phils in BAL fluid, confirming findings from several previous studies
(Al Qadi-Nassar et al., 2007; Toward et al., 2004; Urbanova et al.,
2017). However, even though the concentration of IL-5 was signifi-
cantly decreased in the tadalafil-treated group compared to the
ovalbumin-sensitized group, IL-4 and TNF-α levels in lung homoge-
nates were not significantly suppressed (Urbanova et al., 2017), indi-
cating a plethora of additional complicated mechanisms that may be
involved in the potential anti-inflammatory effect of PDE5. Moreover,
in patients with severe COPD and modestly increased pulmonary ar-
tery pressure, clinical trials with the selective PDE5 inhibitor sildena-
fil did not improve the gas exchange ability (Blanco et al., 2013),
while preventive treatment with tadalafil completely inhibited the
development of emphysema, inhibited structural remodeling of the
lung vasculature, and alleviated right ventricular systolic pressure as
well as right ventricular hypertrophy induced by 6 months CS expo-
sure (Seimetz et al., 2015), thereby indicating additional therapeutic
benefits of PDE5 inhibition.

6. PDE7

Since PDE4 is widely distributed in various cell types, oral PDE4 in-
hibitors inevitably have a limited therapeutic window and are associ-
ated with gastrointestinal side effects (Abbott-Banner & Page, 2014).
Thus studies of other PDE families are urgently needed for a more
targeted therapy. An alternative and promising approach is to inhibit
the cAMP-specific PDE isoenzyme PDE7, which is a highly selective
cAMP-hydrolyzing PDE (Safavi, Baeeri, & Abdollahi, 2013). Two genes
encoding for PDE7, Pde7a and Pde7b, have been identified in humans
(Omori & Kotera, 2007).

There are three isoforms reported in the PDE7A subfamily. The ex-
pression of PDE7A1 is ubiquitous and highly detected in the immune
system (including spleen, lymph node, blood leukocyte and thymus),
whereas PDE7A2 is found mostly in the skeletal muscle, the heart, and
the kidney (Bloom & Beavo, 1996; Wang, Wu, Egan, & Billah, 2000). It
has beendemonstrated that PDE7A3 ismainly expressed in the immune
system, the heart, skeletal muscle and the testis (Glavas, Ostenson,
Schaefer, Vasta, & Beavo, 2001; Omori & Kotera, 2007). PDE7B1 is the
only PDE7B isoform that has been identified in humans. However,
there are three splice variants, PDE7B1 to PDE7B3, in rats (Omori &
Kotera, 2007). PDE7B which has approximately 70% homology to
PDE7A is detected in a variety of tissues, such as liver, brain, heart and
skeletal muscle (Gardner, Robas, Cawkill, & Fidock, 2000; Sasaki,
Kotera, Yuasa, & Omori, 2000; Strahm, Rane, & Ekström, 2014). In the
lung, PDE7A1, PDE7A2 and PDE7A3 are expressed in T cells, in the air-
ways as well as in vascular structural cells, with PDE7B exhibiting a
lower distribution (Smith et al., 2003).

PDE7 is considered to be a promising anti-inflammatory target for
alleviating chronic inflammation since PDE7 exists ubiquitously in
pro-inflammatory and immune cells (Giembycz & Smith, 2006; Smith
et al., 2003), albeit no significant differences were observed in the
mRNA expression of PDE7A and PDE7B between healthy andmild asth-
matic or COPD subjects (Jones et al., 2007). It has been shown that
T-lymphocyte activation up-regulated the mRNA and protein expres-
sion of both PDE7A1 and PDE7A3 (Glavas et al., 2001). Moreover, inhi-
bition of PDE7 expression using PDE7 antisense oligonucleotides was
able to dramatically decrease human T-lymphocyte proliferation in a
PKA-dependent manner, indicating that PDE7 plays an essential role
in T-lymphocyte activation (Li, Yee, & Beavo, 1999). A similar conclusion
was drawn by using the PDE inhibitor T-2585 in a dose range
(0.1–10μm) at which the drug inhibits PDE7A activity. The study
showed that PDE7A inhibition could suppress IL-2, IL-4 and IL-5
mRNA expression and cell proliferation of human peripheral T-
lymphocytes (Nakata et al., 2002). In contrast to these data obtained
in humans, Yang and colleagues reported completely different findings
using PDE7A-deficient mouse in which the deletion of the PDE7A gene
did not exhibit any reduction in terms of in vitro T-lymphocyte prolifer-
ation and cytokine production (IL-2, IFN-γ, or TNF-α) (Yang et al.,
2003). Moreover, no significant improvement of airway inflammation
and airway hyperreactivity could be observed in ovalbumin-sensitized
mice using the PDE7 specific inhibitor compound 21a (Chevalier et al.,
2012). These studies point to different regulatory mechanisms of PDE7
on cAMP signaling in humans and mice.

In addition, several selective small-molecule PDE7 inhibitors have
been reported and used in in vivo and in vitro studies (Kadoshima-
Yamaoka et al., 2009; Martín-Álvarez et al., 2017; Safavi et al., 2013;
Smith et al., 2004). The sulfonamide PDE7 inhibitor BRL 50481 is signif-
icantly more active against PDE7A than against PDE7B (IC50: PDE7A
0.15 μM, PDE7B 12.1 μM) (Alaamery et al., 2010). It was shown that
BRL 50481 was able to enhance the inhibitory effect of the PDE4 inhib-
itor rolipram on the TNF-α release from blood monocytes and lung
macrophages, even though the inhibitory effect of BRL 50481 alone
was very limited, indicating that BRL 50481 acted additively with
other PDE inhibitors to inhibit pro-inflammatory cells (Smith et al.,
2004). Additionally, a novel series of benzyl derivatives of 2,1,3-
benzo- and benzothieno [3,2-a] thiadiazine 2,2-dioxides (Castro,
Abasolo, Gil, Segarra, & Martinez, 2001; Martínez et al., 2000), 5-
substituted 8-chloro-spirocyclohexane-quinazolinones (Bernardelli
et al., 2004), thiadiazoles (Vergne et al., 2004) and thioxoquinazoline
derivatives (Castaño et al., 2009) have been developed as potent and se-
lective PDE7 inhibitors. Their therapeutic effects have been demon-
strated in neurological disorders, for instance Parkinson disease
(Banerjee et al., 2012; Morales-Garcia et al., 2011), Alzheimer's disease
(Perez-Gonzalez et al., 2013; Pérez-Torres et al., 2003), spinal cord in-
jury (Paterniti et al., 2011), autoimmune encephalomyelitis (Martín-
Álvarez et al., 2017) as well as multiple sclerosis (Mestre et al., 2015).
However, their pharmacological effects have not been investigated in
pulmonary disorders, including asthma and COPD. Therefore, more
studies are urgently needed to explore the potential therapeutic effects
of novel PDE7 inhibitors in pulmonary disorders.

7. PDE8

As another cAMP-specific hydrolyzing PDE, PDE8, consisting of
PDE8A and PDE8B, exhibits a higher-affinity and lower Km (≈0.04 -
0.15 μM) for cAMP compared to other PDE isoforms, thus acting as a po-
tential drug target to shape low-level intracellular cAMP signals (Fisher,
Smith, Pillar, St Denis, & Cheng, 1998; Hayashi et al., 1998; Soderling,
Bayuga, & Beavo, 1998; Vang et al., 2010; Yan, Wang, Cai, & Ke, 2009).
PDE8A is highly expressed in the testis, liver and heart (Fisher et al.,
1998; Soderling et al., 1998), whereas PDE8B is richly found in the thy-
roid and brain (Hayashi et al., 1998). In the lung, both PDE8 isoforms
have been detected, albeit the relevant expression levels are low. As
PDE8 is one of the PDEs that cannot be inhibited by the non-selective
PDE inhibitor IBMX, there is urgent need to design and develop new
PDE8 selective inhibitors to explore the physiological and pathological
role of PDE8 (Soderling et al., 1998; Soderling & Beavo, 2000). So far,
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only a few PDE8 inhibitors are available on the market and two out of
three are dual PDE inhibitors (dipyridamole, PDE5/8; BC8-15, PDE4/8).
The recently developed PDE8 selective inhibitor PF-4957325 by Pfizer
has been widely used in PDE8 research. This novel compound has an
IC50 value of 0.7 nM for PDE8A, b 0.3 nM for PDE8B and N1.5 μM for
other PDE isoforms (Vang et al., 2010).

It has been reported that PDE8 plays a vital role in adrenal steroido-
genesis (Shimizu-Albergine, Tsai, Patrucco, & Beavo, 2012; Tsai,
Shimizu-Albergine, & Beavo, 2011), Ca2+ movement in ventricular
myocytes (Patrucco, Albergine, Santana, & Beavo, 2010), and thyroid
dysfunction (Gamanuma et al., 2003). In the lung, Johnstone and col-
leagues demonstrated for the first time that PDE8A was highly
expressed in human ASM cells and that inhibition of PDE8, together
with β2-AR stimulation by isoproterenol, profoundly reduced serum-
induced human ASM cell proliferation compared to isoproterenol
alone (Johnstone et al., 2018), thereby indicating a potential pharma-
ceutical benefit of PDE8 in ASM cells.

In addition, T cell activation up-regulated both mRNA and protein
expression of PDE8A1, suggesting a potential therapeutic role of PDE8
in immune cells (Glavas et al., 2001). Since lymphocyte migration is a
key feature in inflammatory diseases, such as COPD and asthma, inhibi-
tion of the migration of activated lymphocytes would therefore provide
a full therapeutic effect (Ainslie, McNulty, Huynh, Symon, & Wardlaw,
2002). It was reported that PDE8 was able to inhibit the migration of
unstimulated and concanavalin A-stimulated mouse splenocytes. This
inhibition was further increased by forskolin and diminished by the
PKA antagonist Rp-cAMPS, indicating that PDE8may act as a promising
novel target for inhibition of chemotaxis of activated lymphocytes
(Dong, Osmanova, Epstein, & Brocke, 2006). In addition, T cell interac-
tion with vascular endothelial cells plays a crucial role during the in-
flammatory process (Carman & Martinelli, 2015). In spite of the
abundant expression of PDE3 and PDE4 in T lymphocytes, the highly se-
lective PDE4 inhibitor RP73401 and the PDE3-selective inhibitor
motapizone failed to reduce T cell adhesion to endothelial cells,whereas
inhibition of PDE8 by dipyridamole suppressed adhesion and directed
migration of activated T cells (Vang et al., 2010). Dipyridamole also
modulated the gene expression of recruitment chemokine CXCL12
and vascular adhesion molecules (vascular cell adhesion protein 1, in-
tercellular adhesion molecule 1, and tight junction molecule claudin-
5), indicating that PDE8 might serve as a novel and promising target
for inhibition of activated T-lymphocyte migration from the blood-
stream into the tissue during the inflammatory response (Vang et al.,
2010).

8. Dual PDE inhibitors

Although the orally administered PDE4 selective inhibitor
roflumilast N-oxide has been approved by both the U.S. Food and
Drug Administration (FDA) and the European Medicines Agency
(EMEA) to be used as an add-on treatment for severe COPD patients as-
sociated with bronchitis and a history of frequent exacerbations
(Vogelmeier et al., 2017), unwanted side effects including nausea,
headache and gastrointestinal issues have been reported, thereby
representing a major drawback for the wider therapeutic use of PDE4
inhibitors (Page & Spina, 2012). Therefore, it is conceivable that admin-
istration of PDE4 inhibitors together with another PDE family inhibitor
via inhalation at a concentration that does not cause any side effects
could provide an additive or even synergistic therapeutic benefit
(Giembycz, 2005; Turner et al., 2016).

8.1. Dual PDE 3/4 inhibitors

Due to thewide distribution of PDE3 and PDE4 in the lung structural
cells and most inflammatory cells, dual inhibition of PDE3/4 appears to
be an attractive way to target pathological key characteristics of COPD,
particularly as one might expect additive anti-inflammatory and
bronchodilator effects. Milara et al. reported that inhibition of PDE3
with the PDE3 selective inhibitor motapizone alone or inhibition of
PDE4 with the PDE4 selective inhibitor rolipram alone resulted in
about 20% reduction of LPS-induced IL-8 and TNF-α secretion from
human alveolar macrophages, whereas combined PDE3/4 inhibition
caused an up to 90% reduction of LPS-induced cytokine secretion
(Milara et al., 2011). Moreover, oxidative stress induced by H2O2 and
CS,which is known to profoundlyminimize inhibitory effects of cortico-
steroids, did not impair the inhibitory effect of PDE3/4 inhibition
(Milara et al., 2011). The synergistic anti-inflammatory effect of com-
bined PDE3/4 inhibition was also confirmed in other studies
(Hatzelmann & Schudt, 2001; Rieder et al., 2013). In addition, a greater
effect on glucocorticoid- and β2-AR agonist-dependent gene transcrip-
tion was observed upon combined PDE3/4 inhibition compared to
when either a PDE3 or PDE4 inhibitor was used alone (BinMahfouz
et al., 2015; Giembycz&Newton, 2011), suggesting that dual PDE3/4 in-
hibition may play an add-on role to long-acting β2-AR agonists and in-
haled corticosteroid plus long-acting β2-AR agonist combinations,
further enhancing their therapeutic efficacies (Giembycz & Maurice,
2014). As regards the potential bronchodilator effects of PDE3/4 inhibi-
tion, it has been demonstrated that the combination could significantly
relax the inherent bronchial tone (Calzetta et al., 2013; Rabe et al.,
1993).

Many dual PDE3/4 inhibitors have been tested at the pre-clinical
stage. At leastfivedual inhibitors have reached the clinical trial stage, in-
cluding zardaverine, benzafentrine, pumafentrine, tolafentrine and
RPL554 (Page, 2014). It was reported that inhalation of zardaverine
led to a significant increase of FEV1 and specific airway conductance
within the first hour of application to patients with reversible bronchial
obstruction compared to placebo (Brunnée, Engelstätter, Steinijans, &
Kunkel, 1992). However, three patients out of twelve reported side ef-
fects (headache, drowsiness, vertigo, nausea), and one patient dropped
out of the study due to vomiting (Brunnée et al., 1992). Another phase II
clinical trial in ten patients with partially reversible chronic airflow ob-
struction reported that single doses of 1.5 mg, 3.0 mg, or 6.0 mg
zardaverine by metered dose inhaler did not improve airway functions
compared to 0.3 mg salbutamol and placebo (Ukena, Rentz, Reiber, &
Sybrecht, 1995). The potential bronchodilator effect of another dual
PDE3/4 inhibitor, benzafentrine, was examined in healthy volunteers
by the oral, intravenous, and inhalation routes (Foster, Rakshi,
Carpenter, & Small, 1992). Oral administration of 9 mg, 20 mg, or
90 mg benzafentrine failed to induce any bronchodilator response.
However, intravenous administration of 20 mg or 40 mg showed a
short-lived bronchodilator response without affecting the blood
pressure or pulse rate. Benzafentrine produced the most significant
bronchodilator effect upon application via inhalation, leading to a
dose-dependent broncho-protection to challenge with methacholine,
with an effective dose (ED50) of approximately 9.2 mg (Foster et al.,
1992). Except for RPL554, all other dual inhibitors have not been
developed beyond the clinical stage due to unwanted side effects on
the gastrointestinal system.

RPL554, as one of the most effective dual inhibitors, was shown to
relax bronchial AMS in both the guinea pig model and in isolated
human (medium and small) bronchi. It was also shown to increase
cilia beat frequency and mucociliary clearance in human primary bron-
chial epithelial cells by activation of the cystic fibrosis transmembrane
conductance regulator gene, by inhibition of TNF-α release from LPS-
stimulated humanmonocytes and by suppression ofmonocyte prolifer-
ation, which attests to its bronchodilator and anti-inflammatory effects
(Boswell-Smith et al., 2006; Calzetta et al., 2015; Turner et al., 2016;
Venkatasamy & Spina, 2016). Additionally, oral administration of
10 mg/kg RPL554 1 hour before ovalbumin challenge in guinea pigs in-
duced a significant reduction of eosinophil infiltration into the lung. A
similar effect was observed by RPL554 inhalation in conscious guinea
pigs 1.5 h before ovalbumin exposure (Boswell-Smith et al., 2006).
Franciosi et al. demonstrated that 0.018 mg/kg RPL554 inhalation
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produced bronchodilation with a 17.2% increase of maximum FEV1 in
mild-to-moderate COPD patients compared to placebo. Moreover, in
healthy volunteers, the percentage of neutrophils in sputum after 6
hours LPS challenge was not significantly changed after 0.018 mg/kg
RPL554 inhalation. It was shown, however, that RPL554 significantly re-
duced the absolute numbers of total cells - neutrophils, macrophages,
lymphocytes, and eosinophils - in sputum (Franciosi et al., 2013),
suggesting that the molecule also possessed substantial anti-
inflammatory activity. More importantly, the inhaled dose of RPL554
waswell tolerated by both healthy volunteers and patientswithout gas-
trointestinal or cardiac side effects (Franciosi et al., 2013). Of note, how-
ever, is that only short-term inhalation of RPL554 for up to 7 days was
monitored in the study of Franciosi et al. (Wedzicha, 2013), and there-
fore the long-term therapeutic and cardiovascular side effects of
RPL554 need to be carefully assessed in future studies.

Although RPL554 is considered as a dual PDE3/4 inhibitor, it is spec-
ulated based on its 3000-fold higher affinity to PDE3 compared to PDE4
that RPL554 acts primarily as a PDE3 inhibitor rather than as a dual
PDE3/4 inhibitor (IC50 for PDE3: 0.4 nM; PDE4: 1479 nM) (Boswell-
Smith et al., 2006). In that regard, it is likely that the clinical benefits
in human subjects are due to PDE3 inhibition rather than to dual
PDE3/4 inhibition. Therefore, more investigation is needed to explore
the real pharmaceutical target of RPL554. Also, novel dual PDE3/4 inhib-
itors with similar inhibitory potencies on PDE3 and PDE4 are necessary
to test in future studies.

8.2. Dual PDE 4/7 inhibitors

PDE7 is another leading candidate in the dual inhibitor family ap-
proach because of its anti-inflammatory ability (Li et al., 1999; Nakata
et al., 2002). Several groups studied the possibility of inhibiting both
PDE4 and PDE7. In normal human bronchial epithelial cells, cytokine
(TNF-α, IL-1β and IFN-γ)-induced secretion of IL-8 and human mono-
cyte chemoattractant protein-1 was significantly decreased to baseline
levels by using multi-target antisense oligonucleotides to address spe-
cifically PDE4B/4D and 7A protein expression (Fortin et al., 2009). In ad-
dition, the multi-target antisense oligonucleotides showed promising
protection against the CS-induced recruitment of neutrophils,
keratinocyte chemoattractant production and pro-MMP-9 upregulation
(Fortin et al., 2009), thereby indicating a potent and broad anti-
inflammatory effect against CS-induced lung inflammation. Addition-
ally, Mokry and colleagues reported on the relaxing effect of combined
PDE4/7 inhibition (rolipram plus BRL50481) on acetylcholine-induced
lung and airway contraction in ovalbumin-sensitized guinea pigs
(Mokry, Joskova, Mokra, Christensen, & Nosalova, 2013). In another
study, BC54, a novel dual PDE4/7 inhibitor, showed a superior anti-
inflammatory effect on TNF-α production by macrophages and IL-2
production by T-lymphocytes as compared to rolipram alone or to a
combination of rolipramandBRL50481 (deMedeiros et al., 2017). How-
ever, there is no further clinical evidence to prove the superior anti-
inflammatory activity of dual PDE4/7 inhibition over PDE4 inhibition
alone, therefore, more studies are needed (Giembycz &Maurice, 2014).

8.3. Dual PDE 4/5 inhibitors

Increasing the intracellular levels of cAMP and cGMP via PDE4 and
PDE5 inhibition, respectively, is an attractive idea as a novel treatment
in respiratory diseases. Intraperitoneal treatment with either
roflumilast (daily dose 1.0 mg/kg body weight) or tadalafil (daily dose
1.0 mg/kg body weight) for 7 days reduced the airway resistance after
nebulization of histamine, decreased airway contraction to cumulative
doses of histamine and acetylcholine, and suppressed the production
of several inflammatory mediators (IL-4, IL-5, NF-κB, and TNF-α) in
ovalbumin-sensitized guinea pigs. However, the combination of
roflumilast and tadalafil at a reduced dose (daily dose of 0.5 mg/kg
body weight) did not show any additive effect compared to PDE4 inhi-
bition alone (Mokry et al., 2017).

9. Future directions

PDEs are attractive pharmaceutical targets for COPD and asthma
treatment as their inhibition is able to induce broad anti-inflammatory
and/or bronchodilator effects (Chung, 2006; Giembycz & Maurice,
2014). More importantly, dual inhibition of PDE3/4 by inhalation max-
imizes the therapeutic potential of the inhibitors, andminimizes the un-
wanted side effects (BinMahfouz et al., 2015). However, considering
that PDE is composed of at least 21 different isoforms, the key challenge
is to develop PDE isoform-selective inhibitors, which could be used to
study the potential inhibitory roles during the pathogenesis of COPD
and asthma.

Even though the oral administration of the PDE4 inhibitor
roflumilast has been approved for the treatment of severe COPD pa-
tients associated with bronchitis and a history of frequent exacerba-
tions, unwanted side effects including nausea and vomiting still limit
the oral administration of PDE4 inhibitors (Giembycz & Maurice,
2014). As inhalation delivers the drugs directly to the site of action, it
is likely to assume that this administration route may improve the ther-
apeutic index required to overcome the unwanted side effects. How-
ever, to date none of the very potent inhaled PDE4 inhibitors have
shown any convincing evidence of efficacy in the treatment of respira-
tory diseases (D. Singh et al., 2016; Watz, Mistry, Lazaar, & IPC101939
investigators, 2013). GSK256066 is an inhaled PDE4 inhibitor developed
by GlaxoSmithKline to treat patients with COPD. In a phase IIa, multi-
center, parallel-group, double-blind, three-arm, placebo-controlled,
four-week, randomized study, two doses (25 μg, 87.5 μg) of
GSK256066 were tested in patients with moderate COPD (Watz et al.,
2013). Although there was an increase in post-bronchodilator FEV1 at
both GSK256066 concentrations being applied compared to placebo
on day 28, these differences were not statistically significant. Addition-
ally, no changes were observed in the relative proportion or total num-
bers of neutrophils or macrophages in the sputum of treated subjects
(Watz et al., 2013). Another inhaled PDE4 inhibitor is CHF6001 devel-
oped by Chiesi Farmaceutici. It was reported that CHF6001waswell tol-
erated when administered by once daily single-dose (100 μg, 300 μg,
600 μg, 1200 μg, 1600 μg) dry-powder inhalation for 7 days (Mariotti,
Govoni, Lucci, Santoro, & Nandeuil, 2018). In a double blind, placebo
controlled, 3-way cross-over study, 36 atopic asthmatics (not under
treatmentwith inhaled corticosteroids and characterized by a late asth-
matic response) received CHF6001 400 μg or 1200 μg or placebo once a
day using a dry powder inhaler for 9 days. Allergen challengeswere per-
formed on day 9 and induced sputumwas obtained 10 hours after chal-
lenge (Singh et al., 2016). Both CHF6001 doses significantly increased
FEV1, while the difference between the two doses was not significant.
CHF6001 caused a greater reduction in sputum eosinophil counts as
compared to placebo, albeit no significance was observed (Singh et al.,
2016). Taken together, based on the current knowledge, the addition
of inhaled/oral administration of PDE4 inhibitors seems to exert benefi-
cial effects for COPD patients but obviously more clinical trials are war-
ranted to strengthen the initial findings.

Air pollution-induced oxidative stress is another important risk fac-
tor in the pathogenesis of COPD and asthma (Bernardo, Bozinovski, &
Vlahos, 2015; Holguin, 2013; Kirkham & Rahman, 2006; Wang et al.,
2018). Increased attention has been focused specifically on diesel ex-
haust exposure (Hart, Eisen, & Laden, 2012; Hart, Laden, Schenker, &
Garshick, 2006; Wade & Newman, 1993). During diesel fuel combus-
tion, several types of pollutants are released, including but not limited
to particulate matter, metals and polycyclic aromatic hydrocarbons
(PAH) (Steiner, Bisig, Petri-Fink, & Rothen-Rutishauser, 2016). It has
been proven that diesel exhaust is highly associated with lung inflam-
mation (de Brito et al., 2018; De Grove et al., 2018; Steiner et al.,
2016). Moreover, a few studies reported that PAH exposure reduced



Fig. 3. Schematic overview of cyclic nucleotide compartmentalization in the lung. PDEs dynamically control cAMP and cGMP signals in different subcellular microdomains. Consequently,
the activities of downstream effectors, such as PKA, Epacs and PKG, are modulated. PDEs are subject to highly spatio-temporal dynamics, meaning individual PDEs are most likely to be
recruited to specific locations at specific time points based on different stimulations/activations. A-kinase anchoring proteins (AKAPs) are a group of scaffolding proteins with the
ability to associate with PKA via a short α-helical structure. It is known that some PDEs and AKAPs are highly expressed, for instance, in mitochondria (AKAP1) or at the plasma
membrane (AKAP5 and AKAP12) (Cong et al., 2001; Merrill & Strack, 2014; Tao & Malbon, 2008). However, the molecular link between AKAPs and PDEs has not yet been studied in
specific compartments in the lung. PDEs, phosphodiesterases; PKA, cAMP-dependent protein kinase A; Epacs, exchange proteins directly activated by cAMP; PKG, cGMP-dependent
protein kinase G; AKAPs, A-kinase anchoring proteins; EP, E prostanoid receptor; β2-AR, β2-adrenoceptor; AC, adenylyl cyclase; pGC, particulate guanylate cyclase; sGC, soluble
guanylyl cyclase; NO, nitric oxide; IP3R, inositol trisphosphate receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase.
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cAMP production induced by the β2-AR agonist procaterol in primary
murine tracheal epithelial cells and human ASM cells, thereby indicat-
ing that the cAMP signaling pathway is impaired by PAH (Factor et al.,
2011). Therefore, further investigation is needed to study the effect of
air pollution, including diesel fuel, on cyclic nucleotide signaling.

Cyclic nucleotides, as the most ubiquitous second messengers, con-
trol a wide range of physiological and pathophysiological processes by
modulating signaling cascades in a spatio-temporal manner. Compre-
hensive understanding of thefluctuations (generation anddegradation)
of cAMP and cGMP and their potential functions within certain com-
partments will most likely help in the screening of novel pharmaceuti-
cal targets which have higher efficacy and less side effects (shown in
Fig. 3). Recently, Johnstone and colleagues used classical molecular bio-
logical tools to study the role of PDE8 in β2-AR-AC6 and E prostanoid
receptor (EP)2/4-AC2 compartments (Johnstone et al., 2018). It was
demonstrated that knockdown of PDE8A using shRNA evoked more
cAMP production in response to forskolin and 3-isobutyl-1-
methylxanthine specifically in AC6 overexpressing human ASM cells,
but not in AC2 overexpressing ASM cells, indicating that β2-AR/AC6/
PDE8 is a functional signalosome. Also, they found that β2-AR/AC6/
PDE8 are mainly expressed in caveolae (Johnstone et al., 2018)
(shown in Fig. 3). This finding emphasizes the microdomain-specific
cAMP modulation, which helps to fully understand cAMP and cGMP
functions as secondmessengers. However, of note, it is difficult tomon-
itor intracellular cAMP dynamics using standard biochemical tech-
niques. So far, several FRET based biosensors have been developed to
achieve real-time visualization of cAMP and cGMP with high spatial
and temporal resolutions (Nikolaev, Bünemann, Hein, Hannawacker, &
Lohse, 2004; Pavlaki & Nikolaev, 2018; Sprenger et al., 2015; Violin
et al., 2008). It was reported by Billington and colleagues that the
cAMP biosensor CFP-Epac (dDEP,CD)-VENUS could be used to study
the β-AR-mediated signaling kinetics in human primary ASM cells,
revealing ligand and dose dependent differences of several β-AR ago-
nists (indacaterol, isoproterenol, salmeterol and formoterol)
(Billington & Hall, 2011). Using another cAMP biosensor with fluores-
cently tagged PKA subunits, Schmid et al. studied the effect of CS on
the PDE4 inhibitor roflumilast-induced intracellular cAMP changes in
fully differentiated normal human bronchial epithelial cells (Schmid
et al., 2015). Recently, a study monitored intracellular cAMP dynamics
in the airway using PCLS and cAMP reporter Epac1-campsmice, indicat-
ing the possibility to visualize cAMP fluctuations in intact lung tissue
(Zuo et al., 2018). It is noteworthy that all of these studies used globally
expressed cAMP biosensors in order to study cytosolic cAMP changes.
However, cAMP localizes to specific subcellular microdomains, there-
fore, using microdomain-specific targeted cAMP biosensors to study
the local cAMP dynamics will be more helpful to reveal microdomain-
specific cAMP dynamics (Musheshe, Schmidt, & Zaccolo, 2018;
Sprenger & Nikolaev, 2013). In addition, there are no reports using
cGMP FRET biosensors to investigate the intracellular cGMP levels in ei-
ther lung structural cells or tissues so far. Thus, it is conceivable that
monitoring microdomain-specific intracellular cAMP and cGMP levels
and, more importantly, their crosstalk modulated by PDE2 and PDE3
will provide important new knowledge that will help to design novel
drugs targeting cyclic nucleotides with higher efficacy and with less
side effects.
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