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Abstract 

 
A POLYMER HYDROLYSIS MODEL AND ITS APPLICATION IN 

CHEMICAL EOR PROCESS SIMULATION 

 

 

 

 

Ahra Lee, M.S.E. 

The University of Texas at Austin, 2010 

 

Supervisor:  Gary A. Pope  

Co-supervisor:  Mojdeh Delshad 

 

Polymer flooding is a commercial enhanced oil recovery (EOR) method used to 

increase the sweep efficiency of water floods. Hydrolyzed polyacrylamide (HPAM), a 

synthetic commercial polymer, is widely used in commercial polymer floods and it is also 

used for mobility control of chemical floods using surfactants such as surfactant-polymer 

flooding and alkaline-surfactant-polymer flooding. The increase in the degree of 

hydrolysis of HPAM at elevated temperature or pH with time affects the polymer 

solution viscosity and its adsorption on rock surfaces. 

A polymer hydrolysis model based on published laboratory data was implemented 

in UTCHEM, a chemical EOR simulator, in order to assess the effect of hydrolysis on 



 vii  

reservoir performance. Both 1D and 3D simulations were performed to validate the 

implementation of the model.  

The simulation results are consistent with the laboratory observations that show 

an increase in polymer solution viscosity as hydrolysis progresses. The numerical results 

indicate that hydrolysis occurs very rapidly and impacts the near wellbore region polymer 

injectivity.  
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Chapter 1: INTRODUCTION 

After primary depletion of an oil reservoir, water is often injected to increase the 

reservoir pressure and oil production rate. This secondary recovery method, however, still 

leaves behind a substantial amount of oil due to both residual oil saturation in the pores of 

the rock and incomplete sweep in heterogeneous reservoirs. Since the 1960’s, adding 

water-soluble polymer has been used to increase the water viscosity (lower the mobility 

ratio) to improve the reservoir sweep efficiency, and consequently to increase oil 

recovery. Polymer flood is not only economically acceptable, but promising for helping 

to meet the high oil and gas production demands.  

Many researchers have focused on the stability of EOR polymers, especially 

partially hydrolyzed polyacrylamides (HPAM), under reservoir conditions (Muller, 1981; 

Kulicke and Horl, 1985; Kheradmand, 1987; Moradi-Araghi and Doe, 1987; Sorbie, 

1991). More recently, Levitt (2009, 2010) did experimental research using 

polyacrylamide polymers under various hostile conditions.  

One of the most important characteristic of HPAM polymer is hydrolysis. Widely 

used polyacrylamides hydrolyze as time passes, and its viscosity increases. The negative 

charges along its chain, as a result of hydrolysis, repulse each other in the chain and the 

chain extends, thereby increasing the viscosity. Therefore, initially unhydrolyzed polymer 

has the lowest viscosity. Lakatos et al. (1979) observed that unhydrolyzed 

polyacrylamide had extremely high values of adsorption. Therefore, the unhydrolyzed 

polymer with lower viscosity compared to hydrolyzed polymer has a more favorable 

injectivity but at the expense of higher adsorption. Most available polymers are HPAM 

where their injection pressure is relatively higher with a lower adsorption tendency 

compared to the unhydrolyzed molecule. The hydrolysis of polymers has an important 
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role in terms of aqueous phase viscosity and injectivity in chemical EOR processes such 

as polymer, surfactant-polymer (SP), and alkaline-surfactant-polymer (ASP) flooding. It 

has become imperative to understand and fully characterize the hydrolysis of HPAM 

polymers.  

The objective of this study was to develop a polymer hydrolysis model and 

implement it into an existing chemical flooding simulator called UTCHEM. After the 

implementation of this new feature, it was tested to evaluate the effect of polymer 

hydrolysis on the performance of the polymer in reservoirs.  

This report has been divided into five chapters including the current chapter. In 

Chapter 2, a review of early work concerning polymer on EOR and the hydrolysis is 

discussed. A review of UTCHEM simulator is also presented in this chapter. Chapter 3 

introduces the proposed polymer hydrolysis model and its implementation into 

UTCHEM. Chapter 4 deals with the simulation results using enhanced simulator for both 

simple 1D cases and 3-D pilot cases. Finally, the conclusions of this study are presented 

in Chapter 5.  
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Chapter 2: BACKGROUND 

2.1 A LITERATURE REVIEW OF POLYMER 

2.1.1 Polymers on Enhanced Oil Recovery 

After primary depletion of the reservoir pressure, in order to displace oil, mainly 

suggested way to maintain reservoir pressure is injecting water, which is called 

waterflooding. This secondary oil recovery often causes flow channeling and leaves 

substantial bypassed oil in heterogeneous reservoirs. Enhanced oil recovery (EOR) 

processes such as polymer flooding or surfactant-polymer flooding use polymer to reduce 

fluid mobility to improve the sweep efficiency of the reservoir, i.e., to increase the 

volume of the reservoir contacted at any given time (Lake, 1989; Sorbie, 1991).  

Commercically available polymers have been applied in to improve water flood 

oil recovery since the 1060s. Putz et al. (1988) and Koning et al. (1988) report successful 

polymer floods. The polymer flood of the Daqing oil field is one of the largest and most 

successful polymer floods (Wang et al., 2001) 

 

2.1.2 Polymer Hydrolysis 

Technically, hydrolysis is defined as a chemical reaction in the presence of water. 

Polyacrylamide (PAM), which is a homopolymer of acrylamide, hydrolyzes at a certain 

amide site to an anionically charged carboxyl group. The increased charge density along 

the HPAM backbone extends the polymer coil and increases solution viscosity. 

Hydrolysis of PAM and its structure are presented in Figure 2.1. These partially 

hydrolyzed polyacrylamides (HPAM) are commercially available synthetic polymers and  

they are by far the most widely used polymers for EOR. 
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Polymer hydrolysis is mostly affected by pH and temperature and has been the 

subject of many papers. Lakatos et al. (1979) studied the factors influencing 

polyacrylamide adsorption in porous media such as average molecular mass, degree of 

hydrolysis, and polymer concentration. Muller (1981) reported thermal stability of high-

molecular-weight polyacrylamide aqueous solutions at various initial pH values. Moradi-

Araghi and Doe (1987) performed an extensive investigation on hydrolysis and 

precipitation of PAM without using a buffer. They found that hydrolysis continues until 

the complete hydrolysis of amide sites. The hydrolysis is faster at higher temperature. 

They also observed the PAM precipitation as a function of the calcium concentration. 

Kulicke and Horl (1985) characterized various molecules of polyacrylamide polymer 

solution by measuring properties such as intrinsic viscosity. Ryles (1988) and Seright and 

Mozley (2009) studied the chemical stability of HPAM at elevated temperature in the 

absence of dissolved oxygen.  

More recently, Choi (2008) studied the HPAM viscosity dependence on pH at 

different degrees of hydrolysis. He observed that the pH sensitivity is more pronounced 

as the degree of hydrolysis increases. Levitt et al. (2010) proposed using a HPAM with a 

low degree of hydrolysis to benefit from higher injectivity due to its lower initial 

viscosity. They pointed out that the aqueous phase viscosity will increases once the 

polymer hydrolyzes in the reservoir. 

 

2.2 A REVIEW OF UTCHEM SIMULATOR 

2.2.1 General Description of the Simulator 

UTCHEM, the University of Texas Chemical Flooding Simulator, is a three-

dimensional, multicomponent chemical flooding simulator developed by The University 
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of Texas at Austin (UTCHEM Technical Documentation, 2000). The simulator takes into 

account aqueous species such as water, electrolytes (anions and cations), chemical 

species such as surfactant, polymer, tracer, and oleic species such as crude oil.  These 

components may form up to three liquid phases – aqueous, oleic, and microemulsion- 

depending on the amount and effective salinity of the phase environment.  UTCHEM 

can model a variety of oil recovery applications such as  

 waterflooding 

 polymer flooding 

 profile control using polymer gel or foam 

 surfactant flooding 

 alkaline flooding 

 alkaline-surfactant-polymer flooding 

 alkaline-surfactant-gas flooding 

 microbial EOR 

  

2.2.2 Modeling of Reacting Tracer 

UTCHEM models any number of tracers, which can be water tracer, oil tracer, 

partitioning oil/water tracer, gas tracer, partitioning gas/oil tracer, and up to two reacting 

tracers. Only water/oil tracers can be considered as reacting tracers and they are 

accompanied by reacting tracer and its product. 

The following assumptions have been made in developing the reacting tracer 

model in UTCHEM: 

1. Tracers do not occupy volume 

2. Tracers have no effect on the physical properties 



 6 

The overall tracer concentrations are computed from the species conservation 

equations which include a reaction term for the reacting tracer.  

The reaction of a reacting tracer such as acetate is shown below: 

Hydrolysis of an ester to form an alcohol is assumed to be irreversible and of first order, 

which means one mole of acetate generates one mole of product alcohol. 

 
 [ ] [ ]2 2 1 2 2 1 2 4 21 1 1 1+ ++ → +n n n nCH COO C H H O C H OH C H O (2-1) 

The reaction is modeled as 

 10
10

∂ = −
∂ h

C
K C

t
 (2-2) 

 11
10

∂ =
∂ h

C
K C

t
 (2-3) 

 

Where hK  is the reaction rate constant in day-1 and 10C  and 11C  are concentrations of 

10th and 11th component, which are reacting tracer and its product, respectively. 

 

2.2.3 Modeling of Polymer 

2.2.3.1 Polymer Solution Viscosity at Zero Shear Rate 

The polymer solution viscosity at zero shear rate is calculated as a function of 

polymer and electrolyte concentrations. The Flory–Huggins equation (Flory, 1953) was 

modified to account for variation in salinity as: 

 ( )2 3
1 4 2 4 3 41µ µ  = + + + ℓ ℓ ℓ

Sp
p w p p p SEPA c A c A c C  (2-4) 

  

where 4ℓC  is the polymer concentration in the water or microemulsion phase, µw  is the 

water viscosity. 1pA , 2pA , and 3pA  are empirical constants for a given polymer and are 
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determined from experimental data. SEPC  is the effective salinity, defined for use in 

polymer property calculations: 

 

 5 6

1

( 1)β+ −
= p

SEP

C C
C

C
 (2-5) 

 

β p  is a parameter used to determine the effects of divalent cations on the effective 

salinity for polymer. Subscripts, which are specie index, 1, 4, 5, and 6 refer to water, 

polymer, chloride, and calcium, respectively. The second subscript ℓ  is the phase index, 

which is either aqueous phase or microemulsion phase.  Sp is an input parameter to 

determine polymer viscosity as a function of salinity. Plotting 0 w

w

µ µ
µ
−

 vs. SEPC , which 

is assumed to be a straight line on a log-log plot, gives Sp. This slope is negative for 

hydrolyzed polyacrylamides. 
 

2.2.3.2 Polymer Adsorption 

The retention of polymer molecules in permeable media is due to not only 

adsorption onto solid surfaces but also trapping within small pores. The polymer 

retention slows down the polymer velocity and depletes the polymer slug. Polymer 

adsorption modeled in UTCHEM uses a Langmuir-type isotherm which takes into 

account the salinity, permeability, and polymer concentration. The adsorbed 

concentration of polymer is given by 

 

 
( )

( )
4 4 4

4 4

4 4 4

ˆ
ˆ min ,

ˆ1

 −
 =      
 + −
 

ɶ

ɶ

ɶ

a C C
C C

b C C
 (2-6) 
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The concentrations are normalized by the water concentration in the adsorption 

calculations. The minimum is taken to guarantee that the adsorption is no greater than the 

total polymer concentration. The parameter 4a  is defined as 

 

 ( )4 41 42

0.5
 

= +  
 

ref
SEP

k
a a a C

k
 (2-7) 

 

where refk  is the reference permeability at which the input adsorption parameters are 

defined, 41a  and 42a  are the input parameters found by matching laboratory polymer 

adsorption data, and SEPC  is the effective salinity for polymer. 4b  controls the 

curvature of the isotherm and 4 4/a b  indicates the plateau value of adsorbed polymer. 

Adsorption increases linearly with effective salinity for polymer and decreases as the 

permeability increases. 
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Figure 2.1: The primary chain structure of polyacrylamide (PAM) and partially 
hydrolyzed polyacrylamide (HPAM) (Sorbie, 1991) 
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Chapter 3: POLYMER HYDROLYSIS MODEL 

This chapter describes the proposed polymer hydrolysis model and its 

implementation in UTCHEM.  

 

3.1 MODEL DESCRIPTION  

Models developed to calculate polymer hydrolysis and its viscosity effect are 

presented here. 

 

3.1.1 Relationship between the Degree of Hydrolysis and Time 

In Chapter 2, polymer hydrolysis was discussed.  As shown in Figure 2.1., 

HPAM has amide groups and carboxylic groups. Consider a polymer molecule which 

initially has N  amide side groups. As some of the amide groups are replaced with 

carboxylic group according to the hydrolysis, the degree of hydrolysis, τ  in fraction, 

increases. If the rate of hydrolysis is proportional to the number of the amide groups 

available, then   

 

 
( )

(1 )
τ τ= −d N

kN
dt

 (3-1) 

where k  is the reaction rate constant. However, because of the electrostatic charge of 

the carboxylic group, which is anionic, the replacement of the amide groups in the 

neighborhood of the carboxylic groups will be different. Therefore, we can approximate 

 

 
( )

(1 )
τ τ= − md N

kN
dt

 (3-2) 
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where m  is the exponent of the reaction with a value great than one. The above 

equation implies that as the hydrolysis progresses, the rate will decrease as shown in 

Figure 3.1. Initially, the rate is similar to the case with 1m=  case, but it decreases much 

faster as hydrolysis progresses. By solving Equation (3-2): 

 

 (1 )md
k

dt

τ τ= −  (3-3) 

 (1 ) md kdtτ τ−− =  (3-4) 

 
1(1 )

1

m

kt C
m

τ −−− = +
−

 (3-5) 

The initial condition is that 0τ =  when 0t = . Therefore, 

 

 
1

1
C

m
= −

−
 (3-6) 

 1(1 ) ( 1) 1m m ktτ −− = − +  (3-7) 

 [ ]
1

1(1 ) ( 1) 1 mm ktτ −− = − +  (3-8) 

 [ ]
1

11 ( 1) 1 mm ktτ −∴ = − − +  (3-9) 

Based on the experimental data at a fixed temperature provided by Moradi-Araghi 

and Doe (1987), the best-fit values of m  and k  were obtained by fitting the data with 

Equation (3-9). The value of m  is between 1 and 2 regardless of the temperature. 

However, k   increases as temperature increases. We can assume a value of 1.6 for m  

based on the best-fit to the data. The dependency of k on temperature is modeled using 
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the Arrhenius equation /
0

E RTk k e−∆= . The Arrhenius equation fit to the data is expressed 

as follows: 

 

 0

1
ln ln

E
k k

R T

∆= − +  (3-10) 

 
1

ln 10981 27.149k
T

= − +  (3-11) 

 
91.3 1

ln 27.149k
R T

∴ = − +  (3-12) 

where, 91.3 /E KJ mol∆ = . 

In summary, the degree of hydrolysis as a function of time is modeled as a kinetic 

reaction model: 

 

 1.6(1 )
H

d
k

dt

τ τ  = −  
 (3-13) 

where, the effect of temperature on the reaction rate constant is calculated from 
91.3 1

ln 27.149k
R T

= − + . 

 

3.1.2 Relationship between the Ratio of the Intrinsic Viscosity and the Degree of 
Hydrolysis  

The polymer viscosity data as a function of the degree of hydrolysis are fairly 

scarce. Kulicke and Horl (1985) characterized various copolymer compositions of 

polyacrylamide-co-acrylates. They reported the ratios of the intrinsic viscosities of 

polyacrylamide (PAM) /sodium acrylate, which is hydrolyzed PAM, to the value of the 

initial PAM. The intrinsic viscosity, designated as [ ]η , is independent of polymer 
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concentration but dependent on the size of molecule in solution, and is a more 

fundamental quantity of polymer solution viscosity. The intrinsic viscosity is the limit of 

the reduced viscosity or inherent viscosity as the solution concentration of polymer tends 

to zero (Sorbie, 1991): 

 

 [ ]
0 0

η ηη η
η→ →

−=   =   
P P

s
R

C C P sCLim Lim  (3-14) 

 [ ]
0 0

lnηη η
→ →

=   =   
P P

r
I

C C PCLim Lim  (3-15) 

 

η  is the polymer solution viscosity,η R  is the reduced viscosity, ηs  is the solvent 

viscosity, Cp is the polymer concentration, ηI  is the inherent viscosity, and ηr  is the 

relative viscosity. 

Based on Kulicke and Horl’s data (Figure 3.3), the relationship between the 

intrinsic viscosity of hydrolyzed PAM and the degree of hydrolysis can be obtained 

empirically: 

 

 
1

1 1.4335p τ
Λ =

−
 (3-16) 

where, pΛ  is the ratio of the intrinsic viscosity of PAM and HPAM as [ ] [ ]/
PAM

η η . 

 

3.1.3 Effect of Polymer Hydrolysis on Adsorption 

Lakatos et al. (1979) reported various factors influencing polyacrylamide 

adsorption. They found that amount adsorbed decreased slightly with increasing average 

molecular mass but decreased more sharply as the degree of hydrolysis increased. Based 
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on this experimental data, adsorption of polyacrylamide as a function of the degree of 

hydrolysis is modeled as shown in Figure 3.4: 

 

 ( )4 40 4
ˆ ˆ exp ′=     aC C K τ  (3-17) 

τ ′  is the degree of hydrolysis in percent, 40Ĉ  is polymer adsorption for unhydrolyzed  

polymer, and 4aK  is an empirical constant for polymer adsorption as a function of 

polymer hydrolysis. The value for 4aK  found to be (-0.0355) using the data of Lakatos 

et al. (1979).  It is noted that the meaured data gives an extremely high adsorption of 

hydrolyzed polyacrylamide (Fig.3.4) compared with more recently observed 

experimental data in the range of 20 - 40 µg/g rock. We speculate that the high adsorption 

is because of improper polymer filtration prior to the coreflood experiment.  

 

3.2 HYDROLYSIS MODEL APPLICATION INTO UTCHEM 

Numerous modifications were made in UTCHEM source code to implement the 

polymer hydrolysis model.  

 

3.2.1 Degree of Polymer Hydrolysis using Reacting Tracer Option 

Lange and Huh (1994) suggested a novel way to model the thermal 

decomposition of biopolymer using a tracer. The average molecular weight of thermally 

decomposed polymer is calculated using tracer reaction with thermal decomposition rate, 

and this average molecular weight could be directly related to viscosity in the low-shear-

rate limit at any concentration. For simulation of polymer hydrolysis, the reacting tracer 

(the 10th component) already modeled in UTCHEM can be used as if the degree of 
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hydrolysis is the concentration of the reacting tracer. The reacting tracer gradually 

decreases according to an input reaction rate as shown in Equation (2-2). Similarly, 

unhydrolyzed fraction of polymer also decreases according to the reaction rate as time 

passes. Therefore, for the polymer hydrolysis model, Equation (1-13) can be modified as: 

 

 1.6 1.610
10

(1 )
(1 )

τ τ− = − −     ⇔     = −dCd
k kC

dt dt
 (3-18) 

 

It is noted that 101τ = − C  is equal to 101τ = − C . For example, initial reacting tracer 

concentration equal to 0.7 means that a polymer with 30% degree of hydrolysis is 

injected. The reacting tracer is continuously injected to obtain the degree of hydrolysis of 

polymer in the reservoir as a function of time. The calculated degree of hydrolysis is then 

used for polymer viscosity calculations. 

For practical applications, a maximum value for the degree of hydrolysis is 

assumed. Therefore; 

 
 [ ] 10max. constraint for degree of hydrolysisτ = − C  (3-19) 

 

3.2.2 Hydrolysis-Dependent Polymer Viscosity Model 

Polymer viscosity is modeled as a function of polymer concentration, salinity and 

shear rate. UTCHEM simulator requires input parameters for each of these models. From 

the Equation (3-14), intrinsic viscosity can be redefined with: 

 

  [ ]
0 0

1η η ηη
η→ →

− −=   =
P P

s r

C CP s pC CLim Lim  (3-20) 

where 
ηη
η

=r
s

. Using Equation (2-4) the relative viscosity in UTCHEM is defined: 



 16 

 ( )2 3
1 4 2 4 3 41 Spo

r p p p SEP
w

A c A c A c C
µη
µ

= = + + +
ℓ ℓ ℓ

 (3-21) 

Therefore, the intrinsic viscosity calculation in UTCHEM is: 

 
 

 [ ] ( )2 3
1 4 2 4 3 4

0

1 1
η

→

 + + + − =
ℓ ℓ ℓ

P

Sp
p p p SEP

C p

A c A c A c C

CLim  (3-22) 

 

 [ ] ( )2
1 2 4 3 4

0

η
→

= + +
ℓ ℓ

P

Sp
p p p SEP

C

A A c A c CLim  (3-23) 

 [ ] 1η = Sp
p SEPA C  (3-24) 

 

The empirical constant 1pA
 has a linear relationship with the intrinsic viscosity 

(Equation 3-24). The intrinsic viscosity modeled in UTCHEM is, precisely, the intrinsic 

viscosity of PAM. Combining this relationship with Kulicke and Horl’s result shows: 

 
 [ ] 1

Sp
p SEPPAM

A Cη =  (3-25) 

 [ ] 1
new Sp

p SEPA Cη =  (3-26) 

 [ ] [ ] 1
Sp

P P p SEPPAM
A Cη η= Λ = Λ  (3-27) 

 1 1
new

p p pA A∴ = Λ ×  (3-28) 

Therefore, the effect of polymer hydrolysis on solution viscosity is modeled by 

multiplying 1pA  by pΛ  given in Eq. 3-17.  
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3.2.3 Hydrolysis Dependent Polymer Adsorption 

The adsorbed concentration of polymer is calculated in UTCHEM using Equation 

(2-6). UTCHEM calculates polymer concentration and adsorbed polymer concentration 

once at every gridblock at each time step. Polymer adsorption is a function of degree of 

hydrolysis, therefore polymer concentration and its adsorption should be calculated as the 

degree of hydrolysis changes. Once polymer adsorption at a given degree of hydrolysis is 

determined, Equation (3-18) will be used to adjust the adsorption parameter (41a ) as a 

function of degree of hydrolysis. 
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Figure 3.1: Relationship between amide groups and carboxylic groups in a polymer 
molecule.  

 

 

Figure 3.2: Comparison of calculated and measured degree of hydrolysis as a function of 
time at fixed temperatures (data from Moradi-Araghi and Doe, 1987) 
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Figure 3.3: Ratio of the intrinsic viscosities of polyacrylamide (PAM) /sodium acrylate, 
which is hydrolyzed PAM, to the value of the initial PAM (Kulicke and 
Horl, 1985) 
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Figure 3.4: HPAM adsorbed concentration on silica sand as a function of degree of 
hydrolysis (data from Lakatos et al., 1979) 
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Chapter 4: SIMULATION RESULTS 

Both 1D core flood and 3D field simulations were set up to test and validate the 

polymer hydrolysis model and its implementation in UTCHEM. In this chapter, specific 

simulation results are presented. The effect of polymer hydrolysis as a function of time 

was first simulated on the core flood scale and then on the field scale. 

 

4.1 CORE FLOOD SIMULATION RESULTS  

One-dimensional coreflood simulations were first performed. In order to allow for 

sufficient time for hydrolysis to occur, longer cores were simulated. The input parameters 

for this single-phase, 1D displacement are shown in Table 4.1. Table 4.2 gives the 

summary of the simulated cases. The reservoir temperature condition simulated provides 

favorable condition for polymer hydrolysis in order to visualize the effect of hydrolysis 

on viscosity.  

 
Polymer hydrolysis effect on polymer viscosity  

After a 0.7 PV of polymer slug is injected, water is injected to push the polymer 

and oil towards the producer. Injected polymer concentration is 1200 ppm. In this 

simulation, the effect of polymer hydrolysis on adsorption is not modeled.  

Figure 4.1(a) and (b) show the polymer concentration and viscosity profiles at 1.0 

PV injected. When the polymer hydrolysis model is considered, polymer viscosity 

changes as polymer propagates. Hydrolysis increased as a function of time and viscosity 

also increased as a function of rate of hydrolysis, so viscosity increase in the core as a 

function of time in the core is demonstrated. 

 
Polymer adsorption effect on polymer viscosity 
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In order to validate the polymer adsorption effect on polymer viscosity, 30% 

initially hydrolyzed polyacrylamide is injected with and without polymer adsorption.  

Figure 4.2(a) has no adsorption effect on the calculation of polymer concentration and its 

viscosity, while Figure 4.2(b) has adsorption, which is 102.53 mg/g rock based on paper 

research (Lakatos et al., 1979), so that the polymer concentration and its viscosity are 

affected. 

 
Polymer hydrolysis and adsorption effects on polymer viscosity 

Using the polymer hydrolysis model in UTCHEM with and without adsorption, 

initially unhydrolyzed polymer is injected. The results are shown in Figure 4.3(a) and 

Figure 4.3(b). The adsorption value used in this simulation comparison is also derived 

from Lakatos et al. (1979), which is 297.43 mg/g rock. The viscosity increase starts to 

appear after 7 PV because of the high value of adsorption, and while polymer exists there 

is an increase in viscosity. 

 

4.2 FIELD CASE SIMULATION RESULTS  

Simulation area is extended to the field-scale to study polymer hydrolysis effect 

on oil recovery, reservoir pressure, aqueous phase viscosity, and injected polymer mass 

on real field scale.  

 

4.2.1 Pressure Constrained Polymer Injection Case 

Pressure constrained injection of polymer flooding was first performed to explore 

the oil recovery and injected polymer mass difference with and without polymer 
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hydrolysis. For different values of initial water saturation, injected polymer 

concentration, and oil viscosity results are shown and compared. 

  
 Field descriptions and UTCHEM input parameters 

This field-scale simulation model is a quarter of five-spot reservoir. Originally 

surfactant-polymer flooding with a constant-rate injection is modified into polymer 

flooding with constant-pressure injection to validate and compare the effect of polymer 

hydrolysis model. Injection and production wells are pressure constrained. Specific 

reservoir properties and injected polymer properties are summarized in Table 4.3. The 

effect of the degree of hydrolysis on adsorption was not modeled in this example. The 

reservoir temperature is 200°F. Simulated run cases are summarized in Table 4.4. 

 
Simulation results  

The cumulative oil recovery and injected polymer mass per barrel of oil produced 

are plotted as a function of time and PV injected for all simulation cases. All simulation 

results are summarized and plotted in Figure 4.4(a) to Figure 4.6(d). At different initial 

water saturation (from Figures 4.4(a) to (d)), cumulative oil recovery for lower water 

saturation case shows the best result as the way it is and there is not much difference 

between with and without polymer hydrolysis effects. At different initial polymer 

concentration injected (from Figure 4.5(a) to (d)), cumulative oil recovery is collapsed in 

one propagation as a function of PV injected, while cumulative oil recovery as a function 

of time is not. The amount of injected polymer per barrel of oil produced shows less 

value with polymer hydrolysis model applied on the simulation than without polymer 

hydrolysis. At different initial oil viscosity (from Figures 4.6(a) to (d)), beneficial effect 



 23 

on polymer hydrolysis is observed in cumulative oil recovery and injected polymer 

amount per barrel of oil produced.  

 

4.2.2 Injecting Flow Rate Constrained Polymer Flooding Pilot Case 

The adsorption effect as a function of the degree of hydrolysis is validated using 

injecting flow rate constrained polymer flooding on another field scale simulation. As 

shown in Figure 3.4, a higher degree of hydrolysis has lower amount of polymer 

adsorption even with the same polymer. Therefore, without polymer hydrolysis 

consideration injecting initially 30% hydrolyzed polymer, with polymer hydrolysis effect 

coupled with adsorption injecting initially 30% hydrolyzed polymer, and with polymer 

hydrolysis effect coupled with adsorption injecting unhydrolyzed polymer are simulated 

and compared (Table 4.6).  

 
 Field descriptions and UTCHEM input parameters 

The reservoir model is an inverted five-spot pattern of 200 m in the x direction 

(23 grid blocks), 200 m in the y direction (23 grid blocks), and 20 m in the z direction (7 

grid blocks) with one injection well and four production wells. Specific reservoir 

properties, injected polymer properties, and injecting schedule are summarized in Table 

4.5.  

Initially 30% hydrolyzed polymer has an 18 µg/g rock adsorption at a polymer 

concentration of 1000 ppm, as shown in Table 4.5. This value can be used to calculate 

unhydrolyzed polymer adsorption using Equation (3-17), which is 52.2 µg/g rock. 

Therefore, different values of adsorption parameter for polymer were used for simulating 

the cases.  
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Simulation results  

Consumption of polymer due to the adsorption on the rock surface cannot be 

neglected on polymer concentration propagation, and affects prohibitively high to the 

results. Viscosity comparisons with and without the polymer hydrolysis effect at different 

time steps are shown in Table 4.7. After water preflush, the polymer penetrated area from 

the injector with unhydrolyzed polymer injection with hydrolysis consideration (case #3) 

is less than with 30% hydrolyzed polymer injection without polymer hydrolysis 

consideration (case #1). This is caused by high polymer adsorption of unhydrolyzed 

polymer than initially 30% hydrolyzed polymer (Figure 4.7) as previously mentioned 

(Lakatos et al., 1979). As time passes, on the other hand, viscosity increases more in case 

#3 than case #1, which is caused by the hydrolysis effect on viscosity as a function of 

time in the reservoir. Cumulative oil recovery, average reservoir pressure, and reservoir 

pressure near the wellbore for each case is presented in Figure 4.8, 4.9, and 4.10, 

respectively.  
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Table 4.1: Summary of input parameters of extended 1D core flood 

Reservoir Properties  

Dimensions of the core  8.8 ft x 0.11 ft x 0.11 ft 
Number of grid blocks in the x, y and z directions 80 x 1 x 1 
Gridblock sizes in the x, y, and z directions 0.11 ft x 0.11 ft x 0.11 ft 
Porosity 0.2 
Permeability 250 md 
Initial pressure 14.5 psi 
Residual water saturation 0.3 
Water viscosity 1 cp 
Brine salinity assumed all anions 0.0039 meq/ml 
Divalent cation concentration of brine 0.00335 meq/ml  
Longitudinal dispersivity NONE 
Transverse dispersivity NONE 
Reservoir temperature  
Parameters Related to the Polymer Properties  

Polymer viscosity parameter, Ap1 10 wt%-1 
Polymer viscosity parameter, Ap2 zero 
Polymer viscosity parameter, Ap3 zero 
Effective salinity parameter, β 20 
Minimum salinity for polymer viscosity calculations, 
CSE1 

0.01 meq/ml 

Slope of viscosity versus salinity on a log-log plot, Sp -0.6 
Coefficient used in shear rate equation, γ˙c zero  
Shear rate at which polymer viscosity is one half polymer 
viscosity at zero shear rate, γ˙1/2 

56.10 s-1 

Exponent for calculating shear rate dependence of 
polymer viscosity, Pα 

1.643 

Parameter for calculating the permeability reduction, brk 100 ft3/wt%  

Parameter for calculating the permeability reduction, Crk 0.0186 3darcy/ 100g/g  

Polymer solution adsorption parameter, a41 zero 
Polymer solution adsorption parameter, a42 zero 
Polymer solution adsorption parameter, b4 100 ft3/wt% 
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Table 4.2: Summarized run cases of extended 1D core flood 

No Case description 

1 
30% hydrolyzed polymer injected  
without polymer adsorption and polymer hydrolysis  

2 
30% hydrolyzed polymer injected  
with polymer adsorption without polymer hydrolysis 

3 
Unhydrolyzed polymer injected  
without polymer adsorption with polymer hydrolysis 

4 
Unhydrolyzed polymer injected  
with polymer adsorption and polymer hydrolysis 

 
 

Table 4.3: Summary of input parameters of pressure constrained field case 

Reservoir Properties  

Dimensions of the quarter five-spot  250 ft x 250 ft x 10 ft 
Number of gridblocks in the x, y and z directions 11 x 11 x 2 
Grid block sizes in the x, y, and z directions 22.727 ft x 22.727 ft x 5 ft 
Porosity 0.2 
X direction permeability 500 md, 100 md 
Y direction permeability 500 md, 100 md 
Z direction permeability 50 md 
Depth of reservoir 3150 ft 
Initial reservoir pressure 1363.95 psi 
Residual water saturation 0.37 
Residual oil saturation 0.35 
Endpoint relative permeability of water 0.11 
Endpoint relative permeability of oil 0.95 
Relative permeability exponent for the water phase 1.0 
Relative permeability exponent for the oil phase 2.16 
Water viscosity 0.86 cp 
Oil viscosity 4 cp 
Capillary pressure parameter, cpc 9.0 psi darcy  

Capillary pressure exponent, npc 2.0 
Endpoint water-oil mobility ratio 0.539 
Brine salinity assumed all anions 0.327 meq/ml 
Divalent cation concentration of brine 0.001 meq/ml 
Longitudinal dispersivity 12 ft 
Transverse dispersivity 0.4 ft 
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Table 4.3: Summary of input parameters of pressure constrained field case (Continued) 

Wellbore radius 0.5 ft 
Injection wells skin 0 
Production wells skin 0 
Injection pressure 1540 psi 
Production pressure 1363.95 psi 
Parameters Related to the Polymer Properties  

Polymer viscosity parameter, Ap1 81 wt%-1 
Polymer viscosity parameter, Ap2 2700 wt%-2  
Polymer viscosity parameter, Ap3 2500 
Effective salinity parameter, β 10 
Minimum salinity for polymer viscosity calculations, 
CSE1 

0.01 meq/ml 

Slope of viscosity versus salinity on a log-log plot, Sp 0.17 

Coefficient used in shear rate equation, γ˙c 20 ( )day darcy/ ft s  

Shear rate at which polymer viscosity is one half polymer 
viscosity at zero shear rate, γ˙1/2 

10 s-1  

Exponent for calculating shear rate dependence of 
polymer viscosity, Pα 

1.8 

Ratio of apparent porosity for polymer to actual porosity  
Parameter for calculating the permeability reduction, brk 1000 ft3 /wt% 

Parameter for calculating the permeability reduction, Crk 0.0186 3darcy/ 100g/g  

Polymer solution adsorption parameter, a41 0.7 
Polymer solution adsorption parameter, a42 0.0 
Polymer solution adsorption parameter, b4 100 ft3 /wt% 
Reacting tracer Properties  

Rate constant for a first-order aqueous phase reaction at 
reference temperature 

0.05 

Table 4.4: Summarized run cases of pressure constrained injecting field case 

No Water saturation 
Polymer concentration 

(ppm) 
Oil viscosity 

(cp) 
1 0.35 500 4 
2 0.5 500 4 
3 0.65 500 4 
4 0.5 1000 4 
5 0.5 2000 4 
6 0.5 1000 40 
7 0.5 1000 100 
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Table 4.5: Reservoir and fluid properties of injection rate constrained field case 

Reservoir Properties  

Dimensions of the five-spot  
656.19 ft x 656.19 ft x 65.597 ft  
(200 m x 200 m x 20 m) 

Number of gridblocks in the x, y and z directions 23 x 23 x 7 
Gridblock sizes in the x, y, and z directions 28.53 ft x 28.53 ft x 9.371 ft 
Porosity 0.3 
Average permeability 15000 md 
Depth of reservoir 960 m 
Initial reservoir pressure 1160.9 psi 
Residual water saturation 0.18 
Residual oil saturation 0.3 
Water viscosity 0.7 cp 
Oil viscosity 80 cp 
Oil density 0.855 g/cm3 
Salinity of injected water 600 ppm 
Salinity of formation water 3000 ppm 
Pore volume of pilot square 2.4 x 105 m3 
Polymer adsorption of 30% hydrolyzed polymer 18 µg/g rock 
Polymer concentration at the injector 1000 ppm 
Polymer viscosity  15 cp 
Injecting Schedule  

Injection rate 17643.77 ft3/day (500 m3/day) 
0.2 PV of water preflush (105 days)  
1 year of polymer injection  
0.35 PV of water postflush  
 

Table 4.6: Summarized run cases compared of injection rate constrained field case   

No Case description 

1 30% hydrolyzed polymer injected without further hydrolysis  
 

2 
30% hydrolyzed polymer injected with further hydrolysis and its adsorption 
effect 
 

3 
Unhydrolyzed polymer injected with insitu polymer hydrolysis and its 
adsorption effect 
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Table 4.7: Viscosity profile comparisons in layer 4 with and without hydrolysis model  

 W/O Hydrolysis run (case #1) 
Unhydrolyzed polymer injected 

W/ Hydrolysis run (case #3) 

0.27 PV 

  

0.37 PV 

0.48 PV 
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Table 4.7: Viscosity profile comparisons in layer 4 with and without hydrolysis model 
(Continued) 

 W/O Hydrolysis run (case #1) 
Unhydrolyzed polymer injected 

W/ Hydrolysis run (case #3) 

0.58 PV 

 

0.69 PV 

 

0.80 PV 
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Figure 4.1(a): Simulated polymer concentration and viscosity profiles using the polymer 
hydrolysis model. Results are shown at 1.0 PV after injecting a  0.7 PV 
slug of 1200 ppm polymer concentration 
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Figure 4.1(b): Polymer concentration and viscosity profile without polymer hydrolysis 
model at 1.0 PV injected with 0.7 PV slug of 1200 ppm polymer 
concentration 
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Figure 4.2(a): Concentration profiles at 0.5 PV injected with initially 30% hydrolyzed 
polyacrylamide injection without modeling the effect of hydrolysis on 
adsorption  
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Figure 4.2(b): Concentration profiles at 3 PV injected with initially 30% hydrolyzed 
polyacrylamide injection with adsorption effect considered 
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Figure 4.3(a): Concentration profiles at 0.5 PV injected with initially unhdrolyzed 
polyacrylamide injection without adsorption effect considered 
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Figure 4.3(b): Concentration profiles at 10 PV injected with initially unhdrolyzed 
polyacrylamide injection with adsorption effect considered 



 34 

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500

Time (days)

C
u

m
. 

O
il

 R
e

c.
 (

%
O

O
IP

)

Swi=0.35 W/ H
Swi=0.35 W/O H
Swi=0.5 W/ H
Swi=0.5 W/O H
Swi=0.65 W/ H
Swi=0.65 W/O H

 

Figure 4.4(a): Cumulative oil recovery in days at different initial water saturation with 
polymer concentration of 500 ppm for 1000 days injection 
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Figure 4.4(b): Injected polymer mass per bbls of oil in days at different initial water 
saturation with polymer concentration of 500 ppm for 1000 days of injection 
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Figure 4.4(c): Cumulative oil recovery vs PV injected at different initial water saturation 
with polymer concentration of 500 ppm for 1000 day injection 

C4 = 500ppm, 1000 days (0.37PV) injection
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Figure 4.4(d): Injected polymer mass per bbls of oil vs PV at different initial water 
saturation with polymer concentration of 500 ppm injected for 1000 days  
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Figure 4.5(a): Cumulative oil recovery in days for different polymer concentration for 
1000 days injection with initial water saturation of 0.5  
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Figure 4.5(b): Injected polymer mass per bbls of oil in days at different polymer 
concentrations for 1000 days injection with initial water saturation of 0.5. 
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Cumulative Oil Recovery at different polymer 

concnetration @ Swi = 0.5, 1000 days (0.37 PV) injection
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Figure 4.5(c): Cumulative oil recovery vs PV injected for different polymer 
concentrations for 1000 days (0.37 PV) of injection with initial water 
saturation of 0.5. 
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Figure 4.5(d): Injected polymer mass per bbls of oil vs PV injected for different polymer 
concentrations for 1000 days injection with initial water saturation of 0.5. 
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Figure 4.6(a): Cumulative oil recovery in days for different oil viscosities. Initial water 
saturation of 0.5 and injected polymer concentration is 1000 ppm for 4000 
days injection 
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Figure 4.6(b): Injected polymer mass per bbls of oil in days for different oil viscosities. 
Initial water saturation is 0.5 and injected polymer concentration is 1000 
ppm for 4000 days injection 
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Figure 4.6(c): Cumulative oil recovery vs PV injected for different oil viscosities. Initial 
water saturation is 0.5 and injected polymer concentration is1000 ppm for 
4000 days injection 
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Figure 4.6(d): Injected polymer mass per bbl of oil vs PV injected for different oil 
viscosities. Initial water saturation is 0.5 and injected polymer concentration 
is 1000 ppm for 4000 days injection 
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Figure 4.7: Polymer adsorption vs PV injected  
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Figure 4.8: Cumulative oil recovery vs PV injected 
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Figure 4.9: Average reservoir pressure for each case in PV injected 
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Figure 4.10: Reservoir pressure at near wellbore fort each case in PV injected 
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Chapter 5: SUMMARY AND CONCLUSIONS 

This study focused on the development and implementation of a polymer 

hydrolysis model into a chemical flooding simulator for enhanced oil recovery called 

UTCHEM, and the illustration of the model through simulations. The following summary 

and conclusions are derived.  

 

1. The polyacrylamide polymer hydrolysis due to anionically charged carboxyl 

groups induces extension of the molecules through electrostatic repulsion 

among the chain, therby increasing viscosity. The degree of hydrolysis 

increases as time passes, and the viscosity also increases as the degree of 

hydrolysis increases.  

 

2. Polymer hydrolysis model was developed based on literature research; 

 

1.6(1 )
H

d
k

dt

τ τ  = −  
 

1

1 1.4335p τ
Λ =

−
 

where, τ  is the degree of hydrolysis in fraction, 0t =  is time, k  is the 

reaction rate, and pΛ  is the ratio of the intrinsic viscosity of  PAM and 

HPAM. 

 

3. The developed model was implemented in UTCHEM, the chemical flooding 

simulator developed in the University of Texas at Austin, as one of the 

running options. The running option can be turned on and off as the polymer 

hydrolysis effect is considered or not. 
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4. 1D coreflood simulation demonstrated the viscosity change affected by the 

polymer hydrolysis. While polymer concentration exists, the viscosity 

increases along the core.  
 

5. In a quarter of five-spot field reservoir simulation, the pressure constrained 

injector case shows that injected amount of polymer reduced when polymer 

hydrolysis is considered even though oil recovery was not changed much 

compared with the previously simulated results. 
 

6. The polymer flooding with adsorption in a five-spot pattern reservoir was 

simulated with injection rate constrained injector. Hydrolyzed polymer and 

unhydrolyzed polymer were used to simulate polymer hydrolysis and 

adsorption effect. On early time polymer spreads widely for hydrolyzed 

polymer injection case because of its lower value of adsorption, however, as 

time passes polymer viscosity increased more for unhydrolyzed polymer 

injection case because of its hydrolysis effect in the reservoir.  

 

7. Polymer hydrolysis of initially unhydrolyzed polymer in the reservoir is 

noticeable since the aqueous phase viscosity increases more with lower 

average reservoir pressure than HPAM even with higher polymer adsorption 

for unhydrolyzed polymer.  
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Appendix A: UTCHEM Input File with Polymer Hydrolysis Model  

This is UTCHEM input file for polymer flooding with polymer hydrolysis model 

considered using unhydrolyzed polymer with adsorption and injection rate constrained 

injection applied.  

 
CC******************************************************************* 
CC                                                                                * 
CC    BRIEF DESCRIPTION OF DATA SET : UTCHEM (VERSION 9.95)            * 
CC                                                                                * 
CC******************************************************************* 
CC  WATER OR POLYMER FLOOD FOR CHATEAUNARD FULL FIELD 15X15X3         * 
CC                                                                               * 
CC  LENGTH (FT) : 656.2          PROCESS :  POLYMER FLOOD                * 
CC  THICKNESS (FT) : 65.6        INJ. RATE (FT3/DAY) : 17643.77        * 
CC  WIDTH (FT) : 656.2                                                        * 
CC  POROSITY : 0.30              COORDINATES : CARTESIAN                  * 
CC  GRID BLOCKS : 23x23x7        PERMEABILITY :constant permeability  * 
CC  DATE : 09/09/10                                                           * 
CC                                                                               * 
CC                                                                               * 
CC******************************************************************* 
CC 
CC******************************************************************* 
CC                                                                               * 
CC    RESERVOIR DESCRIPTION                                                  * 
CC                                                                               * 
CC******************************************************************* 
CC 
CC Run number 
*---- RUNNO 
INJCPH 
CC 
CC Title and run description 
*---- title(i) 
polymer flood with injection rate constrained 
 
 
CC 
CC SIMULATION FLAGS 
*---IMODE IMES IDISPC ICWM ICAP IREACT IBIO ICOORD ITREAC ITC IGAS IENG  
      1    2     2     0    0     0     0     1      1     0    0     0  
CC 
CC no. of gridblocks,flag specifies constant or variable grid size,unit 
*---- NX    NY    NZ  IDXYZ  IUNIT 
      23    23    7     0      0  
CC 
CC constant grid block size in x,y,and z 
*---- dx1           dy1          dz1 
     28.53         28.53        9.371  
CC 
CC total no. of components,no. of tracers,no. of gel components 
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*----n    no    ntw    nta    ngc    ng    noth  
     11   0      3      0      0     0      0  
CC 
CC Name of the components 
*----spname(i) for i=1 to n 
Water  
Oil  
NONE 
Polymer  
Chloride  
Calcium  
NONE 
NONE 
Tracer 1 - Nonreacting Tracer 
Reacting tracer  
Product of Reacting Tracer 
CC 
CC FLAG INDICATING THE UNITS OF INJECTED TRACERS ( 1 = VOL% , 2 = WT% ) 
*----ITRU(IT) FOR IT=1,NTW 
     1  1  1   
CC 
CC flag indicating if the component is included in calculations or not 
*----icf(kc) for kc=1,n  
      1  1  0  1  1  1  0  0  1   1   1    
CC 
CC******************************************************************* 
CC                                                                               * 
CC    OUTPUT OPTIONS                                                          * 
CC                                                                               * 
CC******************************************************************* 
CC 
CC 
CC FLAG TO WRITE TO UNIT 3,FLAG FOR PV OR DAYS TO PRINT OR TO STOP THE 
RUN 
*---- ICUMTM  ISTOP  IOUTGMS 
        0       0       0  
CC 
CC FLAG INDICATING IF THE PROFILE OF KCTH COMPONENT SHOULD BE WRITTEN 
*---- IPRFLG(KC),KC=1,N 
        1  1  0  1  1  1  0  0  1   1   1 
CC 
CC FLAG FOR PRES.,SAT.,TOTAL CONC.,TRACER CONC.,CAP.,GEL, ALKALINE 
PROFILES 
*---- IPPRES IPSAT IPCTOT IPBIO IPCAP IPGEL IPALK IPTEMP IPOBS 
        1      1      1      0     0     0     0     0      0  
CC 
CC FLAG FOR WRITING SEVERAL PROPERTIES TO UNIT 4 (Prof)  
*---- ICKL IVIS IPER ICNM ICSE IHYSTP IFOAMP INONEQ 
       1    1    0    0    1    0    0    0  
CC 
CC FLAG  for variables to PROF output file 
*---- IADS IVEL IRKF IPHSE 
       1    1    1    0  
CC 
CC******************************************************************* 
CC                                                                               * 
CC    RESERVOIR PROPERTIES                                                   * 
CC                                                                               * 
CC******************************************************************* 
CC 
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CC 
CC MAX. SIMULATION TIME ( DAYS) 
*---- TMAX  
      600 
CC 
CC ROCK COMPRESSIBILITY (1/PSI), STAND. PRESSURE(PSIA) 
*---- COMPR         PSTAND 
        0            1000  
CC 
CC FLAGS INDICATING CONSTANT OR VARIABLE POROSITY, X,Y,AND Z 
PERMEABILITY 
*---- IPOR1  IPERMX  IPERMY  IPERMZ  IMOD    ITRNZ   INTG 
        0      0      0       0       0        0      0 
CC 
CC constant porosity 
*---- PORC1 
       0.3 
CC 
CC CONSTANT X-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 
*----PERMXC    
     15000      
CC 
CC Y DIRECTION PERMEABILITY IS DEPENDENT ON X DIRECTION PERMEABILITY 
*---- PERMYC  
     15000  
CC 
CC CONSTANT Z-PERMEABILITY (MILIDARCY) FOR LAYER K = 1,NZ 
*----PERMZC   
     15000      
CC 
CC FLAG FOR CONSTANT OR VARIABLE DEPTH, PRESSURE, WATER 
SATURATION,INITIAL AQUEOUS PHASE cOMPOSITIONS 
*----IDEPTH  IPRESS  ISWI  ICWI 
       0       0      0     -1  
CC 
CC CONSTANT DEPTH (FT)  
*---- D111 
       3151.67  
CC 
CC CONSTANT PRESSURE (PSIA)  
*---- PRESS1 
       1160.9 
CC 
CC CONSTANT INITIAL WATER SATURATION  
*---- SWI 
      0.18  
CC 
CC BRINE SALINITY AND DIVALENT CATION CONCENTRATION (MEQ/ML) 
*---- C50       C60 
       0.0513   0.001  
CC 
CC******************************************************************* 
CC                                                                               * 
CC    PHYSICAL PROPERTY DATA                                                * 
CC                                                                               * 
CC******************************************************************* 
CC 
CC 
CC OIL CONC. AT PLAIT POINT FOR TYPE II(+)AND TYPE II(-), CMC 
*---- c2plc  c2prc   epsme   ihand  
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        0      1     0.0001     0  
CC 
CC flag indicating type of phase behavior parameters 
*---- ifghbn   
        0  
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT 
SALINITY 
CC FOR ALCOHOL 1 
*---- hbns70   hbnc70   hbns71   hbnc71   hbns72   hbnc72   
        0.131    0.1       0.191     0.026     0.363     0.028  
CC SLOPE AND INTERCEPT OF BINODAL CURVE AT ZERO, OPT., AND 2XOPT 
SALINITY 
CC FOR ALCOHOL 2 
*---- hbns80  hbnc80  hbns81  hbnc81  hbns82  hbnc82   
        0       0       0       0       0       0  
CC 
CC LOWER AND UPPER EFFECTIVE SALINITY FOR ALCOHOL 1 AND ALCOHOL 2 
*---- csel7   cseu7   csel8   cseu8 
       0.177    0.344     0       0  
CC 
CC THE CSE SLOPE PARAMETER FOR CALCIUM AND ALCOHOL 1 AND ALCOHOL 2 
*---- beta6    beta7    beta8  
        6       -2       0  
CC 
CC FLAG FOR ALCOHOL PART. MODEL AND PARTITION COEFFICIENTS 
*---- ialc   opsk7o   opsk7s   opsk8o   opsk8s  
        1      0        0        0        0  
CC 
CC NO. OF ITERATIONS, AND TOLERANCE 
*---- nalmax     epsalc  
        20       0.001  
CC 
CC ALCOHOL 1 PARTITIONING PARAMETERS IF IALC=1 
*---- akwc7     akws7    akm7     ak7      pt7    
       4.671    1.79      48     35.31    0.222  
CC 
CC ALCOHOL 2 PARTITIONING PARAMETERS IF IALC=1 
*---- akwc8     akws8    akm8    ak8     pt8   
        0         0        0      0       0  
CC 
CC ift model flag 
*----  ift    
        0  
CC 
CC INTERFACIAL TENSION PARAMETERS 
*----  g11     g12     g13     g21     g22      g23  
       13    -14.8    0.007     13     -14.5     0.01  
CC 
CC LOG10 OF OIL/WATER INTERFACIAL TENSION  
*---- xiftw 
       1.3  
CC 
CC ORGANIC MASS TRANSFER FLAG 
*---- imass icor 
        0       0  
cc 
cc 
*--- iwalt  iwalf 
      0     0 
CC 
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CC CAPILLARY DESATURATION PARAMETERS FOR PHASE 1, 2, AND 3 
*---- itrap      t11      t22      t33 
        0        0           0    364.2  
CC 
CC  FLAG FOR RELATIVE PERMEABILITY AND CAPILLARY PRESSURE MODEL 
*---- iperm     IRTYPE 
        0         0 
CC 
CC FLAG FOR CONSTANT OR VARIABLE REL. PERM. PARAMETERS 
*---- isrw    iprw    iew  
        0      0       0  
CC 
CC CONSTANT RES. SATURATION OF PHASES 1,2,AND 3 AT LOW CAPILLARY NO. 
*---- s1rwc    s2rwc     s3rwc  
       0.18      0.3      0  
CC 
CC CONSTANT ENDPOINT REL. PERM. OF PHASES 1,2,AND 3 AT LOW CAPILLARY 
NO. 
*---- p1rwc     p2rwc    p3rwc 
       0.3       0.8      0.2  
CC 
CC CONSTANT REL. PERM. EXPONENT OF PHASES 1,2,AND 3 AT LOW CAPILLARY 
NO. 
*---- e1wc     e2wc     e3wc  
       2       2       1  
CC 
CC WATER AND OIL VISCOSITY , RESERVOIR TEMPERATURE 
*---- VIS1    VIS2   TSTAND 
       0.7      80      0  
CC 
CC COMPOSITIONAL PHASE VISCOSITY PARAMETERS 
*---- ALPHAV1   ALPHAV2   ALPHAV3   ALPHAV4  ALPHAV5 
        4         5         0         0.9       0.7  
CC 
CC PARAMETERS TO CALCULATE POLYMER VISCOSITY AT ZERO SHEAR RATE 
*---- AP1      AP2      AP3 
       13.5      350     400  
CC 
CC PARAMETER TO COMPUTE CSEP,MIN. CSEP, AND SLOPE OF LOG VIS. VS. LOG 
CSEP  
*---- BETAP    CSE1     SSLOPE 
       6      0.0553     -0.38  
CC 
CC PARAMETER FOR SHEAR RATE DEPENDENCE OF POLYMER VISCOSITY 
*---- GAMMAC   GAMHF   POWN     IPMOD   ishear  rweff    IPHYDRO 
       3.97     6      1.8        0       0      0.25       1 
CC 
CC When IPHYDRO=1,  
*---- EHDR      CHDR1     CHDR2       REVTEMP 
       1.6      91.3      27.149       200.0    
CC 
CC CC FLAG FOR POLYMER PARTITIONING, PERM. REDUCTION PARAMETERS 
*---- IPOLYM    EPHI3    EPHI4    BRK     CRK     RKCUT 
        1         0.85   0.85      100    0.23      10 
CC 
CC SPECIFIC WEIGHT FOR COMPONENTS 1,2,3,7,8 ,Coeffient of oil and 
GRAVITY FLAG 
*---- DEN1       DEN2        DEN23     DEN3     DEN7    DEN8    IDEN  
    0.43353    0.385839    0.385839    0.42     0.346    0        2  
CC 
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CC FLAG FOR CHOICE OF UNITS ( 0:BOTTOMHOLE CONDITION , 1: STOCK TANK) 
*----- ISTB 
        0  
CC 
CC COMPRESSIBILITY FOR VOL. OCCUPYING COMPONENTS 1,2,3,7,AND 8  
*---- COMPC(1)  COMPC(2)  COMPC(3)  COMPC(7)  COMPC(8) 
         0        0         0         0         0  
CC 
CC CONSTANT OR VARIABLE PC PARAM., WATER-WET OR OIL-WET PC CURVE FLAG  
*---- ICPC    IEPC   IOW  
       0       0      0  
CC 
CC CAPILLARY PRESSURE PARAMETER, CPC0  
*---- CPC0  
       0  
CC 
CC CAPILLARY PRESSURE PARAMETER, EPC0  
*---- EPC0 
       2  
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 1  
*---- D(KC,1),KC=1,N 
         11*0.               
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 2  
*---- D(KC,2),KC=1,N 
         11*0.   
CC 
CC MOLECULAR DIFFUSION COEF. KCTH COMPONENT IN PHASE 3  
*---- D(KC,3),KC=1,N 
         11*0. 
CC 
CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 1 
*---- ALPHAL(1)     ALPHAT(1) 
         1           0  
CC 
CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 2 
*---- ALPHAL(2)     ALPHAT(2) 
         1           0  
CC 
CC LONGITUDINAL AND TRANSVERSE DISPERSIVITY OF PHASE 3 
*---- ALPHAL(3)     ALPHAT(3) 
         0           0  
CC 
CC flag to specify organic adsorption calculation 
*---- iadso 
        0  
CC 
CC SURFACTANT AND POLYMER ADSORPTION PARAMETERS 
*---- AD31   AD32   B3D   AD41   AD42   B4D   IADK   IADS1  FADS   REFK 
       1     0.5   1000   3.54    0     100     0     0      0      0  
CC 
CC PARAMETERS FOR CATION EXCHANGE OF CLAY AND SURFACTANT 
*---- QV  XKC   XKS     EQW 
      0    0     0      419  
CC 
CC TRACER PARTITIONING COEFFICIENT (TK(IT),IT=1,NT) 
*---- TK(1)  TK(2)  TK(3)  
      0.0     0.0    0.0    
CC 
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CC TRACER PARTITION COEFFICIENT SALINITY PARAMETER (1/MEQ/ML) 
*----TKS(IT), IT=1,NT     C5INI 
      0.0    0.0     0.0   0.0 
CC  
CC RADIACTIVE DECAY COEFFICIENT (RDC(IT),IT=1,NT) 
*---- RDC(1)  RDC(2)   RDC(3)   
      0.0      0.0       0.0      
CC 
CC TRACER RETARDATION COEFFICIENT (RET(IT),IT=1,NT) 
*---- RET(1)   RET(2)  RET(3)   
      0.0       0.0      0.0      
cc 
cc tracer reaction 
*--- NRT     TAK(1)  
     1        0.5 
CC 
CC TRACER MOLECULAR WEIGHT  (TMW(IT),IT=1,NT)       
*---- TMW(1)  TMW(2)   TMW(3) 
       1.0     1.0      1.0 
CC 
CC TRACER DENSITY IN G/CC (TDEN(IT),IT=1,NT)       
*---- TDEN(1)  TDEN(2)   TDEN(3) 
       1.0     1.0      1.0 
CC 
CC******************************************************************* 
CC                                                                               * 
CC    WELL DATA                                                                * 
CC                                                                               * 
CC******************************************************************* 
CC 
CC 
CC FLAG FOR SPECIFIED BOUNDARY AND ZONE IS MODELED 
*---- IBOUND     IZONE 
        0      0  
CC 
CC TOTAL NUMBER OF WELLS, WELL RADIUS FLAG, FLAG FOR TIME OR COURANT 
NO. 
*---- NWELL   IRO    ITIME    NWREL 
        5      1       1        5  
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, 
SKIN 
*---- IDW   IW   JW   IFLAG   RW   SWELL  IDIR  IFIRST  ILAST  IPRF  
      1     12   12     1   0.2864   0      3      1      7      0  
CC 
CC WELL NAME 
*----  WELNAM 
inj 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
        0          0         30000      0        9000  
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, 
SKIN 
*---- IDW  IW  JW  IFLAG  RW   SWELL  IDIR  IFIRST  ILAST  IPRF  
      2    1    1    2  0.2864   0     3      1      7      0  
CC 
CC WELL NAME 
*----  WELNAM 
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prod-1 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
        0          0         30000      0        50000  
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, 
SKIN 
*---- IDW   IW   JW   IFLAG   RW   SWELL  IDIR  IFIRST  ILAST   IPRF  
       3    1    23     2   0.2864   0     3      1       7      0  
CC 
CC WELL NAME 
*----  WELNAM 
prod-2 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
        0        0         30000      0       50000  
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, 
SKIN 
*---- IDW   IW   JW   IFLAG   RW   SWELL  IDIR  IFIRST  ILAST  IPRF  
      4     23    1    2    0.2864   0      3      1      7      0  
CC 
CC WELL NAME 
*----  WELNAM 
prod-3 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
        0         0        30000       0      50000  
CC 
CC WELL ID,LOCATIONS,AND FLAG FOR SPECIFYING WELL TYPE, WELL RADIUS, 
SKIN 
*---- IDW   IW   JW   IFLAG   RW   SWELL  IDIR  IFIRST  ILAST  IPRF  
      5     23   23     2   0.2864   0      3     1       7      0  
CC 
CC WELL NAME 
*----  WELNAM 
prod-4 
CC 
CC ICHEK , MAX. AND MIN. ALLOWABLE BOTTOMHOLE PRESSURE AND RATE 
*---- ICHEK     PWFMIN     PWFMAX    QTMIN    QTMAX 
        0          0       30000       0      50000  
CC 
CC  ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE 
(L=1,3) 
*----  ID   QI(M,L)   C(M,KC,L)   
       1   17643.776   1   0   0   0  0.0533  0.001  0   0   0  1.0   0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
CC 
CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 
*----  ID    PWF 
       2      100  
CC 
CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 
*----  ID    PWF 
       3      100  
CC 
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CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 
*----  ID    PWF 
       4      100  
CC 
CC ID, BOTTOM HOLE PRESSURE FOR PRESSURE CONSTRAINT WELL (IFLAG=2 OR 3) 
*----  ID    PWF 
       5      100  
CC 
CC CUM. INJ. TIME , AND INTERVALS (PV OR DAY) FOR WRITING TO OUTPUT 
FILES 
*---- TINJ     CUMPR1    CUMHI1    WRHPV    WRPRF     RSTC  
       105      10        10         7       68        100 
CC   
CC THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 
*----  DT      
       0.0001  0.001 0.4 .04              
CC 
CC FLAG FOR INDICATING BOUNDARY CHANGE 
*---- IBMOD 
        0  
CC 
CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS 
*----  IRO    ITIME     IFLAG   
        1       0        1      2      2      2      2  
CC 
CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 
*----  NWEL1 
         0  
CC 
CC NUMBER OF WELLS WITH RATE CHANGES, ID 
*---- NWEL2     ID  
        1        1  
CC 
CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE 
(L=1,3) 
*----  ID   QI(M,L)   C(M,KC,L)   
       1  17643.776    1   0   0  0.1  0.0553 0.001  0   0   0  1.0   0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
CC 
CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 
*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF    RSTC 
      435       25         25         20       25       100  
CC 
CC THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 
*----  DT      
      0.00001  0.001 0.2  0.02              
CC 
CC FLAG FOR INDICATING BOUNDARY CHANGE 
*---- IBMOD 
        0  
CC 
CC IRO, ITIME, NEW FLAGS FOR ALL THE WELLS 
*----  IRO    ITIME     IFLAG   
        1       0        1      2      2      2      2  
CC 
CC NUMBER OF WELLS CHANGES IN LOCATION OR SKIN OR PWF 
*----  NWEL1 
         0  
CC 
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CC NUMBER OF WELLS WITH RATE CHANGES, ID 
*---- NWEL2     ID  
        1        1  
CC 
CC ID,INJ. RATE AND INJ. COMP. FOR RATE CONS. WELLS FOR EACH PHASE 
(L=1,3) 
*----  ID   QI(M,L)   C(M,KC,L)   
       1  17643.776    1   0   0   0  0.0553  0.001  0   0   0  1.0   0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
       1    0          0   0   0   0    0      0     0   0   0   0    0 
CC 
CC CUM. INJ. TIME , AND INTERVALS (PV) FOR WRITING TO OUTPUT FILES 
*---- TINJ     CUMPR1     CUMHI1     WRHPV     WRPRF    RSTC 
      600       25         25         20       25       100  
CC 
CC THE INI. TIME STEP,CONC. TOLERANCE,MAX.,MIN. time steps 
*----  DT      
     0.00001   0.001   0.1   0.01  
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