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Revisit Input Observability: A New Approach to Attack Detection and
Privacy Preservation

Yu Kawano and Ming Cao

Abstract— Models for attack detection and privacy preserva-
tion of linear systems can be formulated in terms of their input
observability, which is also called the left invertibility of their
transfer function matrices. While left invertibility is a classical
concept, we re-examine it from the perspectives of security
and privacy. In this paper, for discrete-time linear systems,
we design an input observer in order to detect attacks. We
also present the input observability Gramian, which is used
to characterize the systems’ privacy level; it is shown that a
strong connection can be made between the input observability
Gramian and a standard privacy concept called differential
privacy.

I. INTRODUCTION

The Internet-of-Things (IoT) technologies have enabled
fast development in smart grids [1] and health monitoring
systems [2] in recent years, and the key step is the realization
of remotely controlling or sensing objects through networks.
While IoT is expected to dramatically change the quality of
our lives, it is saddled with pressing security and privacy
threats. For instance, Ukrainian power companies experi-
enced forced power outages caused by external cyber-attacks
in 2015 [3]. Researchers have recently found that when Ap-
ple implements “differential privacy” into their MacOS and
iOS operating systems, the company can potentially erode the
users’ privacy protection [4], [5]. Motivated by these mighty
events, attack detection and privacy preservation are currently
being intensively studied in several fields including systems
and control; for instance see [6]–[14]. In the literature,
attack detection and privacy preservation problems have been
investigated separately. However, we find that they can be
viewed as the opposite properties of each other and thus
studied in the same framework, more specifically in terms
of input observability. For attack detection, if the attack
(external inputs) can be uniquely determined, the systems
can then be protected by effectively counter-acting on the
attack. For privacy preservation, each individual’s privacy
pattern (input) should not be detected from learned results
(outputs). So, input observability is a preferred property from
the attack detection perspective but an undesirable property
for privacy preservation.

In this paper, we focus on discrete-time linear systems,
which are the common models for security and privacy
analysis in systems and control [12], [13]. We refer input
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observability to the property that the initial input can be
uniquely determined from the system’s known initial state
and measured output sequence irrespective of the choice
of the input sequence. If the initial input can be uniquely
determined, the whole input sequence can then be uniquely
determined. Input observability is also called invertibility
with delay in [15] and is equivalent to the left invertibility
of the transfer function matrix [16]–[18]. Left invertibility
in particular is a classical concept and can be checked by
several conditions, e.g. the rank of the transfer function
matrix, the PBH type test [17], [18], and Kalman’s rank
type conditions [15], [16]. More directly related to attack
detection, input observers are provided in [17], [18], and
the left invariable subspace is studied in [19], which can
respectively be used to detect attacks and to identify input
nodes that are vulnerable to attacks.

For attack detection, instead of the input observers, the
unknown input observer (UIO) has been widely used, see,
e.g. [8]–[10]. The UIO estimates the states under some
unknown input which is interpreted as the attack to the
system. More specifically, if there is a mismatch between an
estimated state and the state computed from the state space
model, then one concludes that there is an attack. Note that
the UIOs do not estimate attack signals; in contrast, input
observers provided by [17], [18] directly do so. However,
input observers do not necessarily converge to the inputs of
the original system in finite time, which can prevent them
to be used for attack detection in many practical scenarios
where finite-time convergence is needed. In this paper, our
first goal is then to construct an input observer whose output
converges to the input sequence in finite time. In fact, our
input observer can be viewed as a specific left inverse system,
that works even if the system’s initial state is not zero, and
this property does not hold for a general left inverse system.

For privacy protection, one of the most useful concepts is
differential privacy [11]–[13]. It is a quantitative criterion,
which has never been examined in the context of input ob-
servability. To establish a bridge between input observability
and differential privacy, we extend the concept of Gramian to
input observability. Like the standard observability Gramian
of the initial state, the input observability Gramian can
be induced from a least square estimation problem of the
input, and thus a similar concept naturally appears in input
estimation problems, e.g. in [14]. However, few paper has
focused on the analysis of the input observability Gramian as
a quantitative criterion. Based on the Gramian interpretation,
in this paper, we show that the eigenvalues of the input
observability Gramian can be used to evaluate the level



of input observability especially in the context of privacy.
More specifically, we clarify that differential privacy in fact
evaluates the maximum eigenvalue of the input observability
Gramian.

The remainder of this paper is organized as follows.
Section II introduces input observability and constructs an
input observer for attack detection. Section III gives the
input observability Gramian in terms of which differential
privacy is analyzed. In Section IV, our results are illustrated
using examples from attack detection of a power network
and differential privacy analysis of traffic monitoring.

II. INPUT OBSERVER

Consider the following discrete-time linear system

Σ :

{
x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input and
output, respectively, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n

and D ∈ Rp×m. Let Ut(i) := [uT(i) · · ·uT(i + t)]T ∈
R(t+1)m and Yt(i) := [yT(i) · · · yT(i + t)]T ∈ R(t+1)p

denote the input and output subsequences, respectively. For
ease of notation, x(0), Ut(0) and Yt(0) are also written as
x0, Ut and Yt, respectively.

For discrete-time systems, it is well known that Yt(i) can
be described as a function of x(i) and Ut(i) namely

Yt(i) = Otx(i) +NtUt(i), (2)

Ot :=
[
CT (CA)T · · · (CAt)T

]T ∈ R(t+1)p×n,

Nt :=



D 0 · · · · · · 0

CB D
. . .

...

CAB CB
. . . . . .

...
...

...
. . . D 0

CAt−1B CAt−2B · · · CB D


∈ R(t+1)p×(t+1)m.

Now, we give a formal definition of input observability
studied in this paper, which is equivalent to L-delay invert-
ibility [15], [16] and left invertibility of the transfer function
matrix [17], [18] directly from their definitions.

Definition 2.1: The system Σ is said to be input observ-
able for the initial state x0 ∈ Rn if there exists a non-negative
integer L such that u(0) ∈ Rm can be uniquely determined
from the known initial state x(0) = x0 and measured output
subsequence YL(0) ∈ R(L+1)p irrespective of the choice of
the input subsequence UL(0) ∈ R(L+1)m.

The reason for focusing on the initial input u(0) is that
one can then construct the whole input sequence from it.
Actually, from u(0), x0, and system dynamics Σ, one obtains
x(1). Then, from x(1) and YL(1) ∈ R(L+1)p, one can
compute u(1) and consequently u(t), t = 2, 3, . . . . The
remaining question is an upper bound on L. Based on [15, the
proof of Theorem 4], and the Cayley-Hamilton theorem [20],
one can readily conclude that an upper bound is n. From the
representation (2), the existence of the unique u(0) can be
verified as follows.

Lemma 2.2: A system Σ is input observable if and only
if

rank
[
NT

n ei
]
= rankNT

n , ∀i = 1, . . . ,m, (3)

where ei ∈ R(n+1)m is the standard basis, i.e., its ith element
is 1, and the other elements are 0.

Proof: A system Σ is input observable if and only if
there exists K ∈ Rm×(n+1)p, not necessarily unique, such
that

K(Yn −Onx0) = KNnUn = u(0) (4)

for arbitrary Un, or equivalently, if and only if

KNn =
[
Im 0 · · · 0

]
.

A solution K exists if and only if (3) holds.
Our objective in this section is to design an observer that

detects the attack, i.e. determining the input sequence, which
we call an input observer. There are already several attack
detectors and input observers in the literature [8]–[10], [17],
[18]. The difference from them is that we aim at determining
the input sequence in finite time. One can construct such an
input observer if the system Σ is input observable.

Theorem 2.3: Suppose that a system Σ is input observ-
able. Consider the following system with K satisfying (4):{

ξ(t+ 1) = (A−BKOn)ξ(t) +BKν(t)
η(t) = −KOnξ(t) +Kν(t),

(5)

where ξ ∈ Rn, ν ∈ R(n+1)p, and η ∈ Rm are the state, input,
and output, respectively. If the initial state and input of the
system (5) are chosen as ξ(0) = x(0) and ν(t) = Yn(t),
then its output η(t) is u(t) for any t = 0, 1, . . . .

Let G(z) and H(z) be the transfer function matrices of
the system Σ and its input observer (5), respectively. Then,
H(z)G(z) = Im/zn, i.e., G(z) has the left inverse [17]
znH(z). Conversely, if the system is left invertible, there
exists a transfer function H(z) such that H(z)G(z) =
Im/zn. For an arbitrary state space representation of H(z),
its output corresponding to input Yn(t) is u(t) if the initial
state is x(0) = 0. However, for non-zero initial states, this
is not always true. The input observer (5) presented in this
paper covers the non-zero initial state cases.

It is not clear if K satisfying (4) stabilizes A−BKOn. If
K is chosen such that (A−BKOn)

n = 0, then the output of
the input observer (5) converges to the input of the system Σ
in finite time for arbitrary initial states. A matrix K satisfying
(A − BKOn)

n = 0 exists if the system Σ is reachable
and observable. However, in general, there is no direct
connection between input observability and minimality of the
system Σ because the left invertibility condition is derived
for minimal realization in [17]. Therefore, we remark that
how to check the existence of K simultaneously satisfying
(4) and achieving (A−BKOn)

n = 0 is an open question.

III. INPUT OBSERVABILITY GRAMIANS

Differential privacy [11]–[13] is known to be a quantitative
criterion of privacy, and we want to establish in this section
that it can be interpreted as input observability. However,



for input observability, there are only qualitative (binary)
criteria, such as Kalman’s type rank condition [15], [16]
and the PBH type condition [17], [18]. In contrast, for the
standard observability of the initial state, the observability
Gramian is known as a quantitative criterion. In this section,
we extend the concept of Gramian to input observability,
and then establish a bridge between the input observability
Gramian and differential privacy.

A. Definition of Differential Privacy

We first provide the definition of differential privacy. The
main idea of differential privacy is adding noise to the output
in order to prevent the input from being determined from the
output. In other words, noise is designed to make the system
private, and differential privacy gives an index for designing
noise.

As typically studied in differential privacy, we focus on a
finite sequence of data, and thus only care about properties in
finite time. That is, suppose that u(t) = 0, t > M . Consider
the output with the noise w(t) ∈ Rp to be designed,

yw(t) := y(t) + w(t) = Cx(t) +Du(t) + w(t). (6)

Define Wt := [wT(0) · · · wT(t)]T ∈ Rp(t+1) and Y w
t :=

[(yw)T(0) · · · (yw)T(t)]T ∈ Rp(t+1). Then, Y w
t , t ≥ M

can be described by

Y w
t = Otx0 +Nt,MUM +Wt, (7)

where Nt,M ∈ R(t+1)p×(M+1)m, t ≥ M (Nt,t = Nt) is

Nt,M :=



D 0 · · · 0

CB D
. . .

...
...

...
. . . 0

CAM−1B CAM−2B · · · D
CAMB CAM−1B · · · CB

...
...

...
CAt−1B CAt−2B · · · CAt−M−1B


.

Based on the output sequence Y w
t with noise, differential

privacy can be defined. To introduce its definition, the
symmetric binary relation for input sequences is still needed
to be clarified. A pair of input sequences (UM , U ′

M ) ∈
R(M+1)m × R(M+1)m is said to be Adjb2(UM , U ′

M ) if

|UM − U ′
M |2 ≤ b (8)

and u(t) = u′(t) for any t > M . The differential privacy
evaluates the pair of output sequences (Y w

t , Y w′

t ) corre-
sponding to Adjb2(UM , U ′

M ) for the same initial states. If one
considers the difference of the pair of the output sequences
without noise, one has, with u(t) = u′(t), t > M ,

Yt − Y ′
t = Otx0 +Nt,tUt − (Otx0 +Nt,tU

′
t)

= Nt,M (UM − U ′
M ).

Therefore, to analyze a pair of outputs, one can assume
u(t) = 0, t > M and x0 = 0 without loss of generality.

Now, we are ready to provide the definition of differential
privacy for the system Σ.

Definition 3.1: [12], [13] The system Σ with output (6)
is said to be (ε, δ)-differentially private for Adjb2(UM , U ′

M )
at a finite time t ≥ M if there exist ε > 0 and δ ≥ 0 such
that

P(Nt,MUM +Wt ∈ S) ≤ eεP(Nt,MU ′
M +Wt ∈ S) + δ

(9)

for some probability distribution function P : S → [0, 1] for
any element S of the Borel σ-algebra on Rp(t+1), where e
is Euler’s number.

If ε and δ are large, the probability distribution of the out-
put sequences (Y w

t , Y w′

t ) corresponding to Adjb2(UM , U ′
M )

are very different, which means that for a different pair
of inputs, the corresponding outputs can be very different.
Therefore, it is relatively easy to estimate the input sequence
from the known initial state and measured output sequence,
i.e., the system can be viewed as highly input observable and
thus less private.

B. Input Observability Gramians

Relating to differential privacy, we consider a least square
estimation problem of an input sequence, which naturally
induces the input observability Gramian (note that the con-
trollability Gramian is originally obtained from the minimum
energy control problem [21], the dual of the least square
estimation problem of the initial state).

We continue to assume that u(t) = 0, t > M and
x0 = 0. For measured output sequence Y w

t , t ≥ M with
measurement noise, find UM such that

min
UM

|Y w
t −Nt,MUM |22. (10)

The least square estimation problem is well studied, and the
results can be applied to (10). Define a symmetric matrix

OUM ,t := NT
t,MNt,M ∈ R(M+1)m×(M+1)m. (11)

We call OUM ,t in (11) the input observability Gramian.
Note that since the input observability Gramian evaluates
the input-output behavior, it does not depend on the choice
of coordinates in contrast to the standard observability
Gramian [22].

The least square estimation problem (10) has a unique
solution if and only if OUM ,t is non-singular, and the unique
solution is

UM = O−1
UM ,tN

T
t,MY w

t . (12)

From the structure of (12), one observes a similar property
of the standard observability Gramian, which states that the
eigenvectors associated with relatively large eigenvalues of
OUM ,t correspond to the set of input sequences UM that
are relatively easy to estimate (and thus less private). In
fact, its maximum eigenvalue, denoted by λmax(OUM ,t),
characterizes the differential privacy with Gaussian noise as
a result of the choice of 2-norm in (10). If one considers a
different noise, one needs to consider a different norm, e.g.
1-norm for Laplace noise.

Theorem 3.2: Let Wt ∼ N (0, σ2I(t+1)p). Then, a system
Σ with the output (6) is (ε, δ)-differentially private for ε > 0,



1/2 > δ > 0 and Adjb2(UM , U ′
M ) at a finite time t ≥ M if

σ is chosen such that

σ ≥ bλ
1/2
max(OUM ,t)

2ε

(
Q−1(δ) +

√
(Q−1(δ))2 + 2ε

)
(13)

holds, where Q(w) is the so called Q-function

Q(w) :=
1√
2π

∫ ∞

w

e−
v2

2 dv,

and Q(w) < 1/2 for w > 0.
In (13), only λmax(OUM ,t) depends on the system Σ.

Theorem 3.2 shows that if λmax(OUM ,t) is small, then small
noise is enough to achieve (ε, δ)-differential privacy for
given ε > 0 and 1/2 > δ > 0. This observation relates
to the least square estimation problem (10), in the sense
that if λmax(OUM ,t) is small, all eigenvalues of the input
observability Gramian OUM ,t are small, and solving the
least square estimation problem (10) is numerically difficult,
i.e. the input information is highly private. In this case,
small noise is enough to protect the privacy of the input
information.

To gain deeper insight, we take a further look at the
eigenvalues of OUM ,t from three aspects. First, from (11),
the ith m×m block diagonal element of OUM ,t is

Ou(0),t−i = DTD +

t−i∑
k=0

(CAkB)TCAkB,

i = 1, . . . ,M + 1

where Ou(0),−1 = DTD. This is the input observability
Gramian with respect to the initial input, which we call
the initial input observability Gramian. From the relation
between the eigenvalues and the trace, the sum of the
eigenvalues of OUM ,t is the sum of the eigenvalues of
all Ou(0),t−i, i = 1, . . . ,M + 1. Therefore, if the initial
input observability Gramian has large eigenvalues, the input
observability Gramian OUM ,t has large eigenvalues either. In
other words, the privacy level of the whole input sequence
is characterized by that of the initial input. This is natural,
since the output at each time instant contains information of
the initial input, i.e. the initial input is the least private.

Next, for fixed M , λmax(OUM ,t) is non-decreasing with
respect to t, and thus the privacy level ε in Theorem 3.2
is non-decreasing with respect to t. This corresponds to
the natural observation that more data are being collected,
less private a system becomes. Finally, for fixed t, the
minimum eigenvalue of OUM ,t, denoted by λmin(OUM ,t) is
not increasing with respect to M . For instance,

λmin(OU1,t) ≤ λmin(Ou(0),t). (14)

Recall that these two Gramians are obtained from the least
square estimation problems when u(t) = 0 for t = 2, 3, . . .
and t = 1, 2, . . . , respectively. Therefore, (14) corresponds to
the natural observation that u(0) is more difficult to estimate
if u(1) is unknown compared to the case when u(1) is known
to be 0.

C. Input Observability Analysis

The standard controllability and observability Gramians
provide not only quantitative criteria but also qualitative
criteria. Here, we study the connection between the input
observability Gramian and input observability.

If there is no measurement noise, i.e. Y w
t = Yt, then

(12) gives exact UM . Therefore, non-singularity of the input
observability Gramian OUM ,t is a necessary and sufficient
condition for input observability when u(t) = 0, t > M .
Note that this does not imply input observability for non-zero
u(t) in general. However, according to [16, Corollary 2], this
does if M ≥ n. Then, we have a necessary and sufficient
condition for input observability.

Proposition 3.3: A system Σ is input observable if and
only if OUM ,t is non-singular for any M ≥ n and t ≥ M+n.

The input observability Gramian is both a qualitative and
quantitative criterion for input observability. For differential
privacy, only the maximum eigenvalue is evaluated. For
more detailed privacy (input observability) analysis, each
eigenvalue and the associated eigen-space can be used as
typically done for the standard observability Gramian. Let
vi ∈ R(2n+1)m, i = 1, . . . , (2n + 1)m be eigenvectors of
OUn,2n associated with eigenvalues λi ≤ λi+1. If there is
k such that λk ≪ λk+1, then Un ∈ span{vk+1, . . . , vn}
is relatively easy to observe. Especially, if 0 < λk+1, then
such Un can be uniquely determined, and the projection
of span{vk+1, . . . , vn} onto the u(0)-space gives the input
observable subspace. The input observable and unobservable
subspaces themselves have already been studied in [19], but
quantitative analysis has not been established yet.

The quantitative analysis of subspaces can be used for
designing noise to make a system more private. Let λk ≪
λk+1, and consider the projection of span{vk+1, . . . , vn}
onto the u(0)-space, which we denote by U ⊂ Rm. Then,
the output of the system is sensitive for inputs in U . In
other words, such inputs are less private. To protect less
private input information, one can add noise v ∈ U to
the input channels. Since the output is sensitive for inputs
in U , small input noise may be enough to protect the
input information. However, differential privacy analysis is
technically more involved because of the computation of
probability distribution function P; in particular, it is not
always easy to find a suitable change of variables as done in
the proof of Theorem 3.2.

The input observability Gramian has a strong connection
with the standard observability Gramian

Ox,t :=

t−1∑
k=0

(CAk)T(CAk). (15)

From these definitions (11) and (15), we have

Ou(0),t = DTD +BTOx,tB. (16)

If the system Σ is Schur stable, Ox,t and thus Ou(0),t are
bounded for any t ≥ 0, where t can be ∞. From the
discussion about eigenvalues of Ou(0),t and OUM ,t in the
previous subsection, the input observability Gramian OUM ,t
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Fig. 1. WSSC power system with 3 generators and 6 buses

is bounded for any t ≥ M ≥ 0. Therefore, one can evaluate
the privacy level for an infinite input sequence.

IV. EXAMPLES

A. Attack Detection for Power Networks

Consider the power network illustrated by Fig. 1, whose
model can be found in [8]. We use its zero-order hold
discretization with the sampling time t = 0.01 and consider
the same B, C, and D matrices as in [8], i.e., we assume
that the load buses 4 and 5 are attacked, and the monitoring
unit measures the frequency and angular velocity of the first
generator. In summary, we use the following model:

A =


1 0 0 0.01 0 0
0 1 0 0 0.01 0
0 0 1 0 0 0.01

−0.0023 0.0012 0.0012 0.99 0 0
0.0044 −0.0085 0.0041 0 0.98 0
0.0090 0.0087 −0.0178 0 0 0.97

 ,

B =


0 0
0 0
0 0

0.0188 0.0196
0.1596 0.0697
0.1387 0.3236

 ,

C =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
,

D = 0.

We verify condition (3) in Lemma 2.2. Then, rankN6 =
6, and condition (3) does not hold for e1 or e2. Therefore,
attacks on load buses 4 and 5 cannot be uniquely determined.
In fact, in the domain of the z-transform, Y (z) = 0 for
x0 = 0 if the input U(z) = [U1(z) U2(z)]

T satisfies

U1(z)

= − 1.962z4 − 9.812z3 + 21.5z2 − 21.94z + 9.182

1.884z4 − 9.419z3 + 19.75z2 − 20.38z + 9.182
U2(z).

That is, the power network is vulnerable to these attacks.
The next scenario is that the monitoring unit measures the

frequencies of the first and second generators, i.e.,

C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.
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Fig. 2. Standard deviation σ of Gaussian noise to be designed in order to
achieve (0.1, 0.1)-differential privacy

In this case, rankN6 = 10, and condition (3) holds for both
e1 and e2. That is, the power network is input observable.
Then, we consider to construct an input observer. For in-
stance, K satisfying (4) is

K =

[
0 0 0 0 −3889 1111 0 · · · 0
0 0 0 0 8889 −1111 0 · · · 0

]
.

By using this K, one can construct the input observer in (5).
One notices that the gain K of the input observer is much

larger than the elements of A, B, and C matrices. Therefore,
one can claim that it is still difficult to detect attacks even
when it is possible. To evaluate difficulty, we compute the
eigenvalues of the initial input observability Gramian in (11)
with M = 0 and t = n = 6. Then, its eigenvalues are
0.006×10−4 and 0.169×10−3. As expected, they are small.
This quantitative evaluation is doable thanks to our input
observability formulation of an attack detection problem.

B. Differential Privacy in Traffic Monitoring

Consider a simplified traffic monitoring system studied
in [12]. The purpose of the traffic monitoring service is
to provide continuous estimation of the traffic flow, i.e.,
computing the average position of the vehicles.

Let us consider 10 vehicles whose dynamics are given by

xi(t+ 1) =

[
1 Ts

0 1

]
xi(t) +

[
0
Ts

]
ui(t),

i = 1, . . . , r,

where Ts = 0.01 is a sampling period of the position
measurement, xi = [ξi ξ̇i]

T with ξi and ξ̇i being position
and velocity of vehicle i, and ui is the acceleration input.
The output is the average position of the vehicles,

y(t) =
1

10

10∑
i=1

ξi(t).

The acceleration ui of each vehicle is determined by each
driver and thus contains information of the personal driving
style. To protect this information, the Gaussian noise w with
standard deviation σ is added to the output.

Based on the input observability Gramian OUM ,M , M =
0, 1, . . . and (13), the required standard deviation σ to



achieve (ε, δ)-differential private at each M is computed
for b = 0.1, ε = 0.1 and δ = 0.1 and is shown in Fig.2.
The required standard deviations increase as the duration
increases, since more data one collects, less private a system
becomes. Therefore, for a long duration, one needs to add
large noise. However, output yw with large noise may not
be helpful for data analysis. An ad hoc idea addressing this
problem is changing the standard deviation of noise at each
M based on OUM ,M , and studying differential privacy with
time varying deviation is a topic for our future work.

V. CONCLUSION

In this paper, we have clarified that attack detection and
privacy preservation can be analyzed in the same input
observability framework. To detect attacks, we constructed
an input observer for an input observable system. As a
measure of privacy, we extended the concept of Gramian
to input observability and then showed that differential
privacy can be evaluated by the maximum eigenvalue of
the input observability Gramian. We are currently working
on other forms of attacks and concepts of privacy. We are
also interested in studying nonlinear dynamic processes, and
some preliminary results have been summarized in [23].
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