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Contour Methods for Long-Range Ising
Models: Weakening Nearest-Neighbor
Interactions and Adding Decaying Fields

Rodrigo Bissacot, Eric O. Endo, Aernout C. D. van Enter,
Bruno Kimura and Wioletta M. Ruszel

Abstract. We consider ferromagnetic long-range Ising models which dis-
play phase transitions. They are one-dimensional Ising ferromagnets, in
which the interaction is given by Jx,y = J(|x − y|) ≡ 1

|x−y|2−α with

α ∈ [0, 1), in particular, J(1) = 1. For this class of models, one way
in which one can prove the phase transition is via a kind of Peierls con-
tour argument, using the adaptation of the Fröhlich–Spencer contours for
α �= 0, proposed by Cassandro, Ferrari, Merola and Presutti. As proved
by Fröhlich and Spencer for α = 0 and conjectured by Cassandro et al
for the region they could treat, α ∈ (0, α+) for α+ = log(3)/ log(2) − 1,
although in the literature dealing with contour methods for these models
it is generally assumed that J(1) � 1, we will show that this condition
can be removed in the contour analysis. In addition, combining our the-
orem with a recent result of Littin and Picco we prove the persistence
of the contour proof of the phase transition for any α ∈ [0, 1). Moreover,
we show that when we add a magnetic field decaying to zero, given by
hx = h∗ · (1 + |x|)−γ and γ > max{1 − α, 1 − α∗} where α∗ ≈ 0.2714, the
transition still persists.

1. Introduction

The rigorous study of phase transitions for one-dimensional Ising models with
long-range slowly decaying interactions (Dyson models) is a classical subject
in one-dimensional statistical mechanics. One of the earliest highlights, almost
50 years ago, was Dyson’s proof of a phase transition [16–18], proving a con-
jecture due to Kac and Thompson [24]. Long-range Ising models with slow
polynomial decay, as well as the somewhat related hierarchical models, have

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-018-0693-3&domain=pdf
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been called “Dyson models” in the literature. We will mostly call our poly-
nomially decaying models “long-range Ising models” but sometimes refer to
them as “Dyson models”.

The formal Hamiltonian of these models is given by:

H(σ) = −
∑

x�=y

Jx,yσxσy −
∑

x

hxσx. (1.1)

Here, the sites x, y live in Z, the σx are Ising spins. More precise defi-
nitions are given in the next section. We first mention what is known for the
zero-field case, i.e., when hx = 0 for all x.

We consider ferromagnetic interactions Jx,y ≥ 0 given by
Jx,y = |x − y|−2+α with α < 1. It is well known that for α < 0 there is no
phase transition, and Dyson showed in [16] via comparison with a hierarchical
model, that, for α ∈ (0, 1), we have a phase transition at low temperature.

Afterward, different proofs were invented to show the transition. One of
them used Reflection Positivity [19]. The method of infrared bounds offers an
alternative to obtaining bounds on contour probabilities. In fact, the authors of
[19] remark that they can cover a general class of long-range one-dimensional
pair interactions, including the ones treated in [16].

Shortly after, Fröhlich and Spencer [20] showed the existence of a phase
transition for α = 0. The proof of these authors was done by a contour ar-
gument; they invented a notion of one-dimensional contours on Z in order to
prove the phase transition. Their strategy more or less followed the classical
Peierls contour argument used for the standard nearest-neighbor Ising model,
but with a substantially more sophisticated definition of contours. Phase tran-
sitions for larger α ∈ (0, 1) can then be deduced by Griffiths inequalities for
low enough temperature.

Yet another way to derive the transition was a comparison with indepen-
dent long-range percolation via Fortuin inequalities and Griffiths inequalities
for the α = 0 case, as discussed in [1]. In that paper, it was also shown that
the transition for α = 0 is a hybrid one, in the sense that the magnetization
is discontinuous and at the same time the energy is continuous as a function
of temperature (Thouless effect). Moreover, for α = 0, it is known that there
is a temperature interval below the transition temperature where the system
is critical, in the sense that the covariance is nonsummable, and at the same
time the system is magnetized [22].

Cassandro et al. in [10] rigorously formalized the contour
argument of [20] in the parameter regime 0 ≤ α < α+, where
α+ := log 3/ log 2−1 ≈ 0.5849. The construction allows a more precise descrip-
tion of various properties of the model. It has been used in various follow-up
papers [8,11–14,27,29]. We should emphasize that although the use of contour
arguments may look somewhat unwieldy in comparison with other approaches,
it is much more robust. Indeed, it has been used to analyze Dyson models in
random [13,14] and periodic fields [25], for interface behavior and phase sep-
aration [11,12], for entropic repulsion [8], and here for the model in decaying
magnetic fields, all problems where alternative methods appear to break down.
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See also [23] for another, somewhat related approach.
However, the adaptation proposed by Cassandro et al. in [10] needed the fol-
lowing technical assumptions: (A1): α ∈ [0, α+) and (A2): J(1) � 1.

Even the case of α = 0, previously obtained by Fröhlich and Spencer,
needs J(1) � 1 in the adaptation proposed by them. The intuition behind the
condition is more or less clear; it makes the model closer to a nearest-neighbor
interaction model where, in principle, contour arguments might work more
easily. Despite the condition being rather artificial and proof-generated, the
constraint asking for J(1) � 1 is present in many later papers about Dyson
models and the proof presented in [10] depends strongly on this hypothesis.

As regards the restriction on α, Littin in his thesis [27], and then Littin
and Picco [29], showed that using quasi-additive properties of the Hamiltonian
of the corresponding contour model and applying the results from [10], one
can modify the contour argument so that it implies the phase transition for all
α ∈ [0, 1). Due to the fact that the authors in [29] use energetic lower bounds
from [10] which assume large nearest-neighbor interaction J(1), they still use
assumption (A2) in their arguments.

Our motivation for the present work is twofold: first we want to present
an argument to remove assumption (A2) for the zero-field case and secondly
we want to show persistence of a phase transition for one-dimensional long-
range models in the presence of external fields decaying to zero at infinity
with a power γ, in particular, for fields given by hx = h∗(1 + |x|)−γ and
1 − α < γ. More precisely, our results combined with existing results imply
that there is a trade-off between the restricting the parameter range of γ to
γ > max{1−α, 1−α∗} and general J(1) and assuming J(1) � 1 and choosing
γ > max{1 − α, 1 − α+} where α+ > α∗ will be specified later. Note that our
results apply to the latter case as well.

Before describing the rest of the paper, we will discuss briefly the context
of these results with respect to the hypotheses and technicalities of the proof.
Let us mention that a short announcement of some of our results, but without
rigorous proofs, is contained in [7].

Considering the first result in the zero-field case, although proofs for the
existence of a phase transition were known, our estimates allow firstly to drop
the assumption (A2), and then, by using monotonicity of the Hamiltonian with
respect to α, we are also able to remove the first assumption (A1).

As regarding the decaying field case, we know that phase transitions for
non-zero uniform fields are forbidden due to the Lee–Yang circle theorem [26].

The heuristics behind the inequality 1−α < γ can be obtained as follows.
We observe that the contribution of the interaction of a finite interval Λ with
its complement is of order O(|Λ|α), whereas the contribution from the external
field is of order O(|Λ|1−γ).

We now compare the exponents. If the interaction energy dominates the
field energy for large Λ, a contour argument has a chance of working.
This intuition is also what is underlying Imry–Ma arguments for analyzing
the stability of phase transitions in the presence of random fields. It has been
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confirmed for decaying fields in higher-dimensional nearest-neighbor models,
see below.

It can also be applied to a decaying field the strength of which decays
with power γ but which has random signs. In this case, the field energy behaves
like O(|Λ| 1

2 −γ). This case has also been considered before by Littin (private
communication) [28]. We note that the case γ = 0 reduces to the known Imry–
Ma analysis as presented in [13,14].

Note that the analogous question of the persistence of phase transitions
in decaying fields already was studied before in some short-range models, see
[4–6,15].

The paper is organized as follows. In the Sect. 2, we introduce the defini-
tion of the model and some notation. The following Sect. 3 presents the main
results. Section 4 introduces the construction of the contours and Sect. 5 con-
tains the proofs of the main theorems including the Peierls argument. Finally,
Sect. 6 concludes with a summary and discussion about open questions.

2. Notation

Let Ω = {−1, 1}Z be the set of configurations σ = (σx)x∈Z on Z. The Hamil-
tonian in a finite volume Λ with uniform boundary condition ω (either “plus”
or “minus” configurations) can be rewritten in the following way,

Hω
Λ,h̄,α(σ) =

1
2

∑

(x,y)∈Λ×Λ

J(|x − y|)1σx �=σy

+
∑

x∈Λ
y/∈Λ

J(|x − y|)1σx �=ωy
+

∑

x∈Λ

hx1σx=−1, (2.1)

where the coupling constants Jx,y = J(|x − y|) are defined, as already men-
tioned, by

J(|x − y|) =

{
J if |x − y| = 1;
|x − y|−2+α if |x − y| > 1,

(2.2)

where J(1) = J > 0 and 0 ≤ α < 1, and the external field h̄ = (hx)x∈Z is
defined by

hx = h∗ · (1 + |x|)−γ (2.3)

with γ > 0 and h∗ ∈ R. In our theorem J(1) = 1, but we keep this separation
between the nearest-neighbor term and the other ones for historical reasons,
and also because controlling the nearest-neighbor term is one of the main
contributions of our paper.

For inverse temperature β > 0, the associated Gibbs measure in Λ ⊂ Z

with boundary condition ω is given by

μω
Λ,h̄,β(σ) =

e−βHω
Λ,h̄,α(σ)

Zω
Λ,h̄,β

, (2.4)
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where Zω
Λ,h̄,β

is the partition function

Zω
Λ,h̄,β =

∑

σ∈Ω

e−βHω
Λ,h̄,α(σ) (2.5)

which contains a sum over all configurations σ ∈ Ω satisfying σx = ωx for
every x /∈ Λ.

We denote by μ+
Λ,h̄,β

(resp. μ−
Λ,h̄,β

) the Gibbs measure with plus (resp.
minus) boundary condition, i.e., ωx = +1 (resp. ωx = −1) for every x ∈ Z.
For a sequence (Λn)n≥1 of finite sets in Z, we write Λn ↑ Z if for every x ∈ Z,
there exists nx ≥ 1, such that x ∈ Λn for every n ≥ nx. We know that, for
every (Λn)n≥1 with Λn ↑ Z and any local function f

lim
Λn↑Z

μ+
Λn,h̄,β

(f) = μ+
h̄,β

(f) and lim
Λn↑Z

μ−
Λn,h̄,β

(f) = μ−
h̄,β

(f). (2.6)

Let F be the sigma-algebra over Ω generated by the cylinder sets, and let
M(Ω,F) be the set of all probability measures on (Ω,F). We denote the set
of Gibbs measures by

G(h̄, β) = conv

{
μ ∈ M(Ω, F) : there exist (Λn)≥1 and (ωn)n≥1 s.t. lim

Λn↑Z
μωn

Λn,h̄,β
= μ

}
.

(2.7)
Note that μ+

h̄,β
and μ−

h̄,β
are in G(h̄, β). We say that the model undergoes a

phase transition at (h̄, β) if |G(h̄, β)| > 1. This definition is in fact equivalent
to showing that, for the same (h̄, β), we have μ+

h̄,β
	= μ−

h̄,β
(this equivalence

follows from the FKG inequality). We say that the model has uniqueness at
(h̄, β) if |G(h̄, β)| = 1.

3. Main Results

In this section, we present our main results. The first result concerns the
phase transition for the Dyson model for any α ∈ [0, 1) and removing the
J(1) � 1 assumption and the second result concerns the persistence of the
phase transition under decaying external fields.

Theorem 1. Let us consider an Ising model on Z with Hamiltonian given by
(2.1) for α ∈ [0, 1), J(1) = 1 and hx ≡ 0 for all x ∈ Z. Then there exists βc > 0
such that for all β > βc we have a convergent low-temperature expansion which
implies that |G(0, β)| > 1.

Theorem 2. Let α∗ be such that
∑∞

k=1 k−2+α∗
= 2. Consider an Ising model

on Z with Hamiltonian given by (2.1) such that h = (hx)x∈Z are defined by
hx = h∗ · (1 + |x|)−γ . We assume either

• α ∈ (0, 1), J(1) = 1, h∗ ∈ R and γ > max{1 − α, 1 − α∗}, or
• α ∈ [0, α∗), J(1) = 1, γ = 1 − α and h∗ small enough.

Then there exists βc > 0 such that for all β > βc we have that |G(h, β)| > 1.
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Remark. In the case of α = 0, although it is the most complicated in gen-
eral (the proof of the phase transition took more time [20], there is a mixed
first-order second-order transition—the Thouless effect, as proven in [1], see
also [31]—and there exists an intermediate phase, magnetized but with non-
summable covariance [22] in some temperature interval below the transition
temperature), for our problem the situation becomes actually somewhat sim-
pler. Indeed, in that case the condition γ > 1 implies that the field energy is
uniformly bounded, and thus the phase transition persists, whenever it occurs,
due to the arguments of [5]. This applies at all temperatures where there is a
phase transition, including the intermediate phase, and is not dependent on
the applicability of contour arguments. However, for the critical value γ = 1
and the field strength weak enough, our proof does apply only at very low
temperatures.

4. Triangles and Contours

The proof will consist of a Peierls type argument in one dimension. We start
by defining the notion of triangles which was first described in [20] for α = 0
and adapted for 0 ≤ α < 1 in [10].

Let N ≥ 1, and consider an interval Λ = ΛN = [−N,N ]. Define the
dual lattice Λ∗ = Λ + 1

2 as the set Λ shifted by 1/2. Given a configuration
σ ∈ {−1,+1}Λ, let us define configurations of triangles. A spin-flip point is a
site i in Λ∗ such that σi− 1

2
	= σi+ 1

2
. For each spin-flip point i, let us consider the

interval
[
i − 1

100 , i + 1
100

]
⊂ R and choose a real number ri in this interval such

that, for every four distinct ril
with l = 1, . . . , 4, we have |ri1 −ri2 | 	= |ri3 −ri4 |.

The ri are the bases of the triangles, and the last condition on ri is to avoid
ambiguity in the construction of the triangles below.

For each spin-flip point i, we start growing a “∨-line” at ri where this
∨-line is embedded in R

2 with angles π/4 and 3π/4. If at some time two ∨-
lines starting from different spin-flip points touch, the other two lines starting
from those two spin-flip points stop growing and we remove those lines -which
did not form a triangle-, and we keep continuing this process. The process
can also be seen in the following way: for each ri, we draw a straight vertical
line passing through it. Take the smallest distance between these lines, let us
call the corresponding ri and rj the spin-flip points of these lines, and draw a
isosceles triangle with base angle π/4. Then, remove the lines associated with
ri and rj , and continue the process.

Note that, for any finite interval Λ with homogeneous boundary condi-
tion, the number of spin flips is even, and so every ri is a vertex of some
triangle. Let us denote by SΛ+ be the set of configurations with plus boundary
condition, i.e., for σ ∈ SΛ+ we have σx = +1 for every x /∈ Λ.
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We denote a triangle by T , and introduce the following notations,

{x−(T ), x+(T )} = the left and right root of the associated ∨-lines, respectively,

Δ(T ) = [x−(T ), x+(T )] ∩ Z, is the base of the triangle T,

|T | = |Δ(T )|, be the mass of the triangle T,

sf∗(T ) =

{
inf Δ(T ) − 1

2
, supΔ(T ) +

1

2

}
,

and Z is equipped with the natural order

d(T, T ′) = d{sf∗(T ), sf∗(T ′)}. (4.1)

By definition of the triangles, for every pair of triangles T 	= T ′,

d(T, T ′) ≥ min{|T |, |T ′|}. (4.2)

We denote by TΛ+ be the set of configurations of triangles T = {T1, . . . , Tn}
satisfying (4.2) and such that Δ(Ti) ⊂ Λ for every i = 1 . . . , n. Given σ ∈
SΛ+ , we denote by T (σ) the configuration of triangles constructed from the
configuration σ. A family of triangles T is a compatible family if there exists a
configuration σ ∈ SΛ+ such that T = T (σ).

Definition 1. Let c > 1 be a positive real number and T ∈ TΛ+ be a compatible
configuration of triangles, then a configuration of contours Γ ≡ Γ(T ) is a
partition of T whose elements, called contours, are determined by the following
properties

P.0: Let Γ ≡ (Γ1, . . . ,ΓN ), Γi = {Tm,i : 1 ≤ m ≤ ki}, then T = {Tm,i : 1 ≤
m ≤ ki, 1 ≤ i ≤ N}.

P.1: Contours are well-separated from each other. Consider the base of a con-
tour Γ by

Δ(Γ) =
⋃

T∈Γ

Δ(T ). (4.3)

Any pair Γ 	= Γ′ in Γ verifies one of the following two alternatives

(1) Δ(Γi) ∩ Δ(Γj) = ∅.
(2) Either Δ(Γi) ⊆ Δ(Γj) or Δ(Γj) ⊆ Δ(Γi). Moreover, supposing that the

first case is satisfied, then for any triangle Tm,j ∈ Γj , either Δ(Γi) ⊆ Tm,j

or Δ(Γi) ∩ Tm,j = ∅.

In both cases (1) and (2),

d(Γ,Γ′) := min
T∈Γ

T ′∈Γ′
d(T, T ′) > cmin{|Γ|, |Γ′|}3, (4.4)

where
|Γ| =

∑

T∈Γ

|T |. (4.5)

P.2: Independence. Let {T (1), . . . , T (k)} be configurations of triangles; con-
sider the contours of the configuration T (i) by Γ(T (i)) = {Γ(i)

j : j =
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1, . . . , ni}. If for any distinct pair Γ(i)
j and Γ(i′)

j′ the Property P.1 is satis-
fied, then

Γ
(
T (1), T (2), . . . , T (k)

)
=

{
Γ(i)

j : i = 1, . . . , k; j = 1, . . . , ni

}
. (4.6)

The proof of existence and uniqueness of an algorithm that produces Γ
satisfying Definition 1 is given in [10].

Note that it is straightforward that there exists a bijection between spin
configurations in SΛ+ and triangles in TΛ+ , and also T �→ Γ(T ) is a bijection,
where T ∈ TΛ+ . Thus, there exists a bijection between spin configurations in
SΛ+ and contour configurations.

Definition 2. We say that a family of contours {Γ0,Γ1, . . . ,Γn} is compatible
if there exists σΛ ∈ SΛ+ such that Γ = Γ(T (σΛ)).

The expression of the Hamiltonian with plus boundary condition of a
family of compatible contours Γ is given by

H+
α,h̄

(Γ) =
1
2

∑

x,y∈Z

x�=y

J(|x − y|)1σx(Γ) �=σy(Γ) +
∑

x∈Z

hx1σx(Γ)=−1, (4.7)

where σx(Γ) is the spin at vertex x in the presence of Γ. We write H+
h̄

:= H+
α,h̄

when it is possible to omit α without ambiguity. We denote by H+
α (Γ) when

we have absence of external fields, i.e.,

H+
α (Γ) =

1
2

∑

x,y∈Z

x�=y

J(|x − y|)1σx(Γ) �=σy(Γ). (4.8)

Let us mention at this point an important property which we will use later,
namely the monotonicity of the Hamiltonian H+

α as a function of α. More
precisely

α ≥ α′ ⇒ H+
α (Γ) ≥ H+

α′(Γ) (4.9)
for any contour configuration Γ and H+

α defined in (4.8). For L ≥ 1, let us
consider the function Wα given by

Wα(L) =
L∑

x=1

⎡

⎢⎢⎣
∑

y∈[L+1,2L]∩Z

y∈[−L+1,0]∩Z

J(|x − y|) −
∑

y∈[2L+1,∞)∩Z

y∈(−∞,−L]∩Z

J(|x − y|)

⎤

⎥⎥⎦ . (4.10)

Given α ∈ [0, 1), let c, the constant from Property P.1, be large enough.
By [10], using the monotonicity of J(·), given a contour Γ0, we have

H+
α (Γ0) ≥

∑

T∈Γ0

Wα(|T |), (4.11)

and given a configuration of contours Γ, for any Γ0 ∈ Γ we have

H+
α (Γ0|Γ\{Γ0}) ≥ 1

2

∑

T∈Γ0

Wα(|T |), (4.12)
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where
H+

α (Γ0|Γ\{Γ0}) = H+
α (Γ) − H+

α (Γ \ {Γ0}). (4.13)

Entropy of Contours

For any kind of Peierls argument [30] where a notion of a contour is used to
obtain the phase transition for a model, the entropy of the contours (that is the
-logarithm of- the number of contours of a given size) should be controlled.
Recently, generating functions were used on this combinatorial problem of
counting contours associated with short-range models on regular trees [2] and
on Z

d, d ≥ 2, see [3]. For trees, the method allows us to find the exact number
of contours of a fixed size and for Z

d these are the best estimates until now.
The entropy of contours introduced in [10] was inspired by [20], and it

satisfies the following estimates:
For any real b > 0 large enough and integer m ≥ 1, we have, for α ∈ (0, 1),

∑

|Γ|=m
0∈Γ

e−b
∑

T ∈Γ |T |α ≤ 2me−bmα

. (4.14)

In the case α = 0,
∑

|Γ|=m
0∈Γ

e−b
∑

T ∈Γ(log(|T |)+4) ≤ 2me−b(log m+4). (4.15)

The proof is done by induction on m and using a graphical representation
of contours by trees. This representation requires a process, called the square
process, to create the structure of a tree from any contour. The existence of
such an algorithm can be found in [10].

Quasi-additive properties of the Hamiltonian

In order to control the energy for the proof of phase transition via contours,
Cassandro et al. in [10] showed that there exist Cα > 0 for α ∈ (0, α+) such
that

H+
α (Γ0|Γ\{Γ0}) ≥ Cα

2

∑

T∈Γ0

|T |α, (4.16)

and

H+
α (Γ0|Γ\{Γ0}) ≥ C0

2

∑

T∈Γ0

log(|T | + 4), (4.17)

for α = 0. The constant Cα = 3−21+α

α(1−α) converges to zero when α → α+. Those
bounds only work when the energy of the nearest neighbors J(1) is large
enough. Littin and Picco [29] showed that there is no possibility to extend
those bounds in terms of triangles to any α ∈ [0, 1), constructing a sequence
of contours (Γn)n≥1 such that

lim
n→∞

H+
α (Γn)∑

T∈Γn
|T |α = 0 (4.18)

for α+ ≤ α < 1.
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Their construction explains, in some sense, the value of the constant α+ =
log 3/ log 2 − 1 which could be considered kind of magical, since the Hausdorff
dimension of the Cantor set is exactly log 2/ log 3. In fact, a discrete Cantor set
appears in the construction. However, [29] showed the quasi-additive property
of the Hamiltonian for any α ∈ [0, 1), in other words, the following inequality
is satisfied,

H+
α (Γ0|Γ\{Γ0}) ≥ Kc(α)H+

α [Γ0], (4.19)

where Kc(α) = 1 − α
cα−1 − π2

6c satisfies 0 < Kc(α) ≤ 1
2 where c is large enough.

This property allows the authors to prove the phase transition for any α ∈ [0, 1)
as a corollary from the case when α ∈ [0, α+). As [29] mentioned, Fröhlich and
Spencer [20] already noticed that the Hamiltonian satisfies the quasi-additivity.

5. Proof of the Main Theorems

5.1. Proof of Theorem 1

By Lemma A.1 from [10], there is a lower bound for Wα which allows one to
use the contour argument and prove the phase transition. In fact, they showed
that, for any α ∈ [0, α+) and J(1) large enough, we have, for every L ≥ 1,

Wα(L) ≥
{

ζαLα, if α ∈ (0, α+);
2(log L + 4), if α = 0,

(5.1)

The proof in [10] uses monotonicity of J(·) to replace sums by integrals, and
J(1) should be large if we desire to have this bound for small L, this is an
essential hypothesis for the argument. The proposition below shows that, at
the cost of reducing the interval of α, the condition J(1) � 1 can be substituted
by J(1) = 1.

Proposition 1. Consider 0 < α∗ < 1 satisfying
∞∑

n=1

1
n2−α∗ = 2. (5.2)

Let α ∈ [0, α∗) with α∗ ≈ 0.2714. Then, there is a constant ζα > 0 such that

Wα(L) ≥ ζαχα(L) (5.3)

holds for all L ≥ 1, where

χα(L) =

{
Lα if α ∈ (0, α∗), and
log L + 4 if α = 0.

(5.4)

Thus, let the constant c in the Definition 1 of the contours be large enough.
For any contour Γ ∈ Γ, we have

H+
α (Γ) ≥ ζα‖Γ‖α and H+

α [Γ|Γ\{Γ}] ≥ ζα

2
‖Γ‖α, (5.5)

where ‖Γ‖α =
∑

T∈Γ χα(|T |).
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Proof. For every L ≥ 1, we can write Wα(L) as

Wα(L) = 2
L∑

x=1

2L−x∑

y=L+1−x

1
y2−α

− 2
L∑

x=1

∞∑

y=2L+1−x

1
y2−α

. (5.6)

Splitting the first term of the Eq. (5.6) into y ∈ [L + 1 − x,L] ∪
[L + 1, 2L − x], and commuting the order of the sums in both terms, we find

Wα(L) = 2
L∑

x=1

L∑

y=L+1−x

1
y2−α

+ 2
L−1∑

x=1

2L−x∑

y=L+1

1
y2−α

− 2
L∑

x=1

∞∑

y=2L+1−x

1
y2−α

= 2
L∑

y=1

y
1

y2−α
+ 4

2L−1∑

y=L+1

(2L − y)
1

y2−α
− 2L

∞∑

y=L+1

1
y2−α

= 2
L∑

y=1

1
y1−α

− 4
2L−1∑

y=L+1

1
y1−α

+ 8L
2L−1∑

y=L+1

1
y2−α

− 2L
∞∑

y=L+1

1
y2−α

.

(5.7)

Given a real number k and a positive integer n, let us define the number H
(k)
n

by

H(k)
n =

n∑

y=1

1
yk

. (5.8)

In particular, if k = 1, we denote H
(1)
n simply as Hn. Thus,

Wα(L) = 2
(

3H
(1−α)
L − 2H

(1−α)
2L−1 − 4

L1−α

)
+ 8L

2L−1∑

y=L

1
y2−α

− 2L
∞∑

y=L+1

1
y2−α

≥ 2
(

3
Lα

H
(1−α)
L − 2

Lα
H

(1−α)
2L−1 − 4

L

)
Lα +

2
1 − α

(
3 − 21+α

)
Lα.

(5.9)
Suppose that α ∈ (0, α∗). Using the fact that

∫ L+1

1

1
x1−α

dx ≤ H
(1−α)
L ≤ 1 +

∫ L

1

1
x1−α

dx (5.10)

and α∗ < α+, we have

lim
L→∞

(
3

Lα
H

(1−α)
L − 2

Lα
H

(1−α)
2L−1 − 4

L

)
=

1
α

(3 − 21+α) > 0. (5.11)

Therefore, there exists L1 ≥ 1 such that, for every L > L1, we conclude

Wα(L) ≥ ζ∗
αLα, (5.12)

where ζ∗
α = 2(3 − 21+α)/(1 − α). For α = 0, the quantity W0(L) satisfies the

following inequality,

W0(L) ≥ 2
(

3HL − 2H2L−1 − 4
L

+ 1
)

. (5.13)
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Since

lim
L→∞

1
log L + 4

·
(

3HL − 2H2L−1 − 4
L

+ 1
)

= 1, (5.14)

there exists L2 ≥ 1 such that, for every L > L2,

W0(L) ≥ log L + 4. (5.15)

In order to obtain lower bounds for Wα(L) for all L, it suffices to show that
Wα(L) is positive for each L. First, note that

Wα(1) = 2

(
2 −

∞∑

y=1

1
y2−α

)
. (5.16)

Since α ∈ [0, α∗), we have Wα(1) > 0. Let us show that Wα is an increasing
function with respect to L. Note that Wα(L) can be expressed as

Wα(L) = 6H
(1−α)
L − 4H

(1−α)
2L−1 + 8LH

(2−α)
2L−1 − 6LH

(2−α)
L − 2L

∞∑

y=1

1
y2−α

. (5.17)

Define ΔWα(L) := Wα(L + 1) − Wα(L). Using (5.17), we have

ΔWα(L) =
6

(2L)2−α
+

4
(2L + 1)2−α

+ 6
2L−1∑

y=L+1

1
y2−α

− 2
∞∑

y=2L+1

1
y2−α

. (5.18)

Note that ΔWα(1) ≥ Wα(1) > 0 and ΔWα(2) ≥ Wα(1) > 0. For L ≥ 3,

ΔWα(L) ≥ 6
∫ 2L

L+1

1
z2−α

dz − 2
∫ ∞

2L

1
z2−α

dz

>
2

1 − α

[
3
(

4
3

)−1+α

− 21+α

]
L−1+α. (5.19)

Note that the right-hand side of the equation above is positive whenever α <

α ≡ log(8/9)
log(2/3) ≈ 0.2904. Since α∗ < α, we conclude that ΔWα(L) > 0 for every

L ≥ 1. For α ∈ (0, α∗), define

ζα = min
{

Wα(1),
Wα(2)

2α
, . . . ,

Wα(L1)
Lα

1

, ζ∗
α

}
, (5.20)

and for α = 0, define

ζ0 = min
{

W0(1)
4

,
W0(2)

log 2 + 4
, . . . ,

W0(L2)
log L2 + 4

, 1
}

. (5.21)

Thus ζα > 0 for every α ∈ [0, α∗). By (5.12) and (5.15), we conclude the
result. �

The previous proposition yields the following corollary which can be easily
proven using the monotonicity of H+

α in terms of α, see (4.9).

Corollary 1. For all α ∈ [α∗, 1) there exists α′ ∈ [0, α∗) such that for any
contour Γ ∈ Γ, we have

H+
α (Γ) ≥ ζα′‖Γ‖α′ and H+

α [Γ|Γ\Γ] ≥ ζα′

2
‖Γ‖α′ . (5.22)
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Let us turn now to the proof of Theorem 1. We have

μ+
Λ,0,β(σ0 = −1) ≤ μ+

Λ,0,β [0 ∈ Γ] =
1

Z+
Λ,β

∑

Γ�0

∑

Γ�Γ

e−βH+
α [Γ]. (5.23)

By inequality (4.19),

H+
α [Γ] − H+

α [Γ\{Γ}] ≥ Kc(α)H+
α [Γ]. (5.24)

Then,

μ+
Λ,0,β(σ0 = −1) ≤

∑

Γ�0

e−βKc(α)H+
α [Γ]. (5.25)

Since the Hamiltonian H+
α is monotone in α, choose α ∈ [α∗, 1) with α ≥ α′

and α′ ∈ [0, α∗). Then, by Corollary 1,

H+
α [Γ] ≥ ζα′‖Γ‖α′ . (5.26)

Therefore,

μ+
Λ,0,β(σ0 = −1) ≤

∑

m≥1

∑

|Γ|=m
0∈Γ

e−βKc(α)ζα′‖Γ‖α′

≤ 2
∑

m≥1

me−βKc(α)ζα′mα′

<
1
2
,

for β large enough. The second inequality comes from the inequality of the
entropy (4.14).

5.2. Proof of Theorem 2

We first prove the theorem for all α ∈ (0, 1) and external fields defined by
hx = h∗ · (1 + |x|)−γ where max{1 − α, 1 − α∗} < γ ≤ 1. The proof will be
a modified version of the Peierls argument presented in the previous section.
It is enough to find an appropriate lower bound as in (5.26). Given a positive
integer L, let us consider the external field h̄L = (hL,x)x∈Z defined as

hL,x =

{
0 if |x| < L,

h∗
(1+|x|)γ otherwise.

(5.27)

We can consider this modified field without loss of generality because
any local perturbation does not change the fact that the model undergoes a
phase transition. In fact, any finite-energy perturbation does not destroy the
presence (or the absence) of a phase transition. This is the reason that we do
not need to consider γ > 1 since in that case the external field is summable,
see [21] for more details.

Let Γ ∈ Γ be a contour. Note that

|1{σx(Γ)=−1} − 1{σx(Γ\Γ)=−1}| ≤ 1{x∈Z∩Γ}. (5.28)
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Again by inequality (4.19),

H+
h̄L,α

[Γ] − H+
h̄L,α

[Γ \ Γ] = H+
α [Γ] − H+

α [Γ \ Γ]

+
∑

x∈Z

hL,x ·
(
1{σx(Γ)=−1} − 1{σx(Γ\Γ)=−1}

)

≥ Kc(α)H+
α [Γ] −

∑

T∈Γ

∑

x∈T∩Z

|hL,x|.

We can find the following upper bound for the contribution of the external
fields, there is C > 0 such that

∑

T∈Γ

∑

x∈T∩Z

|hL,x| ≤ C|h∗|
1 − γ

L−p‖Γ‖1−γ . (5.29)

for p = γ + α − 1 > 0.
Since the Hamiltonian H+

α is decreasing in α, choose α′ ∈ (0, α∗) with
α′ ≤ α such that 1 − γ < α′. Then, by Proposition 1,

H+
α′ [Γ] ≥ ζα′‖Γ‖α′ . (5.30)

Therefore,

H+
h̄L,α

[Γ] − H+
h̄L,α

[Γ \ Γ] ≥ Kc(α)ζα′‖Γ‖α′ − C|h∗|
1 − γ

L−p‖Γ‖α′ . (5.31)

Choosing L large enough such that Kc(α)ζα′ − C|h∗|
1−γ L−p > 0, we conclude

the proof of the lower bound.
Critical case. For the case when α ∈ (0, α∗) and γ = 1 − α, we can argue

in a similar way. First we take h∗ small enough the sum (5.29) converges to
zero and then, by the same argument above, the model undergoes a phase
transition. The argument also holds for α = 0 and γ = 1, we then have the
bound ∑

x∈Γ∩Z

hx ≤ 8|h∗| ·
∑

T∈Γ

log(|T |) (5.32)

and follow the same argumentation as before.

6. Concluding Remarks

In this paper, we provided further steps on the way to a better understanding
of Dyson models. We were able to remove the artificial hypothesis J(1) � 1,
which is required in most of the literature about contour methods in these
models, for the whole range of the exponent of the interaction α ∈ [0, 1) in
the direct proof of the phase transition via contours. The result suggests that
this hypothesis can also be removed in all the subsequent papers based on the
contour argument from [10].

Our analysis also allows us to include the case of decaying fields of the
type defined by hx = h∗ · (1 + |x|)−γ , previously considered in short-range
models in [4–6,15]. We proved the phase transition for any α ∈ [0, 1) when
γ > max{1 − α, 1 − α∗}, combining our estimates with a recent approach
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proposed in [29]. As mentioned in the introduction, if we allow for the nearest-
neighbor term to be large, we can obtain a larger parameter range for γ,
namely γ > max{1 − α, 1 − α+} where α∗ < α+. The entropy bound of
[10] can be applied to contour weights w(Γ) involving the exponential of the
“contour norm” ||Γ||α. The reason why we cannot obtain a phase transition
for γ > 1 − α for all α ∈ [0, 1) is that when we add a field, we cannot lower-
bound the contour energy by a constant times some appropriate α-contour
norm for α ≥ α∗. One would need another entropy bound in order to tackle
this problem. This is one possibility for further research.

The critical case seems to be similar to the standard Ising model with
decaying fields, see [4]. In fact, for any 0 ≤ α < 1, we proved the phase
transition when 1−α∗ < 1−α = γ. For the case when h∗ is large and the model
has a nearest-neighbor ferromagnetic interaction on Z

d, d ≥ 2, this question
is still an open problem and there is some hope to see phase uniqueness for
large values of h∗. The situation is completely different from the Ising model
on regular non-amenable trees where there is no possibility of phase transition
in the critical case for models with decaying fields, see [6].

We conjecture, as indicated in the Introduction, that there is phase
uniqueness at low temperature when γ < 1 − α, but we do not have a rig-
orous proof so far.

In the short-range Ising model in higher dimensions, uniqueness has been
proven. In [4], the uniqueness for low temperatures was proven, adapting an
argument from [9], afterward the phase uniqueness for all temperatures was
obtained combining this with a result from [15] using random cluster represen-
tations for models with fields. A direct argument proving the phase unique-
ness for all β > 0 for Ising models with external fields decaying slowly is
still unknown. We remark, by the way, that Potts models in a homogeneous
field provide an example where there is both low-temperature uniqueness and
high-temperature uniqueness, with a phase transition at some intermediate
temperature; thus, we will need to make use of some specific Ising properties.
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