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Abstract 

 

RSA in Hardware 

Brooks Colin Gillmore, M. S. E 

The University of Texas at Austin 

 

Supervisor: Jacob Abraham 

 

This report presents the RSA encryption and decryption schemes and 

discusses several methods for expediting the computations required, specifically the 

modular exponentiation operation that is required for RSA.  A hardware 

implementation of the CIOS (Coarsely Integrated Operand Scanning) algorithm for 

modular multiplication is attempted on a XILINX Spartan3 FPGA in the TLL-5000 

development platform used at the University of Texas at Austin.  The development 

of the hardware is discussed in detail and some Verilog source code is provided for 

an implementation of modular multiplication.   Some source code is also provided 

for an RSA executable to run on the TLL-6219 ARM-based development platform, 

to be used to generate test vectors. 
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INTRODUCTION 

RSA cryptography, named for its inventors, Rivest, Shamir and Adleman[1], 

is a well-established method of public-key cryptography.  Public-key cryptography 

systems rely on  “one-way” functions, wherein a certain operation that is easy to do 

may prove prohibitively time consuming to un-do.  In practice  RSA cryptography is 

not an operation for which a general-purpose processor is well equipped.    A 

general-purpose computer typically has a word-size of 32 or 64 bits, and can 

efficiently perform operations on numbers with bit-lengths less than the word-size of 

the host system.  Larger operations that do not require exact precision can be 

performed with floating-point hardware, as long as rounding error is acceptable.  

Because many public-key cryptography systems use 1024-bit numbers or larger, and 

rounding is not acceptable, a software-based approach must be used to compute the 

result with full precision.  Rather than performing the operation in one or two steps, 

the computer must operate on chunks of data one word-size at a time and store many 

intermediate values in memory, which is clocked at a much lower rate than the CPU.  

Such software systems are said to perform arbitrary-precision or multiple-precision 

arithmetic, meaning that one can calculate precise results out to an arbitrary number 

of bits depending only on the amount of memory available to the host system.   This 

report presents a system that can be used to perform such operations with 1024-bit 

precision in hardware.  
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PART 1: BACKGROUND INFORMATION 

 

1.1: TLL-5000 Development Platform, TLL6219 and Tools 

 

The TLL-5000 development platform is used in several classes at UT Austin.  The 

TLL-5000 is pictured below  

 

Figure 1.1: TLL-5000 Development Platform [2] 
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The main item of interest in the context of this report is the 1.5-million gate Xilinx 

XC3S1500 Spartan3 FPGA [3], in which the hardware is actually implemented.  The 

host operating system runs on a TLL-6219 board mounted on the TLL-5000 

Mezzanine A connector.  The TLL-6219 [2] is an ARM-based board computer 

running BusyBox Linux with kernel 2.6.  Through the Mezzanine connector and the 

CPLD the TLL-6219 has access to the FPGA.  These systems, being used in several 

classes at UT, are familiar to the author but much of the code should be easy to port 

to similar platforms.  The design was compiled with Xilinx ISE 11[4], which 

requires that a constraint file (UCF) file be provided to specify timing constraints and 

pin placement, which should be designed to the user’s specific system.  The provided 

driver code, the GNU MP multiple-precision C libraries, and application was cross-

compiled for ARM using the CodeSourcery G++ tool chain.  The prime number 

generating functions were verified (but not exhaustively) using openSSL which 

performs a similar primality test. 

 

1.2: Public – Key Cryptography 

 

 In cryptography, a message which two parties wish to keep secret is 

exchanged in a pre-arranged way.  There are many possible ways to do this, but the 

most straightforward approaches require that the two parties, traditionally named 
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Alice and Bob (for party A and B), exchanging the secret message must first have 

some sort of secure or private contact with each other during which they can 

exchange “private keys.”  Essentially, there must be some way for Alice to encode 

the message such that an eavesdropping third party (usually called Eve) would not be 

able to understand it, then transmit it “in the clear” on some unsecured channel or 

network, after which Bob must be able to decode it.  In symmetric-key 

cryptosystems, Alice and Bob both know a private key or a secret algorithm that can 

be applied, then easily reversed.  They must both understand the system and both 

have access to a pre-determined secret method of encoding and decoding. 

 It is not always possible to exchange a secret message, or establish a pair of 

private keys in advance, and this is where public-key cryptography comes in.  It 

turns out that by using one-way functions it is possible to create an “asymmetric” 

pair of keys, one key that is kept private and one key that can be made public.  

Anyone can use Alice’s public key to encrypt a message and send it to her, then 

Alice can use the private key to decode it.  Because of the one-way functions 

involved, the public key cannot be used to decrypt the message in a reasonable 

amount of time. 

 

1.3: RSA Cryptography 

 

 RSA cryptography is one such system of asymmetric key cryptography.  
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RSA key generation consists of five basic steps, each of which requires some sort of 

mathematical operation. 

 

1) Pick 2 or more prime numbers n1, n2, ... , nk-1, nk  

2) Compute the product of these numbers, call it P. 

This is the modulus for the public key and the private key. 

3) Compute the least common multiple of n1-1, n2-1, ... , nk-1-1, nk -1, call this T. 

4) Pick a positive integer that is coprime with and less than T,  

call this number E. 

  This is the public-key exponent. 

5) Pick a positive integer that, when multiplied by the public-key exponent, is 

congruent with 1 mod T, call this number D. 

This is the private-key exponent. 

 

 This is useful because of the way numbers modulo the composite number P 

behave under modular multiplication.  For convenience, we want to pick a T that is 

the smallest number for which xT = 1 mod nk for all values of nk and for almost all 

values of x.  This means we need n1-1, n2-1, ... , nk-1-1, nk -1 to be divisors of  T, so T 

must be the least common multiple of n1-1, n2-1, ... , nk-1-1, nk -1.  For encryption and 

decryption, RSA exploits the property: 

x(T+1) = x (mod P) for any 1 < x < T 
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The above equation is implied by the Chinese Remainder Theorem, which states that 

if: 

x = 0 (mod  nk) 

then it follows that: 

x(T+1) = x (mod  nk) 

and since this is true for all nk , and if P is a composite of all values of nk, then it is 

true for P as well:   

x(T+1) = x (mod P). 

 In RSA cryptography, encryption is done with the public key.  Once one has 

generated a pair of public and private keys, anyone can use the public key to encrypt 

a message that you can then decrypt with the private key.  The encryption process is 

computationally costly, but decryption using only the public key is computationally 

prohibitive.  Decryption can be done with the private key (in fact, this is the purpose 

of the private key), but decryption using the private key is still computationally 

expensive.  The hardware implemented here targets the encryption/decryption 

process, specifically modular exponentiation. 

 Before a plaintext message can be encrypted, it is typically “padded.”  

Essentially, padding adds text to the message until it is of a specific length.  Padding 

can prevent certain cryptographic attacks that exploit different ciphertext lengths as 

the plaintext changes [6].  For example, a Morse code message where dots and 

dashes are then encrypted would not be very well hidden if the data packet that 
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meant “dot” turned out to be half the size of the data packet meaning “dash”. 

Conveniently, this also makes hardware design less difficult because we now only 

have to worry about doing modular arithmetic on numbers that are a certain multiple 

of a known word size, rather than doing modular math on arbitrarily long numbers. 

 The padded plaintext is then used as “x” in the equations above.  If the 

plaintext is m, the ciphertext c is given by: 

c = mE (mod P) 

And the ciphertext can now be decrypted by computing cD (mod P), which is true 

because  

cD  (mod P) = (mE)D = M(ED) = m (mod P) 

 so cD contains the original plaintext message m.   

 RSA is uniquely useful because not only can the keys be used for encryption 

and decryption; they can also digitally sign documents using the same math.  Signing 

a message is done by computing  

s = m(D) (mod P) 

giving the signed message (m,s).  To verify that the message comes from the owner 

of the private key, anyone with the public key can now verify that  

sE = m (mod P) 

to authenticate the message because only the holder of the private key knows D, the 

private exponent used to compute the signed message. 
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1.4: Modular Exponentiation Algorithms 

 

To accelerate this process in hardware, one must be able to compute cD (mod 

P) quickly, and there are several ways of doing this.  Hardware division is slow, and 

a naïve approach to this calculation requires that we divide many times by the 

modulus P, so accelerators usually try to avoid division with some clever 

manipulation that is faster than a normal division operation.  RSA keys are very 

long, typically 1024  to 2048 bits in width, but RSA Security believes[7] that 3072-

bit keys are required for security beyond 2030.  We will outline two methods for fast 

modular multiplication.  

One algorithm is Barrett's [8] modular reduction method To compute the 

modulus of a number: 

Z mod N = Z – [Z/N]  N = z – qN where q = Z/N 

But computing the quotient q is slow in hardware.  To get around this you can 

compute this: 

 

q = { [ Z / 2n-1 ] * [ 22n / N ] } / 2n+1 

 

This looks much more complicated but [ 22n / N ] can be pre-computed and stays 

constant for a given modulus.  Division by 2n-1 and 2n+1 can be computed quickly by  

truncating the 2n-1 or 2n+1 least significant bits.  This reduces the whole procedure to 
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three steps, a truncation, multiplication by a constant, and another truncation.  One 

still needs a multiplier but no longer needs to perform division.  This method is fast 

as long as the modulus does not change often.   

  The fastest algorithm used to implement modular multiplication seems to be 

the Montgomery algorithm [9].  This algorithm, like Barrett’s method, avoids 

division by pre-computation.  It introduces a transformation constant R, that is 

coprime with the modulus.  Then it introduces the “M-residue” representation of two 

integers A and B, both less than M are defined as: 

 

X = A• R(mod M), Y = B • R(mod M) 

 

This is true for any R that is coprime with M and larger than M.  Speed 

advantages appear when R is a power of 2.  The Montgomery algorithm actually 

computes this: 

 

C = A ⊗n B = ABR -1 mod M = ABr -n mod M 

 

in a r-radix number system.  For a word of length n where M > A,B ≥ 0  and inputs 

X,Y  (this is the same X and Y given earlier) then the algorithm computes  

 

C’ = XYR-1 = A • R • B • R • R-1 = ARB mod M 
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So start with Y, X, R and M, then after computing A and B, one can compute AB R 

mod M from that information using this method.  The result AB R mod M still 

contains an extra factor of R that we do not need, but performing another 

Montgomery step with C’ and 1 will remove this factor and yield the desired 

outcome, C, because: 

RX ⊗ 1 = X• R• A • 1 • R-1 = X 

and because there of the 1-to-1 mapping shown in [9] this is also true for their 

products.  

 The above sequence represent a “Montgomery step.”  To perform modular 

multiplication with Montgomery’s method, one must perform a Montgomery step to 

transform the number to “Montgomery space;” after one has obtained the 

Montgomery representation of the number, one more additional step will perform 

modular multiplication.  After multiplication is performed, the final result is obtained 

by performing a Montgomery step with the product from the second step and unity, 

which transforms the result of the Montgomery multiplication out of Montgomery 

space.   Montgomery’s algorithm is not likely to be faster than a naïve modular 

multiplication, because one modular multiply actually requires three Montgomery 

steps.  It is in modular exponentiation that the benefit is realized, because 

exponentiation algorithms require many successive multiplications, for example 

when performing exponentiation by squaring. 
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Figure 1.2: Montgomery Multiplication Algorithm [9] 

 

 With certain restrictions on the variables, it is possible to avoid the 

subtraction step at the end of this algorithm [10], and it is not implemented in the 

code provided.  Typically one key will be used for many operations, so we can 

assume that many of the inputs will remain the same between most operations, which 

allows us to pre-compute r, r_inv and n_inv Figure 1.2 because n will not change 

unless the key changes and many multiplication steps will typically be performed 

even for one modular exponentiation.  From Figure 1.2, in a typical Montgomery 

multiplication operation we end up replacing the mod n operation with a modulo r, 

and since r is a power of the radix of our number system (in this case binary, a power 

of 2) then we have replaced division with truncation as in Barrett’s method.  This 

step will be much faster in hardware than actually calculating mod n.   

  
Code:   
 
1 X = MontMult(a,b,n) { 
2  r = 2^k  // k is bit-width of n 
3         r_inv = inverse(r mod n) 
4         n_inv = (1 – (r * r_inv))/n 
5  retval = (a * b * n_inv ) mod(r) 
6  if (retval) > n,) { 
7   return retval – n 
8  } else return retval 
9    } 
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 If we use a real-world (that is, large) value for the word-length of the 

arguments in Figure 1.2 such as 1024, then we see that line four implies a multiply 

operation as large as 1024bit x 1024bit x 1024bit. For power and area, it is still 

desirable to limit the word-size of the hardware implementation, so the author has 

chosen to implement a 256-bit word-size using an operand-scanning algorithm, as 

given in [11].  The coarsely-integrated operand-scanning architecture used here 

provides good speed, but for word-size w it still requires an addition operation of w2 

+ 2w.  So for a 1024-bit Montgomery multiplier, the CIOS algorithm requires us to 

store 513-bit wide results (512 bits + 1 carry bit).   

 The CIOS algorithm is given in Figure 1.3.  It consists of two nested loops, 

the i-loop and a pair of inner j-loops.  The operands are “scanned” in that the 

algorithm only requires w bits at a time and the loops run for s words until the 

entirety of both operands has been read and acted on.  C and S in Figure 1.3 are for 

carry and sum values for each word-size piece of the operand. 
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Figure 1.3: CIOS Algorithm [11-13] 
 

The CIOS algorithm in software will use whatever word-size the host  

machine uses, typically 32 or 64 bit as long as the hardware can store the result of 

2w+2w addition.  When using the Montgomery algorithm in hardware, we are free to 

choose our own word-size.  There is a practical limit due to power and area concerns, 

but for the 1024-bit Montgomery multiplier detailed here, the author has chosen to 

divide the 1024-bit key into four 256-bit words.  The design uses a state machine 

based on [13] to unroll the loops in the CIOS algorithm. As it runs through each 

state, it can perform the multiply-add steps implied in the j-loops as well as an 

 
CODE: 
CIOS (a.b.n.n') { 
 
for i=0 to s-1 loop 
    C = 0 
    for j= 0 to s-l loop  
        (C,S) = t(j)+ a(j) * b(i) + C  
         t(j) = S 
    end loop  
   (C,S)   = t(s) + C 
    t[s]   = S 
    t[s+1] = C  
    c = 0  
    m = t(0) * n'(0) mod W 
   (C,S) = t[0] + m * n[0]  
    for j = 1 to s-1 loop 
       (C,S)   = t(j) + m * n(j) + C 
        t(j-1) = S 
    end loop 
   (C,S) = t(s) + C/(s-1) = s 
    t(s) = t(s+1) + C 
end loop 
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additional multiply and add operation implied by the code in the i-loop that is not in 

a j-loop.  In total, 18 states are required to scan in all four words of each operand and 

obtain the final result.  

 
Figure 1.4: 1024-bit CIOS state machine for 256-bit word size [13] 
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1.5: GNU Multiple Precision Libraries 

 

 The software  makes use of the GNU MP [14] multiple-precision libraries for 

generating large primes to be read into the hardware.  The functions in these libraries 

take the form function(arg1, arg2, arg2, arg4).  These functions are designed to be 

recognizable as their GNU C library equivalents and should be read with arg1 as the 

return value and all subsequent arguments as inputs to the function.  For example 

mpz_powm(x, a, b, n) would calculate a^b mod n and put the result in x.   
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PART 2 – IMPLEMENTATION 

 

2.1: Implementation Overview 

 

 The system consists of three parts: the hardware multiplier, a driver that 

allows applications to access the hardware, and an application to perform 

benchmarks on the hardware. 

  

 

2.2: Software 

 

The first step for RSA is to find large prime numbers, which is a complex problem in 

its own right.  The application makes heavy use of the GNU-MP multiple precision 

libraries, which allows arbitrary precision arithmetic.  First, GNU-MP must be 

compiled and installed on the machine with the FPGA, in this case an ARM-based 

development platform.  The application can then be compiled to include the GNU-

MP libraries.  The step in the application is to generate a large random number, 

which for real cryptographic purposes should come from a more ideally random 

source.   

For purposes of benchmarking the hardware it is sufficient to pick a random 
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seed that is constantly changing, even if it is not truly random, so this application 

uses the system time as a seed for the GNU-MP random number generators, then 

generates a large random number.  This number is not necessarily a prime number, 

so the next step is to test the number for primality, then if it is not prime, throw it 

out.  The primality test first performs a bitwise AND operation to test if the number 

is even (and therefore not prime), and immediately move on to the next candidate if 

it is.  Then the test divides the number by all the primes less than 1000 before 

moving on to the most costly test, the Rabin-Miller probabilistic test.   

The Rabin-Miller test does not actually test for primality, but for 

compositeness.  One iteration of the Rabin-Miller algorithm that does not reveal a 

composite factor indicates a 75% probability that a number is in fact prime.  

Repeating the test 64 times ensures that there is only a 2-128 probability that the 

number is composite.  After finding a pair of large primes, the application performs 

modular exponentiation in software, then hardware, and compares the latency of 

each operation. 

 The software calls the driver to execute Montgomery multiplies in hardware. 

 

2.3: Driver 

 

 The hardware is controlled by a linux kernel module.  The driver uses MMIO 

writes to control the state transitions of the hardware.  On receipt of a write 
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command the driver reads in a, b, one word (256 bits) of n’, and n.  Arguments are 

read in 32 bits at a time, and when the driver receives an interrupt, it will read the 

result of the Montgomery multiplication out.  All arguments are read in 32 bits at a 

time, least significant 32-bit word to most significant. 

 

2.4: Hardware 

 

On receipt of a command the hardware transitions between three states in a top-level 

state machine.  In the idle state, the hardware can receive commands through MMIO 

writes.  The hardware can receive two commands: 1 – get new input, 2 – multiply.  

When the hardware receives a new input command, it will expect to see the 

Montgomery residue values a and b, then one word of n’, then n.  It stores these in 

1024-bit wide registers.  When the hardware receives the multiply command it 

performs the CIOS Montgomery multiply algorithm on the input registers.  The word 

size is 256 bits, and the 18 steps in the state machine shown in Figure 1.4 are 

performed.  The hardware then asserts the interrupt, and reads out the result, 32 bits 

at a time.  A block diagram of the hardware is provided in figure 2.1 
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. 

 

Figure 2.1: Montgomery Multiplier Block Diagram 

 

In the above figure, the idle state is represented in green.  The hardware boots 

into the Idle state, then expects an MMIO write command that will send it either to 

the New Input state or the Multiply state.  In the New Input state, the hardware takes 

the 32-bit data bus values and reads them in to several registers that represent the 

actual 1024-bit arguments for the Montgomery multiplier.  When all the arguments 

A, B, n and n’ have been read in, it returns to idle and waits for a multiply command.  

After receiving a multiply command, the 18 steps outlined earlier in the CIOS state 
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machine are performed on the input operands.  The CIOS algorithm consists of 

several nested loops, and in one cycle the hardware may perform any of the four 

operations in the CIOS state machine, there are two “j-loop” operations in addition to 

a plain multiplication and a plain addition.  To unroll the algorithm from Figure 1.3 

and perform it as in Figure 1.4, one must perform at most two j-loop multiply-add 

operations in addition to one multiplication and one addition that are separated.  The 

four operations listed above are the mathematical operations required to perform a 

single pass through the outer loop (the “i-loop”) in Figure 1.3.  Each state in the state 

machine performs these operations concurrently, though all the hardware may not be 

used on each particular step.  Figure 2.2 shows the data path for a j-loop. 
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Figure 2.2: Hardware for j-loop multiply-add 
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PART 3: RESULTS AND FUTURE WORK 

 

3.1: Results 

 

Due to time constraints and amount of time spent settling on the CIOS 

algorithm, the design has not been fully debugged. Components have been verified 

to be synthesizable, but the unit as a whole has not been verified to be functionally 

correct.   It is still possible to make some judgments about the speed of this 

implementation based on the synthesis results. The critical path of the top module is 

through the j-loop containing the 2w x 2w adder as in [12-13], and the delay is 

736.901ns, which leads to a maximum operating frequency of 1.3MHz.   Worth 

mentioning is that most of the delay through the j-loop in this implementation is due 

to the multipliers (only 42ns of it is due to the adder), where the results in [12-13] 

using a different (and much newer) FPGA indicated that the 2w x 2w add was the 

limiting factor. The target Spartan3, uses 18x18 bit multipliers, where the Virtex in 

[12-13]  has access to much wider 38-bit multipliers. 

Though this is not a practical application in itself, the author hopes that the 

code will be useful work for someone interested in implementing the CIOS 

algorithm in hardware, and to that end, much of the source code is provided in the 

Appendix. 
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3.2: Future work 

 

 There are several opportunities for future work on this design.  The most 

obvious is the development of a testbench for functional verification.  Also, the j-

loop is a naïve implementation and could be pipelined.  It would also be a good idea 

to add an extra state to the top-level state machine that reads in only A and B so that 

n and n_prime can stay inside the hardware, rather than being read in with every add 

cycle. 
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APPENDIX 

Software Source Code 

#include <stdio.h> 
#include <stdarg.h> 
#include <gmp.h> 
#include <stdlib.h> 
#include <time.h> 
#include <string.h> 
#include <math.h> 
 
//#define DEBUG // some debugging statements to show which functions we're in 
//#define RM_DEBUG // show each time we run rabin miller test 
 
//======================= 
// Global Variables 
//======================= 
// This is a data structure to hold the RSA key 
struct rsa_key { // n, d, d, p, q are all the values required to make an RSA 
public/private keypair 
 mpz_t n; // product of p and q 
 mpz_t e; // random intiger coprime to phi(pq), the euler totient or (p-1)(q-
1), that is coprime with it, that is, gcd(totient, e) == 1 
 mpz_t d; // d such that de is contruent to 1 mod (psi(pq)) 
 mpz_t p; // large random prime 
 mpz_t q; // another large random prime 
};  
 
//======================= 
//function prototypes 
//======================= 
 
int main(int argc, char **argv); 
int generateLargePrime (int keyLength, mpz_ptr largePrime, int seed); 
int rabinMiller(mpz_ptr n, int seed); 
int isPrime(mpz_ptr n, int seed); 
 
//======================= 
//actual program 
//======================= 
int main(int argc, char **argv) { 
  
 mpz_t p_minus_one; 
 mpz_t q_minus_one; 
 mpz_t totient; 
 mpz_t l; 
 mpz_t plainText; 
 mpz_t cipherText; 
 mpz_t computedPlainText; 
 mpz_t negative_1; 
  
 int keysize; 
 int seed; 
 int i; 
 int messageLength; 
 int nextChar; 
 int plaintTextArray[]; 
 int outputArray[]; 
  
 FILE *plainTextFile; 
 FILE *outputTextFile; 
 
 char *fileName; 
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 struct rsa_key key; 
 mpz_init(key.n); 
 mpz_init(key.e); 
 mpz_init(key.d); 
 mpz_init(key.p); 
 mpz_init(key.q); 
 mpz_init(p_minus_one); 
 mpz_init(q_minus_one); 
 mpz_init(totient); 
 mpz_init(l); 
 mpz_init(plainText); 
 mpz_init(cipherText); 
 mpz_init(computedPlainText); 
 mpz_init(negative_1); 
  
 time_t seconds; 
 time(&seconds); 
 
 mpz_set_si(negative_1, -1); 
 // program requires: 
 //     1: key size 
 //     2: path to a plain text file to encrypt 
 //     3: optional random seed for repeatability/debug, if no random seed is 
passed program will use system time for random seed 
  
 if ((argc != 3)||(argc != 4)) // error if we don't see the command-line 
arguments we expect 
 { 
  fprintf(stderr, "Usage: %s <key size in bits> <path to file to 
encrypt/decrypt, must be less than 100 characters long> <(optional, for 
repeatability) random seed>\n", argv[0]); 
  return(-1); 
 } 
  
 keysize = atoi(argv[1]); // get key size from command line arguments 
  
 if (argc == 3) { // no random seed passed from command line 
  time(&seconds); // get a random seed from the system time 
  srand((unsigned int) seconds); 
  seed = rand();  
  printf("Seed = %X\n", seed); 
 } 
  
 if (argc == 4) { // command line seed was passed 
  srand((unsigned int) atoi(argv[2])); // use command-line random seed 
  seed = rand();  
  printf("Seed = %X\n", seed); 
 } 
 
 printf("Generating %d - bit key\n", keysize); 
 printf("Main: Generating p...\n"); 
 generateLargePrime(keysize, key.p, seed); // generate RSA p 
 
 seed += rand();  
 printf("New seed = %X\n", seed); 
 printf("Main: Generating q...\n"); 
 generateLargePrime(keysize, key.q, seed); // generate RSA q 
  
 printf("Main: Calculating n = p * q, this is the RSA modulus...\n"); 
 mpz_mul (key.n, key.p, key.q); // compute n, the product of p and q 
 gmp_printf("RSA Key mudulus n = \n%ZX\n which is %d bits long\n", key.n, 
mpz_sizeinbase(key.n, 2)); 
 
 printf("Main: Calculating totient phi(pq) = (p-1)*(q-1)...\n"); 
 mpz_mul (key.n, key.p, key.q); // this part calculates euler's totient for p 
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and q 
 mpz_sub_ui(p_minus_one, key.p, 1ul); 
 mpz_sub_ui(q_minus_one, key.q, 1ul); 
 mpz_mul (totient, p_minus_one, q_minus_one); 
 gmp_printf("Totient = \n%ZX\n which is %d bits long\n", totient, 
mpz_sizeinbase(totient, 2)); 
 
 seed += rand(); 
 printf("New seed = %X\n", seed); 
 printf("Main: picking random number 1 < e < totient, must be coprime with 
totient...\n"); 
 i = 0; 
 do { 
  srand(seed); 
  seed = rand() % 32765 + 23; // generate number between 23 and 32765 to 
use as candidate for e,  
  i++; 
 } while((mpz_gcd_ui(key.e, totient, seed) != 1)||(i < 20000)); // generate a 
new random number if not comprime until 20,000 tries 
  
 if (i=200000) { 
  printf("Main: Error: Failed to find RSA e after 20,000 tries!\n"); 
  return -1; 
 } 
 gmp_printf("e = %ZX, which took %d tries.\n", key.e, i); 
  
 // compute private key d 
 printf("Main: Computing d = e^(-1) mod totient.\n", key.e, i); 
 mpz_powm(key.d, key.e, negative_1, totient); 
 gmp_printf("d = %ZX\n", key.d); 
  
 // open plaintext input file 
 fileName = arg[2]; 
 plainTextFile = fopen(fileName, r); 
 if (plainTextFile == null) { 
  printf("Error: Plain text input file does not exist!\n"); 
 } 
 else { 
  i = 0; 
  while (((nextChar = fgetc(plainTextFile)) != EOF) && i<=100){ 
   plainTextString[i] = nextChar; 
   i++; 
  } 
  plainTextString[i] = 0; 
  messageLength = i; 
  .fclose(plainTextFile); 
 } 
  
 // convert our plain text integer array to a gnu-mp int 
 printf("Main: Converting plain text file to plain text m.\n"); 
 mpz_import(plainText, messageLength, 1, sizeof(plainTextArray[0], 0, 0, 
plainTextArray); // imports plain text int array to gnu mp integer "plainText" 
 gmp_printf("m = %ZX\n", plainText); 
       
 // to-do: add a padding scheme 
  
 // compute the cipher text from plain text and our *public* RSA key (n and e) 
 printf("Main: Computing cipher text M: M = m^e mod n.\n"); 
 mpz_powm(cipherText, plainText, key.e, key.n); 
 gmp_printf("M = %ZX\n", cipherText); 
  
 // compute the plain text from cipher text and our *private* RSA key (d and 
n) 
 printf("Main: Computing plain text m: m = M^d mod n.\n"); 
 mpz_powm(computedPlainText, cipherText, key.d, key.n); 
 gmp_printf("m = %ZX\n",cimputedPlainText); 
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 if (mpz_cmp(plainText, computedPlainText) != 0) { 
  gmp_printf("Main: Error: Computed plain text does not match original 
plain text.\n"); 
  return -1; 
 } 
  
 // to-do: compute the cipher text using RSA hardware 
  
 // to-do: compute the plain text from the cipher text using RSA hardware 
  
 // to-do: reverse the padding scheme 
  
 // to-do: convert the computed cipher text to an array 
  
 printf("Main: CMoving plain text m to integer array.\n"); 
 mpz_export(plainTextArray, messageLength, 1, sizeof(plainTextArray[0]), 0, 0, 
computedPlainText); // exports gnu mp int "computedPlainText" to integer array 
"outputArray" 
       
 // write out computed plaintext to a file called output.txt 
 fileName = "output.txt"; 
 outputTextFile = fopen(fileName, w+); // overwrite any existing output.txt 
file 
 if (outputTextFile == null) { 
  printf("Error: Cannot open output file.\n"); 
 } 
 else { 
  printf("Main: Writing computed plain text to file "output.txt".\n"); 
  for (i=stringLength-1; i>=0; i--) { 
   fputc(plainTextString[i], outputTextFile); 
  } 
  plainTextString[i] = 0; 
  fclose(outputTextFile); 
 } 
  
 printf("Main: Done!\n"); 
 
    mpz_clear(key.n); 
 mpz_clear(key.e); 
 mpz_clear(key.d); 
 mpz_clear(key.p); 
 mpz_clear(key.q); 
  
 return 0; 
 
} 
 
//======================= 
//actual functions! 
//======================= 
 
//  This is the is the function that actually spits out a prime 
int generateLargePrime (int keyLength, mpz_t largePrime, int seed) { 
    int i; 
 double tries;  // the maximum number of tries for random number generation 
 unsigned long int triesint; 
    gmp_randstate_t r_state; 
  
 tries = 1000 * log( (double)keyLength) + 1; 
 triesint = (unsigned long int)tries; 
  
    gmp_randinit_default (r_state); 
    gmp_randseed_ui(r_state, seed); 
  
 #ifdef DEBUG 
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 gmp_printf("Will test for primality %d times.\n", triesint); 
 #endif /*DEBUG*/ 
    for(i = 0; i < triesint; ++i) { 
   
  mpz_urandomb(largePrime, r_state, (unsigned long int)keyLength); 
   
  if (isPrime(largePrime, seed) == 0) { 
   gmp_printf("Found large prime = \n%ZX\n after %d tries\n which 
is %d bits long\n", largePrime, i, mpz_sizeinbase(largePrime, 2)); 
   gmp_randclear(r_state); 
   return 0; 
  } 
/*  else { 
   gmp_printf("Failed to find large prime after %d tries!\n", i); 
  }*/ 
 } 
 gmp_randclear(r_state); 
 gmp_printf("Failed to find large prime after %d tries!\n", i); 
 return 1; 
} 
 
//  This is the function that tests for primality 
int isPrime(mpz_ptr n, int seed) { 
  
 //lowPrimes is all primes (sans 2, which is covered by the bitwise and 
operator)  
 //under 1000. taking n modulo each lowPrime allows us to remove a huge chunk  
 //of composite numbers from our potential pool without resorting to Rabin-
Miller 
 
 int i; 
 mpz_t r; 
  
 unsigned long int lowPrimes[168] ={2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 
19ul, 23ul, 29ul, 31ul, 37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 
79ul, 83ul, 89ul, 
  101ul, 103ul, 107ul, 109ul, 113ul, 127ul, 131ul, 137ul, 139ul, 149ul, 
151ul, 157ul, 163ul, 167ul, 173ul, 179ul, 
  181ul, 191ul, 193ul, 197ul, 199ul, 211ul, 223ul, 227ul, 229ul, 233ul, 
239ul, 241ul, 251ul, 257ul, 263ul, 269ul, 
  271ul, 277ul, 281ul, 283ul, 293ul, 307ul, 311ul, 313ul, 317ul, 331ul, 
337ul, 347ul, 349ul, 353ul, 359ul, 367ul, 
  373ul, 379ul, 383ul, 389ul, 397ul, 401ul, 409ul, 419ul, 421ul, 431ul, 
433ul, 439ul, 443ul, 449ul, 457ul, 461ul, 
  463ul, 467ul, 479ul, 487ul, 491ul, 499ul, 503ul, 509ul, 521ul, 523ul, 
541ul, 547ul, 557ul, 563ul, 569ul, 571ul, 
  577ul, 587ul, 593ul, 599ul, 601ul, 607ul, 613ul, 617ul, 619ul, 631ul, 
641ul, 643ul, 647ul, 653ul, 659ul, 661ul, 
  673ul, 677ul, 683ul, 691ul, 701ul, 709ul, 719ul, 727ul, 733ul, 739ul, 
743ul, 751ul, 757ul, 761ul, 769ul, 773ul, 
  787ul, 797ul, 809ul, 811ul, 821ul, 823ul, 827ul, 829ul, 839ul, 853ul, 
857ul, 859ul, 863ul, 877ul, 881ul, 883ul, 
  887ul, 907ul, 911ul, 919ul, 929ul, 937ul, 941ul, 947ul, 953ul, 967ul, 
971ul, 977ul, 983ul, 991ul, 997ul}; 
  
 mpz_init(r); 
 #ifdef DEBUG 
 gmp_printf("isPrime: checking against lowPrime values\n", i); 
 #endif /*DEBUG*/ 
 for (i=0; i<167; i++) { 
  mpz_mod_ui(r, n, lowPrimes[i]); 
  #ifdef DEBUG 
  gmp_printf(" r = %ZX\n n = %ZX\n i = %X\n lowPrime = %Xul\n" , r, n, 
i, lowPrimes[i]); 
  #endif /*DEBUG*/ 
  if (mpz_cmp_ui(r, 0ul) == 0) { 
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   return 1; // if a lowPrime divides evenly, then quit before 
rabinMiller 
   gmp_printf(" r = %ZX\n" , r);   
  } 
 } 
 #ifdef DEBUG 
 gmp_printf("isPrime: starting Rabin - Miller test.\n", i); 
 #endif /*DEBUG*/ 
 if (rabinMiller(n, seed) == 0) { 
  mpz_clear(r); 
  return 0;  // probably prime! 
 } 
 return 1; // definitely not prime 
} 
 
 
//  This is the rabin-miller algorithm for primality testing 
int rabinMiller(mpz_t n, int seed) { 
   
 mpz_t s; 
 mpz_t a;  
 mpz_t v; 
 mpz_t n_minus_one; 
 unsigned long int k, j, t, retval; 
    gmp_randstate_t r2_state; 
    gmp_randinit_default(r2_state); 
    gmp_randseed_ui(r2_state, seed); 
  
 mpz_init(s); 
 mpz_init(a); 
 mpz_init(v); 
 mpz_init(n_minus_one); 
 // n-1 
 mpz_sub_ui(n_minus_one, n, 1ul); 
 mpz_sub_ui(s, n, 1ul); 
 t = 0ul; 
  
 #ifdef DEBUG 
 gmp_printf("n = %ZX\n" , n); 
 #endif /*DEBUG*/ 
  
 while (mpz_even_p(s)) { 
  #ifdef DEBUG 
  gmp_printf("t = %d\n" , t); 
  #endif /*DEBUG*/ 
  mpz_fdiv_q_2exp(s, s, 1); 
  t += 1ul; 
 } 
  
 k = 0; // set k and j to zero 
 j = 0; 
  
 do { 
  mpz_urandomm(a, r2_state, n); 
 } while(mpz_sgn(a) == 0); // generate a new random number if we got zero 
  
 #ifdef DEBUG 
 gmp_printf("Generated large random number a = %ZX\n" , a); 
 gmp_printf("Calculating (a^s) mod n = v\n v = %ZX\n a = %ZX\n s = %ZX\n n = 
%ZX\n" , v, a, s, n); 
 #endif /*DEBUG*/ 
  
 mpz_powm(v, a, s, n); 
  
 #ifdef DEBUG 
 gmp_printf("Modular exponentiation (a^s) mod n = v\n v = %ZX\n a = %ZX\n s = 
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%ZX\n n = %ZX\n" , v, a, s, n); 
 #endif /*DEBUG*/ 
  
 for (k=0; k<128; k++) { 
  if ((mpz_cmp_ui(v, 1ul)) == 0) { 
   retval = 0; // probably a prime 
   goto exit; 
  } 
  for(j=0; j<t-1; j++) { 
   if (mpz_cmp(v, n_minus_one) == 0) { 
    retval = 0; // probably a prime 
    goto exit; 
   } 
   mpz_powm_ui(v, v, 2ul, n); 
  } 
  if (mpz_cmp(v, n_minus_one) == 0){ 
   retval = 0; //probably a prime 
   goto exit; 
  } 
  #ifdef RM_DEBUG 
  gmp_printf("k = %d\n" , k); 
  #endif /*RM_DEBUG*/ 
  retval = 1; // not a prime,  
 } 
exit: 
 mpz_clear(s); 
 mpz_clear(a); 
 mpz_clear(v); 
 mpz_clear(n_minus_one); 
 return retval; 
} 

 

Hardware Source Code 

File: rsa_core_top.v 

`timescale 1ns / 1ps 
 
//============================================================================== 
//==================== Top-level block for RSA crypto core ===================== 
//============================================================================== 
//============================================================================== 
 
//============================================================================== 
//================================ Definitions ================================= 
//==============================================================================  
 
`define IDLE               2'b00    // idle state 
`define NEW_INPUT          2'b01    // new inputs A and B 
`define MULTIPLY           2'b10    // multiply 
 
//============================================================================== 
//============== Top-Level Module with Input/Output Declarations =============== 
//============================================================================== 
 
module rsa_core_top( 
    input              clk,               // clock 
    input              rst,               // reset 
    inout    [31:0]    rsa_core_io,       // 32-bit data in/out 
    input              address_strobe,    // address strobe 
    input    [23:0]    address,           // address data 
    output             dtack,             // dtack from FPGA 
    output             data_oe,           // output enable 
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    output             interrupt          // interrupt output 
    ); 
      
//============================================================================== 
//===================== Internal State-Tracking Registers ====================== 
//============================================================================== 
 
    reg  [1:0]    rsa_top_state;      // top-level state machine current state 
    reg           multiply_done;      // 1 if multiply result ready 
    wire          go_new_input;       // 1 if received new input command 
    wire          go_multiply;        // 1 if received new multiply command 
    wire          idle_state;         // 1 if we are in idle state 
    wire          strobe_detect;      // flopped address strobe 
    reg  [1:0]    strobe_sync;        // sync latch for strobe signal 
    reg  [7:0]    count;              // counter keeps track 32-bit data slices 
    reg  [7:0]    keysize;            // number of bits in the A/B input data 
    reg  [31:0]   data_i;             // internal data reg 
       reg  [23:0]   addr_i;             // internal address reg 
 reg           dtack_i;            // dtack reg 
 reg           interrupt_i;        // interrupt reg 
 reg           data_oe_i; 
   
                                    // Below registers are for CIOS  
            //  Montgomery multiplier. 
  reg [4:0]     mont_mult_state;    // Montgomery Multiplier State 
  reg [1023:0]  CIOS_A;             // A residue 
  reg [1023:0]  CIOS_B;             // B residue 
  reg [1023:0]  CIOS_n;             // modulus 
  reg [255:0]   CIOS_n_prime;       // n' for CIOS algorithm (first 256-bit 
word) 
   
 reg CIOS_C_out_0; 
 reg CIOS_C_out_1; 
 reg CIOS_C_out_2; 
 reg CIOS_C_out_3; 
 reg CIOS_C_out_4; 
 reg CIOS_C_out_5; 
 reg CIOS_C_out_6; 
 reg CIOS_C_out_7; 
 reg CIOS_C_out_8; 
 reg CIOS_C_out_9; 
 reg CIOS_C_out_10; 
 reg CIOS_C_out_11; 
 reg CIOS_C_out_12; 
 reg CIOS_C_out_13; 
 reg CIOS_C_out_14; 
 reg CIOS_C_out_15; 
 reg CIOS_C_out_16; 
 reg CIOS_C_out_17; 
 reg CIOS_C_out_18; 
 reg CIOS_C_out_19; 
 reg CIOS_C_out_20; 
 reg CIOS_C_out_21; 
 reg CIOS_C_out_22; 
 reg CIOS_C_out_23; 
 reg CIOS_C_out_24; 
 reg CIOS_C_out_25; 
 reg CIOS_C_out_26; 
 reg CIOS_C_out_27; 
 reg CIOS_C_out_28; 
 reg CIOS_C_out_29; 
 reg CIOS_C_out_30; 
 reg CIOS_C_out_31; 
  
 reg [511:0] CIOS_m0; 
 reg [511:0] CIOS_m1; 
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 reg [511:0] CIOS_m2; 
 reg [511:0] CIOS_m3; 
 
 reg [511:0] CIOS_t_out_0_0; 
 reg [511:0] CIOS_t_out_0_1; 
 reg [511:0] CIOS_t_out_0_2; 
 reg [511:0] CIOS_t_out_0_3; 
 reg [511:0] CIOS_t_out_0_4; 
 reg [511:0] CIOS_t_out_0_5; 
  
 reg [511:0] CIOS_t_out_1_0; 
 reg [511:0] CIOS_t_out_1_1; 
 reg [511:0] CIOS_t_out_1_2; 
 reg [511:0] CIOS_t_out_1_3; 
 reg [511:0] CIOS_t_out_1_4; 
 reg [511:0] CIOS_t_out_1_5; 
 
 reg [511:0] CIOS_t_out_2_0; 
 reg [511:0] CIOS_t_out_2_1; 
 reg [511:0] CIOS_t_out_2_2; 
 reg [511:0] CIOS_t_out_2_3; 
 reg [511:0] CIOS_t_out_2_4; 
 reg [511:0] CIOS_t_out_2_5; 
  
 reg [511:0] CIOS_t_out_3_0; 
 reg [511:0] CIOS_t_out_3_1; 
 reg [511:0] CIOS_t_out_3_2; 
 reg [511:0] CIOS_t_out_3_3; 
 reg [511:0] CIOS_t_out_3_4; 
 reg [511:0] CIOS_t_out_3_5; 
  
 reg [511:0] CIOS_t_out_4_0; 
 reg [511:0] CIOS_t_out_4_1; 
 reg [511:0] CIOS_t_out_4_2; 
 reg [511:0] CIOS_t_out_4_3; 
 reg [511:0] CIOS_t_out_4_4; 
 reg [511:0] CIOS_t_out_4_5; 
  
 reg [511:0] CIOS_t_out_5_0; 
 reg [511:0] CIOS_t_out_5_1; 
 reg [511:0] CIOS_t_out_5_2; 
 reg [511:0] CIOS_t_out_5_3; 
 reg [511:0] CIOS_t_out_5_4; 
 reg [511:0] CIOS_t_out_5_5; 
  
 reg [511:0] CIOS_t_out_6_0; 
 reg [511:0] CIOS_t_out_6_1; 
 reg [511:0] CIOS_t_out_6_2; 
 reg [511:0] CIOS_t_out_6_3; 
 reg [511:0] CIOS_t_out_6_4; 
 reg [511:0] CIOS_t_out_6_5; 
  
   
        reg [1023:0]  result;             // final result goes here 
                                    // result = (t(3),t(2),t(1),t(0))    
   
//============================================================================== 
//================================ Architecture ================================ 
//============================================================================== 
 
    // muxes to interpret mmio writes as commands, ensure we only switch to 
    // a new state if we are in idle state, and flop address strobe 
     
        // only accept commands if in idle state 
    assign idle_state = (rsa_top_state == `IDLE) ? 1 : 0; 
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        // detect new key command 
    assign go_new_input = idle_state ? strobe_detect ? 
                        (address == 24'b00000000_00000000_00000000) ? 
                        1 : 0 : 0 : 0;       
     
     
        // detect encrypt command 
    assign go_multiply = idle_state ? strobe_detect ? 
                        (address == 24'b00000000_00000000_00000010) ? 
                        1 : 0 : 0 :0;     
     
 assign dtack = dtack_i; 
 assign interrupt = interrupt_i; 
 assign data_oe = data_oe_i; 
 
    wire [31:0] rsa_top_io = strobe_detect ? data_i : 32'bz; 
 
     
     
     // wire in the j-loop hardware, the multiplier and the adder 
    reg [255:0]  A_1; 
    reg [255:0]  B_1; 
    reg [255:0]  t_1; 
    reg [255:0]  n_1; 
    reg [255:0]  n_prime1; 
    reg          C_in_1; 
    wire [511:0] S_1; 
    wire         C_out_1; 
     
    reg [255:0]  A_2; 
    reg [255:0]  B_2; 
    reg [255:0]  n_2; 
    reg [255:0]  n_prime2; 
    reg          C_in_2; 
    wire [511:0] S_2; 
    wire         C_out_2; 
     
    reg  [255:0] Mult_A; 
    reg  [255:0] Mult_B; 
    wire [511:0] Mult_Y; 
    wire         Mult_C_out; 
     
    reg [255:0]  Add_A; 
    reg [255:0]  Add_B; 
    wire [511:0] Add_Y; 
    wire         Add_C_out; 
     
    j_loop j_loop_1( 
     .clk(clk), 
     .rst(rst), 
     .t_1(t), 
     .A_1(A), 
     .B_1(B), 
     .C_in_1(C_in), 
  .S_1(S), 
  .C_out_1(C_out) 
 ); 
  
 j_loop j_loop_2( 
     .clk(clk), 
     .rst(rst), 
     .t_2(t), 
     .A_2(A), 
     .B_2(B), 
     .C_in_2(C_in), 
  .S_2(S), 
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  .C_out_2(C_out) 
 ); 
  
 mult mult1( 
     .clk(clk), 
     .rst(rst), 
 
     .Mult_A(A), 
     .Mult_B(B), 
  .Mult_Y(S), 
  .Mut_C_out(C_out) 
 ); 
  
 add add1( 
     .clk(clk), 
     .rst(rst), 
 
     .Add_A(A), 
     .Add_B(B), 
  .Add_Y(S), 
  .Add_C_out(C_out) 
 ); 
  
  
 
 
     
//============================================================================== 
//============================ Address Strobe Sync ============================= 
//============================================================================== 
 
always @ (negedge clk or negedge rst) begin 
    if(!rst) begin              
        strobe_sync[1:0] <= 2'b0; 
    end 
    else if(rst) begin  
        strobe_sync[0] <= strobe_sync[1]; 
        strobe_sync[1] <= address_strobe; 
    end 
end 
 
assign strobe_detect = strobe_sync[0] && strobe_sync[1] && address_strobe; 
  
//============================================================================== 
//=============================== State Machine ================================ 
//============================================================================== 
 
always @ (posedge clk or negedge rst) begin 
 
    if (!rst) begin            // asynchronous active-low reset 
         rsa_top_state      <= 0; 
         valid_input        <= 0; 
         multiply_done      <= 0; 
   interrupt_i        <= 0; 
   count              <= 0; 
   CIOS_A             <= 0; 
      CIOS_B             <= 0; 
      CIOS_n             <= 0; 
      CIOS_n_prime       <= 0; 
   data_oe_i          <= 0; 
    end 
    else begin 
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 //====================================================================== 
        // IDLE state ========================================================== 
        //====================================================================== 
    if (rsa_top_state == `IDLE) begin 
        if (go_new_input == 1) begin 
        rsa_top_state    <= `NEW_INPUT; 
    end  
    else if (go_multiply == 1) begin 
        rsa_top_state    <= `MULTIPLY; 
    end 
        end 
        //====================================================================== 
        // NEW_INPUT state ===================================================== 
        //====================================================================== 
 
        if (rsa_top_state == `NEW_INPUT) begin 
            // If we just entered this state, un-set valid input, increment count 
            if (count == 0) begin 
                valid_input <=0; 
      count <= count + 1; 
      end 
    // Now read in the inputs, 32 bits at a time. 
    // This part could be generate statement but  
    // ran into synthesis issues, so replace it 
                              // with brute force hard coding. 
     
    // Start with values for A-residue 
      else if (count == 1) begin 
                CIOS_A[31:0] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 2) begin 
                CIOS_A[63:32] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 3) begin 
                CIOS_A[95:64] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 4) begin 
                CIOS_A[127:96] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 5) begin 
                CIOS_A[159:128] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 6) begin 
                CIOS_A[191:160] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 7) begin 
                CIOS_A[223:192] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 8) begin 
                CIOS_A[255:224] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 9) begin 
                CIOS_A[287:256] <= rsa_top_io; 
 
 

====================================================================== 
REPETITIVE CODE REMOVED – CONTACT THE AUTHOR FOR FULL SOURCE 

SKIP TO TRANSITION TO MULTIPLY STATE 
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At point we’ve already read in A, B, n’ and this is the end of n 
====================================================================== 

 
 

      end 
    else if (count == 103) begin 
                CIOS_n[991:960] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else if (count == 104) begin 
                CIOS_n[1023:992] <= rsa_top_io; 
      count <= count + 1; 
      end 
    else begin 
        count <= 0; 
      valid_input <= 1; 
      rsa_top_state <= `IDLE; 
    end 
        end 
         

                                
//====================================================================== 

        // MULTIPLY state ====================================================== 
        //====================================================================== 
         
        if (rsa_top_state == `MULTIPLY) begin 
            if (count == 0) begin 
       multiply_done <= 0; 
     mont_mult_state <=0; 
    end 
    else if(count == 1) begin 
    // This is a modular multiply by CIOS 
     if (mont_mult_state == 0) begin 
     // Mont mult state 0 
      
      // j-loop 
      if (~toggle) begin 
      A_1    <= CIOS_A[255:0]; 
      B_1    <= CIOS_B[255:0]; 
      t_1    <= 0; 
      C_in_1 <= 0; 
      end else begin 
      CIOS_C_out_0 <= C_out_1; 
      CIOS_t_out_0_0 <= S_1; 
      toggle <= 0; 
      end 
       
      if (~toggle) begin 
      toggle <= 1; 
      end else begin 
      mont_mult_state <= mont_mult_state + 1; 
      toggle <= 0; 
      end  
       
     end else if (mont_mult_state == 1) begin 
     // Mont mult state 1 
       
      // j-loop 
      if (~toggle) begin 
      A_1    <= CIOS_A[511:256]; 
      B_1    <= CIOS_B[255:0]; 
      t_1    <= 0; 
      C_in_1 <= CIOS_C_out_0; 
      end else begin 
      CIOS_C_out_1 <= C_out_1; 
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      CIOS_t_out_0_1 <= S_1; 
      end 
       
      // multiply 
      if (~toggle) begin 
      Mult_A    <= CIOS_t_out_0_0; 
      Mult_B    <= CIOS_n_prime; 
      end else begin 
      CIOS_m0 <= M_Y; 
      end 
       
      if (~toggle) begin 
      toggle <= 1; 
      end else begin 
      mont_mult_state <= mont_mult_state + 1; 
      toggle <= 0; 
      end  
       
     end else if (mont_mult_state == 2) begin 
     // Mont mult state 2 
       
      // j-loop 
      if (~toggle) begin 
      A_1    <= CIOS_A[767:511]; 
      B_1    <= CIOS_B[255:0]; 
      t_1    <= 0; 
      C_in_1 <= CIOS_C_out_1; 
      end else begin 
      CIOS_C_out_2 <= C_out_1; 
      CIOS_t_out_0_2 <= S_1; 
      end  
       
      // j-loop 
      if (~toggle) begin 
      A_2    <= CIOS_m0; 
      B_2    <= CIOS_n[255:000]; 
      t_2    <= CIOS_t_out_0_0; 
      C_in_2 <= 0; 
      end else begin 
      CIOS_C_out_3 <= C_out_2; 
      end       
       
      if (~toggle) begin 
      toggle <= 1; 
      end else begin 
      mont_mult_state <= mont_mult_state + 1; 
      toggle <= 0; 
      end  
       
     end else if (mont_mult_state == 3) begin 
     C_in_2 <= 0; 
end else if (mont_mult_state == 18) begin 
     // Mont mult state 18 
 
      
      // add 
      if (~toggle) begin 
      Add_A    <= C_out_31; 
      Add_B    <= CIOS_B[xxx:xxx]; 
      end else begin 
      x <= Add_Y; 
      end 
       
      if (~toggle) begin 
      toggle <= 1; 
      end else begin 
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      mont_mult_state <= mont_mult_state + 1; 
      toggle <= 0; 
      mont_mult_state <= 0; 
      count <= count + 1; 
      end 
     end 
    end  
    interrupt_i <= 1'b1; 
    data_oe_i <= 1; 
            end 
    // Now read out the final result block, 32 bits at a 
time. 
      else if (count == 2) begin 
                data_i <= result[31:0]; 
      count <= count + 1; 
      end 
    else if (count == 3) begin 
                data_i <= result[63:32]; 
      count <= count + 1; 
      end 
    else if (count == 4) begin 
                data_i <= result[95:64]; 
      count <= count + 1; 
      end 
    else if (count == 5) begin 
                data_i <= result[127:96]; 
      count <= count + 1; 
      end 
    else if (count == 6) begin 
                data_i <= result[159:128]; 
      count <= count + 1; 
      end 
    else if (count == 7) begin 
                data_i <= result[191:160]; 
      count <= count + 1; 
      end 
    else if (count == 8) begin 
                data_i <= result[223:192]; 
      count <= count + 1; 
      end 
    else if (count == 9) begin 
                data_i <= result[255:224]; 
      count <= count + 1; 
 
       
      CIOS_C_out_3 <= C_out_2;  
     
       
      mont_mult_state <= mont_mult_s 

 

====================================================================== 
REPETITIVE CODE REMOVED – CONTACT THE AUTHOR FOR FULL SOURCE 

SKIP TO TRANSITION TO MULTIPLY STATE 
At point we’ve already read in A, B, n’ and this is the end of n 

====================================================================== 
 

      //mont_mult_state <= mont_mult_state + 
1; 
     end else if (mont_mult_state == 18) begin 
     // Mont mult state 18 
 
      
      // add 
      if (~toggle) begin 
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      Add_A    <= C_out_31; 
      Add_B    <= t_out_6_4; 
      end else begin 
      result[1023:768] <= Add_Y; 
      end 
       
      if (~toggle) begin 
      toggle <= 1; 
      end else begin 
      mont_mult_state <= mont_mult_state + 1; 
      toggle <= 0; 
      mont_mult_state <= 0; 
      count <= count + 1; 
      end 
     end 
    end  
    interrupt_i <= 1'b1; 
    data_oe_i <= 1; 
            end 
    // Now read out the final result block, 32 bits at a 
time. 
      else if (count == 2) begin 
                data_i <= result[31:0]; 
      count <= count + 1; 
      end 
    else if (count == 3) begin 
                data_i <= result[63:32]; 
      count <= count + 1; 
      end 
    else if (count == 4) begin 
                data_i <= result[95:64]; 
      count <= count + 1; 
      end 
    else if (count == 5) begin 
                data_i <= result[127:96]; 
      count <= count + 1; 
 
 
 
      end 
    else if (count == 33) begin 
 

====================================================================== 
REPETITIVE CODE REMOVED – CONTACT THE AUTHOR FOR FULL SOURCE 

SKIP TO TRANSITION TO MULTIPLY STATE 
At point we’ve already read in A, B, n’ and this is the end of n 

====================================================================== 
 
                data_i <= result[1023:992]; 
      count <= count + 1; 
      end 
    else begin 
        count <= 0; 
      multiply_done <= 1; 
      rsa_top_state <= `IDLE; 
      data_oe_i <= 0; 
    end 
        end  
end 
endmodule 
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