

 University of Groningen

Investigating subclasses of abstract dialectical frameworks
Keshavarzi Zafarghandi, Atefeh; Woltran, Stefan; Diller; Linsbichler

Published in:
Investigating Subclasses of Abstract Dialectical Frameworks

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Keshavarzi Zafarghandi, A., Woltran, S., Diller, & Linsbichler (2018). Investigating subclasses of abstract
dialectical frameworks. In Investigating Subclasses of Abstract Dialectical Frameworks IOS Press.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/521e0928-79d1-45cf-a72d-00615c48b3d3

Investigating Subclasses of Abstract
Dialectical Frameworks

Martin DILLER a, Atefeh KESHAVARZI ZAFARGHANDI b,
Thomas LINSBICHLER a, and Stefan WOLTRAN a1

a Institute of Logic and Computation, TU Wien, Austria
b Institute of Artificial Intelligence, University of Groningen, The Netherlands

Abstract. Abstract dialectical frameworks (ADFs) are generalizations of Dung ar-
gumentation frameworks where arbitrary relationships among arguments can be
formalized. This additional expressibility comes with the price of higher computa-
tional complexity, thus an understanding of potentially easier subclasses is essen-
tial. Compared to Dung argumentation frameworks, where several subclasses such
as acyclic and symmetric frameworks are well understood, there has been no in-
depth analysis for ADFs in such direction yet (with the notable exception of bipolar
ADFs). In this work, we introduce certain subclasses of ADFs and investigate their
properties. In particular, we show that for acyclic ADFs, the different semantics
coincide. On the other hand, we show that the concept of symmetry is less powerful
for ADFs and further restrictions are required to achieve results that are similar to
the known ones for Dung’s frameworks. We also provide experiments to analyse
the performance of solvers when applied to particular subclasses of ADFs.

Keywords. abstract argumentation, abstract dialectical frameworks, acyclic graphs,
expressiveness, performance analysis

1. Introduction

Abstract dialectical frameworks (ADFs) are generalizations of Dung argumentation
frameworks (AFs) [2] where arbitrary relationships among arguments can be formalized
via propositional formulas which are attached to the arguments [3,4]. This allows to for-
malize notions of support, collective attacks, and even more complicated relations. Due
to their flexibility in fomalizing relations between arguments, ADFs have recently been
used in several applications [5,6,7,8]. However, this additional expressibility comes with
the price of higher computational complexity [9]. Specifically, reasoning in ADFs spans
the first three (rather than the first two, as for AFs) levels of the polynomial hierarchy.

It is thus a natural question to investigate subclasses of ADFs. Compared to Dung
argumentation frameworks, where several subclasses have been thoroughly studied (see
e.g., [10,11,12]), there has not been a systematic investigation of subclasses of ADFs yet,
with the exception of bipolar ADFs [3] where the links between arguments are restricted
to have either supporting or attacking nature. In particular, there have been no studies yet
about under which structural restrictions on ADFs different semantics coincide.

1Author names are sorted in alphabetical order. This paper is based on the second author’s master thesis [1].

In this work, we aim to define several subclasses of ADFs and investigate their prop-
erties in terms of semantics. As a first class, we consider acyclic ADFs (i.e., the link-
structure forms an acyclic graph) and show that - analogous to well-founded AFs - the
main semantics coincide for this class. We further investigate the concept of symmet-
ric ADFs. In contrast to the case of AFs, we will see that properties as coherence and
relative-groundedness do not carry over and require further restrictions which leads to
the class of acyclic support symmetric ADFs (ASSADFs). Following the work of Dunne
et al. [13] we investigate the expressiveness of our ASSADF subclass in terms of signa-
tures, i.e. the set of possible outcomes which can be achieved by ASSADFs under the
different semantics. We thus complement here results which have been obtained for gen-
eral [14,15] and bipolar ADFs [16] and also compare ASSADFs with AFs in terms of
expressibility. Finally, we provide a preliminary experimental analysis which analyses to
which extent ADF-solvers benefit from instances that are acyclic (and symmetric).

2. Preliminaries

Definition 1. [3] An abstract dialectical framework (ADF) is a tuple D= (S,L,C) where
S is a finite set of nodes (arguments, statements, positions), L ⊆ S× S is a set of links,
and C = {ϕs}s∈S is a set of propositional formulas (acceptance conditions). Each ϕs ∈C
is constructed out of the parents par(s) of s ∈ S, where par(s) = {a ∈ S | (a,s) ∈ L}.

We depict ADFs as annotated directed graphs where nodes represent arguments, di-
rected edges represent links, and acceptance conditions are given by the annotations next
to arguments. An argument s ∈ S is called initial if par(s) = /0. Note that the arguments
act as propositional atoms in the acceptance conditions.

Let D = (S,L,C) be an ADF. An interpretation v (for D) is a function mapping
arguments to one of the truth values true (t), false (f), or undecided (u), i.e. v : S 7→
{t, f,u}. An interpretation v is two-valued if it maps each argument to either t or f. The
sets vt, vf, and vu contain those arguments that v maps to true, false and undecided,
respectively. Further, v is called trivial, denoted vu, if v(s) = u for each s ∈ S. Finally, we
denote the update of an interpretation v with a truth value x ∈ {t, f,u} for an argument b
by v|bx, i.e., v|bx(b) = x and v|bx(a) = v(a) for a 6= b.

Interpretations are ordered w.r.t. their information content. This is based on the par-
tial order of truth values, for which u ≤i t and u ≤i f. An interpretation v is at least as
informative as another interpretation w, denoted by w≤i v, if w(s)≤i v(s) for each s ∈ S.
As usual w <i v whenever w≤i v and not v≤i w. The meet operator ui on truth values is
defined as tui t = t, fui f = f and returns u otherwise. The meet ui of two interpretations
v and w is then defined as (vui w)(s) = v(s)ui w(s) for each s ∈ S.

Semantics for ADFs are defined based on the characteristic operator ΓD which maps
interpretations to interpretations. Given an interpretation v (for D) it is defined as

ΓD(v) = v′ such that v′(s) =

t if ϕv

s is irrefutable (i.e., a tautology) ,
f if ϕv

s is unsatisfiable,
u otherwise.

This uses the partial valuation of ϕs by v, which is ϕv
s = ϕs[p/> : v(p) = t][p/⊥ : v(p) =

f] where p is an argument occurring in ϕs. The semantics of ADFs are defined via the
characteristic operator as in Definition 2.

Definition 2. Given an ADF D, an interpretation v is

• admissible in D iff v≤i ΓD(v);
• complete in D iff v = ΓD(v);
• grounded in D iff v is the least fixed-point of ΓD;
• preferred in D iff v is ≤i-maximal admissible (resp. complete);
• a (two-valued) model of D iff v is two-valued and ∀s ∈ S : v(s) = v(ϕs);
• a stable model of D if v is a model of D and vt = wt, where w is the grounded

interpretation of the stb-reduct Dv =(Sv,Lv,Cv), where Sv = vt, Lv = L∩(Sv×Sv),
and ϕs[p/⊥ : v(p) = f] for each s ∈ S.

The set of all σ interpretations for D is denoted by σ(D), for σ ∈ {adm,com,grd,prf,
mod,stb}.

In an ADF D= (S,L,C), a link (b,a)∈ L is called supporting (in D) if for every two-
valued interpretation v, v(ϕa) = t implies v|bt (ϕa) = t; a link (b,a) ∈ L is called attacking
(in D) if for every two-valued interpretation v, v(ϕa) = f implies v|bt (ϕa) = f. (b,a) ∈ L
is named redundant (in D) if it is both attacking and supporting.

An ADF D is called bipolar (or BADF for short) if each link in L is attacking in D
or supporting in D (thus, the links can also be redundant). An ADF D = (S,L,C) is an
AF if the acceptance condition of every argument s ∈ S is of the form ϕs =

∧
a∈par(s)¬a.

It can then be represented in the more usual form, as a tuple F = (A,R) with arguments
A = S and attacks R = L.

3. Properties of ADF Subclasses

We begin this section with a novel reformulation of Dung’s Fundamental Lemma [2,
Lemma 10] in the realm of ADFs. Besides the case of an argument being acceptable (also
called defended in AFs) there is the symmetric case where an argument is deniable.

Definition 3. Let D = (S,L,C) be an ADF and v be an interpretation on S. An argument
s ∈ S is called acceptable w.r.t. v (in D) if ϕv

s is irrefutable. An argument s ∈ S is called
deniable w.r.t. v (in D) if ϕv

s is unsatisfiable.

Lemma 1. Let v be an admissible interpretation of ADF D = (S,L,C), and a and a′ be
arguments which are acceptable (resp. deniable) with respect to v in D. Then,

1. v′ = v|at (resp. v′ = v|af) is admissible in D, and
2. a′ is acceptable (resp. deniable) with respect to v′ in D.

Proof. We show the result for a and a′ being acceptable. The deniable case is symmetric.
First note due to ϕv

a being irrefutable and v being admissible, v(a) 6= f. Also, v′(a)= t
by the definition of v′. Hence, v≤i v′.

(1) We need to show that v′ ≤i ΓD(v′), that is, for all s ∈ S, v′(s)≤i ΓD(v′)(s). Con-
sider an arbitrary s ∈ S. If v′(s) = u we are done. Assume v′(s) = t. There are two cases

either s = a or s 6= a. If s 6= a, also v(s) = t. Since v is admissible, ϕv
s is irrefutable. If

s = a, then s is acceptable w.r.t. v by assumption. Hence, again, ϕv
s is irrefutable. Since

we know that v ≤i v′ it follows that also ϕv′
s is irrefutable. Similarly, we get that ϕv′

s is
unsatisfiable if v′(s) = f. Hence v′ is admissible.

(2) By assumption a′ is acceptable w.r.t. v, hence ϕv
a′ is irrefutable. Since v ≤i v′,

also ϕv′
a′ is irrefutable, i.e. a′ is acceptable w.r.t. v′.

3.1. Acyclic ADFs

Definition 4. An ADF D = (S,L,C) is acyclic if its corresponding directed graph (S,L)
does not contain any directed cycle.

We will need the concept of maximum level of ADFs defined as follows.

Definition 5. The level of an argument s of an ADF D is the number of links on the
longest path from an initial argument to s plus 1. The maximum level of an (acyclic)
ADF D is the level of an argument of D that is at least as high as the level of any other
argument of D.

It is clear that every acyclic ADF has a maximum level. In the remainder of this
section we show that all main semantics coincide for acyclic ADFs.

Proposition 2. In every acyclic ADF D the ≤i-least fixed point of ΓD is a model of D.

Proof. Let D = (S,L,C) be an acyclic ADF and let m be its maximal level. Moreover, let
v0 := vu and vi := ΓD(vi−1) for 1 ≤ i ≤ m. We claim that for all i with 1 ≤ i ≤ m, and
every argument s j with level j ≤ i it holds that either vi(s j) = t or vi(s j) = f. We show
this claim by induction on i:

• Base case: Suppose s1 is an arbitrary argument of level one (an acyclic ADF
always includes an initial argument). Since s1 is an initial argument, either ϕs1 =
> or ϕs1 =⊥. Hence v1(s1) = ΓD(v0)(s1) is either true or false.

• Inductive step: Assuming this property holds for all k with 1≤ k≤ i<m, we show
it holds for i+ 1. We know that ϕ

vi
s j = ϕs j [sk/> : vi(sk) = t][sk/⊥ : vi(sk) = f].

For all sk that occur in ϕs j it holds that k < j ≤ i+1, with k being the level
of sk. Therefore, by the inductive hypothesis, for each sk, either vi(sk) = t or
vi(sk) = f. Hence either ϕ

vi
s j ≡> or ϕ

vi
s j ≡⊥ and, consequently, either vi+1(s j) = t

or vi+1(s j) = f.

Since m is the maximum level of any argument in D, we now get that vm(s) is either
true or false for all s ∈ S, i.e. it is a two-valued interpretation. Moreover, it holds that
vm = ΓD(vm), i.e. vm is a fixed point.

To show that vm is the least fixed point of ΓD, assume, towards a contradiction, that
there exists an interpretation v <i vm such that v = ΓD(v). Then there exists an argument
s such that either vm(s) = t or vm(s) = f, but v(s) = u. Assume s has level i. Since D is
an acyclic ADF all arguments sk that occur in ϕs have a level less than i. Therefore, there
exists at least an argument s j of level j < i in ϕs such that v(s j) = u. By iterating this
method after at most i−1 times we reach an argument s1 of level 1 for which v(s1) = u.
This is a contradiction, since at level 1 it must be the case that either ϕs1 => or ϕs1 =⊥
and therefore ΓD(v)(s1) 6= u.

Theorem 3. In every acyclic ADF D the sets of grounded interpretations, complete in-
terpretations, preferred interpretations, two-valued models, and stable models coincide.

Proof. First, the grounded interpretation v of D is also complete in D. Moreover, Proposi-
tion 2 implies that v is a two-valued model of D. Since w=wt = vt in which w= grd(Dv),
v is a stable model. It remains to show that there is no further complete interpretation v′

of D. Since v is two-valued it must hold that v 6<i v′. However, since v is grounded and
therefore the least complete interpretation, such a v′ cannot exist. Therefore, v is a unique
complete interpretation of D which is grounded, stable, two-valued, and preferred.

3.2. Symmetric ADFs

The study of symmetric ADFs is motivated by the fact that, as shown in [10], stable
and preferred semantics coincide for symmetric AFs, a property called coherence. Due
to the distinction between two-valued and stable models in ADFs, we actually consider
different levels of coherence.

Definition 6. An ADF D is called

• coherent if each preferred interpretation of D is a stable model of D;
• weakly coherent if each two-valued model of D is a stable model of D;
• semi-coherent if each preferred interpretation of D is a two-valued model of D.

Another concept studied in [10] is relatively groundedness, which is shown to hold
for every symmetric AF there. That is, the grounded extension coincides with the inter-
section of all preferred extensions. We generalize this definition to ADFs.

Definition 7. An ADF D is called relatively grounded if grd(D) =
d

i prf(D).

Symmetric ADFs are now defined as follows.

Definition 8. An ADF D = (S,L,C) is symmetric if L is irreflexive and symmetric and L
does not contain any redundant links.

It turns out that neither of the properties analogous to those holding for symmetric
AFs hold for symmetric ADFs.

Theorem 4. The class of symmetric ADFs is neither semi-coherent, nor weakly coherent,
nor relatively grounded.

Proof. Let D be the symmetric ADF depicted in Figure 1. It holds that prf(D) = {v1,v2}
with v1 = {a 7→ t,b 7→ t,c 7→ t,d 7→ t,e 7→ f} and v2 = {a 7→ t,b 7→ f,c 7→ f,d 7→ u,e 7→ u}.
Since v1 is a two-valued model of D which is not stable (since Dv = D and grd(D) =
{vu}), D is not weakly coherent. Also, D is not semi-coherent since v2 is not two-valued.
In addition,

d
i prf(D) = v2 = {a 7→ t,b 7→ u,c 7→ u,d 7→ u,e 7→ u}, but grd(D) = {vu}.

Therefore, D is not relatively grounded.

This raises the question whether there is a particular subclass of symmetric ADFs
which fulfills the properties considered in Theorem 4. We investigate if this is the case
for acyclic support symmetric ADFs.

c

b

a

d

e

c∨¬b

c∨¬a

(b∧d)∨¬a

c∨ e

¬d

Figure 1. Symmetric ADF which is neither semi-coherent, weakly coherent nor relatively grounded.

Definition 9. Given an ADF D = (S,L,C), let T be the set of all supporting links. The
corresponding graph (S,T) is named the support-reduct of D. D contains a support cycle
whenever the support-reduct of D contains a directed cycle.

Definition 10. An ADF D is called acyclic support symmetric ADF (ASSADF for short)
if it is symmetric, bipolar and does not contain any support cycle.

We begin by showing that ASSADFs are weakly coherent, using the following tech-
nical lemma.

Lemma 5. Let D be an ADF, v be a two-valued model of D, and s ∈ S be an argument
s.t. all parents of s are attackers and s does not occur in ϕs. If ϕv

s is irrefutable then
ϕs[si/⊥ : v(si) = f] is irrefutable.

Theorem 6. Every acyclic support symmetric ADF is weakly coherent.

Proof. Let D = (S,L,C) be an acyclic support symmetric ADF. We have to show that
each two-valued model of D is also a stable model of D. Let v be a two-valued model of
D, Dv = (Sv,Lv,Cv) be the stb-reduct of D, w be the unique grounded interpretation of
Dv, and ϕ ′s the acceptance condition of s in Dv, i.e. ϕ ′s =ϕs[si/⊥ : v(si) = f]. We show that
vt = wt. Suppose to the contrary that there exists an argument s, s.t. v(s) = t and w(s) 6= t.
That is, ϕ ′vs 6≡ >. This means, by Lemma 5 that ϕ ′vs contains an argument s1 supporting s.
For s1 to appear in ϕ ′vs it must be that v(s1) = t. Since supports are acyclic in ASSADFs,
by the same reason ϕ ′s1

= ϕs1 [si/⊥ : v(si) = f] contains an argument s2 which is different
from s and s1 and which supports s1. Thus there exists an infinite sequence of s1,s2, . . .
s.t. si+1 supports si. This is a contradiction to D being an ASSADF.

On the other hand, ASSADFs are neither semi-coherent nor relatively grounded.

Theorem 7. The class of ASSADFs is neither semi-coherent nor relatively grounded.
Even ASSADFs without supporting links are not semi-coherent.

Proof. Consider the ASSADF D depicted in Figure 2. D has 4 preferred interpretations,
namely v1 = {a 7→ f,b 7→ f, c 7→ t, d 7→ t, e 7→ f}, v2 = {a 7→ f, b 7→ t, c 7→ f, d 7→
t, e 7→ f}, v3 = {a 7→ t, b 7→ f, c 7→ f, d 7→ t, e 7→ f}, and v4 = {a 7→ u, b 7→ u, c 7→
u, d 7→ f, e 7→ t}. As every two-valued interpretation of D (that is v1,v2 and v3) is also
a stable model, D is weakly coherent, confirming Theorem 6. However, v4 is a preferred
interpretation which is not a two-valued model. Hence, D is not semi-coherent.

We show that ASSADFs are not relatively grounded. Consider the ASSADF D =
(S,L,C) with S = {a,b,c}, ϕa : ¬b∧¬c, ϕb : ¬a∧¬c, and ϕc : a∨¬b. D has preferred

a

b

c

de

¬c∧ (¬d∨¬b)

¬a∧ (¬d∨¬c)

¬b∧ (¬d∨¬a)

¬e∧ (¬a∨¬b∨¬c)¬d

Figure 2. ASSADF without supporting links being not semi-coherent.

interpretations v1 = {a 7→ f,b 7→ f,c 7→ t} and v2 = {a 7→ f,b 7→ t,c 7→ f}. We obtain
v1ui v2 = {a 7→ f,b 7→ u,c 7→ u}. However, the grounded interpretation of D is the trivial
interpretation vu. That is, D is not relatively grounded.

4. Expressiveness of ADF Subclasses

In this section we deal with the expressiveness of formalisms from the perspective of
realizability [13]. In particular, we are interested in how the novel class of ASSADFs
behaves in these terms compared to AFs and (B)ADFs. The relationship between AFs,
BADFs, and ADFs under the main semantics has been studied in previous work [15,16].

A set of interpretations V is said to be σ -realizable in a formalism F , which is the
set of structures available in F , if there exists an element kb (“knowledge base”) of F
s.t. σ(kb) =V . The signature Σσ

F of a formalism F is then defined as follows.

Definition 11. The signature Σσ

F of a formalism F w.r.t. a semantics σ is defined as:

Σ
σ

F = {σ(kb) | kb ∈F}.

Given two formalisms F1 and F2, we say that F1 is strictly more expressive than F2
for σ , whenever Σσ

F2
(Σσ

F1
. F1 and F2 are incomparable under semantics σ if neither

Σσ

F1
⊆ Σσ

F2
nor Σσ

F2
⊆ Σσ

F1
. This is denoted as Σσ

F1
6∼ Σσ

F2
.

In the following, we will study the signature of ASSADFs w.r.t. the semantics un-
der consideration, compared to AFs and BADFs. We begin by showing that BADFs are
strictly more expressive than ASSADFs for σ ∈ {adm,prf,com,mod}.

Theorem 8. For σ ∈ {adm,prf,com,mod} it holds that Σσ
ASSADF (Σσ

BADF.

Proof. Since every ASSADF is, by definition, a BADF, Σσ
ASSADF ⊆ Σσ

BADF is clear. To
show that Σσ

BADF is a strict superset of Σσ
ASSADF it is enough to find a set of interpretations

V which is σ -realizable in BADFs, but not σ -realizable in ASSADFs.
For σ ∈ {prf,mod}, let V = {{a 7→ t},{a 7→ f}}, and for σ ′ ∈ {com,adm}, let V ′ =

{{a 7→ u},{a 7→ t},{a 7→ f}}. The BADF D = (S,L,C) with S = {a} and ϕa = a realizes
V under σ and V ′ under σ ′. On the other hand, it is easy to check that there is no ASSADF
with one argument which realizes V under σ , and respectively, V ′ under σ ′. (If there is
an ASSADF with one argument a then either ϕa = > or ϕa = ⊥. Thus, it can realize
neither V under σ nor V ′ under σ ′.)

In the proof of Theorem 9 we show why, on the other hand, AFs and ASSADFs are
incomparable for σ ∈ {adm,prf,com}.

Theorem 9. Σσ
AF 6∼ Σσ

ASSADF, for σ ∈ {adm,prf,com}.

Proof. To demonstrate that AFs and ASSADFs are incomparable under σ ∈{adm,prf,com}
we show that Σσ

AF 6⊆ Σσ
ASSADF and Σσ

ASSADF 6⊆ Σσ
AF.

• To show Σσ
AF 6⊆ Σσ

ASSADF consider V = {{a 7→ u}}. A witness of σ -realizability in AFs
is F = ({a},{(a,a)}). However, there is no ASSADF to realize V under σ .

• To verify that Σσ
ASSADF 6⊆ Σσ

AF for σ ∈ {adm,prf,com} we first show that Σ
prf
ASSADF 6⊆

Σ
prf
AF. Let V = {v1,v2,v3} with v1 = {a 7→ f,b 7→ t,c 7→ t,e 7→ t}, v2 = {a 7→ t,b 7→ f,c 7→

t,e 7→ f}, and v3 = {a 7→ t,b 7→ t,c 7→ f,e 7→ f}. A witness of prf-realizability of V in
ASSADFs is D = (S,L,C) with S = {a,b,c,e}, ϕa =¬e∧(¬b∨¬c), ϕb =¬a∨¬c, ϕc =
¬a∨¬b, and ϕe =¬a. However, there is no AF with V as its preferred interpretations. (If
there is an AF F ′ s.t. σ(F ′) =V then the structure of v1,v2 and v3 implies that there is no
attack between a,b and c in F ′. Thus, if there is an attack from any of a,b and c to e then
{a 7→ t,b 7→ t,c 7→ t,e 7→ f} is a preferred interpretation of F ′. If there is no attack from
any of a,b and c to e then {a 7→ t,b 7→ t,c 7→ t,e 7→ t} is a preferred interpretation of F ′.
In both cases σ(F ′) 6= V .) For σ = com let V ′ = V ∪{{a 7→ u,b 7→ u,c 7→ u,e 7→ u}}.
It is easy to check that V ′ is com-realizable by the ASSADF D defined above. If there is
an AF F ′ that realizes V ′ under com then each of the elements of V would be a preferred
interpretation of F ′. Thus, prf(F ′) = V would be the case, which it is easy to see is
actually false. Finally, we get Σadm

ASSADF 6⊆ Σadm
AF by observing that from adm(D) being

realizable under adm in AFs it would follow that prf(D) is realizable under prf in AFs.
But we already showed that the latter is not the case.

Theorems 8–9 together with results from [16] are summarized in Figure 3. The sit-
uation is different for the stable semantics. We recall that stable models v,w of an ADF
are always incomparable, i.e. wt ⊆ vt implies wt = vt, see [17].

Theorem 10. Σstb
AF (Σstb

ASSADF ∼ Σstb
BADF .

Proof. (Sketch) Σstb
AF (Σstb

BADF is shown in [15]; if we can show Σstb
ASSADF ∼ Σstb

BADF we are
thus done. We do so by showing that any incomparable set of two-valued interpretations
is stb-realizable by some ASSADF. To this end, let V be an incomparable set over argu-
ments S (i.e., each v∈V assigns t or f to all s∈ S) and consider an ASSADF D= (S,L,C)
with the following acceptance conditions for s ∈ S2:

• If v(s) = t for every v ∈V then ϕs =>.
• If v(s) = f for every v ∈V then ϕs =⊥.
• Otherwise, ϕs =

∨
v∈V,v(s)=t

∧
v(t)=f∧∃w∈V :(w(s)=f∧w(t)=t)¬t.

By definition, all links in D are attacking and symmetry follows by construction and the
fact that V is incomparable. Moreover, it can be shown that the stable models of D are
exactly given by V .

2In fact, this construction is a slight adaption of a result in [15].

Σσ
ADFΣσ

BADFΣσ
ASSADFΣσ

AF

Figure 3. Expressiveness of subclasses of ADFs for σ ∈ {adm,prf,com}

The following is a consequence of Theorem 10, the fact that stb and mod are
equivalent for AFs, and that ASSADFs are weakly coherent (cf. Theorem 6), and
Σmod

ASSADF (Σmod
BADF from Theorem 8.

Corollary 11. Σmod
AF (Σmod

ASSADF (Σmod
BADF.

The picture changes when we restrict the cardinality of interpretation sets. As it turns
out, any set of interpretations of size 2 obtained from an ADF under the stable semantics
is also realizable in AFs.

Proposition 12. Suppose that |V | = 2 and V is stb-realizable in ADFs. Then V is stb-
realizable in AFs.

Proof. Let V = {v1,v2} be a set of interpretation that is stb-realizable in ADFs, i.e. there
there exists an ADF D = (S,L,C) s.t. stb(D) =V . Construct an AF F = (A,R) by setting
A = S and R = {(a,b) | vi(a) = t,vi(b) = f,v j(a) = f,1 ≤ i 6= j ≤ 2}. To prove that
stb(F) = V , take vi ∈ V . First, there is no attack between arguments with vi(a) = t.
Moreover, if vi(b) = f then, since neither v1 ≤i v2 nor v2 ≤i v1, there must be some a ∈ A
with vi(a) = t and v j(a) = f, hence this (a,b) ∈ R. Hence vi is a stable interpretation of
F . That is, V is stb-realizable in AFs.

5. Experiments

We turn now to the experimental section of our work, where we report on results on
an initial investigation of the performance of solvers for ADFs on subclasses of ADFs.
We focused on the question to what extent current systems are tuned to the acyclic vs.
non-acyclic nature of ADFs. We carried out experiments for credulous acceptance w.r.t.
the admissible semantics and skeptical acceptance w.r.t. the preferred semantics. From
Theorem 3 and complexity results for ADFs [9] it follows that these reasoning tasks can
be decided in polynomial time for acyclic ADFs, while they are located on the second
and third level of the polynomial hierarchy respectively in general.

All systems for ADFs we are aware of rely on encodings to some other formalism;
namely, to quantified Boolean formulas (QBFs) and answer set programming (ASP).
None of these systems are tailored specifically to acyclic ADFs. Therefore, the question
becomes to what extent the solvers used at the backend of current ADF systems are able
to use the acyclic nature of ADFs in their favour.

To answer the question at hand we have modified an existing generator for ADFs
(used in [18]) to take an undirected graph as input3 and be able to generate an acyclic
as well as a non-acyclic ADF as output. The generated ADF inherits the structure of the
graph; vertices in the graph become arguments in the ADF. As to the links of the ADF, in
the case of an acyclic ADF a directed graph is first generated from the undirected graph
by choosing a total order on the vertices at random. This total order is used to determine
the direction of the links. For the non-acyclic ADF, a probability controls whether an
edge in the input graph will result in a symmetric link in the ADF (we used a probability
of 0.5); in case of non-symmetric links the direction of the link is chosen at random.

Having the links of the ADF, the procedure of generating the acceptance conditions
is the same for acyclic as well as non-acyclic ADFs. Each parent of an argument is as-
signed to one of 5 different groups (with equal probability), determining whether the par-
ent participates in a subformula of the argument’s acceptance condition representing the
notions of attack, group-attack, support, or group-support familiar from argumentation.
Also, the parents can appear as literals connected by XOR (to capture the full complexity
of ADFs)4. The subformulas are connected via ∧ or ∨ with equal probability.

In our experiments the input graphs stem from data-sets used at the second interna-
tional competition on computational models of argumentation (ICCMA)5, namely from
encoding assumption-based argumentation problems into AFs (“ABA”), encoding plan-
ning problems as AFs (“Planning”), and a data-set of AFs generated from traffic net-
works (“Traffic”). More specifically, based on preliminary experiments, we selected 100
AFs at random from a subset of AFs having up to 150 arguments in the very dense AFs in
the “ABA” data-set, and 100 AFs at random from a subset of AFs having up to 300 argu-
ments in each of the “Planning” and “Traffic” benchmarks. From the resulting 300 AFs
interpreted as undirected graphs, we generated 300 acyclic and 300 non-acyclic ADFs.

We evaluated the performance of the QBF-based system QADF [19] as well as the
ASP-based systems goDIAMOND [20] and YADF [18]. We studied the running times for
credulous reasoning for the admissible and skeptical reasoning for the preferred seman-
tics. We used a 48 GB Debian (8.5) machine with 8 Intel Xeon processors (2.33 GHz).
For QADF we used version 0.3.2 together with the preprocessor bloqqer 035 and the
QSAT-solver DepQBF 4.0. YADF is version 0.1.0 with the rule decomposition tool lpopt
and the ASP-solver clingo 4.4.0. We gave the systems 10 minutes computation time.

Table 1 and Figure 4 summarise the results of our experiments. For the admissible
semantics, the interesting result is the significant improvement of QADF on the acyclic
ADFs. For goDIAMOND there seems also to be a slight improvement on the “Planning”
and “Traffic” benchmarks (although two time-outs6 on the acyclic instances of “Plan-
ning”). For YADF there is some improvement on the acyclic “ABA” benchmarks.

In the case of the preferred semantics, QADF timed-out on most acyclic as well as
non-acyclic instances (in particular, all of the “Planning” instances). YADF also had quite
a few time-outs, especially on the “ABA” and “Planning” benchmarks on which other-

3Note that the version reported on in [18] takes a directed graph as input.
4In order not to bias the results of the experiments artificially in favour of solvers that are able to process

acceptance conditions with XOR without first having to simplify them, the parents appear in groups of up to 5
connected by XOR. These subformulas are, in turn, connected with ∧ or ∨ with equal probability.

5See http://argumentationcompetition.org/2017/index.html.
6In the case of goDIAMOND there were actually almost no time-outs, yet memory-errors. For simplicity, we

do not distinguish between time-outs and memory-errors here.

Credulous-admissible Skeptical-preferred

Acyclic Non-acyclic Acyclic Non-acyclic

Time-outs Mean Time-outs Mean Time-outs Mean Time-outs Mean

goDIAMOND 52 21.26 52 22.64 52 27.58 52 27.67
ABA QADF 23 2.96 30 8.15 83 14.79 81 32.73

YADF 54 7.38 56 31.39 54 16.77 57 39.46

goDIAMOND 2 4.27 0 7.678 2 8.66 0 17.03
Planning QADF 11 6.07 59 14.63 100 NA 100 NA

YADF 2 8.13 0 13.20 70 124.22 71 202.93

goDIAMOND 1 0.74 1 4.92 1 1.19 3 11.12
Traffic QADF 2 3.07 25 2.15 80 27.79 80 4.7

YADF 1 1.65 2 5.68 35 42.18 36 30.57

Table 1. Time-outs and mean running times (in seconds) for all solvers. Mean running times are computed
disregarding time-outs. Number of time-outs are always out of 100 ADF instances.

 0

 50

 100

 150

 200

 250

 300

 1 10 100

#
 S

o
lv

e
d

 I
n

st
a

n
ce

s

log Runtime

yadf,nac
qadf,nac

godiamond,nac
yadf,ac
qadf,ac

godiamond,ac

(a) Credulous-admissible

 0

 50

 100

 150

 200

 250

 1 10 100

#
 S

o
lv

e
d

 I
n

st
a

n
ce

s

log Runtime

yadf,nac
qadf,nac

godiamond,nac
yadf,ac
qadf,ac

godiamond,ac

(b) Skeptical-preferred

Figure 4. Plot of running time (in seconds) vs. number of instances solved (out of all benchmarks) for all ADF
solvers. “ac” stands for “acyclic”, “nac” for “non-acyclic”.

wise the system fared better on the acyclic instances. goDIAMOND performed much better
than both other systems (still timing-out on around half of the acyclic as well as non-
acyclic “ABA” instances), and there is again some improvement in the performance on
the acyclic vs. non-acyclic instances of the “Planning” and “Traffic” benchmarks.

6. Discussion

In this work, we introduced several subclasses of ADFs and investigated their proper-
ties. We showed that acyclic ADFs behave similar to acyclic AFs in terms of different
semantics. We discussed that for symmetric ADFs the picture is different and related the
expressibility of a particular class of symmetric ADFS (ASSADFs) to the expressibility
of AFs and BADFs. We also provided experiments to analyse the performance of solvers
when applied to these subclasses. Our results show that some systems are more effi-
cient on acyclic instances (compared to cyclic ones of similar size), while others are not,
which indiciates possible optimization potential for the latter (the complexity of acyclic
ADFs has been recently adressed in [21]). As future work, we also consider to extend
our studies to other ADF semantics [22,23].

Acknowledgements. This research has been supported by FWF projects I2854, P30168,
and W1255. The second researcher is currently embedded in the Center of Data Science
& System Complexity (DSSC) Doctoral Programme, at the University of Groningen.

References

[1] Atefeh Keshavarzi Zafarghandi. Investigating subclasses of abstract dialectical frameworks. Master’s
thesis, TU Wien, 2017.

[2] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell., 77(2):321–357, 1995.

[3] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proc. KR, pages 102–111,
2010.

[4] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and Stefan Woltran. Abstract
Dialectical Frameworks. An Overview. IfCoLog Journal of Logics and their Applications, 4(8):2263–
2318, 2017.

[5] Elena Cabrio and Serena Villata. Abstract dialectical frameworks for text exploration. In Proc. ICAART,
pages 85–95, 2016.

[6] Jörg Pührer. ArgueApply: A mobile app for argumentation. In Proc. LPNMR, pages 250–262. Springer,
2017.

[7] Latifa Al-Abdulkarim, Katie Atkinson, and Trevor J. M. Bench-Capon. A methodology for designing
systems to reason with legal cases using abstract dialectical frameworks. Artif. Intell. Law, 24(1):1–49,
2016.

[8] Daniel Neugebauer. Generating defeasible knowledge bases from real-world argumentations using D-
BAS. In Proc. AI 3̂@AI*IA 2017, volume 2012, pages 105–110. CEUR Workshop Proceedings, 2017.

[9] Hannes Strass and Johannes P. Wallner. Analyzing the computational complexity of abstract dialectical
frameworks via approximation fixpoint theory. Artif. Intell., 226:34–74, 2015.

[10] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation frameworks. In
Proc. ECSQARU, pages 317–328. Springer, 2005.

[11] Paul E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints.
Artif. Intell., 171(10-15):701–729, 2007.

[12] Wolfgang Dvořák, Matti Järvisalo, Johannes P. Wallner, and Stefan Woltran. Complexity-sensitive de-
cision procedures for abstract argumentation. Artif. Intell., 206:53–78, 2014.

[13] Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, and Stefan Woltran. Characteristics of multiple
viewpoints in abstract argumentation. Artif. Intell., 228:153–178, 2015.

[14] Jörg Pührer. Realizability of three-valued semantics for abstract dialectical frameworks. In Qiang Yang
and Michael Wooldridge, editors, Proc. IJCAI, pages 3171–3177. AAAI Press, 2015.

[15] Hannes Strass. Expressiveness of two-valued semantics for abstract dialectical frameworks. J. Artif.
Intell. Res., 54:193–231, 2015.

[16] Thomas Linsbichler, Jörg Pührer, and Hannes Strass. A uniform account of realizability in abstract
argumentation. In Proc. ECAI, pages 252–260. IOS Press, 2016.

[17] Hannes Strass. Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell.,
205:39–70, 2013.

[18] Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbichler, and Stefan Woltran. Solving
advanced argumentation problems with answer-set programming. In Proc. AAAI, pages 1077–1083.
AAAI Press, 2017.

[19] Martin Diller, Johannes Peter Wallner, and Stefan Woltran. Reasoning in abstract dialectical frameworks
using quantified boolean formulas. In Proc. COMMA, pages 241–252. IOS Press, 2014.

[20] Hannes Strass and Stefan Ellmauthaler. goDIAMOND 0.6.6 – ICCMA 2017 System Description, 2017.
Available at http://argumentationcompetition.org/2017/goDIAMOND.pdf.

[21] Thomas Linsbichler, Marco Maratea, Andreas Niskanen, Johannes P. Wallner, and Stefan Woltran.
Novel algorithms for abstract dialectical frameworks based on complexity analysis of subclasses and
SAT solving. In Proc. IJCAI, 2018. To appear.

[22] Sarah Alice Gaggl, Sebastian Rudolph, and Hannes Strass. On the computational complexity of naive-
based semantics for abstract dialectical frameworks. In Proc. IJCAI, pages 2985–2991. IJCAI/AAAI,
2015.

[23] Sylwia Polberg. Understanding the abstract dialectical framework. In Proc. JELIA, volume 10021 of
Lecture Notes in Computer Science, pages 430–446, 2016.

