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a b s t r a c t 

We consider a production system where demand can be met by manufacturing new products and re- 

manufacturing returned products, and address the economic lot sizing problem therein. The system faces 

stochastic and time-varying demands and returns over a finite planning horizon. The problem is to match 

supply with demand, while minimizing the total expected cost which is comprised of fixed production 

costs and inventory (holding and backordering) costs. We introduce heuristic policies for this problem 

which offer different levels of flexibility with respect to production decisions. We present computational 

methods for these policies based on convex optimization and certainty equivalent mixed integer pro- 

gramming, and numerically assess their cost performance and computational efficiency by means of sim- 

ulation. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The environmental considerations have been universally

recognized over the last decade. This has led governments

to put policies and regulations into action toward promoting

environment-friendly businesses. Besides environmental legisla-

tion, increasing consumer awareness has stimulated companies

to become more environment-friendly. As a result of all these, a

large variety of new concepts, such as, environmental enterprises,

sustainable businesses, and green brands, have been introduced

into today’s business world in the quest of fostering environment-

friendly business operations. The practice of “remanufacturing”

falls into the context of environment-friendly production opera-

tions. It refers to a set of value-added recovery operations where

used and/or returned components or products are restored to

as-good-as-new condition ( Van Der Laan & Teunter, 2006 ). It has

been proven to be economical and environmental-friendly and

well-received in practice. The production environments where

manufacturing and remanufacturing operations are carried out in

concert are referred to as hybrid manufacturing and remanufac-

turing systems and are common in a variety of industries (see e.g.

Ferguson and Toktay, 2006; Kenne, Dejax, and Gharbi, 2012 , and

references therein). It is difficult to manage inventories in these

systems as it requires effective coordination of manufacturing
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nd remanufacturing operations, especially in presence of fixed

roduction costs and uncertainty in demands and returns. 

We aim to address the aforementioned challenge in the current

anuscript. We consider the inventory control problem in hybrid

anufacturing and remanufacturing systems with stochastic and

ime-varying demands and returns. The objective is to minimize

he expected total cost which is comprised of production costs of

anufacturing and remanufacturing and inventory costs of service-

bles and returns. We refer to this problem as the stochastic eco-

omic lot-sizing problem with returns—henceforth abbreviated as

ELSR. 

There is a sizeable literature on hybrid manufacturing and

emanufacturing systems where a variety of integrated inventory

ontrol approaches have been presented. For a recent review, we

efer the reader to Guide Jr and Van Wassenhove (2009) and

han, Li, Chung, and Saadat (2017) . The studies which fall into

his domain can be classified based on, among others, their as-

umptions regarding demands and returns. For instance, there are

any studies on lot sizing (see e.g. Retel Helmrich, Jans, van den

euvel, & Wagelmans, 2014; Schulz, 2011; Teunter, Bayindir, &

an Den Heuvel, 2006 ) and lot scheduling problems (see e.g.

ang & Teunter, 2006; Teunter, Kaparis, & Tang, 2008; Zanoni,

egerstedt, Tang, & Mazzoldi, 2012 ) in hybrid manufacturing

nd remanufacturing systems. These studies, however, assume

eterministic demands and returns. There are also studies which

ddress stochastic demands and returns (see e.g. Ahiska & King,

010a; Benedito & Corominas, 2013; Panagiotidou, Nenes, Zikopou-

os, & Tagaras, 2017; Van Der Laan & Teunter, 2006 ). However, they

https://doi.org/10.1016/j.ejor.2019.01.051
http://www.ScienceDirect.com
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ssume time-invariant demand and return distributions over time.

hese assumptions do not hold in most production systems. It is

ell-known that demand processes significantly vary over time

ue to factors including short product life cycles and seasonal fluc-

uations (see e.g. Graves & Willems, 2008; Neale & Willems, 2009;

ilver, 2008 ) and return processes are subject to time-varying

ncertainty (see e.g. Fleischmann & Kuik, 20 03; Guide, 20 0 0 ). The

tudies addressing time-varying stochastic demands and returns

re rather scarce. Li, Liu, Cao, and Wang (2009) and Tao and Zhou

2014) are among those. They do not, however, consider fixed

anufacturing and remanufacturing costs, and, as such, ignore

conomies of scale in production. 

There are only a few studies where time-varying stochastic de-

ands and returns are addressed in presence of fixed manufactur-

ng and remanufacturing costs. These are outlined in the follow-

ng. Ahiska and King (2010b) consider a case where a product’s

ife-cycle involves five stages. The demand and return distributions

ary between these stages but remain stationary within each stage.

hey approximate the original problem by a sequence of stationary

roblems—one for each stage of the product life cycle, and em-

loy a stationary heuristic policy for each of these problems. This

ntuitive approach is reasonable if stages of the product life cy-

le span large intervals of time. Naeem, Dias, Tibrewal, Chang, and

iwari (2013) consider a hybrid manufacturing and remanufactur-

ng system with period-specific demand and return distributions.

hey model and solve the problem as a stochastic dynamic pro-

ram. Hilger, Sahling, and Tempelmeier (2016) and Kilic, Tunc, and

arim (2018) consider the problem under different service level

onstraints. They present heuristic policies inspired by simple con-

rol rules and develop mathematical models thereof. 

To the best of authors’ knowledge; Naeem et al. (2013) , Hilger

t al. (2016) , and Kilic et al. (2018) are the only studies that

ddress variants of SELSR. These adopt different policies in ap-

roaching the problem which can be classified by Bookbinder

nd Tan ’s (1988) well-known scheme. This classification scheme

ifferentiates between static, dynamic, and static-dynamic uncer-

ainty strategies. The static uncertainty strategy encompasses poli-

ies where all replenishment decisions are made at the beginning

f the planning horizon. For instance, Hilger et al. (2016) adopt

 static-uncertainty strategy where manufacturing and remanufac-

uring periods, as well as corresponding quantities in each pe-

iod, are determined at the beginning of the planning horizon.

he dynamic uncertainty strategy, on the other hand, stands for

he other extreme where replenishment decisions are dynamically

ade in a just-in-time fashion. Naeem et al. ’s (2013) stochastic dy-

amic program employs a dynamic uncertainty strategy as manu-

acturing and remanufacturing quantities are strictly state depen-

ent. The static-dynamic uncertainty strategy is a hybrid of the

rst two strategies where a replenishment schedule is fixed at the

utset, but replenishment quantities are dynamically determined

pon observing inventory levels at each replenishment epoch. Kilic

t al. ’s (2018) policies follow a static-dynamic uncertainty strategy

s they are characterized by fixed manufacturing and remanufac-

uring schedules, while allowing flexibility in manufacturing and/or

emanufacturing quantities. It is important to remark that these

trategies have their advantages and disadvantages. For instance,

ecause the cost-effectiveness of a policy improves as it effectively

xploits more information in making decisions, the dynamic uncer-

ainty strategy is the best in terms of cost performance. The static

ncertainty strategy, on the other hand, offers advanced informa-

ion on production quantities, and, as such, it is very suitable for

ystems characterized by limited flexibility. The static-dynamic un-

ertainty strategy eliminates the uncertainty (or the so-called ner-

ousness) in the replenishment schedule which is known to be

ritical in practice ( Heisig, 2001; Inderfurth, 1994 ), while exploit-

ng the cost advantage of flexible production quantities. 
The aim of this paper is to present heuristic policies for SELSR,

ased on dynamic and static-dynamic uncertainty strategies.

ur contributions are outlined as follows. First, we propose a

euristic policy following the dynamic uncertainty strategy. This

euristic is aimed at alleviating the computational burden of the

ptimal stochastic dynamic program of SELSR, while providing

ost-effective solutions by exploiting the advantages of the dy-

amic uncertainty strategy. It is a stochastic adaptation of Silver

nd Meal ’s (1973) heuristic tailored for hybrid manufacturing and

emanufacturing systems with stochastic demands and returns.

econd, we adopt the static-dynamic policies introduced by Kilic

t al. (2018) . The mathematical models of these policies were built

n the restrictive assumption that the effect of backorders can be

eglected in cost computations. This assumption is only reason-

ble under service level constraints that require high non-stockout

robabilities and enables one to safely replace the true non-linear

ost function by a linear approximation, and thereby lead to

impler mathematical models. In the current study, we relax this

ssumption and develop certainty equivalent MIP models of Kilic

t al. ’s (2018) static-dynamic policies which allow for more general

easures of service quality. Finally, we conduct a numerical study

nd evaluate the cost performance and the computational effi-

iency of the proposed dynamic and static-dynamic policies, while

sing Hilger et al. ’s (2016) static policy as a benchmark. Our results

learly demonstrate the trade-off between the cost performance

nd the flexibility of the policies and point out problem settings

here a particular policy can be a better alternative to others. 

The remainder of the paper is organized as follows. In Section 2 ,

e provide a formal definition of the problem and set the nota-

ion. In Section 3 , we introduce the dynamic heuristic and the as-

ociated algorithm. In Section 4 , we introduce the static-dynamic

euristics as well as their MIP models. In Section 5 , we conduct a

omputational study. In Section 6 , we conclude. 

. Problem definition and background 

SELSR can be defined as follows. We consider a hybrid manufac-

uring and remanufacturing system with stochastic demands and

eturns where remanufactured products are considered as-good-

s-new. The system has two inventories: serviceable and return

roducts. The serviceable inventory is replenished by manufactur-

ng new products and remanufacturing returned products. The re-

urn inventory is fed by product returns. The planning horizon con-

ists of T periods. The demands and returns over these periods

re independent but not necessarily identically distributed random

ariables with known distribution functions. The demand and re-

urn in period n are denoted as D n and R n , respectively. Demands

hat are not satisfied from stock are backordered. There are fixed

roduction costs which are charged in each manufacturing and re-

anufacturing period. These are denoted as K 

m and K 

r . The unit

anufacturing and remanufacturing costs are ignored for conve-

ience (see Teunter et al., 2006 ), yet they can easily be incorpo-

ated in the analysis. The holding costs h s and h r are incurred for

ach unit of serviceable and return inventory carried from one pe-

iod to the next, and a backorder cost p is incurred for each unit

f backordered demand per period. The problem is to determine a

anufacturing and remanufacturing schedule, and the correspond-

ng production quantities so as to minimize the expected total cost

ver the planning horizon. 

We assume the following sequence of events in each period.

irst, returns are realized and fed into the return inventory. Then,

roduction operations take place and serviceable and return in-

entory levels are updated. If a remanufacturing operation takes

lace, then remanufactured products are added to serviceable

nventory and the same amount of returns are depleted from the

eturn inventory. If a manufacturing operation takes place, then
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manufactured products are added into the serviceable inventory.

Next, demand is realized and deducted from the serviceable

inventory. Finally, excess or shortage inventories and returns are

carried over to the next period. 

The following notational convention is used throughout the

paper. We let [ u, v ] denote the set of consecutive integers

{ u, u + 1 , . . . , v } . For a sequence of random variables ξ1 , ξ2 . . . ,

we let ξ[ u, v ] := 

∑ 

n ∈ [ u, v ] ξn . We define [ x ] + = max { x, 0 } and [ x ] − =
max {−x, 0 } . We also define � x � as the least integer greater than or

equal to x . We let E be the expectation operator and 1 {·} be the

indicator function. Finally, we denote the cardinality of a set A as

| A |. 

SELSR can be modeled as a stochastic dynamic program (c.f.

Naeem et al., 2013 ). For the sake of completeness, we begin our

analysis by presenting such a program. Let us define the single-

period inventory cost function 

G n (y s , y r ) = h 

s E [ y s − D n ] 
+ + pE [ y s − D n ] 

− + h 

r y r 

which provides the expected holding costs of serviceable and

returns, and backorder costs in period n , provided that post-

production serviceable and return inventory levels are respectively

y s and y r . 
The stochastic dynamic program can be built upon a recursive

function C n ( x 
s , x r ) which expresses the expected total cost of fol-

lowing optimal policy from period n onward, if the initial service-
able and return inventory levels in this period are x s and x r , re-
spectively. This function can be written as 

 n (x s , x r ) = min 

0 ≤q m , 0 ≤q r ≤x r {
K m 1 { q m > 0 } + K r 1 { q r > 0 } + G n (x s + q m + q r , x r − q r ) 

+ E C n +1 (x s + q m + q r − D n , x 
r − q r + R n +1 ) 

}
where the minimization is done over q m and q r which respectively

stand for manufacturing and remanufacturing quantities. The ter-

minal cost function reads C T +1 (x s , x r ) = 0 for all x s and x r . It is easy

to see that the first line of the expression stands for the produc-

tion costs and expected inventory costs in the immediate period

whereas the second line provides the optimal expected cost-to-go

from next period onwards. 

The dynamic program above can be solved for discrete demands

and returns by standard methods, but it poses a significant com-

putational challenge even for small-scale problems. It is therefore

not suitable to be used in most real-life applications, at least with-

out exploiting structural properties of its optimal solution which

to date are not available. The heuristic policies we present in the

following sections bypass this issue and offer practical means of

approaching SELSR. 

3. Dynamic heuristic 

In this section, we present a computationally efficient heuristic

for SELSR. The heuristic follows a dynamic uncertainty strategy and

determines production quantities in each period upon observing

the initial serviceable and return inventories. It is inspired by Silver

and Meal ’s (1973) well-known myopic heuristic. Silver and Meal ’s

heuristic has been adapted for many other lot-sizing problems in

the literature, including Askin ’s (1981) extension which captures

stochastic demands and Teunter et al. ’s (2006) extension which

accounts for product returns. For the purposes of the current pa-

per, we build on and blend these two approaches. The proposed

heuristic is based on the idea of determining production quantities

in connection with a virtual replenishment cycle which starts in

the immediate period. The length of this cycle is chosen such that

the average expected cost per period is minimum. The production

quantities in the immediate period are then myopically set as the
ptimal production quantities minimizing the total expected cost

f the chosen replenishment cycle. 

In what follows, we first introduce the concept of replenish-

ent cycles and associated cost minimization problems. Then, we

xplain how replenishment decisions are made. 
Let us consider an arbitrary period n and suppose that post-

roduction serviceable and return inventory levels are y s and y r ,
espectively. Furthermore, assume that no production operation
akes place up-to (but not including) period n + a ( a ≥ 1). That is,
e have a replenishment cycle that spans over periods [ n, n + a −

] . The length of this cycle is a periods. The expected total inven-
ory holding and backorder costs over the replenishment cycle can
e expressed by means of the following function: 

 na (y s , y r ) 

= 

n + a −1 ∑ 

u = n 

(
h s E 

[
y s − D [ n,u ] 

]+ + pE 

[
y s − D [ n,u ] 

]− + h r E 

[
y r + R [ n +1 ,u ] 

])

t is easy to see that G na ( y 
s , y r ) is separable and jointly con-

ex on y s and y r . Its partial derivatives are ∂ G na /∂ y s = (h s +
p) 

∑ n + a −1 
u = n F nu (y s ) − pa and ∂ G na /∂ y r = h r a where F nu is the distri-

ution function of the random variable D [ n , u ] . 

Next, we analyze the problem of finding the optimal production

uantities. For initial serviceable and return inventories x s and x r ,

he minimum expected total cost of the replenishment cycle can

e written as 

 na (x s , x r ) = min 

0 ≤q m , 0 ≤q r ≤x r 
{ K 

m 1 { q m > 0 } + K 

r 1 { q r > 0 } 
+ G na (x s + q m + q r , x r − q r ) } 

nd computing it is essential in the context of the proposed heuris-

ic. We now present an efficient approach to compute V na ( x 
s , x r ).

ur approach decomposes the problem by breaking down the do-

ain of production quantities q m and q r into four different parts

uch that each sub-problem stands for a different production pol-

cy; namely, manufacture-only ( q m ≥ 0 and q r = 0 ), remanufacture-

nly ( q m = 0 and q r ≥ 0), manufacture-and-remanufacture ( q m ≥ 0

nd q r ≥ 0), and do-nothing ( q m = 0 and q r = 0 ). In all these cases,

he fixed production costs are constant and independent of the

roduction quantities; and because G na ( y 
s , y r ) is jointly convex on

ts arguments, so are the cost expressions to be minimized. This

nables us to optimize the overall problem by solving a series of

onvex optimization problems and choosing the case with the min-

mum cost solution. 

We now elaborate on how each case can be optimized inde-

endently. Let us first concentrate on manufacture-only problem.

ere, the optimization problem reduces to finding a q m ( q m ≥ 0)

uch that K 

m + G na (x s + q m , x r ) is minimized. Because G na ( y 
s , y r )

s convex in y s , the optimal policy is a manufacture-up-to pol-

cy. That is, there exists a manufacture-up-to level αna for the

anufacture-only problem associated with the replenishment cy-

le which spans over periods [ n, n + a − 1] such that it is optimal

o manufacture αna − x s units if x s < αna , and not to manufacture

therwise. This manufacture-up-to level satisfies 

1 

a 

n + a −1 ∑ 

u = n 
F nu (αna ) = 

p 

h 

s + p 
(1)

hich is obtained by setting ∂ G na /∂ y s = 0 . Thus, we have that

 

m ∗ = max { 0 , αna − x s } is the optimal manufacturing quantity and

 

m + G na (x s + q m ∗ , x r ) is the associated cost of the manufacturing-

nly problem. 

We can analyze the remanufacturing-only problem in a simi-

ar vein. Here, the optimization problem is to find a q r ( x r ≥ q r ≥ 0)

uch that K 

r + G na (x s + q r , x r − q r ) is minimized. We know that

 na ( y 
s , y r ) is jointly convex in y s and y r . Thus, the optimal

olicy is a remanufacture-up-to policy. That is, there exists a
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Table 1 

The cost expressions and optimal production quantities for manufacture-only ( m ), remanufacture-only ( r ), manufacture-and-remanufacture ( mr ), and do-nothing ( 0 ) prob- 

lems. 

Sub-problem Cost expression q m ∗ q r ∗

m K m + G na (x s + q m , x r ) max { 0 , αna − x s } 0 

r K r + G na (x s + q r , x r − q r ) 0 min { x r , max { βna − x s , 0 }} 
mr K m + K r + G na (x s + q m + q r , x r − q r ) max { 0 , αna − x s − q r ∗} min { x r , max { βna − x s , 0 }} 
0 G na ( x 

s , x r ) 0 0 

r  

a  

o

x  

r

w  

c  

r  

m  

r  

t  

q  

r

 

p  

m  

fi  

e

p  

y

P  

r  

T  

t

P  

m  

a  

u  

a  

q  

B  

q  

t

P  

s

P

 

m

t  

i  

t  

i  

p  

r

t  

a  

r  

o  

o  

K

 

a  

l  

F  

t  

t  

w  

m  

q  

p  

p  

m  

c  

t

 

m  

t  

e

 

q  

a  

c  

i  

i  

q  

n  

o  

i

 

t  

p  

a  

a  

m  

i

W  

p  

r  

a  

a  

 

t  

c  

t  

e  

i

4

 

o  
emanufacture-up-to level βna for the manufacture-only problem

ssociated with the replenishment cycle which spans over peri-

ds [ n, n + a − 1] such that it is optimal to remanufacture βna −
 

s units if x s < βna , and not to remanufacture otherwise. The

emanufacture-up-to level can be characterized by 

1 

a 

n + a −1 ∑ 

u = n 
F nu (βna ) = 

h 

r + p 

h 

s + p 
(2) 

hich is obtained by setting ∂ G na /∂ y s − ∂ G na /∂ y r = 0 . For the

ases where the available return inventory x r is not sufficient to

emanufacture βna − x s units, the convexity suggests that it is opti-

al to remanufacture as much as possible, or, put in other words,

emanufacture all return inventory. Therefore, we can conclude

hat q r ∗ = min { x r , max { βna − x s , 0 }} is the optimal remanufacturing

uantity and K 

r + G na (x s + q r ∗, x r − q r ∗) is the optimal cost of the

emanufacturing-only problem. 

We note that the results presented above immediately ap-

ly to systems where demands and returns are discrete. The

anufacture- and remanufacture-up-to levels should then be de-

ned as the smallest values such that the left-hand-sides of the

xpressions in (1) and (2) exceed the right-hand-sides. 

Before proceeding with the manufacture-and-remanufacture 

roblem, we present the following results which facilitate our anal-

sis. 

roperty 1. The optimal production quantities q m ∗ and q r ∗ of the

emanufacture-and-manufacture problem satisfies q m ∗ (x r − q r ∗) = 0 .

hat is, the optimal manufacturing quantity can only be strictly posi-

ive if it is also optimal to remanufacture all return inventory. 

roof. Proof by contradiction. Suppose q m ∗ and q r ∗ are the optimal

anufacturing and remanufacturing quantities such that q m ∗ > 0

nd x r > q r ∗ ≥ 0 . Let us consider an alternative solution where man-

facturing and remanufacturing quantities are q m = q m ∗ − (x r − q r ∗)
nd q r = x r . The costs of these solutions are K 

m + K 

r + G na (x s +
 

m ∗ + q r ∗, x r − q r ∗) and K 

m + K 

r + G na (x s + q m ∗ + q r ∗, 0) , respectively.

ecause the former is the optimal, we must have G na (x s + q m ∗ +
 

r ∗, x r − q r ∗) < G na (x s + q m ∗ + q r ∗, 0) . However, this contradicts with

he fact that G na ( y 
s , y r ) is increasing in y r . �

roperty 2. The manufacture-up-to and remanufacture-up-to levels

atisfy αna ≤βna . 

roof. The proof immediately follows from (1) and (2) . �

The properties above clearly demonstrate that in the

anufacture-and-remanufacture problem it is always better 

o remanufacture rather than to manufacture (provided there

s available return inventory) when approaching a specific

arget serviceable inventory level. The consequence of this

s that we can approach the manufacture-and-remanufacture

roblem by sequentially deploying the optimal policies of the

emanufacturing-only and manufacturing-only problems. To 

hat end, we first set the optimal remanufacturing quantity

s q r ∗ = min { x r , max { βna − x s , 0 }} . Then, based on the post-

emanufacturing serviceable inventory level x s + q r ∗, we set the

ptimal manufacturing quantity as q m ∗ = max { 0 , αna − x s − q r ∗} . The
ptimal cost of the remanufacturing-only problem is therefore

 

m + K 

r + G na (x s + q m ∗ + q r ∗, x r − q r ∗) . 
This concludes our analysis on optimal production quantities,

s the do-nothing option does not entail an optimization prob-

em. We can summarize the optimization procedure as follows.

irst, we compute the manufacture-up-to and remanufacture-up-

o levels. These can easily be obtained by standard root-finding

echniques. The initial serviceable and return inventories along

ith the manufacture-up-to and remanufacture-up-to levels im-

ediately provide the optimal manufacturing and remanufacturing

uantities for all four sub-problems. We then compute the cost ex-

ressions associated with each sub-problem based on the optimal

roduction quantities. Finally, we choose the sub-problem with the

inimum cost and establish production quantities accordingly. For

onvenience, we provide the cost expressions and optimal produc-

ion quantities for all each sub-problem in Table 1 . 

We have thus far presented an efficient method to compute the

inimum expected total cost of a replenishment cycle. We now

urn our attention to how replenishment decisions are made in

ach period. 

The heuristic determines manufacturing and remanufacturing

uantities in each period upon observing the initial serviceable

nd return inventories. The production quantities are established in

onnection with a virtual replenishment cycle which starts in the

mmediate period. We use the term “virtual” because the replen-

shment cycle is merely used as a proxy to determine production

uantities, it is not implemented. That is, as opposed to the defi-

ition of a replenishment cycle which suggests that no production

peration takes place over the replenishment cycle, the heuristic

nitiates production operations on a period-by-period basis. 

The replenishment cycle that will constitute a basis for produc-

ion quantities is chosen such that its average expected cost per

eriod is as small as possible. Let us consider an arbitrary period n

nd suppose that the initial serviceable and return inventory levels

re x s and x r . The average expected cost per period of a replenish-

ent cycle that starts in period n and spans periods [ n, n + a − 1]

s written as 

V na (x s , x r ) 

a 
. 

e thus aim at finding a replenishment cycle for which this ex-

ression is minimized. To that end, we use a simple forward search

outine which increments the cycle length a as long as the aver-

ge expected cost per period is decreasing. That is, we compute

 sequence of expressions 
V n 1 (x s ,x r ) 

1 , 
V n 2 (x s ,x r ) 

2 , . . . and stop when
V na (x s ,x r ) 

a ≤ V na +1 (x s ,x r ) 
a +1 for some cycle length a . Then, we put the op-

imal production quantities associated with the replenishment cy-

le that spans over the next a periods into action and the system

ransitions from period n to n + 1 . This procedure is deployed in

ach and every period over the planning horizon upon observing

nitial serviceable and return inventories. 

. Static-dynamic heuristics 

In this section, we present two heuristic policies for SELSR: All-

r-Nothing Policy ( AoN ) and Threshold Policy ( THR ). These are
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both static-dynamic policies, i.e., they fix the periods in which

manufacturing and remanufacturing operations take place at the

very beginning of the planning horizon, yet they significantly dif-

fer from each other as to how manufacturing and remanufactur-

ing quantities are determined. AoN and THR are introduced by

Kilic et al. (2018) . Because Kilic et al. (2018) addressed SELSR under

a service level constraint that limits the probability of stock-outs,

their mathematical models are built on the restrictive assumption

that non-stockout probabilities are sufficiently high to justify ne-

glecting backorders in cost computations. We shall relax this as-

sumption and devise certainty equivalent MIP models of AoN and

THR which can account for backordering costs. 

In what follows, we first present some preliminary analysis

of static-dynamic policies. Then, we elaborate on AoN and THR

policies and their mathematical models. For the sake of brevity,

we keep the discussion on policy descriptions brief and refer the

reader to Kilic et al. (2018) for details. 

4.1. Preliminaries 

Any static-dynamic policy is characterized by a set of manu-

facturing and remanufacturing periods as well as a set of rules

that define how production quantities are determined in these

periods. We define the set of manufacturing and remanufactur-

ing periods as �m ⊆[1, T ] and �r ⊆[1, T ], respectively. The deci-

sion rules may vastly change from one policy to another, but,

in essence, they characterize manufacturing and remanufacturing

quantities, and thereby serviceable and return inventories. Let us

define the following for each period n over the planning horizon;

Q 

m 

n and Q 

r 
n are the respective manufacturing and remanufacturing

quantities, and X s n and X r n are the respective serviceable and re-

turn inventory levels at the end of the period. For any given pe-

riod n , the policy inputs initial serviceable and return inventory

levels X s 
n −1 

and X r n −1 + R n , respectively, and yields Q 

m 

n ( Q 

m 

n ≥ 0 )

and Q 

r 
n ( X r 

n −1 
+ R n ≥ Q 

r 
n and Q 

r 
n ≥ 0 ), where it should be clear that

we can only have Q 

m 

n > 0 for n ∈ �m and Q 

r 
n > 0 for n ∈ �r . It is

important to note that the actual values of Q 

m 

n and Q 

r 
n may or may

not be known at the outset based on the structure of the decision

rules. 

The dynamics of the system is governed by the following equa-

tions which dictate the flow conservation for serviceable and re-

turn inventories 

X 

s 
n = X 

s 
n −1 + Q 

m 

n + Q 

r 
n − D n 

X 

r 
n = X 

r 
n −1 + R n − Q 

r 
n 

where X s 
0 

and X r 0 are the serviceable and return inventories at the

beginning of the planning horizon, respectively. 

The expected total cost of the policy over the planning horizon

can be written as 

K 

m | �m | + K 

r | �r | + 

T ∑ 

n =1 

(
E 

{
h 

s [ X 

s 
n ] 

+ + p[ X 

s 
n ] 

− + h 

r X 

r 
n 

})
or alternatively 

K 

m | �m | + K 

r | �r | + 

T ∑ 

n =1 

(
h 

s E X 

s 
n + h 

r E X 

r 
n + (h 

s + p) E [ X 

s 
n ] 

−)
. (3)

The main challenge here is to compute the expected total cost

of a given policy. This requires obtaining the expected values E X s n ,

E X r n , and E [ X s n ] 
−. These respectively stand for the expected service-

able and return inventories, and backorders in period n . In what

follows, we address this challenge for AoN and THR policies. 

4.2. AoN 

AoN is a static-dynamic policy with fixed manufacturing

and remanufacturing periods; where manufacturing quantities
re determined at the outset as constants and remanufacturing

uantities are dynamically determined following an all-or-nothing

ule, i.e., all return inventory is remanufactured in remanufac-

uring periods. Thus, in addition to the set of manufacturing

nd remanufacturing periods �m and �r , the parameters of

oN involve manufacturing quantities for manufacturing periods,

enoted by q = { q n : n ∈ �m } . Following the policy parameters,

e have Q 

m 

n = q n if period n ∈ �m and Q 

m 

n = 0 otherwise, and,

imilarly, Q 

r 
n = X r 

n −1 
+ R n if period n ∈ �r and 0 otherwise. Then,

he expected manufacturing and remanufacturing quantities can

e expressed as E Q 

m 

n = q n and E Q 

r 
n = E X r n −1 + E R n , respectively. 

We now concentrate on serviceable and return inventories in

n arbitrary period n . For the serviceable inventory, we rely on the

imple observation that the cumulative demand D [1, n ] is satisfied

y cumulative manufacturing and remanufacturing over the inter-

al [1, n ]. The former can be derived from the policy parameters

s 
∑ 

u ∈ �m : u ≤n q u . The latter, on the other hand, can be expressed

n connection with the last remanufacturing period prior to period

 . Let k = max { u ∈ �r ∪ { 0 } : u ≤ n } denote this period where {0}

uggests there may be no remanufacturing period before period n .

t should be obvious that k is dependent on n , yet it is suppressed

n the notation for simplicity. The all-or-nothing property then sug-

ests that cumulative remanufacturing over the interval [1, n ] can

e expressed as R [1, k ] . Hence, we can write the serviceable inven-

ory level in period n as X s n = 

∑ 

u ∈ �m : u ≤n q u − (D [1 ,n ] − R [1 ,k ] ) . For

he return inventory, we use the observation that there is no re-

anufacturing period in the interval [ k + 1 , n ] . This implies that

he return inventory in period n equals to the cumulative return

ver interval [ k + 1 , n ] . That is X r n = R [ k +1 ,n ] . 

The expressions above demonstrate that we can derive the ex-

ected values of serviceable and return inventories in an arbi-

rary period n from the policy parameters as E X s n = 

∑ 

u ∈ �m : u ≤n q u −
(E D [1 ,n ] − E R [1 ,k ] ) and E X r n = E R [ k +1 ,n ] . Further, they enable us to

haracterize the expected backorders in period n as 

 [ X 

s 
n ] 

− = E 

[ ∑ 

u ∈ �m : u ≤n 

q u − (D [1 ,n ] − R [1 ,k ] ) 

] −

= L kn 

( ∑ 

u ∈ �m : u ≤n 

q u 

) 

= L kn (E X 

s 
n + (E D [1 ,n ] − E R [1 ,k ] )) (4)

here L kn ( · ) is the first-order loss function of the random variable

 [1 ,n ] − R [1 ,k ] . 

We shall make use of the results presented here on the ex-

ected values E X s n , E X r n , and E [ X s n ] 
− in building a certainty equiva-

ent MIP model of AoN . 

.3. THR 

THR is a static-dynamic policy with fixed manufacturing and

emanufacturing periods; where manufacturing and remanufactur-

ng quantities are dynamically determined following threshold val-

es. That is, manufacturing quantities are set so as to increase

he serviceable inventory to a pre-specified manufacturing-up-to

evel and remanufacturing quantities are set so as to decrease

he return inventory to a pre-specified remanufacturing-down-to

evel. If both manufacturing and remanufacturing take place in

he same period, then remanufacturing precedes manufacturing

nd the same decision rules apply. AoN and THR significantly

iffer in how manufacturing and remanufacturing quantities are

etermined. The manufacturing quantities are dynamically deter-

ined by means of manufacture-up-to levels in THR , whereas

hey are fixed quantities in AoN . The remanufacturing quanti-

ies, on the other hand, are set by means of the remanufacture-

own-to levels in both AoN and THR . The former is a special



O.A. Kilic and H. Tunc / European Journal of Operational Research 276 (2019) 880–892 885 

c  

r  

u  

a  

u  

e  

Q  

s  

w  

n  

c  

p  

e

 

s  

i  

s  

i  

i  

a  

m  

r  

r  

f  

v

i  

t  

f  

i  

t  

t  

a  

a  

a  

m  

T  

X  

u  

i  

r  

a  

t

 

o  

i

 

w

E

w  

a

 

a

4

 

(  

e  

t  

f  

v  

x  

o  

c  

d  

a  

i  

o  

s

 

c  

s  

c

 

l  

a

E

(

w  

D

 

n  

D  

t  

p

(

w  

v

 

r  

e  

f  

F  

w

4

 

t  

p  

i

 

T  

n  

t  

d  

a  

f  

t  

p  

m  

T  

e  

i  

w

 

i  

c

m

 

p  

s  

o

ase where the down-to level is zero due to the all-or-nothing

ule. The latter is more flexible as any threshold level can be

sed. The parameters of THR include the set of manufacturing

nd remanufacturing periods �m and �r as well as manufacture-

p-to levels w 

m = { w 

m 

n : n ∈ �m } and remanufacture-down-to lev-

ls w 

r = { w 

r 
n : n ∈ �r } . Following the policy parameters, we have

 

m 

n = w 

m 

n − Q 

r 
n − X s 

n −1 
if period n ∈ �m and Q 

m 

n = 0 otherwise, and,

imilarly, Q 

r 
n = X r n −1 + R n − w 

r 
n if period n ∈ �r and Q 

r 
n = 0 other-

ise. We note that production quantities mentioned above can be

egative following realized demands and returns. We neglect such

ases as they rarely occur if reasonable policy parameters are in

lace, which should call for sizeable production quantities in pres-

nce of fixed production costs. 

We now focus on serviceable and return inventories. It is pos-

ible to derive expressions of serviceable and return inventories

n an arbitrary period n based on particular production periods

cheduled for earlier periods. Let j ∈ [0, n ] be the last manufactur-

ng period before n . That is, j = max { u ∈ �m ∪ { 0 } : u ≤ n } . Also, let

 ∈ [0, j ] and k ∈ [0, n ] be the last remanufacturing periods before j

nd n , respectively. That is, i = max { u ∈ �r ∪ { 0 } : u ≤ j} and k =
ax { u ∈ �r ∪ { 0 } : u ≤ n } . For any period n ; periods i , j , and k are

eadily available once the policy parameters are known. These pe-

iods are all dependent on n , but we suppress this in the notation

or brevity. For the serviceable inventory, we use the that obser-

ation that the post-manufacturing serviceable inventory level w 

m 

j 

n period j and the cumulative remanufacturing quantity over in-

erval [ j , n ] are used to satisfy the cumulative demand D [ j , n ] . The

ormer is already a policy parameter. The latter can be expressed

n connection with the production periods introduced above. The

otal remanufacturing quantity over the interval [ j , n ] is equal

o the total remanufacturing quantity over the interval [ i + 1 , k ]

s there is no remanufacturing period over the intervals [ i + 1 , j]

nd [ k + 1 , n ] . The post-production return inventories in periods i

nd k are w 

r 
i 

and w 

r 
k 
, respectively. These suggest that the total re-

anufacturing quantity over the interval [ j , n ] is w 

r 
i 
− w 

r 
k 

+ R [ i +1 ,k ] .

hen, we can write the serviceable inventory level in period n as

 

s 
n = w 

m 

j 
+ w 

r 
i 
− w 

r 
k 

− (D [ j,n ] − R [ i +1 ,k ] ) . For the return inventory, we

se the observation that the only remanufacturing period over the

nterval [ k , n ] is k , and post-production return inventory in this pe-

iod is w 

r 
k 
. Therefore, all returns received over the interval [ k + 1 , n ]

ccumulate up to period n . Then, we can write the return inven-

ory level in period n as X r n = w 

r 
k 

+ R [ k +1 ,n ] . 

The expressions provided above show that the expected values

f serviceable and return inventories can be obtained from the pol-

cy parameters for an arbitrary period n as E X s n = w 

m 

j 
+ w 

r 
i 
− w 

r 
k 

−
(E D [ j,n ] − E R [ i +1 ,k ] ) and E X r n = w 

r 
k 

+ E R [ k +1 ,n ] . They also allow us to

rite the expected backorders in period n as 

 [ X 

s 
n ] 

− = E [ w 

m 

j + w 

r 
i − w 

r 
k − (D [ j,n ] − R [ i +1 ,k ] )] −

= L i jkn (w 

m 

j + w 

r 
i − w 

r 
k ) 

= L i jkn (E X 

s 
n + (E D [ j,n ] − E R [ i +1 ,k ] )) (5) 

here L ijkn ( · ) is the first-order loss function of the random vari-

ble D [ j,n ] − R [ i +1 ,k ] . 

The results presented here on the expected values E X s n , E X r n ,

nd E [ X s n ] 
− will be functional in devising a MIP model of THR . 

.4. Approximation of the expected backorder level 

The non-linearity induced by the loss functions in (4) and

5) precludes us from directly embedding expected backorder lev-

ls into a MIP model. We overcome this issue by approximating

he loss function by a piecewise linear function. The first-order loss

unction L of a random variable ξ is non-negative, and it is con-

ex and decreasing on x . It approaches −E ξ as x → −∞ and 0 as

 → ∞ . It is well-known that point-wise maximum of a given set
f linear functions is also convex. Therefore, any loss function L ( · )

an be well approximated as L (x ) ≈ max (a,b) ∈ W 

{ a + bx } . Here, W

efines a finite set of linear functions by means of their intercept

nd slope pairs as W = { (a 1 , b 1 ) , (a 2 , b 2 ) , . . . , (a m 

, b m 

) } . Because L

s non-negative and decreasing and due to its limiting behavior, it

nly makes sense to have an intercept such that a ≥ 0 and a slope

uch that 0 ≥ b ≥ −1 . 

The aforementioned idea can immediately be employed in the

ontext of AoN and THR policies, as provided the replenishment

chedule, we know the loss function of which random variable

haracterizes the backorder level. 

For AoN , the backorder level in period n is characterized by the

oss function of the random variable D [1 ,n ] − R [1 ,k ] as derived in (4) ,

nd it is obtained by evaluating this function at E X s n + (E D [1 ,n ] −
 R [1 ,k ] ) . Hence, it can be approximated as 

max 
a,b) ∈ W kn 

{
a + b 

(
E X 

s 
n + (E D [1 ,n ] − E R [1 ,k ] ) 

)}
(6) 

here W kn is the set of linear functions used for random variable

 [1 ,n ] − R [1 ,k ] . 

For THR , on the other hand, the backorder level in period

 is characterized by the loss function of the random variable

 [ j,n ] − R [ i +1 ,k ] as derived in (5) , and it is obtained by evaluating

his function at E X s n + (E D [ j,n ] − E R [ i +1 ,k ] ) . Therefore, it can be ap-

roximated as 

max 
a,b) ∈ W i jkn 

{
a + b 

(
E X 

s 
n + (E D [ j,n ] − E R [ i +1 ,k ] ) 

)}
(7) 

here W ijkn denotes the set of linear functions used for random

ariable D [ j,n ] − R [ i +1 ,k ] . 

We assume here that an efficient set of linear functions are

eadily available in (6) and (7) . The reader is referred to the lit-

rature on the piecewise linear approximation of convex functions

or the details of obtaining such efficient sets of functions (see e.g.

renzen, Sasao, & Butler, 2010; Gavrilovic, 1975; Rossi, Tarim, Prest-

ich, & Hnich, 2014 ). 

.5. Models 

We now develop certainty equivalent MIP models to compute

he parameters of AoN and THR . Because these policies have com-

arable mathematical backgrounds, we present their MIP models

n a unified fashion. 

The decision variables used in MIP models are outlined in

able 2 . It is important to note that the decision variables do

ot represent policy parameters explicitly. This is to provide no-

ational consistency in AoN and THR models. They can yet be

erived immediately from the decision variables. For both AoN

nd THR , policy parameters involve manufacturing and remanu-

acturing periods. These are captured by binary variables and writ-

en as �m = { n ∈ [1 , T ] : δm 

n = 1 } and �r = { n ∈ [1 , T ] : δr 
n = 1 } . The

arameters of AoN also include manufacturing quantities q n for

anufacturing periods. These are expressed by q m = { ̄Q 

m 

n : δm 

n = 1 } .
he parameters of THR further include manufacturing-up-to lev-

ls w 

m 

n and remanufacturing down-to levels w 

r 
n for manufactur-

ng and remanufacturing periods, respectively. These are given by

 

m = { ̄X s 
n −1 

+ Q̄ 

m 

n + Q̄ 

r 
n : δ

r 
n = 1 } and w 

r = { ̄X r n : δ
r 
n = 1 } . 

The objective function is the same for AoN and THR and min-

mizes the sum of fixed production costs and expected inventory

osts. It is written as 

in 

T ∑ 

n =1 

(
K 

m δm 

n + K 

r δr 
n + h 

s X̄ 

s 
n + h 

r X̄ 

r 
n + (h 

s + p) H n 

)
. (8) 

Notice that (8) is the same as the expression (3) except the ex-

ected backorder level in period n is replaced by H n . We will make

ure that this indeed captures the expected backorder level later

n. 
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Table 2 

The domains and definitions of decision variables used in MIP models. 

Variable Domain Definition 

Q̄ m n R 
+ expected manufacturing quantity in period n 

Q̄ r n R 
+ expected remanufacturing quantity in period n 

X̄ s n R expected serviceable inventory level at the end 

of period n 

X̄ r n R 
+ expected return inventory level at the end of 

period n 

H n R 
+ approximate expected backorder level in 

period n 

δm 
n {0, 1} binary variable that takes value of 1 if period n 

is a manufacturing period and 0 otherwise 

δr 
n {0, 1} binary variable that takes value of 1 if period n 

is a remanufacturing period 0 otherwise 

�kn {0, 1} binary variable indicating that the last 

remanufacturing period prior to period n is 

period k (used only for AoN ) 

�ijkn {0, 1} binary variable indicating that the last 

manufacturing period prior to period n is 

period j , and the last remanufacturing 

periods prior to periods j and n are periods i 

and k , respectively (used only for THR ) 
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We first present constraints that apply to both AoN and THR .

The inventory conservation constraints which regulate expected

values of production quantities and inventory levels in subsequent

periods are expressed as 

X̄ 

s 
n = X̄ 

s 
n −1 + Q̄ 

m 

n + Q̄ 

r 
n − E D n ∀ n ∈ [1 , T ] (9)

X̄ 

r 
n = X̄ 

r 
n −1 + E R n − Q̄ 

r 
n ∀ n ∈ [1 , T ] . (10)

The production schedule is governed by indicator variables.

Therefore expected production quantities should be in line with

these variables. This can be expressed for manufacturing and re-

manufacturing periods as 

Q̄ 

m 

n ≤ Mδm 

n ∀ n ∈ [1 , T ] (11)

Q̄ 

r 
n ≤ Mδr 

n ∀ n ∈ [1 , T ] (12)

where M stands for a sufficiently large constant. 

Next, we turn our attention to constraints that are policy-

specific. AoN is characterized by an all-or-nothing rule according

to which all the return inventory is consumed by remanufacturing

in remanufacturing periods. This can be embedded into the formu-

lation as 

X̄ 

r 
n ≤ M(1 − δr 

n ) ∀ n ∈ [1 , T ] . (13)

We now focus on the expected backorder levels. For AoN , the

expected backorder level in period n can be determined if it is

known that the last remanufacturing period prior to period n is

period k . The following constraints make sure that the binary vari-

able �kn takes the value 1 if this condition holds 

�kn ≥ δr 
k −

∑ 

t∈ [ k +1 ,n ] 

δr 
t ∀ k ∈ [0 , n ] , n ∈ [1 , T ] (14)

∑ 

k ∈ [0 ,n ] 
�kn = 1 ∀ n ∈ [1 , T ] (15)

where the dummy remanufacturing period 0 is used to ensure that

there is always a most recent remanufacturing period prior to any

period. 

For THR , the expected backorder level can be determined if it

is known that the last manufacturing period prior to period n is

period j , and the last remanufacturing periods prior to periods j

and n are periods i and k , respectively. The following constraints
ake sure that the binary variable �ijkn takes the value 1 if these

onditions indeed hold 

i jkn ≥ δm 

j −
∑ 

t∈ [ j+1 ,n ] 

δm 

t + δr 
i −

∑ 

t∈ [ i +1 , j] 

δr 
t 

+ δr 
k −

∑ 

t∈ [ k +1 ,n ] 

δr 
t − 2 

∀ i ∈ [0 , j] , j ∈ [0 , n ] , k ∈ i ∪ [ j + 1 , n ] , n ∈ [1 , T ] (16)

∑ 

 ∈ [0 , j] 

∑ 

j∈ [0 ,n ] 

∑ 

k ∈ i ∪ [ j+1 ,n ] 

�i jkn = 1 ∀ n ∈ [1 , T ] (17)

here dummy manufacturing and remanufacturing periods 0 are

sed to ensure that there is always a most recent manufacturing

nd remanufacturing period prior to any period. 

Finally, we write the constraints which make sure that H n cap-

ures the expected backorder level in period n by means of the

iecewise linearization of the associated loss function. For AoN ,

he constraint provided below guarantees that H n is at least as

arge as the approximation in (6) as 

 n ≥ a �kn + b 
(
X̄ 

s 
n + 

(
E D [1 ,n ] − E R [1 ,k ] 

)
�kn 

)
∀ k ∈ [0 , n ] , n ∈ [1 , T ] , (a, b) ∈ W kn . (18)

For THR , we can write a similar constraint that bounds H n from
elow, but this time in accordance with (7) as 

 n ≥ a �i jkn + b 
(
X̄ s n + 

(
E D [ j,n ] − E R [ i +1 ,k ] 

)
�i jkn 

)
∀ i ∈ [0 , j] , j ∈ [0 , n ] , k ∈ i ∪ [ j + 1 , n ] , n ∈ [1 , T ] , (a, b) ∈ W i jkn . 

(19)

It is easy to observe that (18) and (19) condition on the respec-

ive indicator variables �kn and �ijkn , and bound H n from below by

inear segments of the associated approximation. These constraints

re equivalent to (6) and (7) if the indicator variables are active.

therwise, they yield the inequality H n ≥ b ̄X s n . Let us recall that for

ny sensible piecewise linear approximation, b should lie in be-

ween 0 and -1. Hence, if X̄ s n ≥ 0 then the inequality is dominated

y H n ≥ 0, and if X̄ s n ≤ 0 then it is dominated by H n ≥ −X̄ s n . These

ases hold by definition, as we have E ξ− ≥ 0 and E ξ− ≥ −E ξ for

ny random variable ξ . 
These constraints finalize the MIP models. For convenience, be-

ow we provide complete MIP models for AoN and THR : 

( AoN ) min (8) 

subject to (9) , (10) , (11) , (12) , (13) , (14) , (15) , (18) 

X̄ s 0 = 0 , X̄ r 0 = 0 , δm 

0 = 1 , δr 
0 = 1 

X̄ s n ∈ R ∀ n ∈ [1 , T ] ; X̄ r n , Q̄ 

m 

n , Q̄ 

r 
n , H n ∈ R + ∀ n ∈ [1 , T ]

δm 

n , δ
r 
n ∈ { 0 , 1 } ∀ n ∈ [1 , T ] 

�kn ∈ { 0 , 1 } ∀ k ∈ [0 , n ] , n ∈ [1 , T ] 

( THR ) min (8) 

subject to (9) , (10) , (11) , (12) , (16) , (17) , (19) 

X̄ s 0 = 0 , X̄ r 0 = 0 , δm 

0 = 1 , δr 
0 = 1 

X̄ s n ∈ R ∀ n ∈ [1 , T ] ; X̄ r n , Q̄ 

m 

n , Q̄ 

r 
n , H n ∈ R + ∀ n ∈ [1 , T ]

δm 

n , δ
r 
n ∈ { 0 , 1 } ∀ n ∈ [1 , T ] 

�i jkn ∈ { 0 , 1 } ∀ i ∈ [0 , j] , j ∈ [0 , n ] , 

k ∈ i ∪ [ j + 1 , n ] , n ∈ [1 , T ] 

. Numerical study 

In this section, we numerically assess the cost performance of

he dynamic heuristic—referred to as SM —and the static-dynamic



O.A. Kilic and H. Tunc / European Journal of Operational Research 276 (2019) 880–892 887 

Table 3 

Results on Set-S . 

ρ SM THR AoN STA 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

0.1 3.74 2.51 5.42 2.77 0.00 5.04 2.86 0.00 5.76 7.23 6.09 8.24 

0.2 3.42 2.41 4.32 3.88 2.04 5.15 5.04 2.04 7.48 11.75 10.71 13.01 

0.3 3.55 3.11 4.77 7.43 6.90 8.25 9.28 6.90 11.34 17.18 14.92 20.58 

0.4 3.78 2.97 5.23 10.64 8.95 13.93 13.24 12.26 14.43 20.90 18.40 25.86 

0.5 3.37 2.24 4.81 13.78 12.27 16.48 18.08 17.27 18.78 24.66 20.95 29.93 

0.6 4.14 2.99 5.60 17.48 15.72 21.38 24.06 22.78 24.83 28.79 25.35 34.65 

0.7 4.46 3.01 5.54 20.40 19.07 22.73 28.48 26.54 29.64 32.06 28.48 38.71 

0.8 4.89 3.30 6.24 24.87 22.21 26.88 34.11 32.13 36.42 36.64 32.89 44.01 

0.9 5.12 3.05 6.75 26.99 24.50 29.62 38.06 35.67 41.94 40.66 36.34 48.21 

1.0 5.84 3.36 7.19 28.90 26.09 32.49 41.45 37.72 46.65 43.29 38.92 51.94 

Table 4 

Results on Set-L for STAT . 

Parameter Value SM THR AoN STA 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

T 6 2.79 1.02 5.35 0.07 0.00 0.16 0.02 0.00 0.07 0.06 0.00 0.21 

9 2.97 1.64 4.83 0.02 0.00 0.05 0.07 0.00 0.19 2.26 2.03 2.44 

12 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

15 0.48 0.16 0.82 0.00 0.00 0.00 2.68 2.58 2.79 7.32 6.92 7.52 

18 0.11 0.00 0.55 0.34 0.00 0.62 3.69 3.15 4.26 7.57 6.85 8.22 

ϕ 0.1 1.77 0.05 4.25 0.00 0.00 0.00 3.41 2.99 3.62 3.37 2.96 3.54 

0.3 2.93 2.55 3.28 0.00 0.00 0.00 2.40 2.28 2.50 3.98 3.86 4.09 

0.5 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

0.7 1.34 0.66 2.14 0.01 0.00 0.07 0.06 0.00 0.11 7.32 7.17 7.58 

0.9 0.03 0.00 0.11 0.28 0.00 0.68 0.28 0.02 0.68 6.48 6.05 7.11 

ρ 0.10 7.70 6.62 8.05 0.00 0.00 0.00 1.15 1.09 1.17 2.65 2.52 2.78 

0.15 5.38 5.04 5.61 0.00 0.00 0.00 1.72 1.65 1.78 3.31 3.12 3.42 

0.20 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

0.25 0.30 0.17 0.41 0.00 0.00 0.00 2.82 2.67 3.07 5.26 5.09 5.35 

0.30 0.00 0.00 0.00 1.87 1.56 2.29 5.61 5.21 6.14 8.41 7.92 8.99 

K m 200 2.90 1.58 3.83 0.00 0.00 0.00 9.02 8.35 9.66 11.24 10.56 11.98 

500 1.63 0.95 2.56 0.00 0.00 0.00 4.58 4.44 4.82 6.58 6.32 6.78 

10 0 0 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

1250 1.28 0.00 3.24 0.21 0.00 0.42 2.33 2.05 2.50 4.09 3.99 4.21 

20 0 0 4.04 3.43 4.35 0.02 0.00 0.09 0.16 0.00 0.32 3.55 2.75 4.10 

K r 200 4.58 4.26 5.00 0.00 0.00 0.00 4.76 4.56 4.86 11.14 10.87 11.55 

500 2.69 2.38 3.06 0.00 0.00 0.00 3.06 2.91 3.17 7.44 7.31 7.73 

10 0 0 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

1250 2.35 2.12 2.73 0.00 0.00 0.00 2.29 2.14 2.44 4.08 3.96 4.17 

20 0 0 0.27 0.14 0.49 0.00 0.00 0.00 2.69 2.47 2.79 2.68 2.42 2.84 

h r 0.1 2.08 0.00 5.76 0.22 0.00 0.53 2.57 2.35 2.83 2.20 1.75 2.61 

0.3 0.87 0.78 1.00 0.00 0.00 0.00 2.19 2.11 2.32 2.61 2.52 2.76 

0.5 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

0.7 2.67 2.30 3.16 0.00 0.00 0.00 2.24 2.17 2.39 5.64 5.38 5.86 

0.9 3.25 2.83 3.46 0.00 0.00 0.00 2.41 2.27 2.52 7.83 6.79 8.27 

p 2 4.45 3.24 6.28 0.00 0.00 0.00 0.43 0.35 0.53 5.26 5.07 5.42 

5 2.64 2.35 3.20 0.00 0.00 0.00 1.67 1.58 1.79 3.95 3.83 4.05 

10 2.74 2.60 2.92 0.00 0.00 0.00 2.32 2.21 2.50 4.33 4.20 4.56 

15 2.31 2.04 2.56 0.00 0.00 0.00 2.61 2.42 2.88 4.41 4.18 4.58 

20 2.13 2.00 2.38 0.00 0.00 0.00 3.05 2.84 3.30 4.59 4.44 4.73 
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euristics AoN and THR , while using Hilger et al. ’s (2016) static

euristic—referred to as STA —as a benchmark. STA adopts a

tatic-uncertainty strategy where production schedule and produc-

ion quantities are determined at the outset. It is therefore a logical

enchmark for dynamic and static-dynamic heuristics. 

We organize our numerical study in two parts in each of which

e employ a different set of problem instances, namely Set-S and

et-L . In Set-S , we assess the performance of heuristic approaches

gainst the optimal policy—henceforth referred to as OPT . This

est set involves a modest number of instances due to the exten-

ive computational time required to obtain the optimal policy. But

t provides critical insights into the optimality gaps of heuristics.

n Set-L , we compare heuristics against each other. This test set

ncludes a large number of instances which enable us to explore

ow the heuristic performance is affected by a variety of factors,
nvolving, progression of demands and returns over time, the

ength of the planning horizon, the return-demand coverage,

emand and return uncertainty, and cost parameters. We shall

rovide further details of these sets of instances in the following

ub-sections. 

To evaluate the performance of heuristics, we proceed as

ollows. We compute the expected cost of OPT by solving the

tochastic dynamic program provided in Section 2 . SM is an online

euristic whose expected cost cannot be obtained by solving a

onolithic model. Thus, we compute its cost by means of simula-

ion. In each simulation run, production decisions over periods are

ade following the lines provided in Section 3 . We compute the

arameters of AoN and THR by solving the MIP models provided

n Section 4 , and STA by the MIP model of Hilger et al. (2016) .

he models of AoN and THR do not provide exact expected cost
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Table 5 

Results on Set-L for INC . 

Parameter Value SM THR AoN STA 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

T 6 0.77 0.52 1.56 0.04 0.00 0.09 0.02 0.00 0.06 1.21 0.01 2.38 

9 3.93 2.61 6.01 0.00 0.00 0.00 0.11 0.00 0.28 4.42 3.97 4.68 

12 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

15 3.18 2.59 3.97 0.00 0.00 0.00 1.68 1.60 1.76 5.18 4.59 5.50 

18 3.19 2.61 3.62 0.00 0.00 0.00 2.49 2.29 2.78 5.69 5.55 5.94 

ϕ 0.1 0.31 0.00 0.75 0.02 0.00 0.10 2.26 2.09 2.38 2.27 2.16 2.40 

0.3 2.13 1.91 2.42 0.00 0.00 0.00 0.95 0.76 1.11 3.22 2.84 3.58 

0.5 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

0.7 1.90 1.30 2.99 0.00 0.00 0.00 1.34 0.78 1.83 3.89 3.15 4.67 

0.9 1.80 1.02 2.87 0.10 0.00 0.22 0.02 0.00 0.07 7.18 6.80 7.62 

ρ 0.10 5.29 4.02 6.56 0.00 0.00 0.00 0.84 0.80 0.87 1.37 0.82 1.82 

0.15 3.29 2.50 4.01 0.00 0.00 0.00 0.63 0.34 0.94 1.35 0.98 1.67 

0.20 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

0.25 0.22 0.00 0.59 0.05 0.00 0.16 1.21 1.02 1.43 2.81 2.50 3.18 

0.30 0.00 0.00 0.00 1.21 0.95 1.57 3.00 2.89 3.17 5.04 4.66 5.68 

K m 200 0.05 0.00 0.19 0.09 0.00 0.18 7.27 7.02 7.44 7.47 7.11 7.87 

500 3.81 3.68 3.93 0.00 0.00 0.00 3.03 2.69 3.43 6.49 6.11 6.89 

10 0 0 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

1250 1.86 0.80 2.70 0.00 0.00 0.00 0.78 0.74 0.91 1.83 1.35 2.33 

20 0 0 5.93 3.27 9.76 0.02 0.00 0.12 0.06 0.00 0.12 4.95 3.79 5.91 

K r 200 7.11 5.12 9.30 0.00 0.00 0.00 2.76 2.54 3.07 8.23 7.61 8.96 

500 2.41 0.97 3.48 0.00 0.00 0.00 2.38 2.31 2.47 5.43 5.29 5.49 

10 0 0 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

1250 1.38 1.17 1.66 0.00 0.00 0.00 0.80 0.70 0.92 1.86 1.27 2.27 

20 0 0 2.35 0.10 3.92 0.00 0.00 0.00 1.80 1.69 1.88 1.81 1.70 1.93 

h r 0.1 1.91 0.39 3.21 0.00 0.00 0.00 2.21 1.89 2.47 1.16 1.03 1.33 

0.3 1.99 1.46 2.56 0.00 0.00 0.00 1.24 0.94 1.59 1.23 1.19 1.27 

0.5 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

0.7 1.21 0.72 1.48 0.00 0.00 0.00 1.33 1.06 1.63 3.67 2.90 4.38 

0.9 1.58 1.21 1.91 0.00 0.00 0.00 1.38 1.19 1.69 6.04 5.37 6.36 

p 2 6.07 5.32 6.63 0.00 0.00 0.00 0.20 0.09 0.38 4.54 4.45 4.65 

5 2.06 1.60 2.62 0.00 0.00 0.00 1.03 0.84 1.14 3.49 3.31 3.67 

10 1.67 1.32 1.98 0.00 0.00 0.00 0.85 0.61 0.96 1.96 1.38 2.42 

15 1.27 0.46 2.38 0.00 0.00 0.00 1.28 1.12 1.48 1.79 1.60 1.98 

20 1.38 0.89 2.30 0.00 0.00 0.00 1.54 1.37 1.73 1.83 1.72 1.98 
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expressions for these heuristics. This is also the case for STA .

Therefore, we also assess the expected costs of these heuristics via

simulation. We conduct 10 4 simulation runs (with common ran-

dom numbers) for all heuristics. This turned out to be more than

sufficient as 95% confidence interval was less than ± 0.1 percent

of the average cost for all heuristics and each test instance. We

perform all numerical experiments on an Intel Core i7-3770 CPU

with 16 gigabyte RAM and use Gurobi v7.01 as a MIP solver. We

do not impose a time limit and solve all MIP models to optimality.

In what follows, we present our computational study on Set-

S and Set-L . Then, we discuss the managerial implications of our

findings. 

5.1. Set-S 

In this part of the numerical study, we assess the performance

of heuristic approaches against OPT . Because AoN , THR , and STA

differ as to how they approach uncertainty, we initially focus on

better understanding how the extent of uncertainty affect the

heuristic performance. To that end, Set-S is designed as follows.

We use the same cost parameters in all numerical instances;

K 

m = 10 0 0 , K 

r = 10 0 0 , h s = 10 , h r = 5 , and p = 100 . We consider

problem instances with 10 periods. The expected demands E D n 

over these periods are drawn from a discrete uniform distribution

on [5,15] and expected returns are set as E R n = � 1 2 E D n � . We

randomly generate five series of expected demands and returns. To

capture the effects of uncertainty in a unified fashion, we assume

that the coefficient of variation of demands and returns is (almost)
he same over the planning horizon. We denote the coefficient of

ariation by ρ , and consider ten different values ρ ∈ { 0 . 1 , 0 . 2 ,
 . . , 1 . 0 } . We assume that demands and returns follow a three-

oint distribution, i.e., a discrete distribution concentrated at three

oints ν = (ν1 , ν2 , ν3 ) with probabilities ϑ = (ϑ 1 , ϑ 2 , ϑ 3 ) . To make

ure that the support is integral—required to compute the optimal

olicy—and the mean and coefficient of variation are in line with

he specified values, we characterize these distributions as follows.

et μ and ρ be the mean and the coefficient of variation, respec-

ively. Then, we establish the distribution as ν = (0 , μ, � μ(2 ρ2 +
) � ) and ϑ = ( 1 2 − 1 

2 
μ

� μ(2 ρ2 +1) � , 
1 
2 , 

1 
2 

μ
� μ(2 ρ2 +1) � ) . This scheme

akes sure that the distribution exactly matches the specified

ean, while it may slightly overshoot the coefficient of variation. 

Set-S includes 50 test instances in total, i.e., five random in-

tances for each of ten different values of coefficient of variation.

or each of these instances, we compute the expected costs of

PT , SM , AoN , THR , and STA . The lower bound approximation

f the loss functions employed in the MIP models of AoN , THR ,

nd STA are established numerically with a maximum error of 1

ost unit. We note that the MIP models of AoN , THR and STA are

olved to optimality in the order of seconds, whereas the time re-

uired to solve the stochastic dynamic program of OPT is not less

han several hours for each test instance. 

For each heuristic, we measure the (percentage) optimality gap

s ( C (H ) / C ( OPT ) − 1 ) × 100 where C (H ) and C ( OPT ) are the

euristic cost and the optimal cost, respectively. 

Table 3 presents our results on Set-S . It reports the average,

inimum, and maximum optimality gaps of all heuristics for
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Table 6 

Results on Set-L for DEC . 

Parameter Value SM THR AoN STA 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

T 6 3.65 2.32 5.55 0.03 0.00 0.06 0.02 0.00 0.04 0.26 0.06 0.54 

9 2.88 2.25 3.72 0.07 0.00 0.20 0.01 0.00 0.04 5.25 5.00 5.55 

12 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

15 1.95 1.52 2.37 0.00 0.00 0.00 4.78 4.63 4.99 9.55 9.40 9.78 

18 0.00 0.00 0.00 1.38 1.24 1.47 7.20 6.97 7.31 13.11 12.70 13.34 

ϕ 0.1 1.70 1.62 1.83 0.00 0.00 0.00 4.29 3.36 5.03 4.24 3.25 5.03 

0.3 4.03 3.62 4.38 0.00 0.00 0.00 3.39 3.20 3.64 5.74 5.47 5.96 

0.5 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

0.7 0.00 0.00 0.00 2.74 2.14 3.18 2.73 2.24 3.11 9.43 9.05 9.79 

0.9 1.44 0.00 3.64 1.98 0.19 3.48 1.90 0.00 3.28 6.91 5.07 8.25 

ρ 0.10 0.52 0.41 0.63 0.00 0.00 0.00 1.49 1.42 1.59 3.34 3.21 3.58 

0.15 0.00 0.00 0.00 0.09 0.00 0.20 2.70 2.62 2.82 4.55 4.33 4.78 

0.20 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

0.25 0.00 0.00 0.00 3.22 2.69 3.48 8.14 7.65 8.61 11.06 10.71 11.37 

0.30 0.00 0.00 0.00 4.93 4.45 5.41 11.04 10.54 11.47 14.72 13.92 15.39 

K m 200 7.45 6.64 8.25 0.00 0.00 0.00 10.77 10.29 11.21 14.52 14.17 14.92 

500 0.00 0.00 0.00 0.13 0.01 0.32 6.18 5.98 6.49 8.54 8.47 8.62 

10 0 0 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

1250 0.00 0.00 0.00 1.09 0.59 2.60 2.52 2.11 3.56 6.28 5.74 7.06 

20 0 0 0.00 0.00 0.00 2.49 2.26 2.72 2.59 2.44 2.71 6.33 5.63 6.90 

K r 200 0.00 0.00 0.00 0.73 0.29 1.47 6.31 5.54 6.79 13.25 12.95 13.94 

500 0.02 0.00 0.08 0.07 0.00 0.21 3.77 2.79 4.63 9.69 9.59 9.96 

10 0 0 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

1250 0.74 0.00 1.88 0.14 0.00 0.36 3.59 3.40 3.91 5.72 5.45 5.99 

20 0 0 2.12 1.59 2.68 0.00 0.00 0.00 3.20 3.12 3.35 4.41 3.10 5.21 

h r 0.1 2.06 1.64 2.32 0.00 0.00 0.00 3.49 3.25 4.04 2.90 2.71 3.21 

0.3 0.00 0.00 0.00 0.33 0.06 0.60 4.16 3.93 4.47 4.72 4.33 5.05 

0.5 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

0.7 0.00 0.00 0.00 1.26 0.89 1.66 4.72 4.42 4.96 8.92 8.68 9.11 

0.9 1.94 0.00 3.31 0.00 0.00 0.02 3.45 3.34 3.67 10.70 10.34 11.13 

p 2 4.80 4.34 5.82 0.00 0.00 0.00 0.44 0.36 0.56 5.70 5.60 5.76 

5 0.25 0.00 0.66 0.02 0.00 0.10 2.62 2.51 2.69 5.54 5.43 5.64 

10 0.00 0.00 0.00 1.49 1.43 1.59 5.23 5.15 5.29 7.49 7.36 7.70 

15 0.00 0.00 0.00 1.81 1.63 2.00 6.15 6.04 6.39 8.28 7.97 8.59 

20 0.00 0.00 0.00 2.51 2.38 2.65 7.04 6.88 7.15 9.13 8.67 9.36 
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nstances characterized by the same coefficient of variation. The

esults clearly demonstrate that the extent of demand and return

ncertainty is a major driver of the heuristic performance. We

bserve that the cost performance of all heuristics diminish with

ncreasing demand and return uncertainty. AoN , THR , and STA

re yet more sensitive to the level of uncertainty as compared

o SM . We see that SM clearly overperforms all other heuristics

hen the coefficient of variation is higher than 0.3. This is not

urprising as fixed replenishment schedules and replenishment

uantities leave less room for dynamic adjustments in response

o realized demands and returns. THR and AoN are compet-

tive when the coefficient of variation is below 0.3. They also

ignificantly outperform STA . 

Based on these results, it is fair to conclude that employing

tatic-dynamic heuristics THR and AoN , and the static heuristic

TA could be very expensive when the extent of uncertainty is

igh. In the following part of the numerical study, we shall thus

oncentrate on instances characterized by moderate levels of de-

and and return uncertainty and provide detailed insights into the

erformance of the proposed heuristics. 

.2. Set-L 

In the second part of the numerical study, we conduct a larger

umerical experiment and explore how heuristic performance is

ffected by a variety of factors. These involve the following: (1)

rogression of demands and returns over time (2) length of the

lanning horizon, (3) return-demand coverage, (4) demand and
eturn uncertainty, (5) manufacturing and remanufacturing setup

osts, and (6) serviceable and return holding costs. 

Set-L is designed as follows. We use a variety of cost pa-

ameters involving five manufacturing and remanufacturing setup

osts K 

m , K 

r = { 200 , 500 , 1000 , 1250 , 2000 } , five return inventory

olding costs h r = { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } , and five backorder costs

p = { 2 , 5 , 10 , 15 , 20 } . We employ the same serviceable holding cost

n all experiments h s = 1 . We use five different planning hori-

on lengths T = { 6 , 9 , 12 , 15 , 18 } . We consider four different de-

and and return progressions over time, namely, stationary, in-

reasing, decreasing, and random. We abbreviate these as STAT ,

NC , DEC , and RND , respectively. The demand and return pro-

ressions are reflected on expected demands and returns over the

lanning horizon. For RND , the expected demand for each period

s randomly drawn from a discrete uniform distribution on inter-

al [0,200]. For STAT , INC , and DEC , the expected demand in

ny period n is established following the expression E D n = 100 −(
1 
2 (T − 1) − (n − 1) 

)
+ ε where λ is the trend parameter and ε is

 random noise. We set λ to 0 for STAT , 6 for INC , and -6 for

EC . We draw ε from a discrete uniform distribution on interval

 −5 , 5] . The expected return is set as E R n = � ϕE D n � where ϕ is the

arameter reflecting on return-demand coverage. We use five ex-

ected return to demand ratios ϕ = { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } . For any

ombination of planning horizon length, demand and return pro-

ression, and return-demand coverage, we randomly generate five

eries of expected demands. We assume that period demands and

eturns are normally distributed with a fixed coefficient of varia-

ion over the planning horizon. We consider five different coeffi-

ient of variation values ρ = { 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3 } . 
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Table 7 

Results on Set-L for RND . 

Parameter Value SM THR AoN STA 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

T 6 1.78 0.00 3.52 0.37 0.00 1.64 0.45 0.00 1.55 1.35 0.06 2.35 

9 1.14 0.00 3.75 0.56 0.00 1.76 1.37 0.00 2.03 5.24 2.79 7.98 

12 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

15 0.40 0.00 0.92 0.54 0.00 2.71 3.33 1.56 5.65 7.07 5.01 8.86 

18 2.13 0.00 5.23 0.48 0.00 1.74 5.12 3.42 7.71 9.98 7.89 11.83 

ϕ 0.1 1.55 0.00 5.16 0.27 0.00 1.09 4.20 2.13 5.32 4.18 2.08 5.27 

0.3 1.06 0.00 2.72 0.45 0.00 1.13 2.54 1.65 3.24 5.98 4.61 6.94 

0.5 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

0.7 0.00 0.00 0.00 2.17 0.93 3.83 3.07 0.89 6.54 10.28 6.92 14.32 

0.9 0.21 0.00 1.05 1.54 0.00 3.93 1.57 0.53 3.80 6.07 2.96 13.93 

ρ 0.10 2.51 0.37 4.84 0.00 0.00 0.00 1.45 0.94 2.18 2.82 1.02 3.77 

0.15 1.56 0.00 3.76 0.11 0.00 0.57 2.45 1.36 3.27 3.59 2.14 4.07 

0.20 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

0.25 0.11 0.00 0.55 1.67 0.00 3.06 5.41 2.14 8.33 7.41 6.53 9.04 

0.30 0.00 0.00 0.00 3.39 1.78 4.88 7.60 4.27 10.76 10.42 9.17 12.48 

K m 200 4.42 0.00 12.25 0.33 0.00 1.66 11.76 9.75 13.64 14.51 9.86 18.41 

500 2.03 0.00 3.51 0.02 0.00 0.11 5.85 2.74 8.71 7.57 5.02 9.74 

10 0 0 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

1250 0.70 0.00 2.25 0.66 0.00 1.67 2.87 1.60 3.95 4.53 3.82 5.35 

20 0 0 3.42 0.00 6.61 0.66 0.00 2.23 0.74 0.00 2.49 2.92 1.42 4.57 

K r 200 1.30 0.00 2.46 0.49 0.00 2.44 5.01 2.99 9.46 11.82 9.55 15.33 

500 0.00 0.00 0.00 1.77 0.05 3.44 5.24 2.79 7.89 10.02 6.41 14.29 

10 0 0 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

1250 2.36 0.00 5.19 0.27 0.00 1.33 3.18 1.61 4.27 4.50 3.69 5.37 

20 0 0 2.37 0.00 6.42 0.05 0.00 0.25 2.92 1.69 4.00 3.11 1.74 4.59 

h r 0.1 1.01 0.00 4.74 0.72 0.00 1.73 4.35 1.92 6.55 3.33 2.11 4.89 

0.3 0.76 0.00 3.80 0.71 0.00 1.54 3.98 2.04 5.14 4.16 3.33 5.05 

0.5 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

0.7 0.65 0.00 1.83 0.58 0.00 1.48 3.31 1.69 4.29 6.39 5.41 7.20 

0.9 1.53 0.00 3.47 0.09 0.00 0.45 2.81 1.57 4.69 8.37 6.50 10.48 

p 2 8.54 2.73 17.93 0.00 0.00 0.00 0.87 0.41 1.70 5.09 3.57 6.41 

5 2.73 0.00 5.82 0.20 0.00 0.99 2.10 1.04 3.32 4.30 3.25 5.14 

10 0.74 0.00 2.56 0.66 0.00 1.64 3.75 1.85 5.26 5.04 4.16 5.50 

15 0.32 0.00 1.12 1.09 0.00 2.21 4.56 2.17 6.46 5.72 5.05 6.79 

20 0.03 0.00 0.15 1.49 0.00 2.64 5.25 2.27 7.66 6.31 5.42 8.01 
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For each of the four demand and return progression, the in-

stance characterized by the following parameters is considered as

the base instance; T = 12 , ϕ = 0 . 5 , ρ = 0 . 2 , K 

m = 10 0 0 , K 

r = 10 0 0 ,

h s = 1 , h r = 0 . 5 , and p = 10 . Then, variations of this instance are

populated by changing the value of one parameter at a time.

This leads to 580 problem instances in total, i.e. for each de-

mand and return progression, we have five random instances for

the base case and its 28 different variations. For each of these

test instances, we compute the expected costs of SM , AoN , THR ,

and STA . We use Rossi et al. ’s (2014) 11-piece lower bound ap-

proximation of the standard normal distribution loss function for

piecewise linearization of the loss functions in all MIP models.

The computational times of the MIP models are mainly associ-

ated with the length of the planning horizon, as it is the param-

eter defining model size (i.e., the number of variables and con-

straints). Therefore, the most challenging instances with respect

to computational time are 18-period instances. The MIP models

of STA and AoN are solved to optimality within a few seconds

for these instances, while that of THR are solved within a few

minutes. 

Because it is not viable to compute the optimal policy for a

large number of instances, in Set-L we opt for assessing heuris-

tics by comparing them against each other. To that end, we mea-

sure the performance of a heuristic by means of its (percentage)

cost gap from the heuristic with the minimum expected cost as

( C (H ) / C (H 

∗) − 1 ) × 100 where C (H ) and C (H 

∗) are the heuristic

cost and the cost of the best heuristic, respectively. 

Tables 4–7 summarize our results on Set-L . The results pre-

sented in each of these tables reflect on a particular demand and
eturn progression and report the average, minimum, and maxi-

um cost gaps of all heuristics for instances characterized by the

ame pivot parameter. 

The results on Set-L provide a large variety of insights, yet

hey do not demonstrate a consistent trend on the heuristic with

espect to most of the problem parameters. The most consistent

rend is on the level of uncertainty, i.e. coefficient of variation. That

s, SM performs better while THR , AoN , and STA perform worse

ith increasing levels of uncertainty. SM outperforms all other

euristics for instances when the coefficient of variation reaches

p to 0.3, while it is outperformed by other heuristics for instances

ith lower coefficient of variation values. THR is the most com-

etitive heuristic for instances with a coefficient of variation be-

ow 0.3. SM and THR are thus in complete contrast with each

ther regarding the trade-off between the cost performance and

he extent of uncertainty. This is in line with our earlier results

n Set-S . There are several other consistent trends. AoN and STA ,

erform much worse for instances with longer planning horizon.

esides, AoN performs better for instances with higher manufac-

uring setup costs, while STA performs better for instances with

igher remanufacturing setup costs. There are also apparent ten-

encies. For instance, SM tends to perform better when backorder

ost is higher, whereas THR , AoN , and STA performs better when

t is lower. It is also possible to see that THR tends to perform

elatively better when return-demand coverage is low. As for the

emand and return progressions, we observe that THR , AoN , and

TA perform relatively better for instances with stationary and in-

reasing demand patterns. The performance of SM is quite stable

ver different progressions. 
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In summary, SM and THR arise as the most competitive heuris-

ics, while AoN and STA perform relatively good when demand

nd return uncertainty is low and the planning horizon is short.

he cost performance of STA and AoN are mostly in line with

ach other, but AoN consistently outperforms STA in all problem

nstances. 

.3. Discussion 

In what follows, we provide a discussion on the managerial

mplications of our numerical findings. Because we considered

euristics that follow different strategies in managing uncertainty,

e organize our discussion on the basis of uncertainty strategies. 

SM follows a dynamic uncertainty strategy. This provides SM a

ignificant advantage over other heuristics as it can take immediate

ecourse actions in response to realized demands. This is apparent

n our numerical results especially in those instances where de-

and and return uncertainty is high. That SM is not competitive

or the rest of the instances is due to its myopic nature. SM ’s de-

ision rules take only a few upcoming periods’ demand and return

nformation into account and neglects that of future periods. This

as a more severe effect on its cost performance when the extent

f uncertainty is low. All in all, SM appears to be a good heuristic

or highly uncertain environments where future demand and re-

urn information is fairly limited. It is also very appealing due to

ts efficiency with respect to computational time. 

AoN and THR both follow a static-dynamic uncertainty strat-

gy. Because they fix replenishment periods in advance, they

ack flexibility in timing of replenishment orders. But they offer

ome extent of flexibility in replenishment quantities. They are

ar sighted in nature. That is, they take all future demand and

eturn information into account when setting policy parameters.

e observe that this gives AoN and THR a competitive advantage

specially when demand and return uncertainty is low. THR is

ery competitive when demands and returns have a moderate

evel of uncertainty. It is important to recall that AoN is more

onservative as compared to THR because it fixes manufacturing

uantities in advance and remanufacture all return inventories in

emanufacturing periods. This takes a heavy toll on AoN ’s cost

erformance, especially when demands and returns are highly un-

ertain. We can conclude that AoN and THR are viable heuristics

or environments where demand and return uncertainty is limited

nd a rigid replenishment schedule is of importance. THR appears

o be the preferred option as it is more cost-effective. However,

ts computational performance could be a drawback. AoN could

e a viable alternative for systems characterized with short plan-

ing horizons. Besides, as it offers fixed production quantities

or manufacturing and a simple all-or-nothing decision rule for

anufacturing, it may have a particular appeal for practitioners. 

STA follows a static uncertainty strategy where the replenish-

ent schedule as well as production quantities are fixed at the

utset for manufacturing and remanufacturing. We observed that

TA is consistently outperformed by all other heuristic policies

ith respect to cost performance under all parameter settings.

herefore, it is a viable option only if a fixed production plan is

bsolutely necessary. This is the case, for instance, in multi-item

roduction environments with limited capacities where revising

roduction schedules and/or quantities is either very costly or not

ven possible due to practical concerns. 

. Conclusions and Further Research 

We considered SELSR—a prominent inventory control problem

hich appears in hybrid manufacturing and remanufacturing sys-

ems. We proposed three heuristic policies for this problem: SM ,
oN , and THR . These policies provide different levels of flexibil-

ty with respect to production schedules and quantities. Therefore,

hey can be appealing in different environments, based on the ex-

ent of instability the production system can accommodate over

he planning horizon. We presented mathematical models to com-

ute the cost-minimizing parameters of the proposed policies, and

llustrated their advantages and disadvantages with respect to cost

ffectiveness and computational efficiency by means of a numeri-

al study. 

There are many interesting directions for further research. We

ention a few in the following. We showed that SM is very

ompetitive with respect to cost performance, especially for in-

tances characterized by high demand and return uncertainty. This

s despite the fact that SM is based on simple myopic decision

ules—which in turn enables us to compute its parameters by a

ery efficient algorithm. Therefore, it must be possible to improve

n SM ’s cost performance by extending it with more elaborate

ecision rules, probably in (a limited) expense of computational

fficiency. AoN and THR are sensible static-dynamic policies,

ut we do not yet know how they compare against the optimal

tatic-dynamic policy. It is thus of importance to characterize the

est and/or explore better static-dynamic policies. Finally, there

s a variety of relevant aspects concerning hybrid manufacturing

nd remanufacturing systems, by which the work presented in the

urrent study can be extended. These involve, among others, lead

imes for manufacturing and remanufacturing, quality considera-

ions and disposal of returned products, distinct demand processes

or manufactured and remanufactured products, and substitution. 
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