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Chapter 1

How Bacteria Recognise and Respond to
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Abstract

Bacterial biofilms can cause medical problems and issues in technical
systems. While a large body of knowledge exists on the phenotypes of
planktonic and of sessile cells in mature biofilms, our understanding of
what happens when bacteria change from the planktonic to the sessile
state is still very incomplete. Fundamental questions are unanswered: for
instance, how do bacteria sense that they are close to, or in contact with, a
surface, and what are the very initial cellular responses to surface contact.
Here, we review the current knowledge on the signals that bacteria could
perceive once they attach to a surface, the signal transduction systems that
could be involved in sensing the surface contact, and the cellular responses
that are triggered as a consequence to surface contact ultimately leading
to biofilm formation. Finally, as the main obstacle in investigating the
initial responses to surface contact has been the experimental difficulty
to study the dynamic response of single cells upon surface attachment,
we also review recent experimental approaches that could be employed to
study bacterial surface sensing, which ultimately could lead to an improved
understanding how biofilm formation could be prevented.
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Chapter 1

Introduction

Bacterial biofilms generate significant technological and therapeutic problems, ranging
from increased fuel consumption of ships due to higher flow resistance [1, 2], via
fouling of membranes in water treatment facilities [3] to serious medical problems. It
is estimated that two-thirds of human infections involve biofilm formation, including
infections of the urinary tract, lungs and ears, dental plaque and fouling of implants
and contact lenses [4]. The increased resistance of bacteria in biofilms towards
antimicrobial compounds and the host immune system constitutes a central issue
in treatment of bacterial infections [5].

While the developmental steps leading to a mature biofilm are well-characterised [6–8],
little is known about the very first step of biofilm development, i.e. how cells sense
initial surface attachment, which eventually leads to phenotypic adjustments, involving
substantial changes in gene expression [9–12], from the planktonic (suspended) to the
sessile (surface-attached) state. The main reason for this limited knowledge likely lies
in the challenge to experimentally investigate the dynamic response of cells during the
transition between these two states.

Here, towards pointing out the existing gaps in our understanding of surface
sensing, we review the current knowledge on how bacteria recognise and respond to
surface attachment with a special emphasis on the model organism Escherichia coli.
Specifically, we first review the signals a cell might perceive in close proximity to,
or in contact with, a surface and describe the mechanisms that bacteria employ to
perceive the presence of and attachment to a surface. Second, we report the initial
downstream effects that are triggered in response to surface attachment. Third, as the
limited understanding of surface sensing and of the very first steps of biofilm formation
is likely connected with the fact that the respective processes are difficult to study,
we highlight recent technological developments that might support future research on
further elucidating the process of surface sensing. Closing these knowledge gaps will
offer valuable insights on how to combat biofilm formation.

Surface sensing

Bacteria can adhere to a large variety of surfaces, including glass, metals, many
different polymers, as well as to other cells (for a review, see [13]). In fact, it is
practically impossible to develop a surface that cannot be colonized by bacteria,
making it resistant towards biofouling, while at the same time being harmless to
humans and the environment [2]. When a planktonic bacterial cell advances towards
a surface from the bulk of a liquid, there are three different phenomena that might be
sensed: (i) changes in physicochemical properties, (ii) attachment of cell appendages,
and (iii) attachment of the cell body (Figure 1).
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How Bacteria Recognise and Respond to Surface Attachment

Figure 1: Schematic overview of biofilm formation and surface sensing. (a) Biofilm
formation involves a number of stages. After initial adhesion, attached bacteria grow to form
a microcolony, which gradually develops into a mature biofilm, from which new planktonic
cells can disperse. (b) When a bacterium approaches and contacts the surface, it may sense
(i) different physicochemical properties compared to the bulk liquid, (ii) attachment of cell
appendages and (iii) envelope stress due to attachment of the cell body.

Physicochemical changes

The microenvironment close to the surface differs from the bulk liquid in terms of
ionic strength, osmolarity, pH, and nutrient availability (for a review, see [14]). Since
many surfaces are charged, counter-ions accumulate at the solid-liquid interface. In
the case of a negatively charged surface, which is the most common, these counter-
ions include protons, causing a lowered pH at the surface. It has been suggested
that close to a glass surface, the pH may decrease by as much as two units [15].
Furthermore, organic molecules, present in the bulk liquid or secreted by bacteria,
can be adsorbed onto surfaces and form a conditioning film (reviewed in [13]). Such
films can consist of a mixture of (macro)molecules, including proteins, amino acids,
lipids, and polysaccharides [16–18] nutrients that can be metabolised by attached
bacteria [19, 20]. Sessile bacteria may therefore be able to grow, even when the
nutrient concentration in the bulk liquid is insufficient to sustain growth of planktonic
cells [21, 22].

To sense changes in pH, ionic strength, osmolarity, and nutrient availability, bacteria
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typically employ two-component signal transduction, consisting of a membrane-bound
histidine kinase, which senses the stimulus, and a cytoplasmic response regulator
mediating the cellular response. As the physicochemical properties can vary also
in the bulk liquid, the stimuli of respective systems are not specific for surfaces.
By exemplarily reviewing signal transduction systems that sense these properties
in the model organism E. coli, however, we show that many of these systems have
downstream target genes linked to biofilm formation, which indicates that these
systems could be part of the surface sensing machinery.

In E. coli, systems that sense physicochemical properties and have a role in biofilm
formation are CpxAR, EnvZ/OmpR, RcsCDB and possibly BasSR. A multitude of
conditions, including high osmolarity [23] as well as alkaline pH [24, 25] can induce
the activity of the CpxAR two-component system [26]. Also the EnvZ/OmpR two-
component system can sense both the osmolarity [27–29] and pH [24, 30–32]. The
osmolarity is thought to be sensed via the intracellular potassium ion concentration,
which increases in response to high extracellular osmolarity, and is a known inducing
signal for EnvZ [33]. Indeed, it has been shown that the potassium concentration
increases in surface-attached bacteria [9]. An upshift in osmolarity is also a known
inducing cue for the RcsCDB phosphorelay [34, 35]. The BasSR two-component
system, for which only the inducing signals iron [36] and zinc [37] are known in
E. coli, is another signal transduction pathway that might sense physicochemical
properties associated with the vicinity of surfaces: the E. coli BasSR may be pH-
responsive, because in Salmonella enterica the homologous pathway has been shown
to be activated by mild acidic conditions and the essential residues for pH sensing are
conserved in E. coli [38]. Thus, there are multiple signal transduction systems in E. coli
that respond to the same physicochemical properties. These systems have downstream
biofilm-related targets (Table 1), with for instance motility being regulated by Cpx
[39], EnvZ/OmpR [40] and Rcs [41]. The downstream effects are discussed in more
detail below.

Alternatively, close to surfaces, bacteria could sense increased nutrient concentrations
via changes in metabolism. The uptake of a compound may in some cases act as
a signal that is transmitted by the respective transporter to a sensor protein (for
a review, see [42]). If the adsorbed nutrients are metabolised, this will change the
intracellular metabolic fluxes and may in turn affect gene expression [43, 44]. The
metabolic state of the cell is also influenced by alterations in pH, as for instance a
local drop in pH close to a negatively charged surface can directly affect the proton
motive force [45].

Overall, the physicochemical properties in the vicinity of a surface may trigger a
cellular response via two-component systems. However, because these properties can
also vary in the bulk liquid, these stimuli are not specific for surfaces and are therefore
unlikely to be the main cue indicating surface contact.
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Attachment of cell appendages

In the following, we describe the processes that also occur when a cell approaches a
surface, for instance the attachment of cell appendages to the surface, and we review
how these processes can be sensed.

Flagella. When bacteria approach a surface, cell appendages might stick to it.
Adhesion is supported by flagella, which due to their hydrophobic nature particularly
adhere to hydrophobic surfaces [46–50]. Not only the presence of flagella, but also
the ability to rotate them is important for adhesion, as mutants with non-functional
flagella are impaired in biofilm formation and detach more readily compared to the
wild-type [48, 51].

Once attached, flagella can provide signals to the cell indicating surface contact, which
originate from hindered rotation (for a review, see [52]). It was recently shown that
when flagellar rotation is blocked, either by mutations in flagellar motor genes or
by addition of anti-flagellin antibodies, the DegS-DegU signal transduction pathway,
controlling biofilm formation, is activated in Bacillus subtilis [53]. Furthermore, in
Vibrio parahaemolyticus, an organism that has been long known to sense flagellar
inhibition as a signal to initiate swarming [54], a transcriptomics study both on
mutant strains defective in flagellar rotation and on wild-type cells treated with
flagellum-inhibiting drugs, found a gene expression pattern similar to sessile cells [55].
Specifically, about half of the genes that were differentially expressed in surface-
attached cells also had altered expression levels when rotation was impaired, suggesting
that the flagella are a main surface sensor in this organism. The E. coli flagellum has
also been shown to be sensitive towards mechanical forces: the number of stators,
i.e. the force-generating protein complexes of the flagellar motor, increases within
minutes when the load of rotation is increased by binding a microbead to truncated
flagella [56–58].

How hindered flagellar rotation is sensed on the molecular level seems to vary
between bacterial species and the mechanism has not been resolved in all cases.
In B. subtilis, the interaction affinity of the flagellar motor and the cytoplasmic
histidine kinase DegS may be affected by the rotation of the motor, such that
halted rotation leads to activation of the DegS-DegU two-component system [53].
In Caulobacter crescentus, the diguanylate cyclase DgcB associates with the flagellar
motor and starts synthesizing the second messenger molecule cyclic diguanylate (c-di-
GMP) upon surface-induced halting of flagellar rotation, leading to rapid irreversible
attachment [59]. A complex regulatory mechanism then reinforces the switch to the
sessile phenotype by inhibition of motility [60]. In other cases, signal transduction
of flagellar attachment might go via the flagellar stator-associated FliL protein [53].
In one study, FliL was shown to play an important role in sensing the presence of
a surface, as respective deletion mutants of Proteus mirabilis and E. coli responded
differently to soft agar surfaces than wild-type cells, in terms of motility and gene
expression [61]. However, another study reported that FliL plays no significant role in
mechanosensitivity of the E. coli flagellum, instead suggesting that higher torque in
hindered flagella results in exposure of binding sites on the flagellar rotor [62]. Other
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explanations for surface sensing by flagella are that, after rotation has stopped, a
reduced ion flux through the flagellar motor may impact the membrane potential and
energy state of the cell [53] or that blocked rotation could result in an increased torque
of the motor, leading to perturbations in the cell envelope [63]. Thus, while flagella
are known to contribute to the perception of surface contact in a range of bacterial
species, they might employ different sensing mechanisms.

Pili. In addition to flagella, also pili (fimbriae) attach to surfaces and support biofilm
development. Their importance is illustrated by a genome-wide study in E. coli, which
revealed that loss of genes encoding type I pili had the most detrimental effect out
of all single-gene deletions on the formation of biofilms [64]. The importance of type
I pili for adhesion is also illustrated by the finding that attachment to a variety of
abiotic surfaces can be greatly reduced by addition of mannose to the medium [46].
As the FimH subunit on the tip of type I pili is known to bind to mannose, which
is also present on eukaryotic cells [65, 66], the decreased adhesion is likely due to a
reduced interaction of the mannose-saturated pili with the surface [46, 65].

Also curli fimbriae stick to surfaces and are highly beneficial for adhesion [46, 47, 64,
67]. Increased production of curli through a point mutation in the ompR gene has been
shown to enhance surface attachment, while mutations generating curli-deficient cells
were found to result in a more than 50% reduction in biofilm formation [64, 67]. A
wide range of pili are known to exist in various bacterial species, but also within single
species generally multiple types of pili are expressed. For example, in addition to type
I pili and curli, E. coli may also carry P-pili, type IV pili, and several others [68, 69].

Mediating stable adhesion to the surface is a main role of pili, but they may have other
functions as well. In the case of type IV pili, that are present in many organisms,
a continuous process of extension, eventual attachment, and retraction facilitates
twitching motility on the surface [70, 71]. In Pseudomonas aeruginosa, another type
of pilus, Cup, does not only mediate cell-surface interactions, but seems to also be
involved in cell-cell aggregation [72, 73], underscoring the importance of pili also
during subsequent stages of biofilm formation. In Caulobacter crescentus, one role
of the polar Tad pili might be bringing the polar flagellum in close proximity to the
surface, such that its rotation is hindered, which is used by the bacteria as a signal
for surface attachment [59]. Countless other cell appendages exist, but listing them
all is beyond the scope of this review, and the reader is referred to a comprehensive
review [69]. Overall, bacteria use a wide range of pili mainly to mediate adhesion to
surfaces, but also for a variety of other functions. Besides sensing surface contact via
attached flagella, the attachment of pili is also known to be sensed. For instance, in
E. coli attachment of pili was found in multiple studies to result in altered gene
expression [74–76]. While the molecular mechanism here was not fully clear, for
Pseudomonas aeruginosa, it has been suggested that the continuously extending and
retracting type IV pili perceive tension when attached pili are retracted and that these
forces may lead to depolymerisation of the pili and/or conformational changes in pilus
subunits, which then enable the interaction between the major pilus subunit PilA and
the sensor protein PilJ. As a result, a signalling pathway is activated that produces the
second messenger cyclic AMP to initiate biofilm formation [77, 78]. In C. crescentus, a
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different type of pilus, Tad, uses a comparable mechanism, as it also senses the inability
to retract once it is attached to a surface and then possibly stimulates the diguanylate
cyclase PleD, which signals via c-di-GMP, leading to synthesis of a holdfast structure
that mediates adhesion [79]. Alternatively, pili-mediated attachment could be sensed
as an accumulation of mislocalised pilus subunits in the periplasm of attached cells [80],
known to induce the CpxAR two-component system in E. coli [81]. A second signalling
system in E. coli that has been implicated in pili-mediated sensing of the surface is
the BarA/UvrY two-component system: the transcription of barA is stimulated by
P-pilus attachment in uropathogenic E. coli by a yet unknown mechanism [75]. For a
recent review that covers surface sensing via type IV pili, see [82].

Mechanosensing of shear forces on bacteria that are attached via pili, may also induce
biofilm formation. This has been shown in P. aeruginosa cells that were attached via
type IV pili, where shear forces caused the production of c-di-GMP and subsequent
biofilm initiation [83]. Similar results have been obtained in enterohemorrhagic E.
coli, where increasing shear forces on attached cells led to increased induction of a
pathogenicity island, although here the involvement of pili was less clear [84].

Thus, flagella and pili do not only facilitate adhesion to the surface, but also transmit
signals that allow bacteria to respond to this adhesion. Surface sensing via cell
appendages has been found in multiple species, indicating that it is a common
mechanism to perceive surface contact in bacteria.

Cell body attachment

Next to the surface attachment via the cell appendages, also the whole cell body
can attach to the surface. Here, adhesion to a surface is mainly mediated by Van
der Waals, electrostatic and acid-base interactions between the bacterium and the
surface (for reviews see [85–87]). Upon approaching a surface, a bacterium will
initially be attracted by the long-range Van der Waals forces, but short-range repulsive
electrostatic forces, for instance provided by the fact that most bacteria and material
surfaces are both negatively charged [88], may subsequently prevent close contact to
the surface. This phenomenon is the basis of the Derjaguin-Landau-Verwey-Overbeek
theory, which has been indispensable in explaining cellular adhesion, although it is
a highly simplified representation [89, 90]. Due to the oppositely oriented forces, the
energy minimum may lie at a distance on the order of tens of nm from the surface
(Figures 2a and 2b) [91]. Shielding of the charges on the surface by a conditioning film
or high ionic strength of the medium can decrease the contribution of the electrostatic
forces, allowing a smaller distance between cell and surface [86, 92]. Physical contact
of the cell body with the surface during adhesion can furthermore be facilitated by the
long O-antigen part of lipopolysaccharides (LPS), cell appendages or polar adhesion
(Figure 2c) [46, 47, 87, 93–98].

Following the initial adhesion of the cell body, gradually the attachment becomes
stronger over a time window of seconds to minutes, which is facilitated by
rearrangements at the interface between cell envelope and surface that progressively
maximize attractive interactions, e.g. by removal of interfacial water, protein
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Figure 2: Summary of the forces involved in adhesion and strategies to overcome
unfavourable surface interactions. (a) Schematic representation of forces acting on a
bacterium when it approaches a surface, with the balance between attractive and repulsive
forces keeping the bacterium at a small distance from the surface. (b) Adhesion forces as
a function of distance from the surface. Van der Waals forces are attractive, electrostatic
forces are generally repulsive and acid-base forces might be either. The total force reaches
an energy minimum, which determines the separation of the bacterium from the surface [99].
(c) Strategies employed by bacteria to achieve a smaller separation from the surface than
allowed by the initial energy minimum, which include (i) conditioning of the surface with e.g.
proteins, amino acids, (poly)saccharides, and lipids, (ii) polar adhesion, (iii) attachment of
appendages, and (iv) production of adhesive proteins and polysaccharides that are exposed
on the cell surface.

conformational changes and an increase of favourable acid-base and hydrophobic
interactions between cell and surface [99, 100]. Indeed, establishing initial stable
attachment to the surface does not require biological activity, as the adhesion force of
polystyrene particles to glass has also been found to strongly increase within minutes
on a surface [101].

At this stage, the adhesion might already be considered irreversible, but could be
reinforced through production of adhesins. Irreversible adhesion in fact does not
require a large contact area between cell and surface. For instance, Caulobacter
crescentus can irreversibly attach in a polar orientation due to the production of
adhesins at the cell pole [59, 79]. Similar results have been found for Asticcacaulis
biprosthecum and Agrobacterium tumefaciens, where also polar adhesins were
produced within minutes following surface contact, which shows that rapid surface-
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induced strengthening of polar adhesion is a common strategy in multiple genera [102].
However, other bacterial species preferentially assume a flat orientation on the surface.
For example, in Pseudomonas aeruginosa, production of the Pel polysaccharide, a
component of the exopolymeric matrix, stimulates a transition from polar adhesion to
a flat orientation by increasing short-range attractive interactions [103]. Pseudomonas
fluorescens uses a similar mechanism to transition to irreversible attachment, secreting
the large adhesive protein LapA, which remains associated with the cell-surface,
to assume a flat orientation [104]. Initial adhesion does not necessarily result in
irreversible attachment within a short time span, as bacteria may first explore the
surface by moving (or swarming) over it, using type IV pili or flagella [61, 105, 106].
Following irreversible adhesion, bacteria stick together mainly by production of an
exopolymeric matrix and via their appendages [47], but also by synthesizing adhesins
like Ag43 that promote aggregation of bacteria [107].

The importance of understanding adhesion forces is exemplified by the effect that
combined adhesion forces between cell and surface have on the fate of the attached
cell [108]. Weak adhesion forces (e.g. on polymer brush-coatings) can lead to the
formation of unstable biofilms with aberrant structure and smaller thickness [109, 110].
Possibly, such weak interactions do not provide sufficient signal for the adhered
bacteria to transition to subsequent steps in the development of the biofilm, such
that they fail to form a robust matrix-enclosed structure. On the other hand, in the
case of too strong adhesion forces, which bacteria especially encounter on positively
charged surfaces, extensive envelope stress and loss of viability may occur [108, 111].
In the intermediate regime, corresponding to interactions between bacteria and many
common materials, the forces are sufficiently strong to trigger biofilm formation,
without affecting viability [108]. Generally, surfaces are not perfectly homogeneous,
but instead contain patches with different properties, in terms of surface charge,
hydrophobicity, roughness, and composition of the conditioning film [112]. This means
that attached bacteria may experience different interactions with the same surface,
which, together with the limited range of interbacterial communication, was proposed
to be the cause of commonly observed heterogeneous micro-environments within
biofilms where bacteria have distinct phenotypes [112]. Thus, understanding the forces
that govern bacteria-surface interactions not only allows us to predict whether stable
adhesion will occur, but might also explain emergent properties in mature biofilms.

Physical contact of the cell body with a surface is widely thought to give rise to
envelope stress [82, 108, 113–119], which is often defined as the presence of unfolded
proteins [81, 120] and lipopolysaccharides [121] in the periplasm. However, to the
best of our knowledge, there is no direct experimental evidence for such surface-
induced protein unfolding or LPS mislocalization. If a broader definition of envelope
stress is used, including all perturbations of the extracytoplasmic space of the cell,
such as altered membrane curvature [122, 123] and loss of membrane integrity [124],
then adhesion of the cell body can indeed be seen as a cause of envelope stress.
Specifically, there is evidence, obtained with three different experimental techniques,
that adhesion causes deformations of the cell shape, and thus altered membrane
curvature [125, 126], and compresses the thickness of the cell envelope near the site
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of surface contact [110]. Such attachment-related membrane tension has also been
proposed to cause mechanosensitive channels to open [119].

Usually, cellular responses to envelope stress are studied after invoking the stress
by chemical means (e.g. treatment with compounds that insert into or disrupt the
lipid bilayer [122, 127]), or by genetic modifications (e.g. overexpression of membrane
proteins [120] or mutations in the synthesis pathways of lipopolysaccharides or
phospholipids [128–130]). Since a number of signalling systems that respond to such
laboratory-induced envelope stress regulate biofilm-associated genes, it is plausible
that surface-induced envelope stress upon physical contact of the cell body may be a
way to sense adhesion. While most of the following envelope stress response systems
are described with a focus on E. coli, it should be noted that in many cases homologous
systems exist in other species.

Besides the above mentioned physicochemical parameters and attachment of pili,
envelope stress can activate the CpxAR two-component system. Activation can happen
when there are defects in LPS assembly [131, 132]. Also, unfolded proteins can induce
the system, by binding to the auxiliary regulator CpxP, which lifts its inhibition of
the histidine kinase CpxA [133–136]. Once bound to an unfolded protein, the direct
interaction of CpxP with CpxA is released and CpxP is proteolysed [137]. It has also
been suggested that, in response to physical contact with a surface, the Cpx system
gets activated via the outer membrane lipoprotein NlpE [113]. Its tertiary structure
might predispose NlpE to unfolding by membrane perturbations, leading to activation
of the kinase functionality of the inner membrane protein CpxA [114]. If this model is
correct, then it exemplifies how envelope stress can be exploited by the cell as a signal
for surface attachment. However, recent findings indicate that the CpxAR system is
not activated by NlpE-mediated surface sensing, as the previously reported results
could not be reproduced, neither by employing the original population-level assay, nor
by a novel single-cell experimental approach [138].

Envelope stress can also activate the RcsCDB phosphorelay. The activity of this
system was found to be altered upon deletion of genes involved in lipopolysaccharide
synthesis [128, 139], mutation or overexpression of genes encoding envelope-localised
proteins [140, 141], and upon membrane damage caused by the action of antimicrobial
peptides [127]. When E. coli is grown on a solid surface, the expression of genes
controlled by the Rcs phosphorelay has been shown to increase rapidly, but the
underlying mechanism has not been solved [115]. Also in P. mirabilis, it was found
that the Rcs system is responsive to surface contact, but, contrary to what was found
in E. coli, surfaces inhibit the Rcs system in P. mirabilis [118]. Likely, the outer
membrane lipoprotein RcsF is involved in surface sensing. RcsF is inserted into the
outer membrane via the major subunit of the -barrel assembly machinery BamA
and forms complexes with several abundant -barrel proteins (Figure 3) [142, 143].
Here, part of RcsF is exposed on the cell surface, which was proposed to enable
RcsF to sense perturbations of the lipopolysaccharide layer [142]. Upon envelope
stress, BamA may fail to generate the complexes between RcsF and other outer
membrane proteins, thereby enabling RcsF to activate the Rcs phosphorelay via the
inner membrane receptor IgaA [143]. This model is in agreement with findings that
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Figure 3: Proposed method of activation of the Rcs system via the outer
membrane sensor RcsF. Left: Under non-inducing conditions, the lipoprotein RcsF is
tethered to the outer membrane and threads through the lumen of β-barrel proteins [142, 143]
(the two studies reported opposite orientations of RcsF in the membrane). In this state, RcsF
is unable to contact its inner membrane receptor IgaA, and can therefore not activate the Rcs
system, i.e. the dephosphorylation activity of RcsC predominates. Right: By a yet unclear
mechanism, envelope stress can interfere with the ability of periplasmic chaperones or BamA
to localize RcsF to its regular location and thereby enables it to activate the Rcs system [143].

inner membrane anchored RcsF or truncated forms that localise to the periplasm,
constitutively activate the Rcs phosphorelay [127]. A recent study found that it is
crucial for activation of the pathway that RcsF has the correct length to span the
periplasm [144]. Possibly, the activation of the Rcs system on a surface might be
facilitated by small deformations in the cell envelope that affect the distance between
the membranes.

Three other systems in E. coli that seem to be responsive to envelope stresses, although
without any clear involvement in surface sensing or role in biofilm formation, are the
sigma factor E [121, 145], the phage shock protein (PSP) response system [146–149]
and the BaeSR two-component system [150, 151].

Also in P. aeruginosa, surface-induced envelope stress could be a trigger for biofilm
initiation. Specifically, contact with a surface can lead to the activation of the Wsp
pathway [152, 153]. It has been proposed that deformation of the cell envelope
is the signal that is sensed by this pathway, as the WspA protein forms weakly
interacting clusters in the inner membrane that might be affected by mechanical forces
originating from bacteria-surface interactions [154]. Activation of this system leads to
the phosphorylation of the diguanylate cyclase WspR and, in turn, the produced c-
di-GMP inhibits the transcription factor FleQ [155]. Thereby, activation of the Wsp
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system on a surface represses flagella biosynthesis genes and induces the production
of biofilm matrix components.

Recently it was shown that mechanical forces on surface-attached cells could, besides
causing envelope stress, induce voltage and calcium transients in E. coli [156]. The
changes in calcium concentration were found to result in alterations in protein levels.
The mechanisms by which these calcium transients are generated and regulate gene
expression remain unsolved, but may prove to be an interesting novel sensing system
for bacteria attached via the cell body.

In summary, attachment of the cell body can give rise to envelope deformations and
maybe other forms of envelope stress. These perturbations are sensed by the Rcs
system in E. coli and P. mirabilis, and the Wsp system in P. aeruginosa. It is very
plausible that other bacteria also recognise surface-induced envelope deformations as
a signal for adhesion.

Downstream effects of the potential surface sensing

pathways

In the following, we outline how the above mentioned systems that may sense the
proximity to or contact with a surface could induce the changes necessary to switch
from a mobile to a sessile lifestyle. Here, we will focus on how the potential surface
sensing systems specifically affect motility and adhesion, as key phenotypic changes
for the lifestyle switch.

Central role of c-di-GMP

Several of the above sensing systems ultimately lead to increased cyclic-diguanylate
(c-di-GMP) levels, which plays a central role in signal transduction that leads to the
switch to the sessile phenotype. At high concentrations, c-di-GMP leads to enhanced
synthesis of pili and matrix and reduced motility, and thereby plays an important
role in the switch between mobile and biofilm lifestyles (for reviews see [168, 169]).
Regulation of biofilm initiation via c-di-GMP is highly conserved in the bacterial
kingdom, and species that do not synthesize this compound, e.g. Staphylococcus
aureus, use similar second messengers, e.g. c-di-AMP, to fulfill the same functions [170].
The E. coli genome contains 29 genes that are proposed to synthesize or degrade c-di-
GMP [171], a number of them known to be induced by the above described potential
surface sensing pathways. For instance, the CpxAR system upregulates the expression
of the diguanylate cyclase dgcZ (ydeH ) [39, 172]. Furthermore, the production of a
number of diguanylate cyclases is regulated by the carbon storage protein CsrA [158],
whose activity is indirectly controlled by the BarA/UvrY two-component system via
regulation of the expression of the small RNAs CsrB and CsrC [159, 160]. Thus,
c-di-GMP links the activation of some potential surface sensing systems to biofilm
initiation.
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Sensing
system

Adhesion-related signals Biofilm-related targets

BaeSR Envelope stress [151, 157] -

BarA-UvrY Attached pili [75] Motility [158–160], pili [161],
matrix [162]

BasSR pH [38] Curli [163], pili [163]

CpxAR Osmolarity [23, 164], pH [24,
25], pili subunits [81], envelope
stress [134]

Motility [39], curli [165]

EnvZ-OmpR Osmolarity [27–29], pH [24, 30–
32]

Motility [40], curli [165]

PSP Envelope stress [149] Motility [149]

RcsCDB Osmolarity [34, 35], envelope
stress [127, 128, 139, 141]

Motility [41], curli [165], pili
[115], Ag43 [115], matrix [166]

σE Envelope stress [121, 145, 167] -

Flagella Hindered rotation [56–58] Unknown in E. coli

Table 1: An overview of the sensing systems in E. coli that can sense properties
associated with surface proximity or attachment. Only the inducing signals that may
be relevant for surface sensing, as described in the section ’Surface sensing’, are shown.
Also, the downstream targets are limited to those that are related to biofilm formation and
described in the section ’Downstream effects of the potential surface sensing pathways’.

Downregulation of motility

Some of the above mentioned surface sensing systems downregulate motility, which
is no longer needed for sessile cells in a biofilm. Although the biosynthesis and
rotation of flagella are decreased on a surface, there are generally microenvironments
within biofilms where flagella are still expressed to mediate cell-cell and cell-surface
interactions [173]. With constitutive expression of the flagellar regulator FlhDC,
biofilm formation by E. coli is significantly impaired, indicating the importance of
their timely regulation [174]. The above outlined, putative surface sensing pathways
CpxAR [39], RcsCDB [41], EnvZ/OmpR [40] and BarA/UvrY [158–160] are all
involved in controlling flagellar expression and activity, for instance by repressing
the flagellar regulator flhDC [175] or by increasing the production of c-di-GMP [168],
which activates YcgR, which in turn binds to and slows down the rotation of the
E. coli flagella [176]. For a review about two-component-system-based regulation of
motility, see [177].
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Control over adhesive appendages

Some of the surface sensing systems exert control over expression of adhesive
appendages. For switching to the sessile lifestyle, it is essential to control attachment
to the surface and other cells, which can be mediated in part by the synthesis of pili
and curli. A number of the above mentioned pathways are involved in expression of
curli (for a review see [165]). Activators are the two-component systems EnvZ/OmpR
and BasSR, while the CpxAR and RcsCDB systems have been found to repress
the curli genes [165]. Probably connected to the loss of curli, deletion of the gene
encoding the response regulator OmpR has been found to result in complete loss of
adhesion [67], although other studies only reported a moderate reduction in biofilm
formation [64, 174]. The genes for curli synthesis are encoded by two operons in E. coli,
csgBAC and csgDEFG, both of which are dependent on the general stress response
sigma factor σS [178]. The csgD gene encodes a transcription factor that plays a major
role in reduction of motility and is considered as a master regulator of the switch to
the sessile phenotype [179].

The production of pili has been shown to be regulated by the second messenger
c-di-GMP in a pathogenic E. coli strain [180]. The BarA/UvrY two-component
system also plays a role in the expression of pili; in a uvrY deletion strain fewer
cells express pili, while the opposite is true for a strain missing the csrA gene,
whose product is negatively regulated by BarA/UvrY [161]. However, since CsrA
regulates the expression of a number of diguanylate cyclases [158], the effect of the
BarA/UvrY system on pili expression could also be indirect, via altered levels of c-di-
GMP. Furthermore, the two-component system BasSR was found to directly control
expression of pilus genes [163]. Biosynthesis of the CupD fimbriae of P. aeruginosa,
which play an important role in biofilm formation in more virulent strains, is regulated
by the Rcs system [181]. As described above, this system is highly responsive to surface
contact in E. coli and P. mirabilis [115, 118], however, it has not been tested for surface
sensing in P. aeruginosa.

Production of the exopolymeric matrix

Another important aspect of the sessile lifestyle is the synthesis of the exopolymeric
matrix, supporting bacteria to stick together and shielding them to some extent from
influences from outside, both physical and chemical. The RcsCDB system positively
regulates the expression of the wca (also called cps) genes, which are responsible for
the production of the polysaccharide colanic acid [166]. Colanic acid is essential for
the development of the three-dimensional biofilm structure [182]. The BarA/UvrY
system can increase the production of another polysaccharide, poly-β-1,6-N-acetyl-D-
glucosamine (PGA), via inhibition of CsrA [162]. PGA is important for sessile E. coli
cells, as indicated by the finding that enzymatic hydrolysis of this compound greatly
reduces the ability to form biofilms [183, 184].
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Experimental developments for studying surface

sensing

Investigation of surface sensing and the corresponding initial responses is complicated
due to several inherent and experimental challenges. First, cells simultaneously
encounter multiple changes once they approach a surface, i.e. variation in pH,
osmolarity, nutrient availability, forces on the flagella and pili, and potentially envelope
stress, which makes it difficult to trace the response to a single stimulus. Also, biofilm-
related genes are not solely regulated by surface-induced stimuli. For instance, it has
been found that pH affects motility and the ability of planktonic E. coli to adhere,
as exemplified by the presence of fewer and shorter flagella and more pili when cells
are cultured in non-neutral pH [185]. Thus, identifying the molecular mechanisms
activating surface-induced systems requires either ’isolation’ of the phenomena that
can be sensed at a surface or requires solving of an intertwined, multivariate problem.

Second, the different potential surface sensing systems overlap in both their activating
signals and downstream functions. For instance, the activity of the EnvZ/OmpR
system depends on at least three other systems implicated in surface sensing: CpxAR
regulates transcription of ompR itself [186], both CpxAR and σE control transcription
of mzrA [39, 187], which in turn influences the activity of the EnvZ/OmpR system
[188], and there appears to be crosstalk between histidine kinase BarA and response
regulator OmpR [189]. Also for the downstream targets there is overlap, as both
CpxAR and EnvZ/OmpR regulate the expression of the membrane proteins TppB,
OmpC and OmpF [39, 190, 191] and both RcsCDB and EnvZ/OmpR may control the
colanic acid synthesis genes [192]. Similar overlaps in inputs and outputs exist also for
other proposed surface sensing systems. Thus, together the systems form an entangled
network that obscures investigation of individual pathways.

Third, a more practical limitation with respect to the study of initial surface contact
is that most current experimental approaches require relatively large numbers of
cells. However, if the initial responses to spontaneous cellular adhesion to surfaces
are studied, generally only very few cells will be attached to the surface initially.
Additionally, not all cells get in contact with the surface at the same time, implying
that in the earliest stages of surface attachment there will be significant heterogeneity
within the population.

The low number of attached cells and heterogeneity in the population, could be tackled
with single-cell methods. In one study, it was demonstrated that incubating bacteria
with microbeads to which they can adhere, followed by flow cytometric analysis of this
mixture, allows for the observation of both planktonic and sessile cells at the same
time (Figure 4a) [193]. Using this method, it was shown that there is a rapid decrease
in respiration when E. coli cells adhere to polystyrene microbeads [194].

Moreover, recent improvements of RNA-seq techniques towards single cell sensitivity
[195] will enable transcriptome analyses on the single attached cell level. For
transcriptomic profiling of individual bacterial cells, single-cell RNA-seq is still plagued
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by a number of problems, i.e. handling of individual cells, low amounts of mRNA and
the absence of polyadenylated tails [196]. Microfluidics-based platforms for isolation
of DNA or mRNA from single cells in micro-chambers exist, that also allow for
microscopic observation prior to cell lysis (e.g. Fluidigm C1). While such devices are
generally aimed at research on eukaryotic cells, they have been successfully applied
also to a bacterial study [197]. If adhesion in the micro-chambers could be well-
controlled, for instance by application of surface coatings, and the time point of
initial surface contact of each cell would be known from microscopic observation, then
the transcriptional response to adhesion could be studied in bacteria with single-cell
sensitivity.

For transcriptomics of surface-attached cells, instead of RNA-seq, a recent adaptation
to single-molecule fluorescence in situ hybridization (smFISH) could be employed,
which greatly increased the throughput and number of detectable transcripts. This
technique, called multiplexed error-robust FISH (MERFISH), allows for the detection
and quantification of hundreds to thousands of individual mRNA species in single-
cells [198, 199]. As MERFISH uses fixed cells that are immobilized to a cover glass, it
should be possible to get transcriptomic data of individual cells at several time points
after adhesion, by varying the time between surface attachment and fixation. While
mainly designed for eukaryotic cells, MERFISH has been successfully applied in an E.
coli study [200]. Also in the field of proteomics, there are experimental developments
that may in the future prove promising for the analysis of single surface-attached cells,
with the sensitivity now approaching the level of single mammalian cells [201, 202].

To study the adhesion strength of single cells to surfaces, atomic force microscopy
(AFM) is a well-established method [203]. Briefly, in AFM the deflection of a cantilever
is detected while a sharp tip connected to the cantilever interacts with a surface. From
the deflection and spring constant of the cantilever, the force of interaction can then
be calculated. By binding a single bacterium to the tip, its interaction with a variety
of surfaces can be determined, or alternatively, the tip can be modified with different
surface properties (i.e. by attaching a microbead) and sample a surface containing a
confluent layer of attached cells [204–206]. Surface-induced cellular responses that can
be detected by AFM are limited to those that affect the interaction strength with
the surface, such as the regulation of cell appendages (Figure 4b). With AFM it has
been found that Shewanella oneidensis produced an iron reductase that affected its
adhesion to an iron mineral surface within 30 minutes of surface contact [207]. While
this response was probably not due to physical contact sensing per se, but rather
due to the chemical signal iron, AFM should be a suitable technique to study surface
sensing. Indeed, AFM was used to show that attachment of Staphylococcus aureus led
to higher abundance of an adhesin on the cell surface [208]. AFM has also been used
to study surface-induced cell envelope deformation in single bacteria [125].

Ultimately, microscopic techniques might be the method of choice to observe changes
upon surface contact. Nearly all currently used techniques for microscopic time-lapse
analyses, such as immobilization of cells under an agar pad or binding of cells to
a glass slide (Figure 4c; for a comparison of methods, see e.g. [213]), are in fact
techniques to investigate cells while they are attached to a surface. In contrast, only
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Figure 4: Experimental approaches for the study of surface sensing. (a) Mixing
of bacteria with microbeads leads to a mixed population, in which both planktonic and
sessile cells are present. Subsequent measurements with flow cytometry will therefore allow
for a comparison of both phenotypes in the same experiment, such that surface-specific
induction can be fully isolated from any potentially confounding effects [193]. (b) Atomic
force microscopy could be employed to measure changes in adhesion forces. Shown here is
a bacterium that is brought into contact with a surface for an extended time, which may
induce production of adhesins or appendages, followed by retraction of the cantilever and
measurement of the required force. (c) A typical microfluidic setup for continuous microscopic
observation of sessile cells. Pictured here is the immobilization of bacteria under an agar pad.
However, with a surface coating such as polylysine, the bacteria can also be immobilized
directly to the glass without the need for an agar pad, in which case the flow of medium
is directly over the cells. This kind of experimental approach is not suitable for obtaining
quantitative fluorescence data for planktonic cells. (d) A specially designed microfluidic setup
that allows for invoking temporary surface contact of bacteria in a flow channel, by reversibly
collapsing the channel [209, 210]. (e) Side view of a microfluidic channel, showing a focussed
infrared laser beam (”optical tweezers”) that enables the manipulation of individual bacteria.
Once trapped, the bacteria can be moved freely through a microfluidic device. Oscillating the
laser trap gives control over the orientation of the bacteria, such that well-focussed images
of planktonic cells can be obtained [211, 212].
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very few microscopic techniques allow for tracking single planktonic cells over time
(e.g. [214], where single bacteria are hydrodynamically trapped at the junction of two
flow channels, or [215], which uses phase-contrast microscopy to follow the position
of freely-moving bacteria over time in 3D, for which the Z-position is determined
from the diffraction pattern of out-of-focus cells). Generally, microscopic methods
for planktonic cells are either very low-throughput or not suitable for quantitative
fluorescence measurements, as freely moving cells will rarely be located perfectly
within the focal plane.

Although microscopic investigation of planktonic cells is problematic, as it is hindered
by lack of focus, it is possible to enforce a temporary surface contact and immediately
image the cells. Planktonic cells can be forced into contact with the surface by
reversibly collapsing the flow channel in a specially designed PDMS-based microfluidic
device (Figure 4d) [209, 210]. This setup should also enable the observation of the
response to attachment, by collapsing the channel for an extended time.

The possibility to handle individual cells during continued microscopic observation,
such that surface attachment could be induced in a controlled manner, would facilitate
investigations of the initial response to surface contact. Here, optical tweezers,
an instrumentation that uses focussed light to hold objects, might offer exciting
possibilities, specifically the manipulation of single cells in a microfluidic setup
(Figure 4e) [216, 217]. Use of an oscillating optical trap allows for imaging of rod-
shaped cells with the long cell axis along the focal plane [211]. Optimization of this
approach enabled stable holding of bacteria for tens of minutes without affecting their
viability [212], such that planktonic cells could be investigated under the microscope
and subsequently be brought into contact with the surface in a controlled and
dynamic manner to observe their initial response. Apart from controlling attachment,
it is conceivable that with two tweezers forces could be applied to two different
points on the cell surface, which might induce tension in the membrane and
therefore enable controlled generation of envelope stress. So far, however, optical
tweezers have been applied to investigate the effect of spatial organisation in a
multispecies biofilm [218] and to inhibit rotation of E. coli flagella [56], but not to
investigate the cellular response to induced surface contact. Combined with high-
resolution microscopy and fluorescence microscopy techniques, such as fluorescence
resonance energy transfer (FRET) [219], optical tweezers might ultimately allow
for the investigation of conformational changes and protein-protein interactions that
eventually are responsible for surface sensing.

Conclusion

In this review, we provided an overview of the current knowledge of surface sensing
mechanisms and the very initial steps of biofilm formation. The phenomena that can
occur when a cell approaches a surface (i.e. physicochemical changes, attachment of
surface appendages, envelope stress) are mostly well characterised. Also, the global
phenotypic changes that cells undergo when switching from planktonic to sessile
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lifestyle are known. However, much less is understood about how contact with a surface
is perceived and how the actual biofilm initiation is regulated. Thus, the complete
picture of the switch from planktonic to sessile lifestyle remains elusive.

For most of the discussed sensing systems, even those that are extensively investigated,
involvement in surface sensing has not been confirmed and the precise molecular
mechanisms are still unknown. For example, upon attachment to a surface, does
the cell envelope slightly compress, allowing outer membrane-localized RcsF to span
the periplasm to transduce the signal to the inner membrane, or does attachment-
induced envelope stress prevent insertion of RcsF into the outer membrane, thereby
facilitating interaction with its inner membrane receptor IgaA? How does E. coli sense
the attachment of its flagella and pili and does the former regulate gene expression?
Further, for many pathways that have a biofilm-related downstream effect, the primary
stimulus of surface sensing remains unsolved.

Another key question is why E. coli has multiple pathways that may sense adhesion,
and how these systems are interconnected with each other. The decision to switch to
a sessile lifestyle has important implications for the fate of the cell. Therefore, the
presence and usage of multiple sensing systems, each responding to different inputs,
likely ensures that the adaptation to the sessile lifestyle is only initiated if all conditions
indicating surface attachment are met. However, the advantage of sensing the same
input via multiple systems is difficult to understand (e.g. osmolarity can be sensed
by EnvZ/OmpR, CpxAR, and RcsCDB). Are these seemingly redundant sensors all
activated under the same conditions or do they respond differently to specific surface
properties? It has been proposed that the EnvZ/OmpR, CpxAR, and RcsCDB systems
form a combinatorial sensor, enabling a cell to distinguish between different inputs by
the ratio of induction of these pathways [24]. Even though this has not been shown in
relation to surface sensing, such combinatorial sensing could be relevant in this case
as well.

Until now, the multiple and simultaneous changes occurring when a cell approaches a
surface, the similar inputs for multiple surface-related sensing systems and the overlap
in their target genes tremendously obscures a systems-level picture of the first steps
in the initiation of biofilm formation. However, novel single-cell technologies could
generate valuable insights into time-dependent cellular responses after surface contact.
Improved understanding of surface sensing will greatly contribute to better prevention
of biofilm formation.
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Aim of this thesis

In this thesis, we sought to identify the surface sensing systems used by E. coli,
characterise them and discern the hypothesised connection to persistence, while also
contributing to the development of experimental tools for the manipulation of single
cells under the microscope.

Outline of this thesis

In the first chapter of this thesis, a thorough overview of cell-surface interactions,
potential mechanisms for surface sensing and initial steps of biofilm formation is
provided, with a strong emphasis on surface sensing by Escherichia coli, but also
covering other species when knowledge in E. coli is scarce. In Chapter 2, we set out to
investigate the previously reported surface sensing system CpxAR, only to find that
this two-component system is unresponsive to surface contact. Our findings challenge
one of the milestone papers about surface sensing. In Chapter 3, we established
the possibilities and limits for the use of optical tweezers in microbiological studies.
Specifically, we tested several configurations of stationary and oscillating optical traps
to stably hold E. coli cells, and found that these cells can be trapped for at least 30
min. Therefore, optical trapping could become an enabling tool for future single-cell
manipulation studies, with great potential for surface sensing investigations. In the
fourth chapter, eight candidate surface sensing systems of E. coli were tested for a
response to adhesion and only the Rcs system was found to sense surface contact. We
found that surface-mediated activation of the Rcs system plays a role in persistence, as
it allows dormant cells to resume growth. Hence, our results implicate Rcs in biofilm
initiation and persistence, both important virulence phenotypes. Finally, in Chapter 5,
we investigated how E. coli copes with toxic concentrations of copper. Here, we found
that CpxR plays a major role in the defence against copper, even though activation
of this response regulator by copper happens only via cross-talk with other pathways.
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