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ABSTRACT

The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the
consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and
sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body
which causes a high glycemic response. However, dietary carbohydrates which are digested and
release glucose in a slow manner are recognized as providing health benefits. Slow digestion of gly-
cemic carbohydrates can be caused by several factors, including food matrix effect which impedes
a-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic
compounds. Differences in digestion rate of these carbohydrates may also be due to their specific
structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years,
much has been learned about the synthesis and digestion kinetics of novel a-glucans (i.e. small oli-
gosaccharides or larger polysaccharides based on glucose units linked in different positions by
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a-bonds). It is the synthesis and digestion of such structures that is the subject of this review.

Hyperglycemia and health

There is abundant evidence that postprandial hyperglycemia
is an indicator for risk of coronary heart disease (CHD),
stroke, and overall mortality (Almdal et al. 2004 Hanefeld
et al. 1996); rapid rise in blood glucose levels increases low-
level inflammatory effects, oxidative stress, and harmful
effects on beta cells which decreases insulin sensitivity
(Figure 1) (Ceriello et al. 2004; Wallander et al. 2005).
Hyperglycemia lasting more than 2hours postprandial has
been shown to be a better predictor of CHD, stroke, and
overall mortality than hemoglobin Alc levels (Jackson,
Yudkin, and Forrest 1992; Meigs et al. 2002). Many have
hypothesized that postprandial hyperglycemia contributes to
diabetes complications through damaging the vasculature
tissue, such as retinopathy and nephropathy, which is likely
why the cardiovascular disease incidence is so highly corre-
lated to poorly controlled diabetes (Ceriello et al. 2004;
Meigs et al. 2002). Even in non-diabetics, a meal high in
rapidly digestible starches allows for some postprandial and
post-challenge hyperglycemia that may contribute to cardio-
vascular damage (Hanefeld and Schaper 2007). Poor insulin
secretion and decreased insulin sensitivity are key character-
izations of type 2 diabetes, as well as progressive beta cell
dysfunction (Wallander et al. 2005).

In addition to vascular damage caused by acute post-
prandial hyperglycemia, there may be an increase in oxida-
tive stress when excessive blood glucose fluctuations occur
pre- and postprandially, with quick absorption of glucose
from meals (Monnier et al. 2006). Furthermore, activation
of protein kinase C, MAP-kinase, and NF-kB are pro-
moted with intracellular hyperglycemia, increasing reactive
oxygen species (Brownlee 2001; Monnier et al. 2006). It
has been reported that “overproduction of superoxide by
the mitochondrial electron-transport chain” is the
common factor linking the increased cell abnormalities in
diabetes (Brownlee 2001; Campos 2012; Du et al. 2000;
Nishikawa et al. 2000).

Value of slowly digestible carbohydrates to health

Inhibition of the enzymes that digest starch, such that
glucose release into the bloodstream is slowed, is one
treatment method for type 2 diabetes. Currently, acarbose
is used as a competitive inhibitor affecting the activities
of enzymes in the human digestive tract, i.e. pancreatic
o-amylase and various o-glucosidases (Hanefeld and
Schaper 2007; Martin and Montgomery 1996). While
enzyme inhibition is one method clinically used to slow
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Figure 1. Effects of chronic hyperglycemia.

the glucose release of carbohydrate digestion, as men-
tioned, this review will examine the potential to modulate
glycemic response through the use of a-glucans with
structures and glycosidic linkages that do not allow for
immediate hydrolysis.

In addition to the effect of modulating glycemic response,
slowly digestible carbohydrates which are digested into the
ileal (distal) region of the small intestine may stimulate

Nepropathy
-Damaged glomeruli
-Hyperfiltration

Genitourinary dysfunction
-Increased risk of infection

Peripheral Neuropathy from Nerve Damage
-Ulceration
-Necrosis

endocrine L-cells to reduce appetite and slow gastric empty-
ing. This has recently been demonstrated in rats using fabri-
cated slowly digestible carbohydrate microspheres that were
shown to digest into the ileum. Long-term feeding (11
weeks) of the microspheres to diet-induced obese rats pro-
duced lower daily food intake and reduced gene expression
of the hypothalamic appetite-stimulating neuropeptides
(Hasek et al. 2017).



Glycemic carbohydrates and their structure

Oligo- and polysaccharides are built of multiple sugar mole-
cules, or monosaccharides, joined by glycosidic linkages
occurring between the hydroxyl group of one monosacchar-
ide with an anomeric carbon of another. The human digest-
ive tract, as well as mammals in general, contains
carbohydrate-digesting enzymes consisting of «-amylases
secreted in salivary and pancreatic fluids that digest starch
and starch products to linear di-, tri- and tetra-oligosacchar-
ides (maltose, maltotriose, maltotetraose) and branched
o-limit dextrins, mixtures of D-glucopyranose units linked
by (x1—4) or (a1—6) glycosidic bonds. Then the small
intestine mucosal a-glucosidases [maltase-glucoamylase
(MGAM) and sucrase-isomaltase (SI)] that hydrolyze these
and other digestible glycans to monosaccharides prior to
their absorption (Zhang and Hamaker 2009). The human
body absorbs and metabolizes glucose, fructose, and galact-
ose. The common glycosidic bonds that are digestible by
humans include (x1—4) and (x1—6) glucose-glucose that
make up (iso)maltose, (iso)maltooligosaccharides, and
starch; sucrose, (al1—2) glucose-fructose; and lactose,
(f1—4) galactose-glucose. Uncommon linkages that can be
hydrolyzed by the a-glucosidases include («1—1), (21—2),
and (a1—3) glucose-glucose; and («1—3), (x1—4), (21—5),
and («1—6) glucose-fructose (Lee et al. 2016). When mul-
tiple monosaccharides are linked together, they form poly-
saccharides, which are used for energy storage and structure.
For example, glycogen is a storage polysaccharide within the
human body, consisting of («1—4)-linked glucose molecules
that are relatively highly branched through («1—6) linkages.
Starch, which is the glucose storage form in plants and the
most common dietary polysaccharide, consists of two types
of polymers: Amylose and amylopectin. Amylose, is princi-
pally a linear («1—4)-linked glucan, whereas in amylopectin
the («1—4) linear chains are connected via («1—6) branch-
ing points. f-Glucans (polymers of glucose with f-glycosidic
linkages), such as cellulose [(f1—4)-linked] and f-glucan
[in cereals, (f1—4)- and (f1—3)-linked], is another com-
monly consumed polysaccharide; humans lack cellulase
enzymes to digest these f-bonds.

The enzymes responsible for mammalian
a-glucan digestion

To digest the dietary available carbohydrates to the mono-
saccharides glucose, fructose, and galactose, the mammalian
body employs the salivary and pancreatic oa-amylases (EC
3.2.1.1.) and the small intestine mucosal two-enzyme com-
plexes of maltase-glucoamylase (MGAM) (EC 3.2.1.20 and
3.2.1.3) and sucrose-isomaltase (SI) (EC 3.2.148 and 3.2.10).
The o-amylases are classified in glycoside hydrolase (GH)
family GH13, and the four catalytic subunits of MGAM and
SI in GH31 (Nichols et al. 2003). The four enzyme subunits
of these a-glucosidases have different roles in the conversion
of glycemic carbohydrates to glucose (and of sucrose to glu-
cose and fructose). a-Glucans with structures and linkages
that are less easily hydrolyzed by these enzymes potentially
are of interest as slowly digestible carbohydrates. Following
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Figure 2. 3u-Glucosidase arrangement on the cytosol membrane.

digestion of starch by salivary and pancreatic o-amylase to
linear maltooligosaccharides and branched o«-limit dextrins,
in the small intestine the o-linked glucans and sucrose
are hydrolyzed by the mucosal o-glucosidases, MGAM and
SL into free glucose (Zhang and Hamaker 2009). Each o-glu-
cosidase has a unique role, and understanding their roles can
aid in designing carbohydrates with low digestibility carbohy-
drates. The o-glucosidase dimers are composed of N- and C-
terminal subunits; for MGAM the N- and C-terminal subu-
nits are maltase and glucoamylase, and for SI these are iso-
maltase and sucrase, respectively (Quezada-Calvillo et al.
2008). In the literature, they are also termed N- and C-ter-
minal MGAM and SI. The N-terminal domains of both
o-glucosidase complexes are connected to the enterocyte
membrane, with the C-terminal subunits linked and facing
the internal cavity of the intestine. The domains are anchored
by an O-glycosylated stalk that branches out of the N-
terminal domain (Lee et al. 2014; Sim et al. 2010) (Figure 2).

Glucoamylase digests (21—4) glucosidic bonds and acts
faster on longer chain «-glucans than maltase does, and
even can digest native dispersed starch (Lin et al. 2012). The
ability of the mammalian «-glucosidases to hydrolyze differ-
ent o-linked glucose-glucose disaccharides has been studied
using recombinantly expressed and purified enzymes.
Glucoamylase was shown to act (enzyme efficiency of glu-
cose  generation) on  maltose (x1—4) (Ke/Kn
5.0mM ™~ 's™"), kojibiose (21—2) (Ke/Kym 0.9mM 's™h),
and nigerose (a1—3) (Ke/Kyn 2.7mM ™ 's™"); with higher
maltase activity than the maltase subunit itself (K.,/K,, 51.0
vs. 127mM7's7™!) (Lee et al. 2016). Glucoamylase is
reported to be inhibited by maltotriose and maltotetraose at
high concentrations (Quezada-Calvillo et al. 2008).

In addition for digesting maltose, kojibiose, and niger-
ose, maltase has minor activity towards isomaltose (21—6)
(Keat/Km 0.1 mM ™~ 's™ ). Maltase does not digest larger mal-
tooligosaccharides efficiently; under in vitro experimental
conditions, full hydrolysis by maltase took place in 60 min
for maltotriose, maltotetraose, and maltopentaose, while
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Table 1. Kinetic Parameters of Each Recombinant Mucosal a-Glucosidase on
Differently o-Linked Disaccharides with Two Glucoses. Adapted from Lee
et al. (2016).

CtMGAM ntMGAM ctSl ntSI
(Glucoamylase) (Maltase) (Sucrase) (Isomaltase)
Trehalose Not detected  Not detected Not detected Not detected
Kojibiose 12.7 £2.5¢ 1.6+1.2° 17.3+£22° 53.7+13.7¢
11.5+0.6° 17.6+0.5° 0.5+0.0° 32403
0.9+0.2° 1.5+0.4° 0.3+0.0° 0.1+0.0°
Nigerose 35.2+3.6° 27.1+2.6° 63.6+13.0° 444 +6.4°
96.0+33°  1209+37°  11.0+1.0°  248+13°
2.7+09% 44+1.4° 0.2+0.1% 0.6+0.2°
Maltose 26+0.6° 8.7+13° 42+14° 11.1+15¢
1339+43>  1102+38° 114+08° 183+0.6°
51.0+7.0° 12.7+3.0° 2.7+05 1.7+04°
Isomaltose Not detected 128.0+8.4°  Not detected  15.2+2.0°
89+03° 18.1+0.7°
0.1+0.0° 1.2+0.3?
ZKcat/Km (mM~" 7).
Keat (5_1)-
K (MM).

maltose was hydrolyzed in 20min (Lee et al. 2014).
Compared to glucoamylase, or the SI subunits, maltase has
a higher hydrolyzing activity on kojibiose and nigerose
(Table 1).

Per their common names, sucrase hydrolyzes sucrose
(«1—2, glucose-fructose) and isomaltase hydrolyzes isomal-
tose (x1—6, glucose-glucose). However, the SI complex is
notably responsible for the majority of mucosal maltase
activity, because the human intestine may contain 40-50
times more SI than MGAM (Lee et al. 2013; Quezada-
Calvillo et al. 2007). Recombinant mammalian «-glucosidase,
sucrase and isomaltase had K, /K, values for the hydrolysis
of maltose of 2.7 and 1.7, respectively; both enzymes showed
some, though lesser, hydrolysis activity for kojibiose and
nigerose compared to the MGAM subunits (Lee et al. 2013)
(Table 1). Some sucrose hydrolyzing activity was also found
for glucoamylase, and interestingly isomaltulose (¢x1—6, glu-
cose-fructose) was hydrolyzed mostly by isomaltase. Both SI
subunits digested longer linear maltooligosaccharides (e.g.
G5 compared to G2) quite slowly compared to the MGAM
subunits (Lee et al. 2013). Lee et al. (Lee et al. 2014) pro-
posed that selective inhibition to target MGAM subunits
would slow down the release of glucose to the rates of the
SI subunits, as MGAM digests more efficiently maltooligo-
saccharides than SL

Heymann et al. (Heymann, Breitmeier, and Gunther
1995), upon measuring SI kinetics, proposed that the sucrase
subunit has maximal activity against maltose (x1—4)-G2,
and the isomaltase subunit has high activity against (¢1—6)
branched oligosaccharides composed of up to 4 glucopyra-
nose residues (Heymann, Breitmeier, and Gunther 1995).
Lee et al. (Lee et al. 2014) showed though that sucrase and
isomaltase have similar hydrolyzing capabilities for maltose.

It is known that («1—6)-linked branched structures, such
as the a-limit dextrins, the digested products of salivary and
pancreatic a-amylases, are hydrolyzed at a much slower rate
than (o1 —4)-linked linear glucans (Zhang and Hamaker
2009). Studies on «-amylase showed that optimal enzyme
activity occurs when five or more (x1—4)-linked glucose
molecules are in the substrate. (x1—6)-branched linkages of

amylopectin molecules hinder «-amylase activity (Quezada-
Calvillo et al. 2008).

The precise roles of the individual «-glucosidases are
now well documented, and a synergistic picture of their
concerted action seems to appear. Larger starch digestion
products are effectively digested by the outer located
glucoamylase enzyme and the small linear and branched
maltooligosaccharide products are further digested to
glucose by the inner located maltase and isomaltase
(Figure 2). Glucoamylase and maltase can digest unusual
al—2- and ol—3-linked glucans, though maltase has
higher capacity.

Inhibition of the a-glucosidases

While carbohydrate molecular structure influences diges-
tion rate by a-glucosidases, phytochemical inhibitory mol-
ecules that are present at the time of digestion may also
influence the rate of glucose release by these enzymes.
Plant phenols (e.g. chlorogenic acid, caffeic acid and gallic
acid) are a family of metabolites reported to have inhibi-
tory effects on SI and MGAM. Chlorogenic acid has been
shown to have a-glucosidase inhibitory effects when con-
sumed with maltose or sucrose; one study by Ishikawa
et al. (Ishikawa et al. 2007) showed that, when consumed
before a meal, leaves of Nerium indicum (oleander) low-
ered postprandial glucose levels by inhibiting «-glucosi-
dases (Ishikawa et al. 2007). Coffee contains chlorogenic
acid, and green tea contains caffeic acid and catechins
which are known o-glucosidase inhibitors (Adisakwattana
et al. 2009; Nguyen et al. 2012). In a study by Simsek
et al. (Simsek et al. 2015), chlorogenic acid, epigallocate-
chin gallate, (+)-catechin, caffeic acid, and gallic acid
were examined for their effect on the kinetics of maltose
digestion and mechanism of inhibition against each a-glu-
cosidase subunit. It was found that the inhibition con-
stants  (K;) for epigallocatechin  gallate  against
glucoamylase (1.7+0.7 uM) and chlorogenic acid against
sucrase (1.8+0.3 uM) were the lowest compared to any
other phenolics acting on any other subunits (Simsek
et al. 2015). Therefore, there is benefit in focusing further
research on the effect of epigallocatechin gallate and
chlorogenic acid on slowing the «-glucosidase C-terminal
subunit digestion.

Acarbose is produced by some Gram-positive bacteria
and is a potent selective inhibitor of the C-terminal o-glu-
cosidase subunits (Lee et al. 2012). 1-Deoxynojirimycin
which is found in the mulberry plant bark and root was
shown to be a potent competitive MGAM inhibitor
(Breitmeier, Giinther, and Heymann 1997), but against
which subunit has yet to be determined (Breitmeier,
Giinther, and Heymann 1997; Hanefeld and Schaper 2007;
Liu et al. 2015; Martin and Montgomery 1996). The glu-
coamylase C-terminal MGAM subunit acts very rapidly on
smaller starch units and its inhibition could potentially be
used to slow the rate of hydrolysis on longer chain
maltooligosaccharides.



a-Glucans: Current and future ingredients for the
food industry

Health concerns are important drivers of consumer prefer-
ences and demands on food product development are based
on taste, nutritional value, and healthfulness. As mentioned,
digestible carbohydrates such as starch and its derivatives
(maltodextrins and maltooligosaccharides) are the predom-
inant a-glucans in our diets, and have recently come under
scrutiny for their postulated negative impact on health, par-
ticularly when consumed in excess. o-Glucan ingredients
that have slowly digestible or non-digestible profiles consti-
tute a healthful alternative to highly processed starches and
its derivatives. There is a wide range of synthetic or natur-
ally-occurring a-glucan ingredients that differ in digestibility
profiles and technological properties. The a-glucans include
a large group of linear, branched or cyclic oligo- and poly-
saccharides that are composed of glucose moieties joined via
(01—2), (21—3), (x1—4), and (x1—6) glycosidic linkages.
In this section, we describe the most prominent o-glucan
ingredients  with potential the
food industry.

current or uses in

Commercially available a-glucan ingredients
Starch

Starch is the most abundant a-glucan as it is the main stor-
age carbohydrate in cereals, pulses and tubers. Normal
starches are composed of around 20% of amylose and 80%
of amylopectin, but this ratio differs depending on the
starch source (van der Maarel and Leemhuis 2013; van der
Maarel et al. 2002). Also, the branching pattern and the
average length of the (#1—4) chains varies with the origin
of the starch. Based on the rate of digestion, starch is classi-
fied into rapidly digestible starch (RDS), slowly digestible
starch (SDS) and resistant starch which largely defines its
nutritional quality (Englyst, Kingman, and Cummings 1992).
In its native form, starch is characterized by a granular
structure that renders it slowly digestible or resistant (Oates
1997; Valk et al. 2015). It has been shown, for example, that
native cereal starches are slowly digestible due to their lay-
ered structure constituted by crystalline and amorphous
regions (Zhang, Ao, and Hamaker 2006). As mentioned, the
health benefits of SDS mainly pertain to a slower rate of glu-
cose release that results in a reduced postprandial glycemia
(Lehman and Robin 2007). However, as starch is cooked
and gelatinized it loses its granular structure which results
in a significant increase in its digestibility (Bornet et al.
1989). When discussing gelatinized starches that have lost
their crystalline structure, their molecular features then
become the main determinant factors for digestibility. In
particular, the fine structure of amylopectin (e.g. average
length of (x1—4) chains and branching pattern) and the
ratio of amylose to amylopectin are the main determinants
of gelatinized starch physical state and digestibility.
Amylopectin molecules with either higher amounts of long
or short chains were found to have a similar high content of
SDS due to two different mechanisms. Whereas the presence
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of long chains leads to the formation of physical structures
that decrease enzyme accessibility, a highly branched struc-
ture limits itself the accessibility of digestive enzymes
(Zhang, Ao, and Hamaker 2008). Starches that are high in
amylose content have a resistant starch character both in
their native state and after gelatinization and retrogradation,
the latter caused by amylose formation of long-chain dou-
ble-helical crystallites that are resistant to digestion (Jiang
et al. 2010). Consumption of resistant starch has been
shown to positively influence bowel health, blood lipids pro-
file, and to reduce the glycemic and insulinemic responses
(Nugent 2005).

Isomaltulose

Isomaltulose is a disaccharide composed of glucose and
fructose linked by an (x1—6)-glycosidic linkage (Table 2). It
has about 42% of the sweetness of sucrose, and has been
identified to occur naturally at low levels in honey and sugar
cane extract (Siddiqui and Furgala 1967; Takazoe 1985). It is
commercially produced by the enzymatic rearrangement of
sucrose (glucose- (¢1—2)-fS-fructose) using a sucrose mutase
(EC.5.4.99.11) found in bacteria e.g. Protaminobacter rubrum
(Pelzer et al. 2012). It is commonly used as a non-cariogenic
sucrose replacer. In vitro studies of the digestibility proper-
ties of isomaltulose with mammalian intestinal «-glucosi-
dases (including human) indicate that the rate of hydrolysis
of this sugar is significantly slower than that of sucrose and
maltose (Tsuji et al. 1986). Animal studies have shown that
isomaltulose is completely digested and absorbed in the
small intestine, but the postprandial glycemic and insuline-
mic responses rise at a slow rate, with maximum concentra-
tions of glucose and insulin being lower than for sucrose
(Kawai, Okuda, and Yamashita 1985; van Can et al. 2012).
This slowly digestible property makes isomaltulose a suitable
ingredient for products targeted to consumers with diabetic
and pre-diabetic dispositions. Furthermore, due to its com-
plete digestion, clinical studies have shown that both healthy
and diabetic subjects can tolerate doses of up to 50 g without
presenting intestinal discomfort. Isomaltulose is a white
crystalline substance, characterized by a similar sweetness
profile as sucrose which leaves no aftertaste. It has a melting
point of 123 to 124 °C, lower to that of sucrose, and is stable
under acidic conditions (Irwin and Strater 1991).

Isomaltooligosaccharides (IMOs)

IMOs are found naturally in various fermented foods such
as miso, sake, or soy sauce but also in honey (Playne and
Crittenden 2004). Commercial IMOs are produced enzy-
matically and are the market leader in the dietary carbohy-
drate sector of functional foods (Mountzouris, Gilmour, and
Rastall 2002). They are generally obtained industrially from
starch hydrolysates (maltose and maltodextrins) through the
action of o-transglucosidases (EC 2.4.1.24) (Roper and Koch
1988; Yasuda, Takaku, and Matsumoto 1986), or from
sucrose using dextransucrases (Paul et al. 1992; Remaud-
Simeon et al. 1994). IMOs, also called glucosyl saccharides,
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Table 2. o-Glucan ingredients: Chemical structures, properties and applications in food industry.

a-Glucan ingredient

Structure Properties

Food application(s)

Isomaltulose (Irwin and Strater 1991)
(a-D-glucopyranosyl-1—6-u-D-fructofuranose)

Isomalto-oligosaccharides (Goffin et al. 2011)
(glucooligosaccharides linked with (1—4)
and/or (x1—6) glycosidic bonds)

Resistant dextrins (Ohkuma and
Wakabayashi 2000) (highly-branched glucan
with (x1—2), (x1—3), (x1—4), and («1—6)
in o- and [-configuration)

Polydextrose (Mitchell, Auerbach, and Moppet
2001) (highly-branched glucan with (x1—2),
(1—3), (a1—4), and («1—6) in o- and
p-configuration. Contains citric acid and sorbitol)

Pullulan (Khan, Park, and Kwon 2007, Park and
Khan 2009) (linear glucan consisting of maltotriosyl
units linked with (o.1—6) glycosidic linkages)

Cyclodextrins (Astray et al. 2009) (cyclic oligomers
of 6 (2), 7 (B) or 8 glucose units (y) linked via
(0e1—4) glycosidic linkage)

o White crystalline
/ substance Sweet

water soluble, sweet

~ T
/\L /\L oy White powder or syrup,
/\I: . “"OH r-

UH
isomaltotriose

OWOH OH A Aoy
l‘,.--\o

- 0.0
oH “OH
H
panose

White and odorless

water-soluble powder

N \_a u < u b
Uiy [
(Simpson 2011)

White, water-soluble
powder

cnzom

cage g} —r-, Q\-o -
n o \'.K:; ;:Z—a-r,
. mfo & z
.,@@n

(Putaala 2013)

Water-soluble, white,
odorless & tasteless

Solubility in water:
y> o> f§ =CDs, formation
of inclusion complexes

p-cyclodextrin

Sweetener

Low caloric sweetener,
prebiotic®

Low calorie,
bulking agent

Low calorie,
bulking agent

Filler, glazing agent
film-forming Agent,
thickener, binder

Encapsulation of flavours,
protection against oxidative
degradation, heat and light
induced changes, cholesterol
sequestrant and preservatives.

(continued)
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a-Glucan ingredient

Structure

Properties

Food application(s)

Dextran (Jeanes et al. 1954; Maina et al. 2011; Park
and Khan 2009) (glucan polysaccharides with
50 - 97% (0.1—6) glycosidic linkages)

Alternan-oligosaccharides (Evoxx Technologies GmbH 2017)

(oligosaccharides consisting of alternating
(1—6) and (01— 3) of various length)

Cyclic cluster dextrin (FDA 2010; Takata et al. 1996;
Takii et al. 1999) (highly-branched cyclic dextrin
consisting of («1—4) and (o.1—6)-linked
glucose units)

Alternan (Grysman, Carlson, and Wolever 2008; Khan,
Park, and Kwon 2007; Park and Khan 2009)
(a-glucan consisting of alternating (o.1—6) and
(1—3) glycosidic linkages)

(Leathers, Hayman, and Coté 1997)

-

";‘-'-i_‘."\a‘osnufﬂy

% h“}-&‘.\- o '-“?J

-~

J2

%

A

(Leathers, Hayman, and Coté 1997)

High solubility, promotes low

solution viscosities® Molecular
weight range: 1> Mw >10kDa

Water soluble, low viscosity
and sweet syrups

Highly water soluble,
tasteless. Formation of
inclusion complexes Mw
160 kDa with narrow
size distribution

High solubility and low
viscosity, hygroscopic, white,
tasteless powder

Sourdough baking improvers,
natural thickeners in
dairy products

Low glycemic ingredient

Slowly digestible
carbohydrate that accelerates
gastric emptying,
spray-drying aid

Low caloric bulking
agent, binder

9Commercial IMO syrup is generally accepted as a mixture of glucosyl saccharides with both (o:1—6)-linkages and (x1—4) linkages and (x1—3), nigerooligosacchar-

ides or (0«1—2), kojioligosaccharides.

BThe prebiotic properties are under question due to recent studies showing IMOs being digested in the upper intestinal track (Lin, Lee, and Chang 2016).

“Depending on molecular weight and polydispersibility.
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not only containing (¢1—6) linkages, but also (21—4) link-
ages, and nigerooligosaccharides comprised of (x1—3) and/
or kojioligosaccharides comprised of («1—2) linkages, can
be found in commercially available products (Chaen et al.
2001; Kobayashi et al. 2003; Konishi and Shindo 1997;
Yamamoto et al. 2004; Yun, Lee, and Song 1994) (Table 2).

IMOs are considered as non-digestible carbohydrates
with prebiotic properties with benefit to the human micro-
biome (Goffin et al. 2011; Rycroft et al. 2001). Commercial
IMO ingredients are used as a source of a soluble dietary
fiber, a prebiotic and/or a low-calorie sweetener. For
instance, Gu et al. (Gu et al. 2003) observed an increase of
reproduction of Bifidobacterium and Lactobacillus and an
inhibition of growth of Clostridium perfringens after inges-
tion of IMOs in mice and humans. However, other studies
have shown that IMOs are hydrolyzed at least partially by
mammalian digestive enzymes before they reach the colon
(Hodoniczky, Morris, and Rae 2012; Kohmoto et al. 1992;
Tsunehiro et al. 1999). More specifically, in vitro studies
using mammalian brush border intestinal enzymes showed
that glucose disaccharides containing (a1—6), (al—4),
(«1—2) and (x1—3) are digested by the different small
intestine mucosal a-glucosidases (Lin, Lee, and Chang 2016).
A recent survey of commercially available IMO-based ingre-
dients challenges current labeling as “dietary fibers”, “low
glycemic” and “zero calorie”. The authors performed a two-
subject blood glucose response acute study in which a com-
mercial IMO ingredient proved as glycemic as glucose
(Madsen et al. 2017).

Resistant maltodextrins (RMDs)

RMDs are formed when liquefied starch is heated under
acidic conditions in order to rearrange the glycosidic link-
ages. The treatment causes an increase in the proportion of
(¢1—6) linkages and introduces (¢1—2) and/or (al1—3)-
linkages as well as linkages of f-anomeric configuration
(Dermaux and Wills 2007) (Table 2). It is the combination
of these linkages that render them poorly digestible. During
heat treatment, starch undergoes pyroconversion, which
involves hydrolysis, transglucosidation, and, in some cases,
repolymerization of the branched oligosaccharides generated
in the previous reactions. The rearrangement of glycosidic
linkages that occurs during pyroconversion is what renders
these dextrins resistant to digestion. They are popular ingre-
dients in the food industry because they are soluble, have
low viscosity, and have little to no impact on taste and
color. Depending on their level of purification, resistant dex-
trins can contain up to 92% non-digestible carbohydrate
content. In addition, they exhibit a high degree of thermal
and pH stability (Ohkuma and Wakabayashi 2000). This
ingredient is predominantly used to increase the dietary
tiber content of food products without conferring nega-
tively-perceived sensory attributes. RMDs are also suitable
replacers of fully-caloric carbohydrates such as sucrose
(4kcal/g) since the caloric value for resistant dextrins is esti-
mated to range between 1 and 2.5kcal/g (Panasevich et al.
2015). Due to this property, this ingredient can also be used

to replace fully-digestible maltodextrins in the formulation
of food products of medium to low glycemic index.

Polydextrose

Polydextrose is a synthetic, soluble, and non-viscous glucan
polymer that is manufactured by melt condensation of glu-
cose and sorbitol in acidic and vacuum conditions. This
manufacturing process results in a highly-branched, low
molecular weight polymer (Mw, =2000Da; Degree of
Polymerization [DP]=12) constituted by glucose units
linked by (a1—2), («1—3), (21—4), or (x1—6) glycosidic
bonds, present in both o- and f-anomeric configuration
(Rennhard 1973) (Table 2). Polydextrose is poorly digested
in the small intestine and, thus, has reduced caloric avail-
ability. Its other applications in food include glazing agent,
humectant, stabilizer and thickener (Srisuvor et al. 2013;
Voragen 1998). Its complex structure also results in its poor
degradation by microbes making it non-cariogenic and only
a small fraction is metabolized by cecal/colonic microbiota.

Cyclodextrins (CDs)

CDs are cyclic oligosaccharides of glucose molecules linked
by (x1—4)-glycosidic linkages. They are classified depending
on the number of glucose units, namely, «-, - and y-CDs
for 6, 7, and 8 glucose units, respectively (Table 2). CDs are
formed enzymatically from hydrolyzed starch by cyclodex-
trin glycosyltransferases (CGTases; E.C.2.4.1.19), enzymes
that catalyze the cleavage of (x1—4) linkages in starch and
the subsequent transfer of the newly produced reducing end
to a non-reducing end of the same molecule (Thiemann
et al. 2004). Purified «-, - and y-CDs have been approved
for their use as food additives (EFSA 2007; JECFA 1993,
1995, 1999, 2002, 2006). Different applications of CDs
include flavor encapsulation, taste modification by elimin-
ation of bitter or off-flavors as well as odors, food preserva-
tion, and as cholesterol sequestrants (Astray et al. 2009) in a
variety of food products as indicated by the Codex
Alimentarius, General Standard for Food Additives (CODEX
Alimentarius Commission for International Food Standards
2017). More specifically, the use of f-CD is limited to a few
food categories (i.e., chewing gum, pre-cooked pastas and
noodles, starch-based snacks, water-based, and flavored
drinks) (Thiemann et al. 2004). - and fS-CDs are not
hydrolyzed by gastrointestinal enzymes, but fermented by
the colon microbiota. According to the EFSA Health Claim
(EFSA Panel on Dietetic Products, Nutrition and Allergies
2012), a-CDs have been shown to effect a significant reduc-
tion in postprandial glycemic response at a dose of at least
5g per 50¢g of starch. The reduction in glycemic response is
due to the tight helix of the «-CD, the inhibitory effect of
a-CD on pancreatic amylase, and that «-CD may delay gas-
tric emptying (Buckley et al. 2006; Gentilcore et al. 2011;
Koukiekolo et al. 2001; Larson, Day, and McPherson 2010).
In contrast, y-CD is readily digested in the gastrointestinal
tract yielding mainly maltose, maltotriose and glucose.
Therefore, the metabolism of y-CD closely resembles that of



starch and maltodextrins. Although they are rapidly metabo-
lized and absorbed in the small intestine, y-CDs have also
been reported to impact glycemic response with a similar
inhibitory effect on pancreatic «-amylase as «-CD
(Koukiekolo et al. 2001; Wolf, Chow, and Lai 2006).

Novel a-glucan ingredients
Neo-amylose™

Neo-amylose™ is an o-glucan obtained through the poly-
merization of sucrose by the action of amylosucrase (E. C.
2.4.1.4) derived from Neisseria polysaccharea (Biittcher et al.
1997). It is a water insoluble, unbranched polymer com-
posed of (x1—4) glucosidic linkages with a chain length
ranging from 35 up to 100 glucose units (Peters, Rose, and
Moser 2010). It is an ingredient classified as a type 3 resist-
ant starch (retrograded starch formed by cooking followed
by cooling) that is around 90% non-digestible which makes
it a suitable ingredient for use as a dietary fiber (Bengs and
Brunner 2000).

Cyclic cluster dextrin (CCD)

CCD is made from amylopectin through the cyclization
reaction of glycogen branching enzyme (E.C 2.4.1.18) from
the hyperthermophilic bacterium Aquifex aeolicus (Takata
et al. 2003). It has relatively long chains which adopt a hel-
ical conformation enabling the formation of inclusion com-
plexes with guest molecules such as organic acids (Table 2).
CCD is typically used in baked products, beverages, powder
soups made from fruit and vegetables. It has also been used
as a spray-drying aid. CCDs have received an FDA GRAS
status (FDA 2010; Takata et al. 1996) and animal studies
have shown that they may accelerate gastric emptying and
that they are slowly digestible (Takii et al. 1999).

Dextran

Luis Pasteur discovered dextran in wine and van Tieghem
(Van Tiegham 1878) designated the dextran-producing bac-
terium as Leuconostoc mesenteroides. Dextrans are microbial
a-glucans with 50-97% (x1—6) linkages (Table 2). They are
produced from sucrose via large scale fermentation or
enzymatic synthesis involving extracellular dextransucrase
(E.C. 2.4.1.5) enzymes (Jeanes et al. 1954). Alternatively,
these dextrans can be produced from starch by dextrin dex-
trinases (E.C. 2.4.1.2) (Yamamoto, Yoshikawa, and Okada
1993). Dextrans are approved as GRAS ingredients for their
use in food products and feed. Also, the European
Commission approves the use of dextran in baked goods at
levels up to 5%; dextrans of high molecular weight are used
in sourdough baking to produce good quality bread (SCO
2000; Maina et al. 2011). Furthermore, dextran was
described as a thickening agent, an alternative cryostabilizer,
fat replacer, or low-calorie bulking agent of interest for the
food processing industry (Park and Khan 2009). Dextran is
only partially hydrolyzed to monosaccharides by small

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION e 9

intestine o-glucosidases. The remaining dextran that escapes
small intestine digestion is fermented in the colon resulting
in short chain fatty acid production. Due to its low digest-
ibility by intestinal enzymes, this polysaccharide represents a
source of dietary fiber (Dahlqvist 1963; Dahlqvist 1961;
Jeanes 1975).

Alternan and alternan-oligosaccharides

Alternan is a a-glucan consisting of alternating («1—6) and
(«1—3) linkages with a low degree of branching (Table 2).
It is produced from sucrose by an enzyme of the glucansu-
crase family, known as alternansucrase (EC 2.4.1.140), that
is found mainly in Leuconostoc mesenteroides (Coté and
Robyt 1982; Leemhuis, Pijning, et al. 2013; Park and Khan
2009). (Coté and Robyt 1982; Leemhuis, Pijning, et al. 2013;
Park and Khan 2009). Alternan is resistant to most known
microbial and mammalian enzymes and can only be hydro-
lyzed by isomaltodextranases, and alternanases. Due to its
resistance to digestion it can be used for production of
ingredients for functional foods such as prebiotics (Leathers,
Hayman, and Co6té 1997; Park and Khan 2009). It has also
been reported that alternan oligosaccharides derived from
alternanase activity are used as low-glycemic sweeteners.
Some studies state that these oligosaccharides are potential
prebiotics (Leathers, Hayman, and Coté 1997), however in
vivo trials in humans showed that they are slowly but fully
digestible by human digestive enzymes in the gastrointestinal
track (2008, Grysman, Carlson, and Wolever 2008;
Vanschoonbeek et al. 2009). A recent study on o-glucan
oligomers containing (x1—6) and («1—3) linkages with DP
ranging from 3-12, showed similar glucose and insulin
response curves as the dextrose control in humans. In the
same study, (x1—2) branching points were introduced into
these oligomers, resulting in increased resistance to digestion
in vivo in mice. However, this observation hasn’t been con-
firmed in humans (Hasselwander et al. 2017).

Highly branched a-glucans

It has been shown that the shorter side chains make highly-
branched starch less prone to «-amylase degradation result-
ing in a slower glucose release rate (Le et al. 2009; van der
Maarel and Leemhuis 2013). Different enzymatic modifica-
tion strategies have been successfully used to increase the
degree of (x1—6) branching points in starch (e.g. treatment
with branching enzymes). In experiments by Ao et al. (Ao,
Quezada-Calvillo, et al. 2007; Ao, Simsek, et al. 2007), nor-
mal corn starch was modified through treatment with
p-amylase, or f-amylase- and transglucosidase (BAMTG), or
maltogenic o-amylase and transglucosidase (MAMTG). In
vitro methods were used to analyze digestion rates of the
derived starches by pancreatic «-amylase, pancreatin, and
amyloglucosidase. Starch treated with MAMTG showed an
in vitro digestion rate, measured by reducing sugars pro-
duced, after 10 (69%) and 180 min (55%) of digestion, com-
pared to control untreated gelatinized corn starch (100%).
Analysis of the slowest digesting starch from this experiment



10 J. GANGOITI ET AL.

showed considerably greater proportions of low molecular
weight starch molecules with reduced amylopectin B; and
B, branch chains (short and medium linear chain lengths in
amylopectin), and lower ratios of (x1—4) to (x1—6)-link-
ages (13% (x1—6) in BAMTG-modified starch and 23% in
MAMTG-modified starch). Thus, increased («1—6)-linkages
in shorter molecular size starch molecules had a slow and
extended digestion (Le et al. 2009; van der Maarel and
Leemhuis 2013). In a study by Lee et al in 2013, rats gav-
aged with a highly branched maltodextrin, made with malto-
genic o-amylase together with f-amylase, had higher and
extended blood glucose levels 1hour postprandial than did
those gavaged with unmodified starch or starch modified
with just branching enzyme alone (Lee et al. 2013).

Pullulan

Pullulan is a linear polysaccharide consisting of maltotriose
units interconnected by single (21—6) glycosidic linkages
(Table 2). This alternating pattern is responsible for the slow
digestibility of pullulan in humans (Wolf et al. 2003). It is a
white soluble polymer without taste and odor (Khan, Park,
and Kwon 2007). It is produced from starch by the fungus
Aureobasidium pullulans (Bender, Lehmann, and Wallenfels
1959). As a food additive, it is known by the E num-
ber E1204.

Enzymatic tools for the synthesis of novel a-glucans
from sucrose and starch

In view of the above there remains a need for novel a-glu-
cans from sucrose and starch that are less or only slowly
digestible in the human body. Microbial «-transglycosylase
enzymes acting on starch and sucrose substrates are known
to convert the high glycemic index sucrose and starch carbo-
hydrates into «-glucans of interest for the food industry.
Some relevant commercial examples are the dextran and
CDs, described above. In general, these o-tranglycosylase
enzymes are stable, they act on renewable cheap substrates,
and display high regio- and stereo-selectivity. Other strat-
egies for the production of «-glucans do not have these
advantages. For example, chemical approaches require many
tedious protection and deprotection steps of the hydroxyl
groups in order to achieve regio- and stereo-selectivity, toxic
catalysts and solvents. Other enzymatic strategies are based
on the use of “Leloir” glycosyl transferases, which require
expensive nucleotide-activated sugars (e.g. uridine diphos-
phate glucose) and will not be the focus of this review.
According to the amino acid sequence-based CAZy classifi-
cation system (http://www.cazy.org/), most of these sucrose-
and starch-acting o-transglycosylases (EC 2.4.) are members
of families GH13, GH31, GH57, GH70 and GH77, also cov-
ering hydrolases (i.e. amylase, a-glucosidases, E.C. 3.2.) and
isomerases (i.e. isomaltulose synthase, trehalose synthase, E.
C. 5.4.). Despite the fact that they differ in reaction and
product specificity, members of these families employ a
similar double displacement o-retaining mechanism which
involves the cleavage of the a-glycosidic bond of the glucose

donor substrate and the formation of a covalent enzyme-gly-
cosyl intermediate. In a second step, the enzyme-glycosyl
intermediate reacts with an acceptor substrate, which can be
a water molecule or an acceptor carbohydrate, yielding sub-
strate hydrolysis or a new transglycosylation a-glucan prod-
uct, respectively (Figure 3). In «-glycosidases or hydrolases
(EC 3.2.), water usually acts as acceptor, whereas in o-trans-
glycosylases the binding of an acceptor carbohydrate is
favored; consequently, these latter enzymes naturally display
very efficient transglycosylation activities (Light et al. 2017).
Although a-glycosidases/hydrolases catalyze the hydrolysis of
a-glucans in vivo, many of these enzymes display a certain
degree of transglycosylation activity that can be used for
synthesis of glycosidic bonds in vitro. For example, the
transglycosylation activity of «-glucosidases (EC 3.2.1.20),
neopullulanases (EC3.2.1.135) and maltogenic amylases (EC
3.2.1.133) has been used for the production of isomaltooli-
gosaccharides and branched oligosaccharides (Goffin et al.
2011; Lee et al. 1995; Niu et al. 2017; Yoo et al. 1995). Many
sucrose- and starch-acting enzymes have been characterized
as natural o-transglycosylases with different specificities
(http://www.cazy.org/). Interestingly, protein structure stud-
ies have provided important insights in the molecular basis
for product specificity of several o-transglycosylases. This
also has resulted in valuable clues for subsequent steps aim-
ing to develop tailor-made enzyme variants capable of syn-
thesizing any desirable o-glucan structures. Most of these
sucrose- and starch-acting enzymes belong to the GHI13,
GH70 and GH77 families that constitute the GH-H clan.
Members of the GH-H clan are evolutionarily related, dis-
playing similar protein structures and activity mechanisms.
GH13, GH70 and GH77 enzymes share a catalytic (f/a)s
barrel domain and have four conserved amino acid sequence
motifs containing the three catalytic Asp, Glu and Asp resi-
dues and some of the substrate binding residues (Leemhuis,
Pijning, et al. 2013; Meng, Gangoiti, Pijning, and Dijkhuizen
2015) (Figure 4). GH31 enzymes differ in their catalytic resi-
dues, but they adopt a similar (f/a)s fold and were found to
display a remote evolutionary relatedness with GH-H clan
members (Janecek, Svensson, and MacGregor 2007). GH57
family enzymes, however, have a catalytic (f/a); barrel
domain and possess their own five conserved motifs and
catalytic machinery (Suzuki and Suzuki 2016). The main
types of natural a-transglycosylases used for the production
of slowly digestible or less digestible a-glucans will be illus-
trated in the following sections. Particular attention will be
given to the variety of existing sucrose- and starch-acting
GH70 enzymes, reviewing the surge of new enzymes that
have been characterized in recent years. Due to their broad
product specificity, GH70 enzymes represent attractive
enzymatic tools for the synthesis of tailor-made o-glucans
with a defined glycemic response.

Cyclodextrin glucanotransferases

Cyclodextrin glucanotransferases (CGTase; EC 2.4.1.19)
mainly convert starch into cyclic (21—4)-linked oligosac-
charides, named cyclodextrins (CDs). Depending on their
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Figure 3. Examples of tranglycosylation and hydrolysis reactions.

main CD product, as discussed above, these enzymes are
classified as a-, -, and y-CGTases, with 6, 7 and 8 glucose
units, respectively. Apart from their main cyclization activ-
ity, CGTases also catalyze hydrolysis and intermolecular
transglycosylation reactions using linear (x1—4) glucans
(disproportionation reaction) or their own CD products
(coupling reaction) as substrates, yielding linear products
(van der Veen et al. 2000). CGTases are found in Bacteria
and Archaea, and based on their sequences they are placed
in the GH13 family, which is the largest family of glycoside
hydrolases acting on starch and related o-glucans. Several
three-dimensional structures of CGTases from bacteria of
different genera (e.g. Bacillus, Thermoanaerobacterium and
Geobacillus) are currently available without or complexed
with several substrates (Han et al. 2014; Leemhuis, Kelly,
and Dijkhuizen 2010). CGTase enzymes consist of 5
domains: A, B, C, D and E. Domains A, B and C are present
in most GH13 family members (Figure 4). Domain A com-
prises the catalytic (B/a)g barrel, and together with domain
B forms the substrate binding groove. Domains C and E
participate in starch binding, whereas the role of domain D
has remained unclear. The reaction mechanisms and sub-
strate-binding subsites of CGTases have been analyzed in
detail allowing identification of amino acid residues deter-
mining CD size specificity (Uitdehaag et al. 1999; Uitdehaag
et al. 2000; van der Veen et al. 2000). Most CGTases synthe-
size a mixture of CD of different sizes, and thus, a selective

/
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purification step is required to obtain a single type of
CD only (Leemhuis, Kelly, and Dijkhuizen 2010).
Using protein engineering approaches many CGTase
variants with an improved o-, f-, and y-CD selectivity
have been obtained (Han et al. 2014; Leembhuis, Kelly, and
Dijkhuizen 2010).

4-a-Glucanotransferases

4-0-Glucanotransferases (4-¢-GTase; EC 2.4.1.25) also desig-
nated as amylomaltases, or D-enzymes, display disproportio-
nating activity (see below) on starch-like substrates
containing consecutive (x1—4) glycosidic linkages (e.g.
amylose, amylopectin, maltodextrins and glycogen). These
enzymes are distributed in plants and microorganisms,
where they participate in starch biosynthesis and glycogen
metabolism, respectively (Boos and Shuman 1998; Colleoni
et al. 1999; Wattebled et al. 2003). Enzymes with 4-o-GTase
activity are distributed in the GH13, GH57 and GH77 fami-
lies, only the GH77 family contains exclusively 4-o-GTases.
Three-dimensional structures in free form or in complex
with substrates are available for several GH77 family
enzymes, including industrially important thermostable and
thermoactive enzymes from Thermus thermophilus HBS8
(PDB codes 1FP8 and 1FP9) (Kaper et al. 2007), Thermus
aquaticus ATCC 33923 (PDB code 1CWY (Przylas et al.
2000)); and Agquifex aeolicus VF5 (PDB code 1TZ7;
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Figure 4. Topology diagram models of family GH70 Glucansucrases (GS) with a circularly permutated (f/«)8 barrel (a) and the family GH13 o-amylase (f3/c)8 barrel
(b). Cylinders represent a-helices and arrows represent f-strands. The equivalent a-helices and f-strands in GH70 GSs and GH13 o-amylases are numbered the
same. The different domains in GH70 and GH13 enzymes are indicated. Domain C of GH70 GSs is inserted between o-helix 8 and f-strand 1 while that of GH13 fam-
ily o-amylase locates C-terminally of the (f5/)8 barrel. Domain B of GH13 a-amylases is inserted between f-strand 3 and «-helix 3 while that of GH70 GS is formed
by two discontinuous polypeptide segments from both the N- and C-termini. The same is true for domains IV and V of GH70 GS. A variable region (VR) is present in
the N-terminus of GH70 GSs. The four conserved sequence motifs (I-IV) which are located in f-strands 3, 4, 5, and 7, respectively, and are shared between family
GH70 GS and GH13 enzymes, are indicated within the fS-strand. The structure of the catalytic domain in the GH70 GS representative GTF180-AN (c, PDB: 3KLK) of L.
reuteri 180 and in the GH13 representative a-amylase of Bacillus licheniformis (d, PDB: 1BPL). The (/)8 barrel is colored for a better representation. o-Helices and
p-strands are numbered, and the conserved sequence motifs (I-IV) are indicated at the corresponding f5-strand. The circularly permutated (/)8 barrel of GH70 GS
is formed by two separate polypeptide segments (N-terminal parts colored in deep blue and C-terminal parts colored in cyan), which is caused by the insertion of

domain C.

Uitdehaag et al., unpublished work). The main structural
feature that distinguish GH77 enzymes from the evolution-
ary related GH13 proteins is the lack of domain C. Crystal
structures of 4-a-GTases belonging to the GH13 and GH57
protein families have also been solved from thermophilic
organisms [e.g. the archaeon Thermococcus litoralis GH57 4-
«-GTase (PDB codes 1K1W, 1K1X and 1K1Y (Imamura
et al. 2003); and the bacterium Thermotoga maritima MSB8
GHI13 4-0-GTase (PDB codes 1LWH, 1LW]J, 1GJU and
1GJW) (Roujeinikova et al. 2001; Roujeinikova et al. 2002).
4-0-GTases preferably catalyze the cleavage of an (x1—4)-
glucan from the non-reducing end of a donor substrate and
its transfer to the non-reducing end of an acceptor («1—4)-
o-glucan via the formation of a new (x1—4) glycosidic link-
age. Amylomaltase activity on starch results in the formation
of a starch derivative free of amylose (consumed as donor
substrate) and consisting of an amylopectin product with a
mixture of both shortened and elongated side-chains (Van
der Maarel et al. 2005). This product (e.g. Etenia) can be
used as a replacement of gelatin, which is an animal-derived

product widely used as a hydrocolloid in food. The presence
of these relatively long chains, and its relatively high
molecular weight, provide this polymer with thermoreversi-
ble gelling properties (Hansen et al. 2008). 4-a-GTase
treated corn starch is rather resistant to digestion (Jiang
et al. 2014). Some 4-o-GTases also catalyze intramolecular
transglycosylation reactions resulting in the formation of
large cyclic («1—4)-glucans, designated as cycloamyloses
(Terada et al. 1999). Structurally, cycloamyloses resemble
cyclodextrins, however, they have a higher degree of poly-
merization (from 16 to several hundreds of glucose units).
In view of their large ring size, cycloamyloses are not
expected to display the slowly digestible properties described
for o- and f-cyclodextrins, however, they may have many
other applications in the pharmaceutical and biotech indus-
try due to their capacity to encapsulate hydrophobic guest
molecules within their hydrophobic cavity (Roth et al. 2017).
Interestingly, the 4-0-GTase disproportionation activity, in
combination with maltogenic amylase and pullulanase, has
been used for the synthesis of starch-derived IMOs and a



resistant starch-like product, respectively (Lee et al. 2002;
Norman et al. 2007).

Branching Enzymes

Branching enzymes (BE, EC 2.4.1.18) act on («x1—4) glu-
cans, cleaving an internal (¢1—4) linkage and transferring
the cleaved-off part to the same or another («1—4) glucan
chain via an (x1—6) branch point (Roussel et al. 2013;
Shinohara et al. 2001). BE are widespread in nature and can
be found in bacterial, archaeal, and eukaryotic species, where
they catalyze the formation of («l1—6)-branching points
during glycogen or starch biosynthesis (Suzuki and Suzuki
2016). BE are therefore critical determinants of the structure
and properties of these intracellular storage polysaccharides.
BE have gained substantial interest for the production of dif-
ferent starch-derived products such as highly-branched
a-glucans (Kittisuban et al. 2014; Lee et al. 2013), synthetic
glycogen (Kajiura et al. 2006), and CCD (Takata et al. 2003).
In particular, thermostable glycogen BE enzymes from
Aquifex aeolicus and Rhodothermus obamensis are the most
commercially exploited (Van der Maarel and Leemhuis
2013). BE are placed in the GH13 and GH57 family pro-
teins, which differ in their overall 3-dimensional structures,
catalytic residues and geometry around the active site
(Suzuki and Suzuki 2016). Numerous BE have been charac-
terized showing differences in their substrate specificity and
generating products with varied frequency and branch chain
length. Whereas, some BE preferentially convert amylose
(Binderup, Mikkelsen, and Preiss 2000; Hayashi et al. 2015;
Palomo et al. 2011; Roussel et al. 2013), others display
higher activity on amylopectin substrates (Jo et al. 2015;
Palomo et al. 2009). Also, the minimal length of the donor
glucan, the length of the transferred glucan, and the distance
between two successive branch points differ from one BE to
another (Hayashi et al. 2015; Jo et al. 2015; Palomo et al.
2009; Roussel et al. 2013; Sawada et al. 2014; Takata et al.
2003). Several experimental approaches including site-
directed mutagenesis (Hayashi et al. 2017; Liu et al. 2017),
domain-swapping and truncation experiments (Jo et al.
2015; Palomo et al. 2009; Welkie, Lee, and Sherman 2015)
and X-ray crystallography studies (Abad et al. 2002; Feng
et al. 2015; Hayashi et al. 2015; Na et al. 2017; Pal et al.
2010; Palomo et al. 2011) have been used to understand the
mechanism of branching activity. Very recently the
Cyanothece sp. ATCC 51142 BEI structure with an oligosac-
charide bound in the active site cleft has been solved provid-
ing a better understanding of the reaction catalyzed by these
enzymes (Hayashi et al. 2017). However, the relationship
between the reaction specificity (e.g. preferred chain lengths
transferred) and the BE protein structure remains unclear,
and it is possible that variation exists in the mode of oligo-
saccharide binding depending on the BE species (Hayashi
et al. 2017). This information may allow a better control of
the degree of branching and the average length of branches
of the reaction product by the engineering of BE with
altered specificity.
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Amylosucrases

Amylosucrases (AS, EC 2.4.1.4) catalyze the synthesis of lin-
ear (x1—4) glucans from sucrose, and have been character-
ized from various bacterial sources (see below). Although
most sucrose-active o-transglycosylases belong to the GH70
family (Monsan, Remaud, and Andre 2010), in view of its
amino acid sequence AS have been classified in the GH13
family, mostly containing starch-acting enzymes. AS activity
with sucrose results in synthesis of an amylose-like polymer
with a molecular weight that is significantly lower (DP up to
8) (Potocki-Veronese et al. 2005) than the a-glucan polysac-
charides synthesized by sucrose-utilizing GH70 members
(Moulis, Andre, and Remaud-Simeon 2016). This (x1—4)
glucan is insoluble and shows a high degree of B-type crys-
tallinity, which makes this product resistant to hydrolysis by
digestive enzymes (Norman et al. 2007). In addition to the
amylose-like polymer, sucrose isomers are usually also
formed by AS, which reduce the a-glucan yield. It has been
proposed that AS in vivo are involved in energy storage
through glycogen elongation (Albenne et al. 2004). In in
vitro studies, when glycogen and other polymers containing
(¢1—4) or (x1—4) and (x1—6) linkages are used as
acceptor substrates, AS elongate some of their external
chains yielding polymers with higher slowly digestible and
resistant starch content (Kim et al. 2014; Rolland-Sabaté
et al. 2004; Shin et al. 2010). With the aim of designing
a-glucans with defined structures using only sucrose as raw
material, the Neisseria polysaccharea AS has been combined
with other o-transglycosylases, including the BE from
Rhodothermus obamensis and the CGTase from Bacillus
macerans, resulting in the production of glycogen and cyclo-
dextrins, respectively (Grimaud et al. 2013; Koh et al. 2016).
AS have been identified in various bacterial species (e.g.
Deinococcus, Arthrobacter, Alteromonas, Methylobacillus,
Synecochococcus); the AS from N. polysaccharea has been
studied in most detail (Moulis, Andre, and Remaud-Simeon
2016). Crystal structures of AS in free form, and in complex
with different substrates, have been solved (Guérin et al.
2012; Jensen et al. 2004; Mirza et al. 2001; Skov et al. 2013).
In addition to the 3 domains A, B and C common to all
GH13 family members (Figure 4), AS have 2 extra domains
named N and B’ that are unique to these enzymes. These
3D structures have allowed the identification of key residues
involved in the polymerization process, and have guided the
construction of AS mutants which produce in a controlled
way either short maltooligosaccharides or insoluble amylose
from sucrose (Albenne et al. 2004; Cambon et al. 2014;
Schneider et al. 2009).

Dextran dextrinases

Some strains of Gluconobacter oxydans are known to pro-
duce an intracellular enzyme named dextran dextrinase
(DDase, EC 2.4.1.2) catalyzing the synthesis of dextran using
maltodextrins as substrate. DDase is able to transfer the
non-reducing terminal glucosyl residues of maltodextrins to
an acceptor substrate forming consecutive (¢1—6) linkages
(Naessens et al. 2005; Sadahiro et al. 2015). As a result of
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this activity a dextran polymer is produced, which contains
some (x1—4) branches and (x1—4) linkages in (21—6) glu-
cosyl linear chains (Yamamoto, Yoshikawa, and Okada
1993). DDase also disproportionates (21—6) glucans indicat-
ing that it is also active on its own products. The gene
encoding the DDase from G. oxydans ATCC 11894 has been
recently identified revealing that the protein encoded
belongs to the GHI15 family. With the exception of the
DDase from G. oxydans ATCC 11894, all characterized
GH15 family members employ an inverting mechanism
yielding f-anomeric products (Pedro M. Coutinho,
"Glycoside Hydrolase Family 15" in CAZypedia, available at
URL http://www.cazypedia.org/, accessed 19 May 2017). In
view of its o-retaining mechanism, the DDase enzyme is an
atypical member of the GH15 family.

Generation of structurally diverse a-glucans by
novel GH70 a-transglycosylases

The GH70 family was established for glucansucrases (GS),
exclusively found in lactic acid bacteria (LAB), which con-
vert sucrose into high molecular mass o-glucan polymers
(Leemhuis, Pijning, et al. 2013; Monchois, Willemot, and
Monsan 1999). GS catalyze polymer synthesis by the succes-
sive transfer of single glucosyl units from sucrose to the
non-reducing end of a growing glucan chain. Alternatively,
in the presence of a low-molecular mass acceptor substrate
such as maltose, GS switch from polysaccharide to low
molecular mass oligosaccharide synthesis, using sucrose as
donor substrate. The various characterized GS synthesize a
large diversity of a-glucan products from sucrose, and with
all possible linkages (x1—2), (x1—3), («1—4), and (x1—6).

Also, these o-glucans may be linear or branched and may
differ in their type and degree of branching, size, and con-
formation, resulting in oligo- and poly-saccharides with dif-
ferent  physicochemical  properties  (e.g.  viscosity,
adhesiveness, solubility, etc.). The a-glucans synthesized by
GS are classified into four categories based on their domin-
ant glycosidic linkage type: dextran with a majority of
(¢1—6) linkages, mutan with a majority of («1—3) linkages,
reuteran with a majority of (x1—4), and alternan with alter-
nating (¢1—3) and (x1—6) linkages (Table 3). Three-
dimensional structures are available for 5 GS proteins with
different product specificity (Brison et al. 2012; Ito et al.
2011; Pijning et al. 2012; Vujicic-Zagar et al. 2010). These
crystal structures show that in GS the catalytic (f/«)g-barrel
domain is circularly permuted compared to GHI3 and
GH77 enzymes, confirming earlier predictions (MacGregor,
Jespersen, and Svensson 1996). Interestingly, GS display a
unique U-fold organized in five structural domains (A, B, C,
IV and V) (Figures 4 and 5). The domains A, B and C form
the catalytic core, and are also found in GHI3 enzymes,
whereas the remote domains IV and V are only present in
GH70 enzymes. Thus far, 60 GS enzymes have been charac-
terized (www.cazy.org, 21* September 2017), most of them
producing dextran polymers. The industrially most relevant
GS is the Leuconostoc mesenteroides NRR B-512F DSR-S
dextransucrase converting sucrose into a polymer with 95%
(«1—6) linkages in the main chains and 5% (x1—3) branch
linkages (Monchois et al. 1997; Passerini et al. 2015). In
addition, GH70 enzymes displaying dextran branching speci-
ficity have been identified providing novel tools for the pro-
duction of dextrans with a controlled degree of (21—2) and
(«¢1—3) branching points (Brison et al. 2010, 2012;
Vuillemin et al. 2016). First, L. mesenteroides NRRL B-1299

Table 3. Examples of products synthesized by sucrose- and starch-active GH70 enzymes.

Linkage composition of the product (%)

Enzyme Substrate (x1—2) (x1—3) (01—4) (21—6)

Dextran

Leuconostoc mesenteroides NRRL B-512F DSRS (Monchois et al. 1997) Sucrose 5 95

Leuconostoc citreum B-1299 DSRE® (Fabre et al. 2005) Sucrose 5 10 3 81

Leuconostoc citreum B-1299 BSR-A (Passerini et al. 2015) Sucrose and linear dextran 37 63

Leuconostoc citreum BSR-B (Vuillemin et al. 2016) Sucrose and linear dextran 50 50

Weissella cibaria DSRWC (Kang, Oh, and Kim 2009) Sucrose 100

Lactobacillus reuteri 180 Gtf180 (van Leeuwen et al. 2008) Sucrose 31 69

Streptococcus mutans GS5 GTFD (Hanada and Kuramitsu 1989) Sucrose 30 70

Mutan

Streptococcus mutans GS5 GTFB (Shiroza, Ueda, and Kuramitsu 1987) Sucrose 88 12

Lactobacillus reuteri ML1 (Kralj et al. 2004) Sucrose 65 35

Leuconostoc mesenteroides NRRL B-1118 DSRI (C6té and Skory 2012) Sucrose 50 50

Alternan

Leuconostoc mesenteroides NRRL B-1355 ASR (Coté and Robyt 1982) Sucrose 43 57

Reuteran

Lactobacillus reuteri 121 GtfA (Kralj et al. 2002) Sucrose 58 42

Lactobacillus reuteri ATCC 55730 GtfO (Kralj et al. 2005) Sucrose 79 21

Azotobacter chroococcum NCIMB 8003 GtfD (Gangoiti, Pijning, Amylose 68 32
and Dijkhuizen 2016)

Lactobacillus reuteri NCC 2613 GtfB (Gangoiti, van Leeuwen, Amylose 75 25
Meng, et al. 2017)

Isomalto/Malto-Polysaccharide

Lactobacillus reuteri 121 GtfB (Leemhuis et al. 2014) Amylose 9 91

Isomalto/Malto-Oligosaccharide

Exiguobacterium sibiricum GtfC (Gangoiti et al. 2015) Amylose 40 60

Branched (a1—3), (21—4)-a-glucan

Lactobacillus fermentum NCC 2970 GtfB (Gangoiti, Amylose 40 60

van Leeuwen, Meng, et al. 2017)
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Figure 5. Domain arrangement of sucrose- and starch-converting GH70 enzymes.

Crystal structures of the L. reuteri 121 GtfB 4,6-a-GTase (middle), and the L. reuteri 180 Gtf180 GS (right). Domains A, B, C, IV and V are highlighted in blue, green,
magenta, yellow and red, respectively. Ig2-like domains are colored in grey. As apparent from the order of the conserved regions (indicated by grey rectangles), the
catalytic barrel of the GH70 glucansucrases and GH70 GtfB-like enzymes is circularly permuted (order = lI-IlI-IV-I).

was found to encode two GH70 enzymes (named DSRE and
BRS-A) specialized in (x1—2) transglycosylation from
sucrose to a dextran acceptor substrate (Brison et al. 2012;
Passerini et al. 2015). The gluco-oligosaccharides containing
(x1—2) linkages synthesized by L. mesenteroides NRRL B-
1299 DSRE were found to be highly resistant to the action
of digestive enzymes in both humans and animals (Valette
et al. 1993). Recently, genome analysis of Leuconostoc cit-
reum NRRL B-742 allowed the identification of the first
(1—3) branching sucrase (named BRS-B) responsible for
the high content of (x1—3) branching linkages present in
the dextran produced by this strain (Vuillemin et al. 2016).
In recent years, novel GH70 enzymes inactive on sucrose,
but displaying clear disproportionating activity on starch/
maltodextrin substrates, have been identified (Table 3)
(Gangoiti et al. 2015; Gangoiti, Pijning, and Dijkhuizen
2016; Gangoiti, Lamothe, et al. 2017; Gangoiti, van Leeuwen,
Gerwig, et al. 2017; Gangoiti, van Leeuwen, Meng, et al.
2017; Kralj et al. 2011; Leemhuis, Dijkman, et al. 2013).
Regarding their substrate specificity, these starch-converting
GH70 enzymes resemble GH13 family enzymes also acting
on starch-like substrates, however, they share higher amino
acid sequence similarity with GS from the GH70 family.
Based on their sequences, these enzymes were classified into
3 new GH70 subfamilies designated as GtfB, GtfC and Gtf{D,
which differ in their microbial origin, product specificity
and domain organization (Gangoiti et al. 2015; Gangoiti,
Pijning, and Dijkhuizen 2016; Gangoiti, van Leeuwen,
Gerwig, et al. 2017; Kralj et al. 2011), Whereas GtfB
enzymes are mainly found in Lactobacillus strains and dis-
play a GS-like fold with a circularly permuted catalytic
(Bla)g-barrel, GtfC and GtfD enzymes are present in non-
LAB and possess a non-permuted domain organization

resembling that of GH13-like enzymes (Figure 5) (Gangoiti
et al. 2015; Gangoiti, Pijning, and Dijkhuizen 2016;
Gangoiti, Lamothe, et al. 2017). In view of their intermediate
position between GH13 a-amylases and GH70 GS, the emer-
gence of GtfB, GtfC and GtfD type of enzymes have pro-
vided clues about the evolutionary history of GH70 family
proteins. It has been proposed that evolution from an ances-
tor a-amylase to present-day GS occurred via these GtfB-,
GtfC-, and GtfD-like intermediates (Gangoiti et al. 2015;
Gangoiti, Pijning, and Dijkhuizen 2016; Gangoiti, van
Leeuwen, Gerwig, et al. 2017; Kralj et al. 2011). In addition
to their scientific relevance, GtfB, GtfC and GtfD type of
enzymes represent very interesting and powerful enzymatic
tools for the conversion of the starch present in food matri-
ces into soluble novel dietary fibers and/or slowly-digestible
carbohydrates, and thus, they have gained substantial inter-
est for the development of healthier starchy food products
(Gangoiti, van Leeuwen, Meng, et al. 2017). However, only
few starch-converting GH70 enzymes have been character-
ized so far. Whereas GS display a broad linkage specificity,
most of the starch-converting GH70 enzymes characterized
act as 4,6-a-glucanotransferases (GTases), cleaving (al1—4)
linkages and synthesizing new (21—6) linkages (Table 3).
Depending on the enzyme, different products are synthe-
sized as a result of this 4,6-a-GTase activity on starch/malto-
dextrin substrates. For example, the Lactobacillus reuteri 121
GtfB and Exiguobacterium sibiricum 255-15 GtfC dispropor-
tionation activity on starch-like substrates results in the syn-
thesis of linear IsoMalto-/Malto-Polysaccharides (IMMP)
and IsoMalto-/Malto-Oligosaccharides (IMMO) (Figure 6),
respectively (Gangoiti et al. 2015; Leemhuis et al. 2014).
Both IMMP and IMMO are ‘hybrid molecules’ and consist
of linear («1—6) glucan chains attached to the non-reducing
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Figure 6. Composite models of representative novel a-glucans synthesized by starch-converting GH70 enzymes.

ends of starch or malto-oligosaccharide fragments, but they
significantly differ in their molecular mass. Unlike the L.
reuteri 121 GtfB and E. sibiricum GtfC enzymes, the
Azotobacter chroococcum and Paenibacillus beijingensis GtfD
4,6-0-GTases are unable of forming consecutive (x1—6)
linkages. Using these GtfD enzymes, branched polymers
containing mostly (x1—4) linkages and single (x1—6)
bridges in linear and branched orientations are obtained
from amylose (Figure 6) (Gangoiti, Pijning, and Dijkhuizen
2016; Gangoiti, Lamothe, et al. 2017; Meng, Gangoiti,
Pijning, and Dijkhuizen 2016). These polymers resemble the
reuteran polysaccharide synthesized by the L. reuteri 121
GtfA GS from sucrose (Dobruchowska et al. 2013; Meng,
Dobruchowska, et al. 2016; Meng, Pijning, et al. 2016; van
Leeuwen et al. 2008), described as a health-promoting food
ingredient (Ekhart et al. 2006; Plijter et al. 2009). In vitro
digestibility assays, using either pancreatic o-amylase and
amyloglucosidase or rat intestinal maltase-glucoamylase and
sucrase-isomaltase, simulating the digestive power of the
gastrointestinal tract revealed that the IMMP and reuteran
type of polymers have a high dietary fiber content (Gangoiti,
Lamothe, et al. 2017; Leemhuis et al. 2014). The limited
diversity in linkage specificity found within these starch-con-
verting GH70 subfamilies of enzymes recently was expanded
with the discovery of the Lactobacillus fermentum NCC 2970
GtfB displaying 4,3-0-GTase activity (Gangoiti, van
Leeuwen, Gerwig, et al. 2017). This L. fermentum NCC 2970
GtfB converts amylose into a branched o-glucan composed
of linear («1—4) segments interconnected by single («1—3)

and («1—3,4) linkages (Figure 6).The characterization of
this L. fermentum NCC 2970 GtfB 4,3-a-GTase represents
an important breakthrough because its 4,3-a-glucan product
is unique and different from other naturally occurring, syn-
thetic and enzymatically produced o-glucans.

Compared to the limited linkage specificity displayed by
other sucrose- and starch-converting «- -transglycosylases,
glucans with different types of glycosidic linkages can be
obtained [(21—2), (21—3), (x1—4) and (21—6)] by using
GS. Over the years, many studies have tried to elucidate
what determines the glycosidic linkage specificity in GS
enzymes, resulting in synthesis of such a large variety of
o-glucans. Variations in product specificity were proposed
to be determined by the way in which the acceptor a-glucan
is guided into the catalytic center (Leemhuis, Pijning, et al.
2013; Vujicic-Zagar et al. 2010). The crystal structure of
GTF180-AN in complex with maltose revealed the residues
interacting with this acceptor substrate in subsites +1 and
+2 (Vujicic-Zagar et al. 2010). Mutagenesis of these key res-
idues have demonstrated that it is the interplay of different
amino acid residues defining the acceptor binding subsites
what determines the glycosidic linkage specificity in GS
(Meng, Pijning, et al. 2015; Meng, Dobruchowska, et al.
2016; Meng et al. 2017). These studies also have shown that
predicting the effects of mutations is still complicated.
Nevertheless, mutant variants have been obtained producing
o-glucans differing in their linkage type, degree of branch-
ing, and/or molecular weight. These studies have been
recently reviewed by Meng, Gangoiti, Pijning, and



Dijkhuizen (2016). Overall, these efforts have significantly
enlarged the panel of o-glucans that can be enzymatically
produced. Despite the lack of data related to their physico-
chemical properties, this structural variability is expected to
result in differences in a wide range of specific properties,
such as solubility, viscosity and resistance to enzymatic
hydrolysis by digestive enzymes. Another important advance
in GH70 research was the elucidation of the L. reuteri 121
GtfB 4,6-0-GTase 3D structure (Figure 5). However, binding
of oligosaccharides at the acceptor binding subsites has not
been observed yet in any of the L. reuteri 121 GtfB crystal
structures obtained (Bai et al. 2017). It also remains to be
studied whether the repertoire of «-glucans synthesized by
the starch-converting GtfB, GtfC and GtfD GH70 enzymes
could be further expanded by protein engineering
approaches. Very recently, the structure of the DSR-M dex-
transucrase from Leuconostoc citreurn NRRL B-1299, pro-
ducing a single low molar mass dextran has been reported
providing important clues about the structural features
determining glucan size (Claverie et al. 2017).

Attempts to diversify the structure and product size dis-
tribution of the a-glucans synthesized by GS using reaction
engineering approaches already have been reported.
Specifically, the effects of sucrose and enzyme concentra-
tions, temperature and pH have been evaluated. Studies by
Robyt and co-workers have shown that the molecular size of
dextran is inversely proportional to the concentration of
dextransucrase, and directly proportional to the concentra-
tion of sucrose and the temperature (Falconer, Mukerjea,
and Robyt 2011; Robyt, Yoon, and Mukerjea 2008). Thus, it
was proposed that the best method to obtain «-glucans with
a defined molecular mass was the selection of specific
enzyme/sucrose concentrations and temperature values. In
case of the L. mesenteroides B-512FMCM dextransucrase,
changes in sucrose concentration and temperature were
found to affect the product size distribution, whereas the pH
of the reaction did not have a significant effect (Kim et al.
2003). In a more recent study, synthesis of reuteran by L.
reuteri 121 GtfA GS at different sucrose concentrations
revealed that the ratio of polysaccharide versus oligosacchar-
ide can be modulated by sucrose concentrations (Meng,
Dobruchowska, et al. 2015). With increasing sucrose concen-
trations, the production of polysaccharides decreased, while
the amount of oligosaccharides increased. However, the link-
age distribution and molecular mass of the polysaccharides
synthesized at different sucrose concentration was not
changed. Another strategy to direct the synthesis toward the
production of oligosaccharides at the expense of polymer
formation is by adding “good” acceptor substrates (e.g. mal-
tose or isomaltose) to the reaction (Coté and Sheng 2006;
Lopez-Munguia et al. 1993; Meng, Gangoiti, Pijning, and
Dijkhuizen 2016; Su and Robyt 1993). In the presence of
low-molecular mass acceptor sugars, GS transfers the gluco-
syl moieties from sucrose to the acceptor molecule, forming
a series of oligosaccharides. The final product distribution
can be varied by changing the reaction ratios of sucrose,
acceptor substrate and enzyme. A similar approach was used
for the synthesis of dextrans with a controlled degree of
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(«1—2) and (x1—3) linkages using branching sucrases
(Brison et al. 2010; Vuillemin et al. 2016). As dextran is the
natural acceptor of branching sucrases, the amount of
(#1—2) and (21—3) side chains was found to be directly
dependent on the initial [Sucrose]/[Dextran] molar ratio.
Using a suitable [Sucrose]/[Dextran] ratio, dextran polymers
grafted with up to 30% of («1—2) linkages and 50% of
(¢1—3) linkages, were obtained using the GBD-CD2 and
BRS-B enzymes, respectively (Brison et al. 2010; Brison et al.
2012; Vuillemin et al. 2016).

Conclusions

The discovery of novel o-transglycosylases with diverse
product specificities has provided important tools for the
conversion of starch or sucrose into commercially-valuable
slowly digestible or resistant a-glucans. These new carbohy-
drate ingredients hold a promise of providing digestion con-
trolled materials that can modulate glycemic response or
being new dietary fiber sources. At present, a-glucans with
different structures (linkage type, branching degree) can be
produced by using selected a-transglycosylases. These struc-
tural differences result in different digestion rates. A further
understanding of the relationship between the structure of
these a-glucans and their digestibility is key for the develop-
ment of a-glucans with a tailored glycemic response. In par-
allel, a deeper comprehension of «-transglycosylases
specificities at the molecular level is still needed to guide the
rational design of enzyme variants capable of synthesizing
any type of desirable o-glucan regardless of size, linkage
type and degree of branching of the product. These joint
efforts are expected to allow the synthesis of health-promot-
ing a-glucans of interest for the food-industry.
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