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Generalized alpha-approximations for two-stage

mixed-integer recourse models

Niels van der Laan Ward Romeijnders

December 3, 2018

Abstract

We propose a new class of convex approximations for two-stage mixed-integer recourse mod-
els, the so-called generalized alpha-approximations. To guarantee the performance of these
approximations we derive corresponding error bounds that depend on the total variations of
the probability density functions of the random variables in the model. The error bounds
converge to zero if these total variations converge to zero. The advantage of our convex
approximations over existing ones is that they are more suitable for efficient computations.
Indeed, we use these approximations to construct an algorithm that is able to solve large
problem instances in reasonable time. We empirically assess our solution method on nurse
scheduling test instances and randomly generated test instances, and show that our method
finds near-optimal solutions if the variability of the random elements in the model is large.
Moreover, our method outperforms existing methods in terms of computation time, especially
for large problem instances.

1 Introduction

Consider the two-stage mixed-integer recourse model with random right-hand side

η∗ := min
x

{
cx+Q(x) : Ax = b, x ∈ X ⊆ Rn1

+

}
, (1)

where the recourse function Q is defined as

Q(x) := Eω
[
min
y

{
qy : Wy = ω − Tx, y ∈ Y ⊆ Rn2

+

}]
, x ∈ Rn1

+ . (2)

This model represents a two-stage decision problem under uncertainty. In the first stage, a deci-
sion x has to be made here-and-now, subject to deterministic constraints Ax = b and random goal
constraints Tx = ω. Here, ω is a random vector whose probability distribution is known. In the
second stage, the realization of ω becomes known and any infeasibilities with respect to Tx = ω
have to be repaired. This is modelled by the second-stage problem

v(ω, x) := min
y

{
qy : Wy = ω − Tx, y ∈ Y ⊆ Rn2

+

}
. (3)

The objective in this two-stage recourse model is to minimize the sum of immediate costs cx and
expected second-stage costs Q(x) = Eω[v(ω, x)], x ∈ X.

Frequently, integrality restrictions are imposed on the first- and second-stage decisions. That
is, X and Y are of the form X = Zp1+ × Rn1−p1

+ and Y = Zp2+ × Rn2−p2
+ . Such restrictions arise

naturally when modelling real-life problems, for example to model on/off decisions or batch size
restrictions. The resulting model is called a mixed-integer recourse (MIR) model. Such models
have many practical applications in for example energy, telecommunication, production planning,
and environmental control, see e.g. Wallace and Ziemba [2005] and Gassmann and Ziemba [2013].
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While MIR models are highly relevant in practice, they are notoriously difficult to solve. The
reason is that Q is in general non-convex if integrality restrictions are imposed on the second-stage
decision variables y [Rinnooy Kan and Stougie, 1988]. Therefore, standard techniques for convex
optimization cannot be used to solve these models. In contrast, if Y = Rn2

+ , then Q is convex
and efficient solution methods are available, most notably the L-shaped method by Van Slyke and
Wets [1969] and variants thereof.

Because of the non-convexity of Q, traditional solution methods for MIR models typically
combine ideas from deterministic mixed-integer programming and stochastic continuous program-
ming, see e.g. Laporte and Louveaux [1993], Schultz et al. [1998], Carøe and Schultz [1999], Sen
and Higle [2005], Ntaimo [2013], Gade et al. [2014], Zhang and Küçükyavuz [2014], Bansal et al.
[2018], and the survey papers by Schultz [2003], Sen [2005], and Romeijnders et al. [2014]. In gen-
eral, however, these solution methods typically have difficulties solving large problem instances in
reasonable time.

We, however, will use a fundamentally different approach to deal with the non-convex recourse
function Q. Instead of solving the original MIR model in (1), we solve an approximating prob-
lem where Q is replaced by a convex approximation Q̂ of Q, yielding the approximating convex
optimization problem

η̂ := min
x

{
cx+ Q̂(x) : Ax = b, x ∈ Rn1

+

}
. (4)

Because Q̂ is convex, we can solve the optimization problem in (4) much faster than the original
MIR model in (1) using techniques from convex optimization. Thus, we expect to solve similar-
sized problems much faster than traditional solution methods, and we also expect to be able to
solve larger problem instances than traditional methods. In fact, this is what we show in our
numerical experiments on nurse scheduling and randomly generated problem instances.

Obviously, the optimal solution x̂ of the approximating problem in (4) is not necessarily optimal
for the original MIR model in (1). That is why we guarantee the quality of the approximating
solution x̂, by deriving an error bound on

||Q− Q̂||∞ := sup
x
|Q(x)− Q̂(x)|.

This error bound directly gives us an upper bound on the optimality gap of x̂:

cx̂+Q(x̂)− η∗ ≤ 2||Q− Q̂||∞,

see Romeijnders et al. [2015].
Convex approximations and corresponding error bounds have been derived for many different

classes of models. The idea to solve convex approximations Q̂ for the non-convex mixed-integer
recourse function Q dates back to Van der Vlerk [1995], who proposed to use α-approximations for
the special case of simper integer recourse (SIR) models. These α-approximations are obtained by
perturbing the probability distribution of the random vector ω. Klein Haneveld et al. [2006] derive
an error bound for the α-approximations that depends on the total variations |∆|fi of the marginal
density functions fi of the random variables in the SIR model. More convex approximations and
corresponding error bounds have been described for more general classes of problems than SIR
models. For example, Van der Vlerk [2004] generalizes the α-approximations to integer recourse
models with totally unimodular (TU) recourse matrix W and Romeijnders et al. [2016b] derive
the so-called shifted LP-relaxation approximation for the same class of problems. The latter
approximation is generalized to two-stage MIR models in general in Romeijnders et al. [2016a].
Corresponding error bounds for these approximations are derived in Romeijnders et al. [2015,
2016a,b], respectively.

The quality of the convex approximations for TU integer recourse models is assessed empirically
in Romeijnders et al. [2017], and it turns out that the convex approximations perform well if the
variability of the random parameters in the models is large enough. For general MIR models,
however, the performance of the shifted LP-relaxation approximation has not been investigated,
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since it is difficult to efficiently solve the approximating problem with this convex approximation,
as discussed in Romeijnders et al. [2016a].

That is why we propose an alternative class of convex approximations for general two-stage MIR
models that can be considered the generalization of the first α-approximations of Van der Vlerk
[1995] for SIR models. Hence, we call our convex approximations generalized α-approximations.

We will show that, contrary to the shifted LP-relaxation, the generalized α-approximations,
denoted by Q̃α, can be used to efficiently obtain approximating solutions x̃α. In fact, we will
develop a loose Benders decomposition algorithm to solve the approximating model in (4) with Q̃α.
In this algorithm, we do not compute Q̃α(x̄) and subgradients of Q̃α at x̄ for current first-stage
solutions x̄ exactly, but we efficiently obtain a lower bound for Q̃α(x̄), yielding loose optimality
cuts. This does not necessarily yield the same solution as solving the approximating model in (4)
exactly, but we will prove that these loose optimality cuts will be tight enough and show that a
similar performance guarantee applies to the solution obtained by the loose Benders decomposition
as to x̃α. Moreover, since we actually apply the loose Benders decomposition to a sample average
approximation (SAA) of the approximating model in (4), we prove that our performance guarantee
applies as the sample size S →∞.

Summarizing, our main contributions are as follows.

• We propose a new class of convex approximations, called generalized α-approximations for
general two-stage MIR models. These approximations generalize the original α-approximations
of Van der Vlerk [1995] for SIR models.

• We derive an error bound for the generalized α-approximations that depends on the total
variations of the probability density functions of the random parameters in the model. The
error bound converges to zero if these total variations converge to zero.

• We derive a loose Benders decomposition algorithm to (approximately) solve the approxi-
mating model with the generalized α-approximations. This is the first efficient algorithm for
solving non-trivial convex approximations of general two-stage MIR models.

• We prove that the solution obtained by the loose Benders decomposition algorithm has a
similar performance guarantee as the exact solution to the generalized α-approximations.

• We carry out numerical experiments on a nurse scheduling problem and randomly generated
test instances, and show that using our loose Benders decomposition algorithm we obtain
good solutions within reasonable time, also for large problem instances, in particular when
the variability of the random parameters in the model is large.

The remainder of this paper is organized as follows. In Section 2, we discuss preliminaries of
known convex approximations of MIR models and corresponding error bounds. In Section 3, we
present the generalized α-approximations and an efficient algorithm for solving the corresponding
approximating problem. Section 4 contains the proof of the error bound for the generalized α-
approximations. In Section 5, we report on numerical experiments to evaluate the performance of
our algorithm. Finally, Section 6 concludes.

Throughout, we make the following assumptions. Assumptions (A2)-(A4) guarantee that Q(x)
is finite for all x ∈ X such that Ax = b.

(A1) The first-stage feasible region X = {x ∈ X : Ax = b} is bounded.

(A2) The recourse is relatively complete: for all ω ∈ Rm and x ∈ X , there exists a y ∈ Y such
that Wy = ω − Tx, so that v(ω, x) <∞.

(A3) The recourse is sufficiently expensive: v(ω, x) > −∞ for all ω ∈ Rm and x ∈ X .

(A4) E[|ωi|] is finite for all i = 1, . . . ,m.

(A5) The recourse matrix W is integer.
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2 Literature review on convex approximations of mixed-
integer recourse functions

In this section, we review existing convex approximations of MIR models and corresponding er-
ror bounds. We distinguish two types of convex approximations, namely α-approximations and
shifted-LP relaxations. The latter have been derived for general two-stage MIR models, whereas
α-approximations are only known for SIR and TU integer recourse models. Table 1 provides an
overview of the approximating value functions v̂(ω, x) of the shifted LP-relaxation approximation
and the α-approximations for the different model classes that we will discuss in this section. The
generalized α-approximations that we develop in this paper can be considered as the generalization
of the α-approximations to general MIR models, and as the “α-approximations equivalent” of the
existing shifted LP-relaxation approximation for general MIR models.

In Sections 2.1 and 2.2, we discuss both types of approximations and their corresponding error
bound for SIR models and TU integer recourse models, respectively. In these sections we also
gradually introduce the notation required to state the error bound for the shifted LP-relaxation
for general MIR models in Section 2.3. In this section, we also discuss results by Romeijnders et al.
[2016a] regarding asymptotic periodicity results in mixed-integer linear programming, since they
are used to derive the shifted-LP relaxation, and since we use them in a similar way in Section 3.1
to derive the new generalized α-approximations for general two-stage MIR models.

Table 1: Value functions v̂(ω, x) of convex approximations in the literature, where Q̂(x) =
Eω[v̂(ω, x)].

Section Model class Shifted LP-relaxation α-approximations

2.1 SIR (ω + 1/2− Tx)+ (dω − αe+ α− Tx)+

2.2 TU integer recourse max
k=1,...,K

λk(ω + 1/2em − Tx) max
k=1,...,K

λk(dω − αe+ α− Tx)

2.3 General MIR max
k=1,...,K

{
qBk(Bk)−1(ω − Tx) + Γk

}

2.1 Convex approximations of simple integer recourse functions

Consider the one-dimensional SIR function Q defined as

Q(x) := Eωdω − Txe+, x ∈ Rn1 ,

where ω represents a random variable, where dse denotes the round-up function, and where dse+ :=
max{0, dse}, s ∈ R. Note that the technology matrix T is a row vector. The SIR function is a
special case of the general MIR function Q defined in (2), see Louveaux and Van der Vlerk [1993].

In the literature, two types of convex approximations of Q are known for this SIR function,
namely the α-approximations Q̃α, due to Van der Vlerk [1995], and the shifted LP-relaxation
approximation Q̂, due to Romeijnders et al. [2016b]. They are defined in Definitions 1 below.

Definition 1. For any α ∈ R, we define the α-approximation Q̃α of the SIR function Q as

Q̃α(x) := Eω(dω − αe+ α− Tx)+, x ∈ Rn1 ,

and the shifted LP-relaxation approximation Q̂ as

Q̂(x) := Eω (ω + 1/2− Tx)
+
, x ∈ Rn1 ,

where (s)+ := max{s, 0}.
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An interesting observation is that the α-approximations are exact on a grid of points. Indeed,
it follows from the definition of Q̃α that if Tx ∈ α + Z, then Q̃α(x) = Q(x). In contrast, the
shifted LP-relaxation approximation is a good approximation of Q on average.

Klein Haneveld et al. [2006] and Romeijnders et al. [2016b] derive error bounds for the α-
approximations and the shifted-LP relaxation approximation, respectively. That is, they derive
bounds on ||Q − Q̃α||∞ and on ||Q − Q̂||∞, respectively. These error bounds are expressed in
terms of the total variation of the probability density function (pdf) f of the random variable ω.

Definition 2. Let f : R → R be a real-valued function, and let I ⊂ R be an interval. Let Π(I)
denote the set of all finite ordered sets P = {x1, . . . , xN+1} with x1 < · · · < xN+1 in I. Then, the
total variation of f on I, denoted |∆|f(I), is defined as

|∆|f(I) = sup
P∈Π(I)

Vf (P ),

where

Vf (P ) =

N∑
i=1

|f(xi+1)− f(xi)|.

We will write |∆|f := |∆|f(R).

Theorem 1. Consider the SIR function Q(x) = Eωdω − Txe+, x ∈ Rn1 , its α-approximation
Q̃α(x) = Eω(dω − αe+ α− Tx)+ for α ∈ R, and its shifted LP-relaxation approximation Q̂(x) =
Eω (ω + 1/2− Tx)

+
, x ∈ Rn1 . Then, for every continuous random variable ω with probability

density function f of bounded variation, we have

||Q − Q̃α||∞ ≤ h(|∆|f) and ||Q − Q̂||∞ ≤
1

2
h(|∆|f),

where h : [0,∞) 7→ R is defined for t ∈ R with t ≥ 0 as

h(t) :=

{
t/8, t ≤ 4,

1− 2/t, t ≥ 4.
(5)

Proof. See Romeijnders et al. [2016b].

Observe that the error bound for Q̂ in Theorem 1 improves on the error bound for Q̃α by a
factor two. Furthermore, both error bounds are decreasing in the total variation |∆|f of the pdf
f of ω. For unimodal distributions this means that the error bounds are smaller, and thus the
convex approximations are better, if the variance of the random variable ω is larger. We say that
the approximation becomes better as the variability in the model increases. In Example 1 below
we derive expressions for the error bound for ω ∼ N (µ, σ2) in terms of the standard deviation σ
of ω.

Example 1. Suppose that ω follows a normal distribution with mean µ and standard deviation σ.
Since the corresponding pdf f is unimodal with mode µ and f(µ) = 1√

2πσ
, we have |∆|f = 2f(µ) =√

2
πσ , and thus

||Q − Q̃α||∞ ≤ h(|∆|f) =

{
1
8

√
2
πσ , σ ≥ 1

8π ,

1−
√

2πσ, σ ≤ 1
8π .

Because |∆|f is decreasing in the standard deviation σ, the error bounds for Q̃α and Q̂ are
decreasing in σ. ♦

Remark 1. Van der Laan et al. [2018] improve the error bound in Theorem 1 for the shifted-LP
relaxation approximation Q̂ using the total variations of higher-order derivatives of f .
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2.2 Convex approximations of TU integer recourse functions

Next, we consider the pure integer recourse function

Q(x) := Eω
[
min
y

{
qy : Wy ≥ ω − Tx, y ∈ Zn2

+

}]
, x ∈ Rn1 , (6)

where the recourse matrix W is TU. Such TU integer recourse functions are a generalization of
SIR functions, but a special case of the MIR function Q defined in (2). Both the α-approximations
and the shifted LP-relaxation approximation have been generalized to TU integer recourse models.
The first by Van der Vlerk [2004] and the second by Romeijnders et al. [2016b].

Definition 3. For any α ∈ Rm, we define the α-approximation Q̃α of the TU integer recourse
function Q as

Q̃α(x) := Eω
[
min
y

{
qy : Wy ≥ dω − αe+ α− Tx, y ∈ Rn2

+

}]
, x ∈ Rn1 ,

where d·e denotes the component-wise round-up function, and we define the shifted LP-relaxation
approximation as

Q̂(x) := Eω
[
min
y

{
qy : Wy ≥ ω − Tx+ 1/2em, y ∈ Rn2

+

}]
, x ∈ Rn1 ,

where em denotes the m-dimensional all-one vector.

Both the TU integer recourse function Q and its approximations have a dual representation,
since by strong LP duality,

min
y
{qy : Wy ≥ s} = max

λ
{λs : λW ≤ q, λ ∈ Rn1

+ },

for every s ∈ Rm. Here strong LP duality holds by Assumptions (A2) and (A3). These assumptions
also imply that the dual feasible region is non-empty and bounded, and thus has finitely many
extreme points λk, k = 1, . . . ,K. Since at least one of the extreme points is an optimal dual
solution we can rewrite the convex approximations as

Q̃α(x) = Eω
[

max
k=1,...,K

λk(dω − αe+ α− Tx)

]
, x ∈ Rn1 , (7)

and

Q̂(x) = Eω
[

max
k=1,...,K

λk(ω + 1/2em − Tx)

]
, x ∈ Rn1 .

When ω is a random variable and there are only two dual vertices λ1 = 0 and λ2 = 1, then the
above approximations reduce to their SIR counterparts. Moreover, since

Q(x) = Eω
[

max
k=1,...,K

λkdω − Txe
]
, x ∈ Rn1 ,

the approximations have similar interpretations as for SIR models. In the shifted LP-relaxation
approximation Q̂, the round-up operator is removed and a value 1/2 is added to each component
of the random vector ω. The α-approximations on the other hand are exact for x ∈ Rn1 such that
Tx ∈ α+ Zm.

Romeijnders et al. [2016b] derive error bounds for both the shifted LP-relaxation and the
α-approximations, see Theorem 2. Similar as in the SIR case, the error bound of the shifted
LP-relaxation improves the error bound of the α-approximations by a factor two. Moreover, the
error bounds depend on the extreme points of the dual feasible region and the total variations of
the one-dimensional conditional density functions of the random variables in the model.
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Definition 4. For every i = 1, . . . ,m and x−i ∈ Rm−1, define the i-th conditional density function
fi(·|x−i) of the m-dimensional joint pdf as

fi(xi|x−i) =
f(x)

f−i(x−i)
,

where x−i denotes x without its i-th component. Define Hm as the set of all m-dimensional joint
pdf f such that fi(·|x−i) is of bounded variation for all i = 1, . . . ,m and x−i ∈ Rm−1.

Theorem 2. Consider the TU integer recourse function of (6), the shifted LP-relaxation approx-
imation, and the α-approximations of Definition 3. Then, for every continuous random vector ω
with probability density function f ∈ Hm, we have

||Q− Q̃α||∞ ≤
m∑
i=1

λ∗iEω(−i)

[
h

(
|∆|fi(·|ω(−i)

)]
and

‖|Q− Q̂||∞ ≤
1

2

m∑
i=1

λ∗iEω(−i)

[
h

(
|∆|fi(·|ω(−i)

)]
,

where λ∗i = maxk=1,...,K λ
k
i and h is defined in (5).

Theorem 2 applies to general pdf f ∈ Hm of the random vector ω. If the components of ω are
independent, then the expressions for the error bounds simplify to

||Q− Q̃α||∞ ≤
m∑
i=1

λ∗i h(|∆|fi), and ||Q− Q̂||∞ ≤
1

2

m∑
i=1

λ∗i h(|∆|fi),

where fi denotes the marginal pdf of the i-th component of ω, i = 1, . . . ,m.

2.3 Convex approximations of general mixed-integer recourse functions

In this section, we consider the general two-stage MIR case. Before we describe the shifted LP-
relaxation of Romeijnders et al. [2016a] in Section 2.3.2, we first discuss asymptotic periodicity
properties for parametric mixed-integer linear programming problems in Section 2.3.1. These
properties are not only used to derive the shifted LP-relaxation, but we also use them to derive
our new generalized α-approximations in Section 3.1, and to prove a corresponding error bound
in Section 4.1.

2.3.1 Asymptotic periodicity in mixed-integer linear programming

Consider the second-stage value function v(ω, x), defined in (3), with Y = Zp2+ × Rn2−p2
+ :

v(ω, x) = min
y

{
qy : Wy = ω − Tx, y ∈ Zp2+ × Rn2−p2

+

}
. (8)

Using LP-duality, we know that the LP-relaxation vLP(ω, x) of v(ω, x) is polyhedral in the right-
hand side vector ω − Tx:

vLP(ω, x) = max
k=1,...,K

λk(ω − Tx), (9)

where λk, k = 1 . . . ,K, are the extreme points of the dual feasible region {λ : λW ≤ q}. Ro-
meijnders et al. [2016a] derive a similar characterization of v(ω, x) in terms of linear and periodic
functions, see Lemma 1. The proof of this lemma is based on the Gomory relaxation of v.

We will briefly discuss the Gomory relaxation before we state Lemma 1. The Gomory relaxation
is defined for any dual feasible basis matrix of the LP-relaxation vLP of v. Let B denote such
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a matrix and let N be such that W ≡
(
B N

)
, meaning equality up to a permutation of the

columns. Let yB and yN denote the second-stage variables corresponding to the columns in B
and N , respectively, and qB and qN their corresponding cost parameters. Since B is a basis matrix,
it is invertible, and thus Wy = ω − Tx is equivalent to yB = B−1(ω − Tx−NyN ). We obtain

v(ω, x) = qBB
−1(ω − Tx)

+ min
{
q̄NyN : B−1(ω − Tx−NyN ) ∈ ZpB+ × RnB+ , yN ∈ ZpN+ × RnN+

}
,

where q̄N := qN − qBB−1N denotes the reduced costs. Note that q̄N ≥ 0, because B is a dual
feasible basis matrix. The Gomory relaxation vB is obtained by relaxing non-negativity of yB :

vB(ω, x) = qBB
−1(ω − Tx) + ψB(ω − Tx),

where

ψB(s) := min
{
q̄NyN , B−1(s−NyN ) ∈ ZpB × RnB , yN ∈ ZpN+ × RnN+

}
, s ∈ Rm. (10)

Romeijnders et al. [2016a] prove properties of vB(ω, x) and ψB(s). In particular, they derive
conditions on ω and x which guarantee that v(ω, x) = vB(ω, x). Under these conditions, the value
function v is characterized by

v(ω, x) = qBB
−1(ω − Tx) + ψB(ω − Tx). (11)

It turns out that v(ω, x) = vB(ω, x) if ω−Tx is in the closed convex cone Λ := {t : B−1t ≥ 0} and
the distance of ω−Tx to the boundary of Λ is sufficiently large. This latter condition is formalized
in Definition 5. Moreover, Romeijnders et al. [2016a] prove that ψB is B-periodic, meaning that

ψB(s+Bl) = ψB(s)

for all l ∈ Zm. The notion of B-periodicity is formalized in Definition 6.

Definition 5. Let Λ ⊂ Rm be a closed convex cone and let d ∈ R with d > 0 be given. Then, we
define Λ(d) as

Λ(d) := {s ∈ Λ : B(s, d) ⊂ Λ},

where B(s, d) := {t ∈ Rm : ||t − s||2 ≤ d} is the closed ball centered at s with radius d. We can
interpret Λ(d) as the set of points in Λ with at least Euclidean distance d to the boundary of Λ.

Definition 6. Let the function g : Rm 7→ Rn be given and let B be an m×m matrix. Then, the
function g is called B-periodic if and only if for every x ∈ Rm and l ∈ Zm

g(x) = g(x+Bl).

We are now ready to characterize v(ω, x).

Lemma 1. Consider the mixed-integer programming problem

v(ω, x) := min
y

{
qy : Wy = ω − Tx, y ∈ Zp2+ × Rn2−p2

+

}
,

where W is an integer matrix, and v(ω, x) is finite for all ω ∈ Rm and x ∈ Rn. Then, there exist
dual feasible basis matrices Bk of vLP, k = 1, . . . ,K, closed convex polyhedral cones Λk := {t ∈
Rm : (Bk)−1t ≥ 0}, distances dk, Bk-periodic functions πk and ψk, and constants wk such that
we have the following:

(i) ∪Kk=1Λk = Rm.

(ii) (int Λk) ∩ (int Λl) = ∅ for every k, l ∈ {1, . . . ,K} with k 6= l.
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(iii) For all ω ∈ Rm and x ∈ Rn1
+ ,

0 ≤ ψk(ω − Tx) ≤ wk, k = 1, . . . ,K.

(iv) If ω − Tx ∈ Λk(dk), then

yBk(ω, x) = (Bk)−1(ω − Tx−Nkπk(ω − Tx))

yNk(ω, x) = πk(ω − Tx)

is optimal for v(ω, x).

(v) If ω − Tx ∈ Λk(dk), then

v(ω, x) = vLP(ω, x) + ψk(ω − Tx) = qBk(Bk)−1(ω − Tx) + ψk(ω − Tx),

where ψl ≡ ψk if qBk(Bk)−1 = qBl(B
l)−1.

Proof. See Romeijnders et al. [2016a].

Lemma 1 (v) shows that if ω − Tx ∈ Λk(dk) for some k = 1, . . . ,K, then v(ω, x) is equal to
the sum of the LP-relaxation vLP(ω, x) and ψk(ω − Tx). Hence, ψk(ω − Tx) can be interpreted
as the additional costs resulting from the integrality restrictions on the decision variables y.

2.3.2 Convex approximation and error bound

Lemma 1 also shows why the second-stage value function is not convex in x. On regions of its
domain it is the sum of a linear function qBk(Bk)−1(ω−Tx) and a periodic function ψk(ω−Tx).
Clearly the periodic part is causing v to be non-convex. That is why the shifted LP-relaxation
is obtained by replacing this periodic part ψk(ω − Tx) by a constant Γk for every k = 1, . . . ,K,
with Γk defined as

Γk := p−mk

∫ pk

0

· · ·
∫ pk

0

ψk(x)dx1 . . . dxm, (12)

where pk = |detBk|. The K constants Γk can be interpreted as the averages of the periodic func-
tions ψk. The shifted LP-relaxation approximation is obtained by taking the pointwise maximum
over all dual feasible basis matrices Bk, k = 1, . . . ,K.

Definition 7. Define the shifted LP-relaxation approximation Q̂ of the MIR function Q as Q̂(x) =
Eω[v̂(ω, x)], where

v̂(ω, x) := max
k=1,...,K

{qBk(Bk)−1(ω − Tx) + Γk}, (13)

where Bk, k = 1, . . . ,K, are the dual feasible basis matrices of Lemma 1, and Γk is defined in (12).

For TU integer recourse models it turns out that Γk = 1/2qBk(Bk)−1em, k = 1, . . . ,K, and
thus by defining λk := qBk(Bk)−1, the shifted LP-relaxation above reduces to that of Definition 3.
Thus, the shifted LP-relaxation of Definition 7 can be considered as the natural generalization of
those for SIR and TU integer recourse models.

Romeijnders et al. [2016a] derive a total variation error bound for the shifted LP-relaxation Q̂
of Definition 7. We state the error bound below and we briefly sketch their line of proof.

Theorem 3. Consider the mixed-integer recourse function Q defined as Q(x) = Eω[v(ω, x)], where
the value function v is defined in (3). Moreover, consider the shifted LP-relaxation approximation
Q̂ of Definition 7. Then, there exists a constant C > 0 such that for every continuous random
vector ω with joint pdf f ∈ Hm,

sup
x
|Q(x)− Q̂(x)| ≤ C

m∑
i=1

Eω−i [|∆|fi(·|ω−i)] . (14)
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Proof. See Romeijnders et al. [2016a].

In general, the error bound in Theorem 3 may be large, in particular since the constant C > 0
may be large. Nevertheless, the theorem shows that if the variability in the model is large enough,
then Q̂ is a good approximation of Q. Moreover, this holds for any two-stage mixed-integer
recourse model.

The line of proof by Romeijnders et al. [2016a] for Theorem 3 is to consider the difference
v(ω, x)− v̂(ω, x) for a given x. They show that there exist σk ∈ Λk(dk) such that

ω − Tx ∈ σk + Λk =⇒ v(ω, x)− v̂(ω, x) = ψk(ω − Tx)− Γk,

which is zero-mean Bk-periodic in ω. Moreover, the difference v(ω, x) − v̂(ω, x) is uniformly
bounded. Romeijnders et al. [2016a] derive a total variation bound on the expectation of B-
periodic functions and a bound on the probability

P

[
ω − Tx /∈

K⋃
k=1

(σk + Λk)

]
.

By combining these results, they prove (14). In Section 4.1, we will also use these total variation
bounds to derive an error bound for the generalized α-approximations, similar to Theorem 3.

3 Generalized α-approximations for two-stage mixed-integer
recourse models

In this section, we introduce our new convex approximations for two-stage MIR models. These
generalized α-approximations derived in Section 3.1, turn out to be more suitable for optimization
than the shifted-LP relaxation. In fact, the remainder of this section is devoted to deriving a
loose Benders decomposition algorithm that solves the convex approximation model correspond-
ing to the generalized α-approximation to near optimality. In Sections 3.2 and 3.3, we discuss
Benders decompositions, and we introduce loose optimality cuts, respectively, for the generalized
α-approximations. Section 3.4 contains our loose Benders decomposition algorithm for the gener-
alized α-approximations, called LBDA(α). We conclude this section with Proposition 1, where we
state a total variation error bound on the optimality gap of the solution generated by LBDA(α).
The proof of Proposition 1 is postponed to Section 4.

3.1 Generalized α-approximations

To derive the generalized α-approximations Q̃α, we first derive a convex approximation ṽα of the
second-stage value function v defined in (8). By taking expectations, we obtain the convex approx-
imation Q̃α(x) := Eω[ṽα(ω, x)]. Similar as for the shifted LP-relaxation discussed in Section 2.3,
we exploit asymptotic periodicity properties of mixed-integer linear programming problems. In
particular, we use that by Lemma 1, for ω − Tx ∈ Λk(dk),

v(ω, x) = qBk(Bk)−1(ω − Tx) + ψk(ω − Tx).

Instead of replacing ψk(ω − Tx) by its average Γk, as is done for the shifted LP-relaxation, we
replace ψk(ω−Tx) by ψk(ω−α) for some α ∈ Rm to obtain the convex approximation ṽkα defined
as

ṽkα(ω, x) = qBk(Bk)−1(ω − Tx) + ψk(ω − α).

Since ψk is Bk-periodic, the approximation ṽkα is exact for the Gomory relaxation vBk if Tx ∈
α+BkZm. Hence, if in addition ω−Tx ∈ Λk(dk), then ṽkα is exact for v. Moreover, the difference
between vBk(ω, x) and ṽkα(ω, x) for ω−Tx ∈ Λk(dk) equals ψk(ω−Tx)−ψk(ω−α). This difference
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is zero-mean periodic in ω, similar as for the shifted LP-relaxation, so that a similar total variation
error bound can be derived for these generalized α-approximations, see Theorem 4 in Section 4.1.
The generalized α-approximations are derived by taking the pointwise maximum over all dual
feasible basis matrices Bk, k = 1, . . . ,K, yielding

v̂α(ω, x) = max
k=1,...,K

ṽkα(ω, x),

and by taking the expected value.

Definition 8. For α ∈ Rm, we define the generalized α-approximation Q̃α of Q as

Q̃α(x) := Eω
[

max
k=1,...,K

{λk(ω − Tx) + ψk(ω − α)}
]
, x ∈ Rn1 ,

with λk := qBk(Bk)−1 and ψk := ψBk , where Bk, k = 1, . . . ,K, are the dual feasible basis matrices
of Lemma 1.

In the definition of Q̃α, the shift parameter α can take on any value. Indeed, the error bound
we derive in Section 4.1 is valid independent of the value of α. That is, Q̃α is a good approximation
of the true MIR function in (2) for any choice of α.

An interesting difference between the generalized α-approximations and the shifted LP-relax-
ation of Section 2.3 is that the approximating value function ṽα is not convex in ω for fixed
x ∈ Rn1 . The function is only convex in x for every fixed ω, but this is sufficient to guarantee
that the generalized α-approximation Q̃α is convex. In contrast, the value function v̂ of the
shifted LP-relaxation is convex in both ω and x. Example 2 illustrates these properties of ṽα for
a one-dimensional example.

Example 2. Consider the second-stage mixed-integer value function v defined as

v(ω, x) := min{y1 + 2y2 + 2y3 : y1 + y2 − y3 = ω − x, y1 ∈ Z+, y2, y3 ∈ R+},

see also Example 3.3 in Romeijnders et al. [2016a]. The LP-relaxation of v has two dual feasible
basis matrices B1 = [−1] and B2 = [1]. Thus, K = 2, and straightforward computations yields
λ1 = −2, λ2 = 1, ψ1 ≡ 0, and for every s ∈ R,

ψ2(s) =

{
s− bsc, if s− bsc ≤ 3/4,

3− 3(s− bsc), if s− bsc ≥ 3/4.

For every α ∈ R, the approximating value function is thus

ṽα(ω, x) = max{−2(ω − x), ω − x+ ψ2(ω − α).}

In contrast, the value function v̂ of the shifted LP-relaxation equals

v̂(ω, x) = max{−2(ω − x), ω − x+ 3/8},

since

Γ2 :=

∫ 1

0

ψ2(s)ds = 3/8.

Figure 1 shows both v and ṽα. Observe that ṽα is convex in x for fixed ω, but not convex in
ω for fixed x. Moreover, Figure 1d illustrates that for this example ṽα(ω, x) = v(ω, x) for all ω if
x ∈ α+ Z. ♦

The difference between the shifted LP-relaxation of Definition 7 and the generalized α-approxi-
mations of Definition 8 seems small: the constants Γk are replaced by ψk(ω−α). From a computa-
tional point of view, however, this difference is significant. This is because the constants Γk are the
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(d) x = −1.3, α = 0.7

Figure 1: The value function v(ω, x) (solid) and approximating value function ṽα(ω, x) (dashed)
of Example 2 as a function of x (Figures 1a and 1b) and as a function of ω (Figures 1c and 1d),
where α ∈ {0, 0.7}.
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averages over ψk, and in general need to be obtained by computing a multi-dimensional integral
of a mixed-integer value function. For a fixed ω and α, however, the value of ψk(ω−α) is obtained
by solving a single mixed-integer programming problem of the same size as the second-stage value
function v(ω, x). In fact, we need to solve the Gomory relaxation discussed in Section 2.3.1, which
can be done in polynomial time if all second-stage variables are integer [Gomory, 1958].

We conclude this section with Example 3 in which we show that for TU integer recourse
models the generalized α-approximations reduce to the α-approximations of Van der Vlerk [2004]
in Definition 3.

Example 3. Consider the TU integer recourse function Q discussed in Section 2.2. The second-
stage value function v is defined as

v(ω, x) := min
y

{
qy : Wy ≥ ω − Tx, y ∈ Zn2

+

}
,

where the recourse matrix W is TU. To obtain the generalized α-approximation of Q, rewrite v as

v(ω, x) = min
y
{qy : Wy − u = ω − Tx, y ∈ Zp2+ , u ∈ Rm+},

where the decision vector u contains slack variables.
Let Bk, k = 1, . . . ,K, denote the dual feasible basis matrices of

(
W −I

)
, and let λk =

qBk(Bk)−1. Note that if dω − Txe ∈ Λk, then

v(ω, x) = max
k=1,...,K

λkdω − Txe = λkdω − Txe.

Moreover, by Lemma 1, if ω − Tx ∈ Λk(dk), then

v(ω, x) = λk(ω − Tx) + ψk(ω − Tx).

It follows that ψk(s) = λk(dse − s), s ∈ Rm.
Using these expressions, we obtain that the generalized α-approximation Q̃α is given by

Q̃α(x) = Eω
[

max
k=1,...,K

λk(dω − αe+ α− Tx)

]
.

It follows from (7) that the generalized α-approximations equal the α-approximations of Van der
Vlerk [2004] for TU integer recourse models. ♦

3.2 Benders decomposition for the generalized α-approximations

To obtain an approximating solution x̃α, using the generalized α-approximations Q̃α, we solve

η̃α := min
x
{cx+ Q̃α(x) : Ax = b, x ∈ Rn1

+ },

using a Benders decomposition [Benders, 1962] on an SAA of Q̃α. The challenge is that this
involves computing Q̃α(x) and a subgradient u ∈ ∂Q̃α(x) at every iteration, which in turn requires
evaluating ψk(ω − α) for all ω and all k = 1, . . . ,K. This is inhibitive, since the number of dual
feasible basis matrices K is exponentially large in the input size of the second-stage problem. That
is why we use approximations for Q̃α(x) and u that can be computed efficiently, see Section 3.3.
This is justified, since Q̃α is already an approximation of the true MIR function Q. Moreover, we
show that the approximation error of this double approximation goes to zero as the total variations
of the one-dimensional conditional pdf of the random vector ω go to zero.

Because we can only use a Benders decomposition on Q̃α if ω follows a discrete distribution,
we use an SAA of Q̃α. That is, we draw a sample ω(1), . . . , ω(S) of size S from the distribution
of ω, and we define the random vector ω̃ as follows:

P[ω̃ = ω(s)] =
1

S
, s = 1, . . . , S.

By replacing the distribution of ω by that of ω̃ in the definition of Q̃α, we obtain the sample
average approximation Q̃Sα of Q̃α.
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Definition 9. Let α ∈ Rm be given and let ω(1), . . . , ω(S) be a sample of size S from the distri-
bution of ω. We define the sample average approximation Q̃Sα of Q̃α as

Q̃Sα(x) :=
1

S

S∑
s=1

max
k=1,...,K

{λk(ω(s) − Tx) + ψk(ω(s) − α)}. (15)

Note that Q̃Sα is a convex polyhedral function, so that we can construct an outer approximation
of Q̃Sα using a Benders decomposition in the spirit of the L-shaped algorithm [Van Slyke and Wets,
1969]. The idea is to rewrite

min
x
{cx+ Q̃Sα(x) : Ax = b, x ∈ Rn1

+ } (16)

as

min
x
{cx+ θ : θ ≥ Q̃Sα(x), Ax = b, x ∈ Rn1

+ , θ ∈ R}.

Since Q̃Sα is convex polyhedral, the constraint θ ≥ Q̃Sα(x) can be represented by finitely many
linear constraints of the form

θ ≥ βrx+ δr, r = 1, . . . , R. (17)

In a Benders decomposition, these so-called optimality cuts are added sequentially in order to
obtain an improved description of Q̃Sα. Moreover, not all constraints in (17) are included, only
those necessary to find an optimal solution. At iteration τ , we first solve the master problem

min
x
{cx+ θ : Ax = b, θ ≥ αr + βrx, r = 1, . . . , τ, x ∈ Rn1

+ , θ ∈ R},

where τ ≤ R is the number of optimality cuts that have been added to the master problem. That
is, only a subset of all the constraints in (17) have been added to the master problem. Next,
we check if the current solution (x(τ), θ(τ)), which is an optimal solution in the master problem,
satisfies the optimality criterion θ(τ) ≥ Q̃Sα(x(τ)). If so, the algorithm terminates. Else, we exploit
convexity of Q̃Sα to derive a new optimality cut, based on the subgradient inequality

θ ≥ Q̃Sα(x) ≥ Q̃Sα(x(τ)) + u(τ)(x− x(τ)), (18)

where u(τ) ∈ ∂Q̃Sα(x(τ)) is a subgradient of Q̃Sα at x(τ). Note that this optimality cut cuts away
the current solution (x(τ), θ(τ)). The master problem is then updated by adding this optimality
cut. This procedure always terminates, because Q̃Sα is convex polyhedral and can therefore be
described by finitely many linear inequalities.

The problem is that Q̃sα(x(τ)) and the subgradient u(τ) need to be computed using the expres-
sions

Q̃Sα(x(τ)) =
1

S

S∑
s=1

max
k=1,...,K

{λk(ω(s) − Tx(τ)) + ψk(ω(s) − α)},

and

u(τ) := − 1

S

S∑
s=1

λksTx(τ) ∈ ∂Q̃Sα(x(τ)),

where

ks ∈ arg max
k=1,...,K

{λk(ω(s) − Tx(τ)) + ψk(ω(s) − α)}, s = 1, . . . , S. (19)

This is computationally expensive, since to determine ks, we need to compute ψk(ω(s)−α) for all
k = 1, . . . ,K, and K grows exponentially in the input size of the second-stage problem. That is
why, in Section 3.3, we derive loose optimality cuts, which can be computed much faster than the
tight optimality cuts in (18). We use them to develop LBDA(α), our loose Benders decomposition
algorithm, which solves the approximating model in (16). The loose optimality cuts we propose
are tight enough in the sense that the solution x̃α obtained by LBDA(α) is of high quality. We
formalize this in Proposition 1, which contains a performance guarantee on x̃α.
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3.3 Loose optimality cuts for the generalized α-approximations

In this section, we derive loose optimality cuts for the SAA of the generalized α-approximation Q̃Sα,
defined in (15). In other words, we derive inequalities of the form Q̃Sα(x) ≥ βx + δ, but we do
not require that this inequality is tight at the current solution x(τ). We say that the inequality is
tight at x(τ) if Q̃Sα(x(τ)) = βx(τ) + δ.

It follows directly from the definition of Q̃Sα in (15) that if we pick any k̃s ∈ {1, . . . ,K} for
s = 1, . . . , S, then

Q̃Sα(x) ≥ 1

S

S∑
s=1

λks(ω(s) − Tx) + ψks(ω(s) − α). (20)

The inequality in (20) is tight if we select k̃s = ks, s = 1, . . . , S, with ks defined in (19). In all
other cases, the inequality defines a loose optimality cut of the form βx+ δ. In order to guarantee
that the loose optimality cut is nearly tight, we consider the inner maximization problem

max
k=1,...,K

{λk(ω(s) − Tx(τ)) + ψk(ω(s) − α)}, (21)

s = 1, . . . , S, in the definition of Q̃Sα. We will identify a basis matrix index k̃s that is optimal
in (21) with high probability by setting ψk ≡ 0 for all k = 1, . . . ,K. Then, we define k̃s as an
optimal index in

max
k=1,...,K

λk(ω(s) − Tx(τ)). (22)

By LP-duality, this choice of k̃s coincides with the optimal basis matrix index in the LP-relaxation

vLP(ω(s), x(τ)) = min
y

{
qy : Wy = ω(s) − Tx(τ), y ∈ Rn2

+

}
(23)

of v. This means that to obtain k̃s, we merely have to solve the LP in (23), which can be done

fast, and find the optimal basis matrix Bk̃s . Next, using (20), we construct our loose optimality
cut.

Definition 10. Let x(τ) be given and let k̃s be the optimal basis matrix index in the LP problem
in (23). We define the loose optimality cut at x(τ) as

βx+ δ =
1

S

S∑
s=1

λk̃s(ω(s) − Tx) + ψk̃s(ω(s) − α), x ∈ Rn1 .

To compute this cut we need to compute ψk̃s(ω(s) − α) for every s = 1, . . . , S, by solving a
mixed-integer programming problem of similar size as the second-stage problem. In Section 4.2,
we show that the loose optimality cut at x(τ) is nearly tight at x(τ) by proving a total variation
bound on the difference Q̃Sα(x(τ))− (βx(τ) + δ), see Theorem 5.

3.4 Loose Benders decomposition for the generalized α-approximations

We are now ready to describe LBDA(α), the loose Benders decomposition algorithm for the
generalized α-approximations. We solve the generalized α-approximations by applying the Benders
decomposition described in Section 3.2, using the loose optimality cuts in (20). The resulting
solution x̃α is near-optimal in the original MIR problem (1). Indeed, Proposition 1 contains a
total variation bound on the optimality gap of the resulting solution x̃α. That is, x̃α is not
necessarily optimal in (1), but we derive a total variation bound on

cx̃α +Q(x̃α)− η∗.
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This bound holds with probability 1 as the sample size S of the sample average approximation
approaches infinity.

LBDA(α) is developed for the case X = Rn1
+ and Y = Zp2+ × Rn2−p2

+ . Furthermore, L denotes

a lower bound on Q̃Sα, that is, Q̃Sα(x) ≥ L for all x ∈ X = {x ∈ X : Ax = b}. Such an L exists
because of Assumptions (A1)-(A4).

Loose Benders decomposition algorithm (LBDA(α))

1: Inputs Parameters: A, b, c, T, q, W . Distribution of ω. Lower bound L on Q̃Sα. Shift
parameter α. Tolerance ε. Sample size S.

2: Output Near-optimal solution x̂.
3: Initialization
4: Initialize τ = 0.
5: Obtain a sample ω(1), . . . , ω(S) of size S from the distribution of ω.

6: Iteration step

7: Solve minx{cx+ θ : Ax = b, θ ≥ βrx+ δr, r = 1, . . . , τ, x ∈ Rn1
+ , θ ≥ L},

8: denote the optimal solution by x(τ), θ(τ).
9: for s = 1, . . . , S do

10: Solve miny{qy : Wy = ω(s) − Tx(τ), y ∈ Rn2
+ },

11: denote the optimal basis matrix index by ks.
12: Evaluate ψks(ω(s) − α).
13: end for
14: βτ+1 ← − 1

S

∑S
s=1 λ

ksT .

15: δτ+1 ← 1
S

∑S
s=1 λ

ksω(s) + ψks(ω(s) − α).

16: Stopping criterion

17: if θ(τ) ≥ βτ+1x
(τ) + δτ+1 − ε then

18: return x̃α := x(τ).
19: stop.
20: else
21: r ← r + 1. Go to line 7.
22: end if

In the iteration step of LBDA(α), we solve the master problem and we generate the loose
optimality cut coefficients βτ+1 and δτ+1. We use these coefficients to check if the stopping
criterion

θ(r) ≥ βτ+1x
(τ) + δτ+1 − ε

is satisfied. If so, then the algorithm terminates: x(τ) is near-optimal. Else, we add the loose
optimality cut θ ≥ βτ+1x+ δτ+1, which cuts away the current solution (x(τ), θ(τ)).

Note that x(τ) is not necessarily optimal in the approximating problem

min
x

{
cx+ Q̃Sα(x) : Ax = b, x ∈ Rn1

+

}
. (24)

This is because we use loose optimality cuts to construct an outer approximation of Q̃Sα. To ensure
optimality of x(τ) in (24), we should have used the stopping criterion θ(τ) ≥ Q̃Sα(x(τ))−ε. However,
evaluating Q̃Sα(x(τ)) is computationally expensive, which is why we used loose optimality cuts in
the first place. Fortunately, this turns out not to be a problem, as (24) is itself an approximation
of the true MIR problem in (1). Moreover, the loose optimality cuts we use are nearly tight,
implying that x(τ) is near-optimal in (24), and consequently in (1). Indeed, in Proposition 1, we
ensure the quality of x(τ) in (1) by proving a bound on the optimality gap of x(τ).

LBDA(α) can be implemented efficiently if the input size of the second-stage problem v(ω, x)
is moderate. During each iteration, we have to solve the LP relaxation vLP(ω, x) and a Gomory

16



relaxation vB(ω, x) of v(ω, x) S times in order to generate an optimality cut. The Gomory re-
laxation vB(ω, x) can be solved in reasonable time if the input size of v(ω, x) is not too large.
Moreover, vLP(ω, x) as well as the master problem can be solved efficiently using standard LP
solvers.

Improved implementations of LBDA(α) using a multicut approach [see Birge and Louveaux,
1988] and regularization techniques [see Ruszczyński, 1986] are possible. Furthermore, paralleliza-
tion can be implemented by simultaneously evaluating ψks(ω(s)−α), s = 1, . . . , S. Finally, during
the initial phase of the algorithm, ψks(ω(s)−α) can be solved inexactly to speed up computations.
Indeed, a lower bound on ψks(ω(s) − α) suffices to generate a valid optimality cut. In this case,
the termination criterion should be disregarded and the iteration step should be repeated. During
the final iteration of the algorithm, all subproblems ψks(ω(s) − α), s = 1, . . . , S, should be solved
exactly, to ensure that the stopping criterion is valid.

Proposition 1. Consider the two-stage mixed-integer recourse model

η∗ = min
x
{cx+Q(x) : Ax = b, x ∈ Rn1

+ }. (25)

Let x̃α denote the solution by LBDA(α) with tolerance ε and sample size S. Then, there exists a
constant C > 0 such that for every continuous random vector ω with joint pdf f ∈ Hm

ĉ̃xα +Q(x̃α)− η∗ ≤ ε+ C

m∑
i=1

Eω−i [|∆|fi(·|ω−i)] ,

with probability 1 as S →∞.

Proposition 1 states that the optimality gap of the solution x̃α returned by LBDA(α) converges
to the pre-specified tolerance ε as the total variations of the underlying one-dimensional conditional
pdf go to zero. In other words, LBDA(α) performs well under these conditions.

4 Performance guarantees of LBDA(α) and the generalized
α-approximations

In this section, we prove Proposition 1. First, however, we derive several intermediate results. In
particular, we derive an error bound for the generalized α-approximations in Section 4.1. In Sec-
tion 4.2, we prove that Q̃Sα, the SAA of the generalized α-approximation Q̃α, converges uniformly
to Q̃α as S →∞. In addition, we show that the loose optimality cuts discussed in Section 3.3 are
nearly tight as S →∞. In Section 4.3, we combine these results to prove Proposition 1.

4.1 Error bound for the generalized α-approximations

Consider the generalized α-approximation Q̃α, defined in Definition 8 as Q̃α(x) = Eω[ṽα(ω, x)],
where the approximating value function ṽα is defined as

ṽα(w, x) := max
k=1,...,K

{λk(ω − Tx) + ψk(ω − α)}. (26)

In Theorem 4, we derive an error bound on ||Q− Q̃α||∞ by considering the difference between ṽα
and the MIR value function v, defined in (8). Recall from Lemma 1 that v is asymptotically
periodic, i.e. v(ω, x) = λk(ω − Tx) + ψk(ω − Tx) if ω − Tx ∈ Λk(dk). In Lemma 2, we prove a
similar result for ṽα. Together, this implies that the difference ∆(ω, x) := v(ω, x) − ṽα(ω, x) is
zero-mean periodic in ω on large parts of the domain. Moreover, we show that ∆(ω, x) is uniformly
bounded. Applying the total variation bounds discussed in Section 2.3.2 yields the error bound
for Q̃α.
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Lemma 2. Consider the mixed-integer value function v defined in (3) and the value function ṽα
of Q̃α defined in (26). Let Bk and Λk, k = 1, . . . ,K, denote the basis matrices and closed convex
cones from Lemma 1. Then, there exist vectors σk ∈ Λk and a constant R > 0 such that

(i) for all ω ∈ Rm and x ∈ Rn1 ,

|v(ω, x)− ṽα(ω, x)| ≤ R,

(ii) ω − Tx ∈ σk + Λk =⇒ ṽα(ω, x) = λk(ω − Tx) + ψk(ω − α).

Proof. Consider the dual representation of the LP-relaxation of v, denoted vLP, in (9). There
exists a constant R1 > 0 such that for all ω ∈ Rm and x ∈ Rn1 ,

|v(ω, x)− vLP(ω, x)| ≤ R1,

see e.g. Blair and Jeroslow [1979]. Furthermore, there exists a constant R2 > 0 such that

|vLP(ω, x)− ṽα(ω, x)| ≤ R2, (27)

so that (i) follows from the triangle inequality by setting R = R1 + R2. Such an R2 exists, since
by Lemma 1, there exist wk such that 0 ≤ ψk(ω − α) ≤ wk, k = 1, . . . ,K. Thus, we can take
R2 = maxk wk, so that (27) follows from (9) and (26).

To prove (ii), let Bk be the dual feasible basis matrices from Lemma 1. Fix arbitrary l ∈
{1, . . . ,K}. It suffices to show that there exist σkl ∈ Λk(dk) such that ω − Tx ∈ σkl + Λk implies
that

λk(ω − Tx) + ψk(ω − α) ≥ λl(ω − Tx) + ψl(ω − α). (28)

This is because

K⋂
l=1

(σkl + Λk) = σk + Λk

for some σk ∈ Λk. Hence, if ω − Tx ∈ σk + Λk, then

ṽα(ω, x) = max
k=1,...,K

{
λk(ω − Tx) + ψk(ω − α)

}
= λk(ω − Tx) + ψk(ω − α).

To prove (28), note that if λk = λl, then by Lemma 1 (v), ψk(ω−α) = ψl(ω−α), so that (28)
holds with equality. If λk 6= λl, then λks > λls for any s ∈ int(Λk). For sufficiently large γ > 0,
we thus have

γ(λks− λls) ≥ wl.

If we take σkl = γs, then (28) holds by observing that ψk(ω − α) ≥ 0 and ψl(ω − α) ≤ wl.

Theorem 4. Consider the mixed-integer recourse function Q defined as Q(x) = Eω[v(ω, x)],
where the value function v is defined in (3). Consider the generalized α-approximation Q̃α of
Definition 8. Then, there exists a constant C > 0 such that for every continuous random vector ω
with joint pdf f ∈ Hm,

sup
x
|Q(x)− Q̃α(x)| ≤ C

m∑
i=1

Eω−i [|∆|fi(·|ω−i)] .

Proof. Fix x ∈ Rn1 and f ∈ Hm, and let ω̃ = ω − Tx. Note that ω̃ has pdf g ∈ Hm given by
g(s) = f(s+Tx), s ∈ Rm. Define ∆(ω, x) := v(ω, x)−ṽα(ω, x), and observe that ∆(ω, x) = ∆(ω̂.0).
We use this to rewrite the difference |Q(x)− Q̃α(x)| as

|Q(x)− Q̃α(x)| =
∣∣∣∣Eω [∆(ω, x)]

∣∣∣∣ =

∣∣∣∣Eω̃ [∆(ω̃, 0)]

∣∣∣∣.
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Let Λk and dk be the closed convex cones and constants from Lemma 1. Let σk ∈ Λk be the
vectors from Lemma 2. Define Λ̄k := Λk(dk) ∩ (σk + Λk). It follows from Lemmas 1 and 2 that if
ω̃ ∈ Λ̄k, then

∆(ω̃, 0) := ψk(ω̃)− ψk(ω̃ − α),

which is zero-mean Bk-periodic in ω̃. Define M := ∪Kk=1Λ̄k. Note that

|Q(x)− Q̃α(x)| =
∣∣∣∣Eω [∆(ω̃, 0)]

∣∣∣∣
≤
∣∣∣∣∫
M

∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣+

∣∣∣∣∣
∫
Rm\M

∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣∣ . (29)

For the first term in (29) we have∣∣∣∣∫
M

∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣ ≤ K∑
k=1

∣∣∣∣∫
Λ̄k

[ψk(ω̃)− ψk(ω̃ − α)]g(ω̃)dω̃

∣∣∣∣ .
Applying the total variation bound on the expectation of periodic functions in Theorem 4.13

of Romeijnders et al. [2016a], yields that there exists a constant C1 > 0, independent of g, such
that ∣∣∣∣∫

M
∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣ ≤ C1

m∑
i=1

Eω̃−i [|∆|gi(·|ω̃−i)] .

For the second term in (29), we use a result in Romeijnders et al. [2016a], which states that
there exist hyperslices Hj := {x : 0 ≤ aTj x ≤ δj}, j = 1, . . . , J , such that

Rm \M ⊂
J⋃
j=1

Hj .

We thus obtain∣∣∣∣∣
∫
Rm\M

∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣∣ ≤
J∑
j=1

∫
Hj

|∆(ω̃, 0)|g(ω̃)dω̃

≤ R
J∑
j=1

P[ω̃ ∈ Hj ],

whereR is the upper bound on |v(ω, x)−ṽα(ω, x)| from Lemma 2. By the total variation probability
bound in Theorem 4.6 of Romeijnders et al. [2016a], there exists a constant C2 > 0, independent
of g, such that∣∣∣∣∣

∫
Rm\M

∆(ω̃, 0)g(ω̃)dω̃

∣∣∣∣∣ ≤ C2

m∑
i=1

Eω̃−i [|∆|gi(·|ω̃−i)] .

The result now follows from (29) by setting C = C1 +C2 and by noting that Eω̃−i [|∆|gi(·|ω̃−i)] =
Eω−i [|∆|fi(·|ω−i)].

Theorem 4 states that the maximum difference between the MIR functionQ and the generalized
α-approximation Q̃α is bounded. Moreover, this maximum difference goes to zero as the total
variations Eω−i [|∆|fi(·|ω−i)], i = 1, . . . ,m, all go to zero. As we will show, LBDA(α) generates
a near-optimal solution x̃α to the generalized α-approximation, so that we can use Theorem 4 to
prove Proposition 1. Indeed, Theorem 4 then implies that x̃α is also near-optimal in the original
MIR problem (1).
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4.2 Convergence of the sample average approximation Q̃S
α and loose

optimality cuts

In LBDA(α), we sample from the distribution of the random vector ω in order to obtain a discrete
approximation of the true distribution of ω. Intuitively, as the sample size S increases, this
approximation becomes better. In this section, we formalize this intuition. Lemma 3 states that
the SAA Q̃Sα of Q̃α converges uniformly to Q̃α on finite sets as S → ∞. Lemma 4 extends this
to infinite bounded sets. Furthermore, we consider the limiting behaviour of the loose optimality
cuts discussed in Section 3.3 as S →∞. In particular, we show that our loose optimality cuts are
nearly tight with probability 1 as S → ∞, see Lemma 5.

We say that events such as convergence and inequalities happen with probability 1 as S → ∞ if
for almost every realization ω̄ := {ω̄(1), ω̄(2), . . . } of the random sample drawn from the distribution
of ω, there exists an integer S(ω̄) such that the event occurs for all samples {ω̄(1), . . . , ω̄(s)} from
ω̄ with s ≥ S(ω̄) [Kleywegt et al., 2002].

Lemma 3. Consider the generalized α-approximation Q̃α and its sample average approxima-
tion Q̃Sα. Suppose that X ⊂ Rn1 is a finite set. Then,

max
x∈X
|Q̃α(x)− Q̃Sα(x)| → 0

with probability 1 as S →∞.

Proof. Fix any x ∈ X . Consider the random variable

ξ := max
k=1,...,K

{λk(ω(s) − Tx) + ψk(ω(s) − α)}.

By Assumptions (A2)-(A4), E[ξ] exists and is finite. Thus, by the strong law of large numbers
(SLLN), Q̃Sα(x)→ Q̃α(x) with probability 1 as S →∞. The result follows because X is finite.

Lemma 4. Consider the generalized α-approximation Q̃α and its sample average approxima-
tion Q̃Sα. Then,

sup
x∈X

∣∣∣Q̃α(x)− Q̃Sα(x)
∣∣∣→ 0

with probability 1 as S →∞, where X = {x ∈ Rn1
+ : Ax ≤ b}.

Proof. Our line of proof is based on Ahmed and Shapiro [2002]. For any ν > 0, consider a finite
set Xν such that for all x ∈ X , there exists an x′ ∈ Xν such that ||x−x′|| ≤ ν. Such a set Xν exist
due to Assumption (A1). Let x ∈ X be given and let x′ ∈ Xν be such that ||x − x′|| ≤ ν. Note
that

|Q̃α(x)− Q̃Sα(x)| ≤ |Q̃α(x)− Q̃α(x′)|+ |Q̃α(x′)− Q̃Sα(x′)|+ |Q̃Sα(x′)− Q̃Sα(x)|. (30)

The first and third term on the right-hand side of (30) can be bounded by noting that both
Q̃α and Q̃Sα are Lipschitz continuous. Denote Lipschitz constants of Q̃α and Q̃Sα by L1 and L2,
respectively. We obtain

|Q̃α(x)− Q̃Sα(x)| ≤ (L1 + L2)ν + |Q̃α(x′)− Q̃Sα(x′)|,

which gives

sup
x∈X

∣∣∣Q̃α(x)− Q̃Sα(x)
∣∣∣ ≤ (L1 + L2)ν + sup

x∈Xν

∣∣∣Q̃α(x′)− Q̃Sα(x′)
∣∣∣ .

The first term (L1 + L2)ν can be made arbitrarily small by letting ν → 0. The result follows,

because for fixed ν, the second term supx∈Xν

∣∣∣Q̃α(x′)− Q̃Sα(x′)
∣∣∣ goes to zero with probability 1 as

S →∞ due to Lemma 3.
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In Lemma 5, we consider the loose optimality cuts discussed in Section 3.3, which are of the
form

Q̃Sα(x) ≥ βx+ δ =
1

S

S∑
s=1

λks(ω(s) − Tx) + ψks(ω(s) − α),

where ks ∈ arg max λk(ω(s)−T x̄). In particular, we show that these are nearly tight at the current
solution x̄, that is, we show that the difference Q̃Sα(x̄)− (βx̄+ δ) is small. To this end, we define
an intermediate function Q̃Sα, which we will also use in the proof of Proposition 1. Define Q̃Sα as

Q̃Sα(x) :=
1

S

S∑
s=1

v̂α(ω(s), x), x ∈ Rn1 , (31)

where the value function v̂α is defined as

v̂α(ω, x) = λk(ω,x)(ω − Tx) + ψk(ω,x)(ω − α),

and k(ω, x) ∈ arg max
k=1,...,K

λk(ω − Tx). Recall that Q̃Sα is defined as

Q̃Sα(x) =
1

S

S∑
s=1

ṽα(ω(s), x),

where ṽα is defined is (26). It follows immediately that Q̃Sα is a lower bound of Q̃Sα. Note
that k(ω(s), x̄) = ks, and thus Q̃Sα(x̄) = βx̄ + δ. Hence, by proving a total variation bound on
||Q̃Sα − Q̃Sα||∞, as we do in Lemma 5, we ensure that our loose optimality cuts are nearly tight.

The intuition behind Lemma 5 is that k(ω, x) is optimal in ṽα with high probability, and thus
v̂α(ω, x) = ṽα(ω, x). In addition, the difference ṽα(ω, x)− v̂α(ω, x) is bounded. Applying the total
variation probability bound discussed in Section 2.3.2 completes the proof.

Lemma 5. Consider the SAA of the generalized α-approximation Q̃Sα and its lower bound Q̃Sα,
defined in (31). There exists a constant C > 0 such that for every continuous random vector ω
with joint pdf f ∈ Hm,

sup
x∈X

∣∣∣Q̃Sα(x)− Q̃Sα(x)
∣∣∣ ≤ C m∑

i=1

Eω−i [|∆|fi(·|ω−i)]

with probability 1 as S →∞.

Proof. Define ∆(ω, x) := ṽα(ω, x)− v̂α(ω, x), so that

Q̃Sα(x)− Q̃Sα(x) =
1

S

S∑
s=1

∆(ω(s), x).

We derive an upper bound on ∆(ω, x), independent of x. We then apply the SLLN to obtain the
desired result.

We first show that for a given x, with high probability ∆(ω, x) = 0. More formally, we show
that for some M⊂ Rm,

ω − Tx ∈M =⇒ ṽα(ω, x) = v̂α(ω, x) (32)

and we derive an upper bound on

P[∃x ∈ X : ω − Tx /∈M].

21



By the Basis Decomposition Theorem of Walkup and Wets [1969], there exist basis matrices Bk,
k = 1, . . . ,K, and closed convex cones Λk = {t : (Bk)−1t ≥ 0} such that ω − Tx ∈ Λk implies
k(ω, x) = k, so that

v̂α(ω, x) = λk(ω − Tx) + ψk(ω − α). (33)

Moreover, by Lemma 2, there exist σk ∈ Λk such that if ω − Tx ∈ σk + Λk, then

ṽα(ω, x) = λk(ω − Tx) + ψk(ω − α).

Hence, if we define M :=
⋃K
k=1(σk + Λk), then the implication in (32) holds. Note that an

upper bound on ṽα(ω, x) − v̂α(ω, x) is given by R := maxk=1,...,K wk, where wk denotes the
upper bound on ψk(ω − α) from Lemma 1 (iii). We thus have the following for the difference
∆(ω, x) = ṽα(ω, x)− v̂α(ω, x),

∆(ω, x) ≤ ξ(ω, x) :=

{
R, if ω − Tx /∈M,
0, if ω − Tx ∈M.

Unfortunately, ξ(ω, x) still depends on x. Therefore, we cannot apply the SLLN to

sup
x∈X

1

S

S∑
s=1

ξ(ω(s), x)

if X is infinite. To resolve this, we use that X is bounded. Let D denote the diameter of TX, i.e.,
||Tx−Tx′|| ≤ D for all x, x′ ∈ X. DefineM′ ⊂M asM′ :=

⋃K
k=1(σk +Λk)(D). Fix an arbitrary

x∗ ∈ X. Note that for all x ∈ X,

ω−Tx∗ ∈M′ =⇒ ∃k : ω−Tx∗ ∈ (σk + Λk)(D) =⇒ ω−Tx ∈ (σk + Λk) =⇒ ω−Tx ∈M.

We obtain

∆(ω, x) ≤ ξ(ω) :=

{
R if ω − Tx∗ /∈M′
0 if ω − Tx∗ ∈M′

Note that ξ̄(ω) only depends on a fixed x∗ ∈ X and is independent of x. By the SLLN,

1

S

S∑
s=1

ξ̄(ω(s))→ RP[ω − Tx∗ /∈M′],

with probability 1, as S →∞.
By a result in Romeijnders et al. [2016a], Rm \M′ can be covered by finitely many hyperslices,

that is,

Rm \M′ ⊂
J⋃
j=1

Hj ,

where the hyperslices Hj are defined as

Hj := {x ∈ Rm : 0 ≤ aTj x ≤ δj},

for some aTj and δj . It follows from the total variation probability bound in Romeijnders et al.
[2016a] that there exists a constant β > 0 such that

P[ω − Tx∗ /∈M′] ≤ β
m∑
i=1

Eω−i [|∆|fi(·|ω−i)] .
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The result now follows from

sup
x∈X

∣∣∣Q̃Sα(x)− Q̃Sα(x)
∣∣∣ = sup

x∈X

{
Q̃Sα(x)− Q̃Sα(x)

}
= sup
x∈X

1

S

S∑
s=1

∆(ω(s), x)

≤ 1

S

S∑
s=1

ξ̄(ω(s))

→ RP[ω − Tx∗ /∈M′]

≤ C
m∑
i=1

Eω−i [|∆|fi(·|ω−i)] ,

with probability 1 as S →∞, where C = Rβ.

4.3 Error bound on the optimality gap of LBDA(α)

We are now ready to prove Proposition 1. We prove that the solution x̃α generated by LBDA(α) is
near-optimal with respect to the generalized α-approximation Q̃α. The error bound on ||Q−Q̃α||∞
in Theorem 4 then implies that x̃α is also near optimal in the original MIR problem (1). To prove
that x̃α is near-optimal with respect to Q̃α, note that x̃α is optimal with respect to an outer
approximation Q̂ of Q̃Sα, the SAA of Q̃α. If this outer approximation were exact at x̃α, that is,
if Q̂(x̃α) = Q̃Sα(x̃α), then x̃α would also be optimal with respect to Q̃Sα. Because we used loose
optimality cuts to construct Q̂, this is not necessarily the case. However, the termination criterion
of LBDA(α) ensures that

Q̃Sα(x̃α) ≤ Q̂(x̃α) ≤ Q̃Sα(x̃α).

Together with the upper bound on ||Q̃Sα−Q̃Sα||∞ in Lemma 5, this implies that x̃α is near-optimal
with respect to Q̃Sα. Finally, x̃α is also near-optimal with respect to Q̃α, since Q̃Sα converges to
Q̃α, see Lemma 4.

Theorem 5. Proposition 1 is correct.

Proof. Let x̃α denote the solution returned by LBDA(α), and let τ be the iteration index of the
final iteration. Consider the τ + 1-st master problem defined as

η̂τ+1 := min
x
{cx+ Q̃τ+1(x) : Ax = b, x ∈ Rn1

+ }, (34)

where Q̃τ+1 denotes the outer approximation of Q̃Sα constructed during the algorithm:

Q̃τ+1(x) := max
r=1,...,τ+1

{βrx+ δr}.

The candidate solution x̃α is ε-optimal in (34), that is, η̂τ+1 ≥ cx̃α + Q̃τ+1(x̃α)− ε. To see this,
note that the termination criterion implies that x̃α is optimal in the following relaxation of (34):

η̂ετ+1 := min
x
{cx+ Q̃ετ+1(x) : Ax = b, x ∈ Rn1

+ }, (35)

where

Q̃ετ+1(x) := max
r=1,...,τ

{βrx+ δr, βτ+1x+ δτ+1 − ε}.

Hence,

η̂τ+1 ≥ η̂ετ+1 = cx̃α + Q̃ετ+1(x̃α) ≥ cx̃α + Q̃τ+1(x̃α)− ε,
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where the first inequality is because (35) is a relaxation of (34), the equality follows from optimality
of x̃α in (35), and the final inequality from the definitions of Q̃τ+1 and Q̃ετ+1.

Consider the following problem

η̃τ+1 := min
x
{cx+ Q̃Sα,τ+1(x) : Ax = b, x ∈ Rn1

+ }, (36)

where Q̃Sα,τ+1(x) := max{Q̃τ+1(x), Q̃Sα(x)}. The candidate solution x̃α is also ε-optimal in (36).
To see this, note that

η̃τ+1 ≥ η̂τ+1 ≥ cx̃α + Q̃τ+1(x̃α)− ε = cx̃α + Q̃Sα,τ+1(x̃α)− ε,

where the latter equality follows from

Q̃τ+1(x̃α) ≥ δτ+1 + βτ+1x̃α = Q̃Sα(x̃α),

implying that Q̃Sα,τ+1(x̃α) = Q̃τ+1(x̃α).
Let x∗ denote an optimal solution of (25), so that η∗ = cx∗ +Q(x∗). Note that

cx̃α +Q(x̃α)− η∗ = cx̃α + Q̃Sα,τ+1(x̃α) +Q(x̃α)− Q̃Sα,τ+1(x̃α)− η∗

≤ ε+ cx∗ + Q̃Sα,τ+1(x∗) +Q(x̃α)− Q̃Sα,τ+1(x̃α)− η∗

= ε+ Q̃Sα,τ+1(x∗)−Q(x∗) +Q(x̃α)− Q̃Sα,τ+1(x̃α), (37)

where the inequality follows from sub-optimality of x∗ and ε-optimality of x̃α in (36). We consider
the two terms Q̃Sα,τ+1(x∗)−Q(x∗) and Q(x̃α)− Q̃Sα,τ+1(x̃α) separately.

For the first term note that

Q̃Sα,τ+1(x∗)−Q(x∗) = Q̃Sα,τ+1(x∗)− Q̃Sα(x∗) + Q̃Sα(x∗)− Q̃α(x∗) + Q̃α(x∗)−Q(x∗)

≤ [Q̃Sα(x∗)− Q̃α(x∗)] + [Q̃α(x∗)−Q(x∗)], (38)

where the inequality follows from Q̃Sα,τ+1(x∗) ≤ Q̃Sα(x∗). To see this, note that (i) Q̃τ+1(x∗) ≤
Q̃Sα(x∗), as Q̃τ+1 is an outer approximation of Q̃Sα(x∗) and (ii) Q̃Sα(x∗) ≤ Q̃Sα(x∗), by their defini-
tions. Applying Theorem 4 and Lemma 3 to the first and second term in (38), we conclude that
there exists a constant C1 > 0 such that

Q̃Sα,τ+1(x∗)−Q(x∗) ≤ C1

m∑
i=1

Eω−i [|∆|fi(·|ω−i)] ,

with probability 1 as S →∞.
For the second term, we have

Q(x̃α)− Q̃Sα,τ+1(x̃α) ≤ Q(x̃α)− Q̃Sα(x̃α)

= [Q(x̃α)− Q̃α(x̃α)] + [Q̃α(x̃α)− Q̃Sα(x̃α)] + [Q̃Sα(x̃α)− Q̃Sα(x̃α)]. (39)

Applying Theorem 4, and Lemmas 4 and 5 to the first, second, and third term in (39), we conclude
that there exists a constant C2 > 0 such that

Q(x̃α)− Q̃Sα,τ+1(x̃α) ≤ C2

m∑
i=1

Eω−i [|∆|fi(·|ω−i)] ,

with probability 1 as S →∞.
Proposition 1 now follows from (37) by setting C = C1 + C2.

Proposition 1 states a theoretical bound on the optimality gap of the solution returned by
LBDA(α). Moreover, as the total variations of the one-dimensional conditional pdf of the random
vector ω go to zero, the optimality gap goes to zero. However, the error bound in Proposition 1
is a worst-case bound. For many problem instances, the actual performance may be much better.
In Section 5, we assess the performance of LBDA(α) empirically using Monte Carlo sampling.
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5 Numerical experiments

We test the performance of LBDA(α) on two types of problem instances. The first are based on
a nurse scheduling problem of Kim and Mehrotra [2015], and the second are randomly generated
test instances. The results are discussed in Sections 5.2 and 5.3, respectively. First, however, we
describe the set-up of our numerical experiments in Section 5.1.

5.1 Set-up numerical experiments

In our numerical experiments, we compare seven candidate solutions, described below, in terms
of costs, relative optimality gaps, and computation times. The expected costs cx + Q(x) of a
candidate solution x are estimated using out-of-sample estimation with a sample size of 105,
which is chosen such that the standard errors are sufficiently small. The relative optimality gaps
are determined using the multiple replications procedure (MRP) by Mak et al. [1999] with Latin
hypercube sampling [Bayraksan and Morton, 2006]. Using the MRP, we obtain an upper bound
on the relative optimality gap

cx+Q(x)− η∗

η∗
× 100%

of a candidate solution x, where η∗ denotes the optimal value of the true MIR problem in (1).
The upper bound generated by the MRP has a confidence level equal to 1 − γ. We use γ = 0.05
in our experiments. For both types of problems, we construct small and large problem instances.
Because the MRP is not tractable for the large problem instances, we use it only for the small ones.
For the large instances, we compare the candidate solutions in terms of out-of-sample estimated
expected costs.

The seven candidate solutions we obtain are generated using a sample ω̃ = {ω(1), . . . , ω(S)} of
size S = 1000 from the distribution of ω. To ensure a fair comparison, we use common random
numbers where possible and we limit the computation time of each algorithm to two hours. If a
candidate solution could not be computed within two hours, we report out of time (OOT).

First, we consider the solution generated by LBDA(α), denoted x̃α, where α = 0. Second, we
solve the α-approximations exactly, that is, we find the optimal solution x∗α of the approximating
problem (4), with Q̂ = Q̃α, where again α = 0. We do so by solving the approximating second-
stage problems

max
k=1,...,K

{λk(ω − Tx) + ψk(ω − α)}

by enumeration over k = 1, . . . ,K. For this reason x∗α can only be computed in reasonable time
for small problem instances.

Third, we apply LBDA(α) multiple times using 100 different values of α, drawn from a multi-
variate uniform distribution on [0, 100]m. We then select the best candidate solution, denoted x̃+

α ,
using out-of-sample evaluation with a sample size 104. Note that this procedure can be efficiently
parallelized, by running LBDA(α) in parallel. For this reason, we report the maximum computa-
tion time of LBDA(α) over all 100 values of α.

The fourth candidate solution x̂S is obtained by solving the deterministic equivalent formula-
tion (DEF), in which the distribution of ω is replaced by the empirical distribution of the sample ω̃:

min
x

{
cx+ Q̂S(x) : Ax = b, x ∈ Rn1

+

}
,

where

Q̂S(x) =
1

S

S∑
s=1

min
y

{
qy : Wy = ω(s) − Tx, y ∈ Zp2+ × Rn2−p2

+

}
.
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The DEF is a large-scale MIP, which, typically, cannot be solved in reasonable time by standard
MIP solvers. Hence, we also solve the DEF using a smaller sample size S′ = 100. We denote the
resulting candidate solution by x̂S′ .

Finally, we consider two trivial benchmark solutions, which we expect LBDA(α) to outperform
significantly. First, we solve the LP-relaxation of the DEF to obtain the candidate solution xLP.
Second, we consider the Jensen approximation, which replaces the distribution of ω by a degenerate
distribution at µ = Eω[ω]. The resulting problem is a small scale MIP, which can be solved
efficiently using standard MIP solvers. We denote its optimal solution by xµ.

For easy reference, we summarize the definitions of the candidate solutions in Table 2.

Table 2: Definitions candidate solutions.

Solution Definition

x̃α LBDA(α)
x∗α Optimal solution α-approximations
x̃+
α Best out of 100 LBDA(α) runs for different α’s
x̂S Optimal solution DEF
x̂S′ Optimal solution DEF (small sample size)
xLP Optimal solution LP-relaxation DEF
xµ Optimal solution Jensen approximation

5.2 Nurse scheduling

We consider an adapted version of the integrated staffing and scheduling problem for nurses
introduced by Kim and Mehrotra [2015]. In this problem, nurses are scheduled according to a set
of predefined shifts. These are the first-stage decisions. In the second stage, demand for nurses
is revealed. If there are insufficient nurses, additional nurses can be scheduled according to a
set of adjustment shifts. Additionally, there are penalties for over- and understaffing. Kim and
Mehrotra [2015] formulate this problem as a two-stage mixed-integer recourse model with a TU
recourse matrix.

Let T denote the length of the planning horizon, e.g. T = 24, where each time period represents
one hour. Let I denote the set of shifts available during the planning horizon. For every shift
i ∈ I, let ait = 1 if i contains hour t, and 0 otherwise, t = 1, . . . , T . The first-stage decision xi
is the number of nurses working according to shift i. The number of working nurses at time t,
denoted zt, is given by

zt =
∑
i∈I

aitxi.

For the second-stage problem, let ωt denote random demand in period t. Let J denote the
set of adjustment shifts available to cover the difference between demand and supply of nurses
ωt − zt. Any adjustment shift j ∈ J can be added or cancelled, which comes at cost q+

j and q−j ,

respectively. Let y+
j and y−j denote the number of added and cancelled adjustment shifts of type j,

respectively. Analogous to ait, let wjt = 1 if adjustment shift j contains hour t, and 0 otherwise.
Let ut and vt denote the amount of over- and understaffing at hour t. We then face for each time
period t the constraint∑

j∈J
wjt(y

+
j − y

−
j )− ut + vt = ωt − zt. (40)

Over- and understaffing comes at penalty costs ru and rv, respectively. This leads to the two-stage
mixed-integer recourse problem

min
x

{∑
i∈I

cixi + Eω[v(ω, z)] : zt =
∑
i∈I

aitxi, xi ∈ Z+

}
,
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where

v(ω, z) = min

{
T∑
t=1

(ruut + rvvt) +
∑
j∈J

q+
j y

+
j + q−j y

−
j :

∑
j∈J

wjt(y
+
j − y

−
j ) + ut − vt = ωt − zt, t = 1, . . . , T,

y+
j , y

−
j ∈ Z+, ut, vt ∈ R+

}
.

The main difference between our version of the problem and that of Kim and Mehrotra [2015] is
that we relax the integrality restrictions on x. Furthermore, we set ru = 0 and rv = +∞, so that
the second-stage constraints in (40) reduce to∑

j∈J
wjt(y

+
j − y

−
j ) ≥ ωt − zt.

In our test instances, we set T = 8 and T = 48, corresponding to a small and large version of
the problem, respectively. The set of first-stage scheduling patterns I consists of all consecutive
three-hour shifts. It follows that the number of first stage-decisions is given by |I| = T − 2. The
set of second-stage adjustment patterns J consists of non-overlapping consecutive four hour shifts,
so that the number of integer second stage variables equals |J | = T/4. The cost parameters are
given by ci = 1 for all i ∈ I, and q+

j = 5 and q−j = 0 for all j ∈ J . The random demand for nurses
in period t, denoted ωt, t = 1, . . . , T , follow independent normal distributions with mean 10 and
standard deviation σ, where σ ∈ {0.1, 0.5, 1, 2, 4, 10}.

The reason that we consider multiple values of σ is that Proposition 1 informs us that LBDA(α)
performs well if the variability in the model is large. Here, variability can be measured by σ, see
Example 1. Indeed, the total variation of the one-dimensional conditional pdf of ω goes to zero
as σ increases and thus the error bound on the optimality gap goes to zero as well. We expect to
see this reflected in the results.

In Tables 3 and 4, we provide the results of our numerical experiments for the small and large
nurse scheduling test instances, respectively. We report OOT if an instance could not be solved
in under two hours.

Table 3: Nurse scheduling: T = 8.

Computation time (seconds) Relative optimality gap (%)

σ x̃α x̃+
α x∗α x̂S x̂S′ xµ xLP x̃α x̃+

α x∗α x̂S x̂S′ xµ xLP

0.1 7.8 10.5 39.7 321.11 0.1 0.0 0.1 7.05 1.77 7.14 0.56 1.03 26.87 8.76
0.5 8.6 12.6 38.1 OOT 0.4 0.0 0.1 1.34 1.28 0.56 OOT 1.19 19.00 4.60
1.0 10.3 12.8 40.4 OOT 3.7 0.0 0.1 1.94 1.19 1.38 OOT 1.48 22.75 2.70
2.0 10.0 13.8 43.5 OOT 3.4 0.0 0.1 1.43 1.22 0.87 OOT 1.29 30.56 1.79
4.0 12.9 16.3 44.7 OOT 3.7 0.0 0.1 1.32 0.98 1.13 OOT 1.67 41.72 1.41

10.0 16.6 18.4 49.7 OOT 10.9 0.0 0.1 0.96 0.82 0.79 OOT 1.67 60.30 0.91

We make several observations based on Table 3. First, LBDA(α) is able to solve every test
instance within a minute, whereas the sampling solution x̂S cannot be computed within two hours
except for σ = 0.1. Hence, LBDA(α) is much faster than solving the DEF. The performance of
LBDA(α) is also very good. In particular, the relative optimality gap of x̃+

α is always below 2%,
and x̃+

α outperforms both sampling solutions for σ ≥ 1.0. For smaller values of σ, performing
multiple LBDA(α) runs leads to significant improvements compared to using a single value of α.
In particular, for σ = 0.1, the difference in optimality gap between x̃α and x̃+

α is large.
We observe that the performance of x∗α is not the same as that of the LBDA(α)-solution x̃α. In

fact, the relative optimality gaps corresponding to x∗α are slightly smaller. This is not surprising
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since LBDA(α) is used to obtain an approximation of x∗α. However, by running LBDA(α) multiple
times we obtain a performance similar to x∗α. Moreover, we will see in Section 5.3 that x∗α does
not necessarily outperform x̃α.

Finally, we observe that xLP and xµ have the largest optimality gaps. However, xLP performs
better than expected with optimality gaps below 5% for σ ≥ 0.5. We suspect that this is because
of the TU structure in this nurse scheduling problem. In the next section we confirm our suspicion
by showing that xLP performs worse for randomly generated problem instances.

Table 4: Nurse scheduling: T = 48.

Computation time (seconds) Costs (lowest costs normalized to 100)

σ x̃α x̃+
α x̂S x̂S′ xµ xLP x̃α x̃+

α x̂S x̂S′ xµ xLP

0.1 496.6 501.8 OOT 5.9 0.0 0.7 104.90 102.17 OOT 100 130.10 106.99
0.5 685.9 742.7 OOT 96.7 0.0 0.6 101.26 100.99 OOT 100 121.51 102.72
1.0 719.4 844.7 OOT 892.3 0.0 0.6 100.34 100.46 OOT 100 126.66 100.92
2.0 801.9 929.8 OOT OOT 0.0 0.6 100.33 100 OOT OOT 136.61 100.10
4.0 1053.7 1140.3 OOT OOT 0.0 0.6 100.10 100 OOT OOT 151.08 100.05

10.0 973.9 1158.5 OOT OOT 0.0 0.6 100.00 100 OOT OOT 171.90 100.01

Table 4 displays the results for the large nurse scheduling test instances. Again, we observe
a clear difference in computation times between LBDA(α) and the sampling solutions. The sam-
pling solutions can only be computed with a small sample size S′ = 100 for σ ≤ 1.0, whereas
LBDA(α) solves every instance within 20 minutes. Also note the dramatic increase in compu-
tation times for x′S compared to the small instances, especially for σ ≥ 2.0. In comparison, the
computation times of LBDA(α) scale favourably in the size of the instance, measured by the
number of times periods T .

In terms of performance, we observe that both LBDA(α)-solutions x̃α and x̃+
α outperform both

sampling solutions if σ ≥ 2.0. In addition, x̃+
α has the lowest expected costs out of all candidate

solutions for these values of σ. Furthermore, x̃+
α performs significantly better than x̃α for σ = 0.1

and σ = 0.5. In other words, there is a significant benefit to running LBDA(α) using multiple
values of α for small values of σ, similar as for the small nurse scheduling test instances.

5.3 Randomly generated test instances

We generate random MIR problems with the following structure

min
x
{cx+Q(x) : x ∈ Rn1

+ },

where

Q(x) := Eω
[
min
y
{qy : Wy ≥ ω − Tx, y ∈ Zp+}

]
.

Here, ω ∈ Rm is a random vector, whose elements follow independent normal distributions with
mean 10 and standard deviation σ ∈ {0.1, 0.5, 1, 2, 4, 10}. The parameters c, q, T , and W are
fixed, and their elements are drawn from discrete uniform distributions whose supports can be
found in Table 5.
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Table 5: Random instances: parameter supports.

Parameter Support

c {1, . . . , 5}n1

q {5, . . . , 10}p
T {1, . . . , 6}m×n1

W {1, . . . , 6}m×n2

To prevent noise in the outcomes of our experiments, we compute the average optimality gaps,
costs, and computation times over 20 randomly generated test instances for each value of σ. We
report OOT if at least one of these instances could not be solved in under two hours.

We consider test instances of two different sizes, namely n1 = 10, p = 5, m = 5 (small), and
n1 = 100, p = 40, m = 20 (large). Tables 6 and 7 display the results for the small and large
versions, respectively.

Table 6: Randomly generated test instances (n1 = 10, p = 5, m = 5).

Running time (seconds) Relative optimality gap (%)

σ x̃α x̃+
α x∗α x̂S x̂S′ xµ xLP x̃α x̃+

α x∗α x̂S x̂S′ xµ xLP

0.1 2.6 5.8 93.9 447.5 0.1 0.0 0.3 24.45 3.20 28.34 0.34 2.56 102.55 36.83
0.5 4.5 8.3 87.9 OOT 0.3 0.0 0.2 12.13 1.72 16.98 OOT 2.26 84.83 28.06
1.0 3.9 6.9 91.7 OOT 0.7 0.0 0.2 8.98 2.28 10.20 OOT 2.83 71.88 21.24
2.0 4.1 7.5 91.1 OOT OOT 0.0 0.2 7.66 3.60 5.57 OOT OOT 60.01 13.76
4.0 3.8 6.4 87.0 OOT OOT 0.0 0.2 6.73 4.18 4.82 OOT OOT 65.22 8.35

10.0 3.6 7.0 83.8 OOT OOT 0.0 0.2 3.74 3.24 3.32 OOT OOT 87.59 4.23

Table 7: Randomly generated test instances (n1 = 100, p = 40, m = 20).

Running time (seconds) Costs (lowest costs normalized to 100)

σ x̃α x̃+
α x̂S x̂S′ xµ xLP x̃α x̃+

α x̂S x̂S′ xµ xLP

0.1 35.7 183.5 1174.4 2.0 0.0 21.4 131.66 108.18 100 112.96 242.78 142.93
0.5 34.5 59.3 OOT 4.9 0.0 21.5 116.19 100 OOT 104.36 205.78 126.68
1.0 32.9 41.3 OOT 6.0 0.0 21.3 107.06 100 OOT 103.74 185.38 120.18
2.0 32.6 38.3 OOT 54.0 0.0 22.1 103.24 100 OOT 102.80 180.51 111.66
4.0 31.3 36.5 OOT 184.6 0.0 22.1 101.66 100 OOT 102.52 202.42 104.76

10.0 29.9 36.7 OOT OOT 0.0 43.9 100.66 100 OOT OOT 231.82 100.94

From Tables 6 and 7, we observe that LBDA(α) clearly outperforms the sampling solutions
in terms of computation time and scalability to larger problem instances, similar as in the nurse
scheduling test instances in Section 5.2. In particular, we observe that the computation time of
LBDA(α) is of the same order of magnitude as that of xLP, while it performs significantly better
in terms of optimality gaps and out-of-sample estimated expected costs. Strikingly, for the large
problem instances with σ = 10.0, LBDA(α) is faster than solving the LP-relaxation of the DEF.
This is explained by the fact that LBDA(α) is an augmented version of the L-shaped algorithm,
which is designed to efficiently compute xLP. Undeniably, our results indicate that LBDA(α) can
be implemented very efficiently and that we can handle large MIR problem instances.

In terms of performance, the solution generated by multiple LBDA(α) runs outperforms every
other candidate solution for σ ≥ 0.5. Only if the variability of the random parameters in the
model is very small (σ = 0.1), then LBDA(α) is outperformed by the sampling solutions. This is
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in line with Proposition 1, which states that the solution generated by LBDA(α) performs better
if the variability of the random parameters in the model is large. Similar to the nurse scheduling
test instances, we observe that especially for small values of σ, x̃+

α significantly outperforms x̃α.
This implies that there is a considerable benefit to using multiple values of α in LBDA(α) instead
of just one.

Compared to the nurse scheduling test instances in Section 5.2, the optimality gaps of x̃+
α

in Table 6 are relatively large, though all well below 5%. Moreover, the optimality gaps do not
decrease as σ increases, as we would expect based on Proposition 1. This is explained by the fact
that the MRP relies on solving multiple DEF’s in order to derive sharp bounds on the optimality
gap. As is clear from our results, standard solvers have difficulties with solving DEF’s in reasonable
time, especially for larger values of σ. Because we stop the solver after one hour in the MRP, the
DEF’s are not solved to optimality. As a result, the bounds on the optimality gap generated by
the MRP are not sharp. Therefore, we expect that the true optimality gaps of x̃+

α for σ ≥ 0.5 are
much smaller than the numbers we present in Table 6.

In Section 5.2, we observed that for the nurse scheduling test problems, xLP performed rela-
tively well in terms of optimality gaps. The results in this section support the explanation that
this is due to the TU property of the nurse scheduling test problems. Indeed, the models in this
section do not have this property, and xLP performs much worse.

Finally, we compare the exact solution x∗α of the generalized α-approximations and the solu-
tion x̃α generated by LBDA(α). Recall that LBDA(α) approximates x∗α, which itself approximates
the optimal solution of the true problem. However, we observe that neither solution clearly out-
performs the other. In other words, the additional approximation step made by LBDA(α) has no
negative effect on the solution quality.

6 Conclusion

We consider two-stage mixed-integer recourse models with random right-hand side. Due to non-
convexity of the recourse function, such models are extremely difficult to solve. We develop a
tractable approximating model by using convex approximations of the recourse function. In partic-
ular, we propose a new class of convex approximations, the so-called generalized α-approximations,
and we derive a corresponding error bound on the difference between these approximations and
the true recourse function. In addition, we show that this error bound is small if the variability
of the random parameters in the model is large. More precisely, the error bound for the gener-
alized α-approximations goes to zero as the total variations of the one-dimensional conditional
probability density functions of the random right-hand side vector in the model go to zero.

The advantage of the generalized α-approximations over existing convex approximations is
that it can be solved efficiently. In fact, we describe a loose Benders decomposition algorithm,
LBDA(α), which efficiently solves the corresponding approximating model. The quality of the
candidate solution x̂ generated by LBDA(α) in the original model is guaranteed by Proposition 1,
which states an upper bound on the optimality gap of x̂. This performance guarantee is similar
to the error bound we prove for the generalized α-approximations. Indeed, we show that the
optimality gap of x̂ is small if the variability of the random parameters in the model is large.

In addition to this theoretical guarantee on the solution quality, we use Monte Carlo sam-
pling to assess LBDA(α) empirically. In our numerical experiments, we consider test instances
based on a nurse scheduling application and randomly generated test instances. We find that
LBDA(α) performs well in terms of computation times, scalability to larger problem instances,
and solution quality. In particular, LBDA(α) is able to solve larger instances than traditional
sampling techniques and its computation times scale more favourably in the input size of the in-
stances. Moreover, LBDA(α) outperforms traditional sampling techniques in terms of optimality
gaps and total expected costs if the variability of the random parameters in the model is medium
to large.

One avenue for future research is to derive sharper theoretical error bounds for the generalized
α-approximations. While Proposition 1 provides conditions under which our solution method
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performs well, the quantitative error bound cannot be computed, as it depends on an unknown
and potentially large constant C. A sharp tractable error bound would be an improvement over
our current results. Another avenue is the extension of our solution method to more general
mixed-integer recourse models, for example by allowing for randomness in the second-stage cost
coefficients q, technology matrix T , or recourse matrix W .
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D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric Gomory cuts
for two-stage stochastic integer programs. Mathematical Programming, 144(1-2):39–64, 2014.

H. I. Gassmann and W. T. Ziemba, editors. Stochastic Programming: Applications in Finance,
Energy, Planning and Logistics, volume 4 of World Scientific Series in Finance. World Scientific,
2013.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society, 64(5):275–278, 1958.

K. Kim and S. Mehrotra. A two-stage stochastic integer programming approach to integrated
staffing and scheduling with application to nurse management. Operations Research, 63(6):
1431–1451, 2015.

W. K. Klein Haneveld, L. Stougie, and M. H. van der Vlerk. Simple integer recourse models:
convexity and convex approximations. Mathematical Programming, 108(2-3):435–473, 2006.

A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approximation method
for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2002.

N. van der Laan, W. Romeijnders, and M. H. van der Vlerk. Higher-order total variation bounds for
expectations of periodic functions and simple integer recourse approximations. Computational
Management Science, 15(3-4):325–349, 2018.

31



G. Laporte and F. V. Louveaux. The integer L-shaped method for stochastic integer programs
with complete recourse. Operations Research Letters, 13(3):133–142, 1993.

F. V. Louveaux and M. H. van der Vlerk. Stochastic programming with simple integer recourse.
Mathematical programming, 61(1-3):301–325, 1993.

W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters, 24(1-2):47–56, 1999.

L. Ntaimo. Fenchel decomposition for stochastic mixed-integer programming. Journal of Global
Optimization, 55(1):141–163, 2013.

A. H. G. Rinnooy Kan and L. Stougie. Stochastic integer programming. In Y. Ermoliev and R. J.-
B. Wets, editors, Numerical Techniques for Stochastic Optimization, volume 10 of Springer
Series in Computational Mathematics, pages 201–213. Springer, 1988.

W. Romeijnders, L. Stougie, and M. H. van der Vlerk. Approximation in two-stage stochastic
integer programming. Surveys in Operations Research and Management Science, 19(1):17–33,
2014.

W. Romeijnders, M. H. van der Vlerk, and W. K. Klein Haneveld. Convex approximations of
totally unimodular integer recourse models: A uniform error bound. SIAM Journal on Opti-
mization, 25(1):130–158, 2015.

W. Romeijnders, R. Schultz, M. H. van der Vlerk, and W. K. Klein Haneveld. A convex approxi-
mation for two-stage mixed-integer recourse models with a uniform error bound. SIAM Journal
on Optimization, 26(1):426–447, 2016a.

W. Romeijnders, M. H. van der Vlerk, and W. K. Klein Haneveld. Total variation bounds on the
expectation of periodic functions with applications to recourse approximations. Mathematical
Programming, 157(1):3–46, 2016b.

W. Romeijnders, D. P. Morton, and M. H. van der Vlerk. Assessing the quality of convex ap-
proximations for two-stage totally unimodular integer recourse models. INFORMS Journal on
Computing, 29(2):211–231, 2017.
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